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 CURRENT
OPINION Monitoring coherence between the macro and

microcirculation in septic shock

Jan Bakkera,b,c,d and Can Incea

Purpose of review

Currently, the treatment of patients with shock is focused on the clinical symptoms of shock. In the early
phase, this is usually limited to heart rate, blood pressure, lactate levels and urine output. However, as the
ultimate goal of resuscitation is the improvement in microcirculatory perfusion the question is whether these
currently used signs of shock and the improvement in these signs actually correspond to the changes in the
microcirculation.

Recent findings

Recent studies have shown that during the development of shock the deterioration in the macrocirculatory
parameters are followed by the deterioration of microcirculatory perfusion. However, in many cases the
restoration of adequate macrocirculatory parameters is frequently not associated with improvement in
microcirculatory perfusion. This relates not only to the cause of shock, where there are some differences
between different forms of shock, but also to the type of treatment.

Summary

The improvement in macrohemodynamics during the resuscitation is not consistently followed by subsequent
changes in the microcirculation. This may result in both over-resuscitation and under-resuscitation leading to
increased morbidity and mortality. In this article the principles of coherence and the monitoring of the
microcirculation are reviewed.
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INTRODUCTION

Circulatory dysfunction is a frequent reason for
admission to the ICU. The principal role of the
circulation is to deliver nutrients (oxygen and fuel)
to the organs and remove waste product. This is
mainly accomplished by the delivery of red blood
cells (RBC) into the microcirculation and the passive
diffusion of oxygen from the RBCs to the tissue cells.
When requirements are not met, first organ func-
tion decreases before ultimately failing. Therefore,
the goal in treating circulatory dysfunction is to
restore adequate perfusion of the microcirculation.
The oxygen content [hemoglobin (Hb) and Hb sat-
uration] are factors that also determine the ultimate
amount of oxygen delivered to the organs. However,
in this review we will focus on perfusion as the body
has limited ability to improve oxygen content
acutely. In addition, in response to changes in oxy-
gen demand the first response of the circulatory
system is to improve flow. In situations of stress
(shock) the system also influences organ blood flow
by redirecting flow to more vital organs at the
expense of less the perfusion of less vital organs.

The clinical definition of circulatory dysfunc-
tion or failure varies and is usually defined by macro-
hemodynamic parameters like blood pressure (BP),
biomarkers in arterial and (central) venous blood
and parameters of organ function. Where shock is
the worst form of circulatory failure, its definition is
not really usable at the bedside [1] so that one has to
rely on the same parameters and biomarkers for its
recognition. Not only the use of these, sometimes
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neither specific nor sensitive markers, might result
in inadequate treatment of the patient.

For this review, we define hemodynamic coher-
ence as the presence of concordance between
changes in the macrocirculation and the microcir-
culation. We will mainly focus on sepsis as this a
very frequent cause of circulatory dysfunction in
critically ill patients and has been shown to present
a both complex microcirculatory dysfunction and a
complex response to its treatment.

METHODS TO MONITOR THE
MICROCIRCULATION

The methods available to monitor the microcircula-
tion are numerous but relate to the specific micro-
circulation of interest. In intact patients this
basically means that access to organs is not possible
with the exception of patients with an enteral stoma
which provides access to gut mucosa. The accessible
sites are thus mainly limited to skin and the sublin-
gual area. In different contexts, the mucosa of the
rectum and vagina has been used [2,3].

For the skin the methods available have been
reviewed extensively earlier [4,5] and will not be
discussed here. The sublingual area provides an easy
opportunity to visualize a true microcirculatory net-
work. From its first clinically available device, some
20 years ago [6], the technique has been further
developed [7], an automated scoring system has
become available [8

&

] and guidelines for the practi-
cal use and interpretation have been published [9

&

].
Although other areas can be used to visualize the

microcirculation (nailbed, conjunctive, retina) their
clinical use is thus far limited.

THE IMPORTANCE OF COHERENCE

Where the ultimate goal of resuscitation is to restore
microcirculatory perfusion and oxygen exchange,
the question is whether the clinically used param-
eters adequately reflect these processes (Fig. 1) [10].
Perceived adequate macrohemodynamics in the
presence of abnormal microcirculatory perfusion
has been referred to as microcirculatory shock
[11]. In addition, normal peripheral microcircula-
tory perfusion in patients with septic shock is asso-
ciated with a significantly lower mortality in the
presence of similar macrohemodynamics [12

&

]. In
both cases, the lack of coherence could represent a
different (clinical) phenotype but could also result
in either over-resuscitation or under-resuscitation of
patients. A relevant clinical example of this could be
the use of lactate in the early resuscitation of septic
shock as recommended by the Surviving Sepsis
Campaign Guidelines [13]. In these, fluid adminis-
tration is recommended in patients with increased
lactate levels as these would mark tissue hypoperfu-
sion with the ultimate goal to normalize lactate
levels [13]. Both this assumption and the use of
normalization have been seriously questioned as
lactate may not (always) indicate tissue hypoperfu-
sion and microcirculatory perfusion may be normal
when lactate levels have not normalized yet [14,15]
and coherence may be lost [16]. Both conditions
could lead to over resuscitation with associated risk
of increased morbidity and mortality [17,18].

COHERENCE DURING THE DEVELOPMENT
OF CIRCULATORY FAILURE

In acute models of hemorrhagic shock, tamponade,
cardiogenic shock and cardiac arrest coherence exists
during the development of shock. In other words,
during the development of shock, as signaled by the
changes in macrocirculatory parameters, also the
microcirculation shows abnormal perfusion param-
eters [19–27]. Although during the development of
septic shock, characterized by hypotension and
decreased cardiac output (CO), hemodynamic coher-
ence is present [20,28–30]. However, sepsis with
preserved macrohemodynamics may still show an
abnormal microcirculation [31,32]. In contrast to
other organs, the microcirculation of the brain seems
to be preserved during the development of septic,
cardiogenic and hemorrhagic shock [22,33,34]
despite significant macrocirculatory abnormalities.

The study of coherence in human models of
shock is limited but in models of hypovolemia in

KEY POINTS

� During the development of shock microcirculatory
perfusion parameters follow the deterioration of
macrocirculatory symptoms and parameters of shock
(coherence).

� Although in some forms of shock coherence is also
present in the resuscitation of shock, especially septic
shock represents a state in which coherence is lost.

� As the resuscitation is still mainly focused on
macrocirculatory parameters, the loss of coherence
may result in both over and under-resuscitation.

� Loss of coherence is associated with increased
morbidity and mortality.

� Although loss of coherence between the
macrocirculation and peripheral perfusion parameters
is also present following initial resuscitation in septic
shock, limited research have studied the coherence
between the microcirculation and peripheral circulation.

Cardiopulmonary monitoring
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healthy volunteers, hemodynamic coherence is also
present during the progression of circulatory abnor-
malities. In a model of simulated hypovolemia Bar-
tels et al. [35] showed that lower body negative
pressure resulted in decreased CO (while BP was
maintained) coinciding with abnormal sublingual
microcirculatory perfusion. In human models of
sepsis, the (macrohemodynamic) characteristics
mimic the ones seen in patients presenting with
sepsis [36–39]. In a volunteer study, Draisma et al.
[38] showed that a bolus of endotoxin in healthy

volunteers resulted in a decrease in mean arterial
pressure and an increase in heart rate (HR) charac-
teristic of clinical sepsis. The bolus of endotoxin was
also associated with a decrease in vascular reactivity
and a decrease in microcirculatory perfusion, both
being restored 4 h after the bolus [38].

With the exception of the brain microcircula-
tion, we can thus assume that in the early phase
of severe macrocirculatory dysfunction the micro-
circulation is compromised. It is conceivable that
microcirculatory perfusion abnormalities may

FIGURE 1. Microcirculatory changes in lost hemodynamic coherence. Different microcirculatory changes characterize the
mechanisms associated with the loss of hemodynamic coherence resulting in a decreased delivery of oxygen to the cells. Type
1: Heterogenous perfusion of the microcirculation as seen in sepsis. Some capillaries have no flow where others have normal
or increased flow resulting in scanted oxygen delivery to some cells. Type 2: Loss of hematocrit in the microcirculation as seen
in hemodilution. The result in not only reduced delivery of oxygen but also increased diffusion distance between the red blood
cells and the tissue cells. Type 3: Stasis in the microcirculation induced by altered systemic variables. Increased arterial
resistance (R), increased venous pressure (P) resulting in a tamponade of the microcirculation. Type 4: Development of tissue
edema (e.g. due to capillary leak) resulting in increased diffusion distance between the normally perfusion capillaries and the
tissue cells. Red: well oxygenated red blood cells and tissue cells. Dark red/black: red blood cells with decreased oxygen
saturation. Blue: tissue cells with reduced oxygenation. From [10].
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develop before macrocirculatory hemodynamic
changes are prominent. This could especially be the
case during a tamponade of the microcirculation by
increased central venous pressure (CVP). A clue to this
was the findingbyVellinga et al. [40] thatpatientswith
increased CVP showed an impaired sublingual micro-
circulation. In patients with sepsis [41] and cardiac
failure [42],CVPhas beenshown to bean independent
risk factor for acute kidney injury despite adequate
macrocirculatory parameters. However, all of these
findings were postresuscitation and thus, other than
keeping CVP as low as possible during resuscitation of
shock, general recommendations cannot be made
from this [43]. It is clinically not feasible to monitor
sublingualmicrocirculatoryperfusion in all patients at
riskwhilehavingnormalmacrocirculatoryparameters
although monitoring by ICU nurses of the sublingual
microcirculation using a simplified scoring system has
been shown to be feasible [44]. In addition, the benefit
of intervening to restore microcirculatory abnormali-
ties in patients with adequate macrocirculatory
parameters has not been shown, this clearly has a
sound rationale and represents a research challenge.
Overall, the assumption that the microcirculation is
compromised in patients with developing abnormal
macrocirculatory parameters in a relevant context
seems valid.

COHERENCE IN THE TREATMENT PHASE:
EXPERIMENTAL DATA

The main clinically relevant phase of the presence or
absence of hemodynamic coherence is the resusci-
tation phase. As argued earlier, the absence of coher-
ence in this phase may have significant effects on
the adequacy of resuscitation as it may result in both
over-resuscitation and under-resuscitation. It is
clear from experimental models in many different
pathophysiologic conditions, including sepsis, that
resuscitation on global hemodynamic parameters
frequently fails to restore microcirculatory perfusion
and oxygenation [25,28,45–47]. The effects in dif-
ferent microcirculatory systems or even within one
microcirculatory system may however not be similar
[30,48]. There may be few exceptions possibly
related to the specific hemodynamic compromise
or that may reflect differences in individual
responses. In a model of tamponade, van Genderen
et al. [20] showed that removing the pericardial fluid
resulted in a rapid restoration of both macrocircu-
latory and microcirculatory perfusion parameters.
This was very different in the model of septic shock
these researchers studied, where restoration of base-
line macrohemodynamics did not restore the micro-
circulation, only resuscitation to a hyperdynamic
state restored the microcirculation. However, as

there were no control animals in their study, the
effect of time could not be ruled out [20]. Although
some (experimental) treatments have shown to be
more effective in restoring microcirculatory perfu-
sion and oxygen exchange than the use of fluids only
[46,49,50] the type of fluids may not be an unimpor-
tant aspect of restoring microcirculatory perfusion as
well [51,52]. However, a detailed discussion about
this is beyond the scope of this publication.

CLINICAL DATA

Several studies in patients with sepsis and septic
shock have shown a lack of coherence between the
macrocirculation and microcirculation when treat-
ing the patient or following optimization of macro-
hemodynamics [53–59]. Similar findings have been
shown in patients with cardiac failure, cardiogenic
shock and hemorrhagic shock [56,60–62]. When
there is a lack of coherence following initial resusci-
tation, some of these studies have shown that recov-
ery of the microcirculation may take a much longer
time. In many of these studies, the lack of coherence
and prolonged recovery time of the microcirculation
has been associated with mortality. Persistent macro-
hemodynamic abnormalities in combination with
microcirculatory abnormalities may impose an even
more increased risk of mortality [63].

The relevance of different microcirculations,
limited by the scarce availability of these in patients,
is unknown. In a study in patient with sepsis two
studies reported on the coherence of the intestinal
microcirculation [64,65]. Both studies showed the
absence of coherence between intestinal microcir-
culation the sublingual microcirculation and the
macrohemodynamics. In the study by Boerma
et al. [64], it was shown that recovery of coherence
between the sublingual and intestinal sites was
restored after several days.

The use of vasoactive agents to resuscitate the
microcirculation has been reviewed earlier [66] and is
outside of the scope of this article. The use of beta
blocker therapy has gained new interest as both
experimental and clinical studies have shown posi-
tive effects on microcirculatory perfusion [50,67,68].
As in these studies beta blockers were titrated to HR,
the recent finding of the additional effect on mortality
of increased HR in patients with abnormal microcir-
culatory perfusion [63] should encourage additional
research in this context.

CONCLUSION

Fromtheprevious the followingclinical consequences
could be drawn. In patients with abnormal macro-
hemodynamics it is very likely that microcirculatory

Cardiopulmonary monitoring
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parametersofperfusionare impairedaswell.Although
in some clinical contexts the improvement of the
macrohemodynamics may coincide with improve-
ments in microcirculatory perfusion, restoration of
microcirculatory perfusion by aiming to restore mac-
rocirculatory parameters, especially in patients with
severe sepsis and septic shock, is unlikely. If anything,
restoration of microcirculatory perfusion may take
much more time. The clinical relevance is that the
absence of coherence, and thus rapid restoration
of microcirculatory perfusion is associated with
increased mortality in the majority of studies and
clinical contexts. Where specific vasoactive drugs
and specific resuscitation fluids have been shown to
favor improvements in microcirculatory perfusion
both the clinical protocol on how to use these and
the subsequent effect on patient outcome has hardly
been studied.

Therefore, the ultimate conclusion of this article
is a call to design studies that evaluate the early
resuscitation of the microcirculation together or
following restoration of macrohemodynamics.
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