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A B S T R A C T

Normal brain-aging occurs at all structural levels. Excessive pathophysiological changes in the brain, beyond the
normal one, are implicated in the etiology of brain disorders such as severe forms of the schizophrenia spectrum
and dementia. To account for brain-aging in health and disease, it is critical to study the age-dependent trajec-
tories of brain biomarkers at various levels and among different age groups.

The intracranial volume (ICV) is a key biological marker, and changes in the ICV during the lifespan can teach
us about the biology of development, aging, and gene X environment interactions. However, whether ICV changes
with age in adulthood is not resolved.

Applying a semi-automatic in-house-built algorithm for ICV extraction on T1w MR brain scans in the Dutch
longitudinal cohort (GROUP), we measured ICV changes. Individuals between the ages of 16 and 55 years were
scanned up to three consecutive times with 3.32�0.32 years between consecutive scans (N ¼ 482, 359, 302).
Using the extracted ICVs, we calculated ICV longitudinal aging-trajectories based on three analysis methods;
direct calculation of ICV differences between the first and the last scan, fitting all ICV measurements of individuals
to a straight line, and applying a global linear mixed model fitting. We report statistically significant increase in
the ICV in adulthood until the fourth decade of life (average change þ0.03%/y, or about 0.5 ml/y, at age 20), and
decrease in the ICV afterward (�0.09%/y, or about �1.2 ml/y, at age 55). To account for previous cross-sectional
reports of ICV changes, we analyzed the same data using a cross-sectional approach. Our cross-sectional analysis
detected ICV changes consistent with the previously reported cross-sectional effect. However, the reported
amount of cross-sectional changes within this age range was significantly larger than the longitudinal changes. We
attribute the cross-sectional results to a generational effect.

In conclusion, the human intracranial volume does not stay constant during adulthood but instead shows a
small increase during young adulthood and a decrease thereafter from the fourth decade of life. The age-related
changes in the longitudinal measure are smaller than those reported using cross-sectional approaches and unlikely
to affect structural brain imaging studies correcting for intracranial volume considerably. As to the possible
mechanisms involved, this awaits further study, although thickening of the meninges and skull bones have been
proposed, as well as a smaller amount of brain fluids addition above the overall loss of brain tissue.
1. Introduction the system one, result in brain aging (Lockhart and DeCarli, 2014; Ken-
Aging is a natural process that occurs in most species of the animal
kingdom (Jones et al., 2014). In Homo Sapiens, aging starts in adulthood
and continues into old age (Lindle et al., 1997). Similar to the body,
age-dependent structural changes in the brain, from the cellular level to
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nedy and Raz, 2015). These structural brain-aging processes are, on
average, accompanied by cognitive performance differences across the
lifespan (Hartshorne and Germine, 2015).

The rate of brain-aging across different brain systems is, however, not
constant. Instead, various brain regions show different aging trajectories
(H.H. Pol).
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(Hedman et al., 2011). For example, the cingulate atrophy rate is larger
than that of the cerebellum cortex lobes (Pfefferbaum et al., 2013). In
principle, regional structural aging-changes can reside within some
accepted boundaries, in which case they characterize the normal aging
process. By contrast, structural brain aging-changes can also occur beyond
these normal boundaries, in which case they are the manifestation of
disease-like degenerative processes. Considering the high impact of
degenerative brain-processes on global population health, it is crucial to
infer normal structural aging-trajectories of a wide range of brain systems
and biomarkers and differentiate them from those in disease conditions.

One such biomarker is the total intracranial volume (ICV). Physio-
logically, the cranial bone is separated from the brain system by three
membranal layers (meninges); the dura, the arachnoid, and the pia ma-
ters (Adeeb et al., 2012). Beneath these layers, within the ICV, all the
central-nervous-system neuronal and glial cells, as well as the cerebro-
spinal fluid (CSF) are located (Jenkins et al., 2000). Since it is hard to
delineate the meninges from the cranial bone in magnetic resonance
imaging (MRI), in practice, the ICV is mostly measured by identifying the
sum-total volumes of the gray matter, white matter, and the CSF.

The ICV, demarcating the maximum size of the brain, has a long
history for being utilized as a biomarker. Before the invention of
advanced imaging techniques, such as MRI and computed tomography
(CT), the size of the cranium served as an approximate measure for the
ICV and the brain. At the beginning of the 20th century, it becomes the
center of the efforts to show human bodily environmental plasticity
(Boas, 1912; Sparks and Jantz, 2002; Gravlee et al., 2003). Later on, it
was shown that extreme environmental conditions during the prenatal
period influence the ICV at adulthood (Hulshoff Pol et al., 2000). It is also
known that the ICV size is under the control of a large genetic component
(Peper et al., 2007; Stein et al., 2012; Batouli et al., 2014; Adams et al.,
2016). Recently, it was also found that the ICV correlates with several
psychiatric conditions. For example, a small but significant correlation
was found between schizophrenia disorder and a reduced ICV (Baar�e
et al., 2001; Haijma et al., 2012; van Erp et al., 2016; Smeland et al.,
2017). Similarly, the ICV was the only brain volumetric biomarker that
shows a genetic correlation with ADHD (Klein et al., 2019). The ICV is
also strongly correlated with sex and head size. Thus, females, on
average, have a smaller ICV (Ruigrok et al., 2014), and people with
bigger heads have, on average, larger ICV (Wolf et al., 2003). In addition,
probably due to its correlation with maximal brain size during the life-
span, the ICV is being used as a biomarker for the ‘brain reserve’ pro-
tective factor in dementia research (van Loenhoud et al., 2018). Finally,
the ICV correlates with cognitive abilities (MacLullich et al., 2002)
(although the effect size may have been overestimated (Pietschnig et al.,
2015)). Similarly, genes for the whole brain volume and the ICV overlap
with genes for general cognitive ability and with intelligence, as is often
measured by the intelligent quotient (IQ) (Posthuma et al., 2002; Deary
et al., 2010).

Although the ICV serves as an elementary biomarker that correlates
with a wide range of medical and physiological conditions, a compre-
hensive work that elucidates its exact aging-trajectory is still missing.
Instead, many neuroimaging brain-aging studies use the ICV to regress
out the influence of the head size on volumes or areas of specific brain
regions (Ikram et al., 2008; Dickie et al., 2013). In those cases, the ICV
aging-trajectory is rarely reported for its own sake. We believe that the
ICV aging-trajectory may have merits in itself. Thus, the work presented
here aims at filling the gap in the understanding of the normal ICV aging
during young and middle adulthood.

Several cross-sectional studies have reported ICV changes as a func-
tion of age. In general, the current scientific literature gravitates around
two views. The first view suggests that detectable age-related ICV
changes exist. The second view suggests that the ICV stays constant
during adulthood. For the first view, a decline of the ICV of 1.45ml/year
for males and 1.82ml/year for females was measured from the middle of
the 4th to the 9th decade of life (0.1%/year and 0.15%/year for males
and females respectively based on the ICV at age 44) in one study
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(DeCarli et al., 2005). In another study, a reduction in the inner skull
volume (which is roughly equal to the ICV) was also observed (Fillmore
et al., 2015). The ICV volume decline started only around the fifth decade
of life, and its reduction rate was not homogeneous. In total, in that study,
from the age of � 40 to the age of � 75 years, there was a decrease of
about 10% in the inner skull volume (� 0:29%/year).

By contrast, other cross-sectional studies reported no changes in the
ICV with age. For example, no changes in ICV were found in individuals
from the age of 14 years to the 8th decade of life (Courchesne et al., 2000),
and in young adulthood (20–25 years) compared to older adults (65–90
years) (Buckner et al., 2004). A similar negative finding was obtained
when using a T2wMRI cohort of individuals between the ages of 15 and 59
years (Hasan et al., 2010), and in people between the ages of 18 and 95
using CT imaging (Ricard et al., 2010). Finally, in 208 individuals com-
bined with the publicly available OASIS cohort between the ages of 35–75,
no dependency of ICV on age was found (Schippling et al., 2017).

In some cases, when ICV age-related changes were observed, they
were interpreted in the context of the secular trend of increasing head
size in the last century. For example, Good et al. observed a quadratic
decline in ICV with age for males, but not for females, and suggested that
generational head growth is the cause of their findings (Good et al.,
2001). Similarly, Kruggel has observed a small decrease in the ICV
(0.84ml/year between the ages of 16 and 70) that was significant at the
0.1 false-positive statistical level and interpreted the effect in the context
of a generational growth (Kruggel, 2006). Finally, Kim et al. observed an
average ICV decrease of 2.1 ml/year for males and females between a
group of Korean people at an average age of 68 years and a second group
at an average age of 24 years (Kim et al., 2018). They also suggested
environmental factors as the cause of this ICV difference.

Since all these studies applied a cross-sectional analysis, it is hard to
estimate what factor really represents a generational effect, and to what
extent real individual age-dependent ICV changes exist. However, pre-
cisely this estimation is needed to infer the true aging-trajectory of the
ICV. One way to obtain an accurate measure of the ICV aging-trajectory is
by using a longitudinal approach. In a longitudinal approach, each person
serves as its own normalization baseline, and thus the generational effect
is removed. Indeed, it is known that applying cross-sectional and longi-
tudinal analyses to the same data can give rise to substantial differences
in the results (Pfefferbaum and Sullivan, 2015).

To the best of our knowledge, only two studies have used a longitu-
dinal (or semi-longitudinal) approach to study ICV aging. In the first
longitudinal study, 90 healthy subjects between the ages of 14 and 77
years had two MRI scans at an average interval of 3.5 years (Liu et al.,
2003). To study longitudinal changes, the authors divided their cohort
into three age epochs (� 34 ; 35� 54 ; and � 54 years). Their analysis
showed a small increase in the ICV over repeated measurements for the
youngest group (4.6ml; 0.3%). However, the ICV was not statistically
significantly different between the first and second measurements for the
other two age epochs. In addition, the average ICV for the first age group
was not different from that in the second and third age groups. By
contrast, when a cross-sectional analysis was applied to the data, a sta-
tistically significant correlation with age was found, which was inter-
preted as the result of a secular growth of the head.

The second study compared two types of delineations of the ICV (Royle
et al., 2013). First, an automatic ICV extraction in a cohort of 60 people
between the ages of 71 years and 74 years was applied. Next, a manual
expert delineation of the ICV plus the part of the inner skull table that was
assessed by the human expert to results from age-related thickening was
conducted. By comparing these two measurements, a ‘longitudinal’ ICV
change from the start of aging to the eighth decade of life was inferred. The
results suggested an average of 101ml (6.2%) formales and 114ml (8.3%)
for females individual ICV reduction during the course of life.

Assuming that the main effect that was detected in the cross-sectional
ICV analyses was due to a generational growth, these two longitudinal
studies raise a series of questions. Does the ICV indeed continue to
enlarge at young adulthood? How come Liu et al. did not see ICV
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reduction at middle and advanced adulthood, while Royle et al. saw a
large longitudinal ICV decrease? How come the effect that Royle et al.
measured is as large as the comparable cross-sectional effect that is
generational by origin? Do these findings suggest a non-linear aging-
trajectory for the ICV? In light of these questions, it is clear that addi-
tional work is needed regarding ICV and aging.

To assess ICV aging in young andmiddle adulthood, wemeasured ICV
trajectories in a large longitudinal Dutch cohort with three repeated
measurements. Using an in-house-built algorithm for ICV extraction, we
assessed ICV changes over the repeated measurements. We analyzed the
results using three longitudinal measures: the individual volume differ-
ence between the first and last measurements, individual fits to all
available ICV measurements, and a global linear mixed model fitting.
These analysis methods showed a small but statistically significant
enlargement of the ICV at young adulthood that is replaced by a small but
statistically significant ICV shrinkage at middle adulthood.

Despite its advantages, a longitudinal design can also introduce new
confounding factors. In particular, in many cases, as a result of the
lengthy period of the longitudinal study, changes occur in the scanner
parameters (upgrade of software or hardware). Alternatively, it may
become necessary to use different scanners for different waves of the
study. Indeed, it is known that changes of scanner or scanner parameters
can introduce confounding factors to segmentation analysis of brain
images (Han et al., 2006; Jovicich et al., 2009). In general, these con-
founding factors are more significant when different scanners are used
for the measurements than when the same scanner is used with different
software or hardware parameters. Although it is essential to consider
these confounding factors in cross-sectional studies, it is much more
critical to consider them in longitudinal-designed studies. The reason for
this importance stems directly from the fact that in longitudinal studies,
each person serves as its own normalization baseline. Thus, the under-
lying assumption of longitudinal imaging studies is that any longitudinal
changes in the image are due to changes in the measured property of the
subject. This assumption is, of course, being violated by the confounding
factors that are related to the scanner itself.

It should be noted that the magnitude of such confounding factors is
reduced when the skull is taken into consideration in the segmentation
algorithm (Takao et al., 2011). In our work, we have used a segmentation
algorithm that takes the skull into account, and hence, a scanner related
confounding factor should be minimal. Nevertheless, to increase preci-
sion, we have chosen to address the issue of scanner-introduced con-
founding factors overtly in the context of a linear mixed model analysis
by directly using the scanner identification.

2. Methods

2.1. Data

We used the T1-weighted (T1w) MRI scans from the Utrecht site (The
Netherlands) of the GROUP study (Korver et al., 2012). The GROUP
Table 1
Statistical Characteristics of the GROUP study. Participants were scanned on a 1.
teristics of each wave of the study and the extracted ICV values. Bottom part - statisti
values. Tx - x wave of the study. Parenthesis - the number of females.

Scan # of
subjects

# of subjects with ICV
extracted

# of Schizophrenia diagnosed subjects
with ICV extracted

Cross-sectional
T1 528 (224) 482 (213) 152 (34)
T2 378 (162) 359 (156) 110 (20)
T3 309 (131) 302 (130) 86 (16)
Longitudinal
T1-T2 339 (143) 292 (130) 82 (14)
T2-T3 254 (107) 243 (104) 73 (14)
T1-T3 260 (109) 237 (103) 62 (12)
T1-T2-T3 231 (97) 207 (91) 58 (11)

3

study was originally designed to assess the risks and outcome of psy-
chosis. Hence, it contains three groups of participants — namely — a
control group, people that were diagnosed with schizophrenia, and sib-
lings of people that were diagnosed with schizophrenia. In general, in our
analysis, we do not differentiate between these three groups of people.
Altogether, the Utrecht GROUP Study contains T1w scans of 528, 378,
and 309 individuals at the first, second, and third time points, respec-
tively (see Table 1). The average period between consecutive scans is
3.32�0.32 years. The age span at the first time point is between 16 and
55 years. All scans were recorded using a 1.5-T Philips scanner at the
University Medical Center of Utrecht. Note that during the acquisition
phase of the GROUP study, two different scanners with the same field
strength and the same acquisition protocol were used to collect the data
between different waves of the study, as well as within each wave. Of
some cases, the scanner ID was missing. Altogether, we lack such
knowledge for 22, 6, and 29 cases at the first, second, and third waves of
the study. Out of these cases, we extracted ICV data for 14, 6, and 24
cases (see extractionmethod below.) For the exact acquisition protocol of
the T1w scans, see (Boos et al., 2011).

2.2. ICV extraction

ICV extraction was performed using a self-written Cþþ pipeline
based on the Minc-toolkit (version 1.0.08) for MRI image analysis (Vin-
cent et al., 2016). We call the pipeline - IntracranialVolume (see https:
//www.neuromri.nl/2019/03/25/intracranial-volume/ to download
the pipeline). For reasons of convenience, the pipeline was further
wrapped using a python script within the Fastr environment (Achterberg
et al., 2016) (see https://gitlab.com/bbmri/pipelines/fastr-resources).
Similar to Buckner et al. (2004), our algorithm for ICV extraction makes
use of several consecutive linear registrations steps (using the Minctracc
program), followed by three non-linear registration steps (also using the
Minctracc program). Such an algorithm is a new implementation of a
previously applied algorithm for ICV extraction used by our research
group (see, e.g. (Scheewe et al., 2013)) that is based on a clear seg-
mentation rationale (Collins et al., 1995). In each registration instance,
two MRI images are registered to an average MRI scan that was produced
in the previous registration cycle. The first scan that is registered to the
averaged scan is the T1w scan of the individual under consideration. The
second scan that is registered to the same averaged scan is a model T1w
MRI image that was created in our center by averaging several tens of
T1w scans of different individuals. From the final registration matrices of
the model MRI image and the subject scan to the averaged scan, one can
calculate the transformation from the model T1w MRI image to the
subject scan. Originally, adjacent to the T1w model MRI image, we also
created an ICV mask for that model brain, which was manually edited to
assure the best correspondence between the model and its ICV mask.
Applying the transformation that was calculated between the model MRI
image and the individual scan to the model ICV mask, one obtains a new
ICV mask for that individual. The total ICV of that subject is then merely
5 T MRI machine (Philips) from one to three times. Top part - statistical charac-
cal characteristic of the longitudinal statistics of the study and the extracted ICV

# of siblings with ICV
extracted

# of control subjects with
ICV extracted

Average (�s.d.) age (years)

214 (115) 116 (64) 27�7
168 (90) 81 (46) 30�7
135 (72) 81 (42) 34�8

145 (77) 65 (39) –

108 (55) 62 (35)
111 (56) 64 (35) –

97 (48) 52 (32) –

https://www.neuromri.nl/2019/03/25/intracranial-volume/
https://www.neuromri.nl/2019/03/25/intracranial-volume/
https://gitlab.com/bbmri/pipelines/fastr-resources
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the total number of voxels in that mask multiplied by the voxel volume.
Note that, in principle, the dura matter is continuous between the brain
and the spinal cord. Thus, it is hard to tell where precisely the brain ‘ends’
at its axial lower part. We have chosen to arbitrarily define the bottom
part of the brain as the level below the cerebellum and the medulla.

We have adopted a semi-automatic procedure for the ICV extraction.
The procedure amounts to running the ICV extraction pipeline with its
default setting over a T1w MRI scan of a specific individual followed by
manual inspection of an output figure file. The output figure file con-
tains several sections of the axial, sagittal, and coronal directions of the
brain overlaid by the outline of the ICV mask that was produced by the
pipeline. If the ICV outer outline did not mark the real outline of the
ICV, as judged by the first author, we have tried to run the ICV
extraction tool with alternative flags to the Mintracc program. We have
repeated this process several times until a satisfactory ICV mask was
obtained, or else, it was decided that the pipeline is unable to produce
an adequate ICV mask for that individual. The semi-automatic pro-
cedure was done blinded to participant age, gender, group status, or any
other confounder.

In principle, in cases where the ICV mask was inadequate, two flags
could be adjusted during the linear registration phase, and two could be
adjusted during the non-linear registration phase to produce a better ICV
mask. The two flags that could be adjusted during the linear registration
phase are: (i) blurring the scans before the registration using the Min-
cblur command (usually, a kernel of 4–12 voxels helped), or (ii) not using
the -est_translations flag of the Minctracc program. The two flags that can
be adjusted during the non-linear registration steps are (i) setting the
weighting factor for Minctracc optimization to a value of 0.01–0.4
(default 1.0); and (ii) setting the -similarity_cost_ratio flag of Minctracc to
a value of 0.5–0.6 (default 0.3). Another measure that can help to achieve
an appropriate ICV mask is to remove a large part of the neck in the scan
of that individual, (as our model brain does not contain a neckmoiety). In
most of the cases, unsuccessful linear registration resulted in an ICVmask
that is entirely unrelated to reality or that lacks a large portion of the
cerebellum. Unsuccessful non-linear registration resulted in a part of the
occipital region of the brain, or a small portion of the cerebellum, not
being included in the ICV mask. In the majority of the cases (>90%), we
obtained representative ICV masks after one or several rounds of
applying the ICV extraction algorithm. However, in 3–9% of the images
(depending on the time point), we were not able to obtain adequate ICV
masks even after several rounds of running the ICV extraction tool. We
have discarded these images form our analysis. Altogether, we extracted
the ICV from 1143 T1w across all three data points that sum up to 94% of
the available data. Statistical data regarding the number of scans that
were used for the analysis out of the total number of scans in the cohort
appear in Table 1.

We want to stress that the re-iterative procedure of using different
program registration flags did not result in an ICV bias, but was merely a
technical procedure to assure that the ICV masks were adequate.

2.3. Data analysis

Data analysis was done within the statistical computing and graphics
environment R (Team, 2018) using the packages: ggplot2 (Wickham,
2016), Matrix (Bates and Maechler, 2018), smoother (Hamilton, 2015),
data.table (Dowle and Arun, 2018), matrixStats (Bengtsson, 2018),
caTools (Tuszynski, 2018), gam (Hastie, 2018), and haven (Wickham and
Miller, 2018).

Since our research hypothesis was that the expected longitudinal ICV
changes should be extremely small and hard to detect (as the results
indeed show), and since we wanted to obtain high confidence in our
results, we were not contented with analyzing the data using only one
analysis method (even if the results obtained using this analysis method
were statistically significant). Instead, as is described below, we used
three complementary methods to analyze the data. These methods are
detailed below.
4

In addition, to prevent any influence of residual physical growth for
young subjects, we took into considerations only subjects with an
average age between measurements larger than 20 years (unless other-
wise specified). Moreover, in all cases, we did not detect any apparent
differences between the longitudinal ICV behavior for females andmales.
Hence, in all cases, we analyzed the data for females and males sepa-
rately, and together. In all cases, analyzing the data of females and males
together resulted in an improved type-I error p-value for a fit to the data.
These observations suggest that, in many cases, the limits on obtaining
statistically significant p-values are mainly related to low statistical
power in the face of a broad spread of the data. We report the statistical
characteristics of the fits for females, males, and females and males
together.

Note that, even after all precautions that we took, including the
manual control of the ICV masks, our results still include outliers. These
outliers could be identified by noting the existence of two groups in our
results: one with very small longitudinal changes, and one with some-
what larger longitudinal changes (positive and negative). In other words,
the distribution of longitudinal ICV changes included long tails from both
sides of the distribution. The existence of the group with the more
considerable absolute value longitudinal changes curtails our ability to
reach statistical significant longitudinal ICV changes, and we consider
them as outliers. To account for the existence of these outliers, we
adopted a consistency filtering mechanism. We have used these consis-
tency analysis methods to filter out cases with relatively large longitu-
dinal ICV changes as we believe that individuals presenting these large
absolute value longitudinal ICV changes are artifacts that do not repre-
sent real longitudinal ICV masks and consequently do not represent real
ICV changes. The exact filtering mechanisms that were applied in each
analysis case are detailed below.

2.4. Differences between ICV values at different waves of the study

We calculated the ICV differences between different waves of the
study (ΔICVTx;Ty) using the formula:

ΔICVTx;Ty �
2 � �ICVTx � ICVTy

�
�
ICVTx þ ICVTy

� � �AgeTx � AgeTy
�

where Tx and Ty are different waves of the study. Ty - first, second, or
third wave of the study, Tx - second or third wave of the study. ICVTx is
the calculated ICV at the first, second, or third scan, and AgeTx is the
corresponding age of the individual in years at the time of the scan.

The individual values of ΔICVTx;Ty were used to obtain longitudinal
trajectories of ICV change by fitting the set of {ΔICVTx;Tyg results of the
whole cohort to a straight line as a function of {AgeTx;Ty � 0:5 � ½AgeTx þ
AgeTy	}, where {…} represents a set of individual results.

To filter out points with large positive and negative ΔICVTx;Ty values,
we have ordered the {ΔICVTx;Ty} set according to their values, fitted the
central part of the ordered ΔICVTx;Ty sequence to a straight line for males
and females separately, and maintained only individuals with longitu-
dinal ICV change that deviated from the fitted line by less than 0.2%/year
(except for the case of females for ΔICVT2;T1 where the allowed deviation
was of 0.25%/year.) This method resulted in a reduced {ΔICVTx;Ty}
dataset that lacks the positive and negative heavy-tails parts of the
{ΔICVTx;Ty} set.

2.5. Individual fit based analysis

Our longitudinal cohort contains three consecutive measurements.
Since several error factors can confound MRI results and since compu-
tational measures of brain volumes from structural MRI scans are known
to add additional error factors, we turned to minimize these effects by
making use of the full three measurements that are in our hands. Thus,
instead of taking into account only two ICV measurements between
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different waves and calculating ΔICVTx;Ty, we have fitted the measured
ICV as a function of the age to a straight line for each subject separately
using the R function lm. In other words, for each individual (i), we fitted
its ICV (ICVIndividual i) to a straight line using the formula:

ICVIndividual i � ICVIntercept�fit
Individual i þ ICVSlope�fit

Individual i �Age

where ICVIntercept�fit
Individual i and ICVSlope�fit

Individual i are the intercept and incline of the
ICV data for that individual. The fitting was over three data points for
those individuals in which the ICV data existed for three consecutive
measurements, or over two measurements in cases that only two ICV
values existed.

This procedure resulted in a degenerate fitting of only two mea-
surements for 30 cases and a meaningful fitting of three consecutive ICV
measurements in 207 cases (87% of the cases, see Table 1). Next, we

plotted the set of slopes for all the individual fits {ICVSlope�fit
Individual} as a

function of the average age of the subjects between these scans
{AgeIndividual}.

Finally, we have used the {ICVSlope�fit
Individual i} values for all individuals to

obtain a global longitudinal ICV trajectory by fitting the {ICVSlope�fit
Individual} set

as a function of {AgeIndividual} to a straight line.

To obtain a reduced dataset for fICVSlope�fit
IndividualðAgeÞg, we have adopted

the same approach as in the ΔICVTx;Ty case. By ordering the set of

{ICVSlope�fit
Individual} results according to their values for females and males

separately and fitting the central part of the ordered datasets to straight
lines, we created a reduced dataset that excludes the long tails in the data.

The reduced {ICVSlope�fit
Individual} dataset discards individuals that their

ICVSlope�fit
Individual i deviated from the linear fit to the central part of the ordered

{ICVSlope�fit
Individual} datasets (for females or males) by more than 3ml/year.

Finally, to obtain a predicted longitudinal ICV trajectory for the reduced

dataset case, we fitted the reduced dataset {ICVSlope�fit
Individual} as a function of

{AgeIndividual} to a straight line.
2.6. Linear mixed models fitting

The measured ICV dataset contains data points that are not entirely
independent of each other, thus violating an essential assumption of a

mathematical fit theory as was done for the ICVSlope�fit
Individual and ΔICVTx;Ty

cases. The measurements in our cohort are not independent of each other
in two respects. First, by the nature of the longitudinal design, they
contain repeated measurements of the same individuals several times.
Second, our cohort was designed to include conjoint family members
(parents and siblings). As it is known that the ICV is influenced by genetic
factors (Adams et al., 2016), the ICVs of related family members are not
independent of each other.

To take these effects into account, we have adopted a third layer of
analysis using a linear mixed model approach (LMM). LMMs are a gen-
eral framework to fit continuous outcome variables in which the re-
siduals may not be independent, as in the case of a longitudinal design
(Bates et al., 2015). In principle, an LMMmodel is composed of a series of
global effects that influence the whole dataset and a series of effects that
are called ‘random’ and that are unique to each group of measurements.
In that sense, an LMM is a sort of global analysis that profoundly reduced
the number of degrees of freedom of the analysis relative to the ICVTx;Ty

and ICVSlope�fit
Individual analyses.

To utilize the LMM approach, we have analyzed the ICV data using
the R environment lme4 packaged (Bates et al., 2015) for all the par-
ticipants in our cohort for which we were able to extract two or three
measurements. That is, we have included in the LMM analysis all in-
dividuals that had their ICV measured at the first and second wave of the
study, at the first and third wave of the study, at the second and third
wave of the study, or all three waves. As a primary LMM analysis model,
5

we have constructed an LMM model with global effects of age and sex
and random uncorrelated effects of intercept and age-dependent ICV for
each participant as well as for all the members of a specific family. In the
lme4 package notation, the model that we have used is:
ICV�Age þ Sexþ(1þAgejjFamily:Subject) for the non-reduced complete
ICV dataset. In this notation (1þxjjy:z) means an individual z dependent
random variable nested in factor y where the intercept (1) is not corre-
lated with the x effect. Next, we used the predicted ICV values for all
participants that were obtained from the LMM analysis at the corre-
sponding age when the MRI scans were performed to calculate a pre-

dicted set of age-dependent ICV changes {ICVLMM�Slope
Individual }, and fitted this

set as a function of {AgeIndividual} to a straight line. From this
LMM-dependent straight line, one can predict the LMM based trajectory
of longitudinal ICV changes.

Note that in many cases, when analyzing longitudinal data using the
framework of LMM, it is possible to study both the cross-sectional and
longitudinal effects simultaneously by incorporating into the LMM the
mean of the variable as an inter-subject effect. However, this is not the
case when the cross-sectional inter-subjective differences are much larger
than the longitudinal ones, as is the case here (see chapter 9 in (Verbeke
and Molenberghs, 2000)). Indeed, incorporating the Mean ICV as a fixed
effect resulted in a model that did not converge. Thus, we did not include
the mean ICV term in the linear mixed model.

To further check for the accuracy of our LMM model, we have con-
structed a series of alternative LMM models and checked the statistical
significance of an ANOVA comparison between the primary LMM model
and the alternative models. Adding to the primary LMMmodel the group
status of each subject (i.e., whether it belongs to the control group, the
sibling group, or to the group of people that were diagnosed with
schizophrenia) resulted in a highly insignificant result (ANOVA p-
value ¼ 0.984). Also, adding a global group status*Age factor is not
significant (ANOVA p-value ¼ 0.788). Similarly, adding to the LMM
model the average measured IQ of the cohort's participants as a random
confounder effect resulted in a highly insignificant result (ANOVA p-
value¼ 1). Also, adding the identification of theMRI machine (one out of
two MRI machines that were used for the GROUP cohort and a third
identification code for cases where the MRI machine is unknown)
resulted in an insignificant result (ANOVA p-value ¼ 0.551). By contrast,
removing the global effect of the sex status showed that the original LMM
was significantly better (ANOVA p-value¼ 2.2e-16). Similarly, removing
the random effect of family membership showed that the original LMM
was significantly better (ANOVA p-value ¼ 1.97e-09). Finally, we have
checked whether removing the global age effect from the LMM model
will worsen or improve the primary model. The ANOVA result for
removing the global age effect was statistically marginal (p-
value ¼ 0.0504), meaning that the model with the global age effect is
marginally better. In light of this marginal p-value, we still have kept this
effect in the LMM model analysis.

To obtain a reduced dataset filtered from long-tailed extreme-cases of
longitudinal ICV changes for LMM analysis, we have calculated the dif-
ference between the maximum and minimum measured ICV values
(ΔICVmax;min � ICVmax � ICVmin) for individuals, ordered the results ac-
cording to their values, and fitted the 200 cases with the smallest value of
ICVmax;min for females and males together to a straight line. By setting a
limit on the allowed deviation from this straight line (5 ml/year), we
obtained a reduced dataset for the LMM analysis. We have used this
reduced dataset to construct an LMM model with longitudinal cases that
have only small measured ICV change. For the reduced dadaset in Lme4
notation, the primary model that we used was: ICV�Sex þ MRI-
Machineþ(1þAgejjFamily:Subject).

Similar to the complete LMM dataset case, we constructed a series of
LMM models and checked their applicability based on an ANOVA com-
parison. Importantly, unlike in the complete dataset case, for the reduced
dataset case, the inclusion of the MRI machine code that was used to
acquire the scans resulted in an improvedmodel (ANOVA p-value 0.026).
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However, including the global age effect did not make the LMM model
better (ANOVA p-value 0.146). By contrast, excluding the sex identifi-
cation factor or family status, resulted in a statistically significant worse
LMM model (ANOVA p-values - 2.2e-16 and 1.0e-07, respectively).
Similarly, including the average IQ, or the patient status did not improve
the LMM model (ANOVA p-values - 0.8857 and 1, respectively). Also,
adding a global group status*age factor is not significant (ANOVA p-
value ¼ 0.561). Thus, we chose an LMM model that includes the sex and
the MRI-machine code as global effects, and the family, subject code, and
age as random effects (but without a global age effect).

Finally, to obtain the predicted longitudinal ICV change trajectory,

we have fitted the {ICVLMM�Slope
Individual } set as a function of AgeIndividual for fe-

males and males separately or together to a straight line.
To check the existence of higher ordered terms in the longitudinal ICV

trajectories, we have applied two analysis methods. First, we studied the

behavior of the {ICVLMM�Slope
Individual } data by grouping males and females

together and calculating a running average age dependency behavior of

the {ICVLMM�Slope
Individual } (minus the global age effect for the complete dataset).

Second, in a more statistically controlled manner, we have used the
Generalized Additive Model package of R (‘gam’). A generalized additive
model (GAM) is a sort of spline fit that can include one or a higher
number of degrees of freedom. In other words, it is a linear predictor
model involving a sum of smooth functions of covariates (Hastie and

Tibshirani, 1986). We have fitted the {ICVLMM�Slope
Individual } database as a

function of age to a GAM model with one, two, and three degrees of
freedoms.
2.7. FreeSurfer analysis

Alternative ICV measure to our home-based ICV extraction method
was obtained by running the T1-weighted scans through the FreeSurfer
recon-all pipeline (version 5.1.0) and obtaining the results from the
aseg.stats file in the FreeSurfer directory, as is explained in the FreeSurfer
manual (see http://freesurfer.net/fswiki/eTIV).
2.8. ICV as a function of IQ

We studied the relationship between ICV and the average IQ of in-
dividuals over the three waves of the study by plotting the values of the
extracted ICV and the measured IQ and fitting the results to straight lines
for females and males separately, as well as for the control group, siblings
group, and the group of people that were diagnosed with schizophrenia
separately (see the Supporting Text of the SI for more details.)
2.9. Calculation of CSF, gray matter, and white matter

CSF, gray-matter (GM), and white-matter (WM) were calculated by
applying the ICV that was calculated for each subject as a mask on the
T1w scan followed by separation of the CSF, GM, and WM using the
FMRIB Software Library v6.0 FSL function FAST (Zhang et al. (2001)).
Next, we extracted the volume values for these tissues (and the CSF)
using the FSL function fslstats.

Relationship between the ICV, the CSF, the GM, and the WM were
analyzed by defining ΔCSFT3,T1, ΔGMT3,T1, and ΔWMT3,T1 similar to
ΔICVT3,T1 and (a) calculating the Pearson correlation-coefficients (PCorr)
using the statistical computing and graphics environment R function
cor.test and using a filtration approach based onΔICVT3;T1 as is described
above; (b) fitting the ratio of ΔCSFT3;T1 to ΔICVT3;T1 as a function of age
to a straight line and filtering the results based on the ratio of ΔCSFT3;T1
to ΔICVT3;T1 to obtain an age-dependent reduced dataset (a similar
approach was used for the gray matter and the white matter); (c) fitting
the relationship between the CSF (or the GM, or the WM) and the ICV for
each individual separately using the equation:
6

CSFIndividual i �CSFtoICVIntercept�fit
Individual i þ CSFtoICVSlope�fit

Individual i � ICVIndividual i
and fitting {CSFtoICVSlope�fit
Individual i} as a function of the average age between

the scans to a linear function. To obtain the age-dependent relationships

of the CSFtoICVSlope�fit
Individual i for a reduced dataset where the results with a

relatively large value of {CSFtoICVSlope�fit
Individual i} where filtered-out, we used

a similar analysis as is described above. Finally, we fitted the reduced

{CSFtoICVSlope�fit
Individual i} dataset to a linear function. A similar approach was

used to analyze the GM (GMtoICVSlope�fit
Individual i) and the WM

(WMtoICVSlope�fit
Individual i).

2.10. Cross-sectional analysis

To check the cross-sectional behavior of the data, we fitted the
extracted ICV set for each wave of the study separately for females and
males as a function of the age of the individual (in years) at the time of
the scan acquisition to a straight line. Next, we subtracted from the ICV of
all females the intercept of the females fit (and similarly for males). We
used the subtracted values to obtain a combined set of females andmales.
Finally, we fitted this combined set to a straight line as a function of age.
We also repeated a similar analysis for the height of individuals for the
first time they were scanned as a function of age.

To check the existence of higher-order terms in the cross-sectional
results, we fitted the data for males and females separately to a general
additive model (GAM) with one, two, or three degrees of freedoms. In
addition, we also applied a running average for females and males
separately over the data with a window of six years (similar to the period
between the first and last waves of the study) and fitted the results to a
straight line.

2.11. Figures preparation

Figures and graphs for this article were prepared using the programs:
SciDAVis (RRID:SCR_014643), Inkscape (RRID:SCR_014479), QtiPlot,
and GIMP (RRID:SCR_003182).

3. Results

3.1. General ICV characteristics

Fig. 1 shows an example of several sections from a T1wMRI scan with
an overlay of the ICV-mask outline that was obtained for that scan for one
case of the GROUP cohort. As can be seen, the ICV mask that was pro-
duced by our computational tool encompasses the brain and the CSF and
omits the two large dura mater reflections, namely the tentorium cer-
ebelli and the falx cerebri (Adeeb et al., 2012). Thus, the
computationally-obtained ICV-mask provides a direct measure of the
conjointly total volumes of the brain and the CSF.

A histogram plot of the extracted ICV values at the first time point
shows a normal-like distribution (see Fig. S1a of the Supporting Infor-
mation (SI)). The average (and standard deviations) of ICV value for fe-
males is 1:4� 0:11 liters and for males 1:6� 0:13 liters (females/males
ratio¼ 0.875. For comparison see (Ruigrok et al., 2014)). The distribu-
tions of the ICV values at the second and third scanning periods show
similar characteristics, and the average (�s.d.) ICV value stays constant
(see Figs. S1b and c of the SI).

Since we have used a home-built-based method to extract the ICV,
we wanted to validate our ICV extraction method using some external
measures (unrelated to aging) before moving to study the relationship
between ICV and age. We achieved this goal through a two-fold
approach. First, we showed that cases that we were not able to
extract the ICV are not statistically significantly different from those
that were successfully extracted (p-values for two-sided Wilcoxon Rank
test for age distributions at the first, second and third waves of the

http://freesurfer.net/fswiki/eTIV


Fig. 1. Extracted ICV. An example of an extracted ICV mask. Outline of the ICV mask (red line) for three sagittal, coronal, and axial slices superimposed on the
original MRI scan. The ICV mask was calculated using our semi-automatic IntracranialVolume extraction tool.
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study¼ 0.138, 0.303, 0.528; p-values for χ2 test for gender at the first,
second and third waves of the study¼ 0.0094, 0.679, 0.116; p-values
for χ2 test for patients, siblings, and control groups at the first, second
and third waves of the study¼ 0.935, 0.673, 0.088; Bonferroni cor-
rected statistically significant level - 0.05/9¼ 0.0056). Second, we
show that we were able to recapture the known characteristics of the
ICV-IQ relationship for most of the cases (see Fig. S2 of the SI and
supporting text for further details).
3.2. Longitudinal ICV changes are extremely small

Fig. S3 of the SI shows the longitudinal trajectories of ICV values for
all individuals in our cohort with two or more consecutive successful
extraction of the ICV masks. Figs. S4–S6 show the corresponding Spa-
ghetti plots for the participants as a function of age, sex, and the scanner
identification relationship of each two consecutive scans. Overall, no
substantial changes occur in the individual ICV values from young
adulthood to the sixth decade of life.

To assess longitudinal changes in the ICV, we have calculated
ΔICVT3;T1 (see Methods section). A histogram of the results shows that
ΔICVT3;T1 presents a distribution with average and standard error (s.e.) of
the longitudinal ICV change equal to �3 �10�2 � 2:7 �10�2 [%/year] for
females and�3 �10�3 � 2 �10�2 [%/year] for males (see Fig. 2a). In both
cases, theΔICV distributions do not follow a normal distribution. Instead,
theΔICV distributions have long tails from both sides of the distributions.
Thus, this result suggests that if longitudinal changes in the ICV between
early adulthood to the sixth decade of life exist, they are minimal and
amount to a value of the order of 0.1 [‰/year] of the total ICV. Note that
the age distributions for both females and males in our cohort are skewed
toward people that are younger than 30 years (see Fig. S7 of the sup-
porting information). Thus, the age distributions might mask the actual
7

trajectories of ICV changes as a function of age as they are assessed using
the ΔICV distributions.
3.3. ICV differences between the first and last scanning waves

To assess the existence of small longitudinal ICV changes, we plotted
{ΔICVT3;T1} as a function of {AgeT3;T1}. The results of the analysis are
shown in Fig. 2b. We fitted {ΔICVT3;T1} as a function of {AgeT3;T1} for
males and females separately. In both cases, the fitted lines had a nega-
tive slope. However, in both cases, the fits did not reach the statistically
significant limit (see the table in Fig. 2). Inspection of the quantile-
quantile plots (Q-Q plots) suggested the existence of heavy-tail points
in the residuals’ distribution (see Fig. S8a of the SI). Moreover, both fits
of ΔICVT3;T1 may show signs of heteroskedasticity (see Fig. S8b of the SI).
Taken together, these observations suggest problems with the linear
models that were used for these fits.

Note that in Fig. 2b several points seem to be localized far away from
the central pile of points. We were interested in checking if the existence
of these points concealed a statistically significant result. To test this
hypothesis, we have applied a filtering procedure to reject cases with a
large absolute value of ΔICVT3;T1 (see Fig. 2c). In this plot, the existence
of two groups of heavy-tail points, one with a substantial negative
ΔICVT3;T1 and one with a substantial positive ΔICVT3;T1, are clearly
observed for both females and males. We used these data to create a
reduced dataset (see Figs. S9a and b of the SI for the exact limits that were
imposed on the ΔICVT3;T1 dataset to create the reduced dataset and the
Materials and Methods section for details).

Next, we plotted {ΔICVT3;T1} as a function {AgeT3;T1} for the reduced
dataset and fitted the data to linear functions for females and males
separately (see Fig. 2d). In this case, there was a large improvement in the
p-values of the linear fits. The p-value for the slope for the females fit



Fig. 2. Changes in the ICV as a function of age. (a) Distribution of the measured ΔICVT3;T1 values for males (red) and females (blue). (b) ΔICVT3;T1 as a function of
AgeT3;T1. Each dot represents a calculated value for a specific individual in our dataset. Blue and pink lines are fits of the data to linear functions. Vertical red lines
represent the minimum age for inclusion in the fits (dots left to the lines were not included in the fitting process). Dashed lines represent 95% confidence intervals of
the fits. (c) Cumulative plot of ΔICVT3;T1 as a function of a normalized index between 0 and 1. (d) Same as (b) for the reduced {ΔICVT3;T1} dataset based on the middle
part of the cumulative {ΔICVT3;T1} result. See also Fig. S9 of the SI for the precise selection criterion of the reduced {ΔICVT3;T1} dataset. In (b)–(d) blue color is for
females and pink for males. In (d) dashed green lines are 95% confidence intervals of the fit for both females and males. In (d), for clarity, the fit itself for females and
males together is not shown. The table below the graphs shows the fitting-values for the cases of females, males, and females and males together. R2- goodness of fit. p-
value - statistical significance of the slope parameter of the fit. Error-values - �s.e.
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reached the lesser stringent statistical-significance limit of 10% (p-
value¼ 0.069), but the slope p-value for males was above the statistical-
significance limit (p-value¼ 0.107). We could further reduce the slopes
p-values by setting a somewhat stricter criterion for obtaining the
ΔICVT3;T1 reduced dataset. With the stricter criterion, the slope p-value of
the linear fit for females reaches the 0.05 statistical-significance limit,
and the slope p-value for males reaches the 0.1 statistical-significance
limit (data not shown). The fact that for the reduced ΔICVT3;T1 dataset
the Q-Q plots for both females and males were linear (see Fig. S8c of the
SI) and that the residual plots did not show signs of heteroskedasticity
(see Fig. S8d of the SI) provides an additional layer of sanity-check to
show that the process for obtaining the reduced dataset did not introduce
a bias to the analysis.

When grouping both females and males together, the fit showed a
negative slope, and the p-value was statistically significant (p-
value¼ 0.013, see table in Fig. 2). In addition, the Q-Q plot for the
combined females and males fit showed a linear behavior, and no het-
eroskedasticity was observed (see Figs. S8e and f of the SI). A ‘leave-one-
out’ analysis of the combined dataset of females and males together
8

showed that the maximum influence of any point of the linear fit slope is
13%, well within the s.e. of the slope. Thus, the relationship that we
detect between ΔICVT3;T1 and AgeT3;T1 is not the result of changes in the
ICV of any single individual.

It is interesting to note that similar results to these of ΔICVT3;T1 were
also obtained for ΔICVT2;T1, but not for ΔICVT3;T2(data not shown). For
the ΔICVT3;T2 case, the results did not show statistically significant lon-
gitudinal ICV change. We believe that the reason for this discrepancy
may be related to lower statistical power as results of a smaller number of
subjects in the ΔICVT3;T2 dataset relative to the ΔICVT2;T1 one in the face
of a low R2 of the age dependency (See Fig. S10 of the SI and the Sup-
porting Text of SI for further details).

Taken together, our analysis suggests that the ICV continues to grow
in young adulthood. Later on, the ICV starts to shrink from the middle of
the fourth decade of life (when ΔICVT3;T1 ¼ 0; Age 
 34 years) and
continues in this tendency well into the sixth decade of life (most prob-
ably also in the years after). Moreover, our data suggest that the decrease
in ICV is not constant but accelerate with aging during the young and
middle adulthood period. However, the size of ICV changes during this
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period is minimal, and even at the age of 55 (the end age of our analysis)
amounts on average to less than 0.1%/year.

3.4. ICV trajectory based on all three measurements

The results of the Individual fit-based analysis for all three mea-
surements are shown in Fig. 3a. Similar to the analysis based on the ICV

difference between different waves of the study, fitting {ICVSlope�fit
Individual} as a

function of {AgeIndividual} resulted in a non-statistically significant fit with
a negative slope for both females and males. Grouping females and males
together improved the p-value of the fit a bit but did not cause it to reach
statistical significance. Also, similar to the previous analysis method, the
residuals Q-Q plots showed the existence of large tails (see Fig. S11a of
the SI), and the residual vs. fitted values plot may have hinted to some
heteroskedasticity.

To further analyze our data, we have created a reduced dataset by

filtering out cases with a large absolute value of ICVSlope�fit
Individual (See Fig. 3b,

Figs. S12a and b of the SI and the Materials and Methods section). For the

reduced dataset of ICVSlope�fit
Individual, we have observed a substantial decrease

in the p-value of the fit to {AgeIndividual} for both females and males (see
Fig. 3c and the table therein). In that case, the females case reached the
0.1 statistical significance limit. The p-value for males was, however,
above the statistical significance limit. Inspection of the residuals Q-Q
plots (see Fig. S11c of the SI) showed good linearity of the fits for females
and males, and the residuals vs. fitted values plots (Fig. S11d of the SI)
showed no apparent indications of heteroskedasticity.

After grouping together females and males, the p-value of the slope of
the fit was statistically significant (see table in Fig. 3), the residuals Q-Q
plot was linear, and signed of heteroskedasticity were not observed (see
Figs. S11e and f of the SI). These results provide additional support to our
conclusion that the ICV shows a small but accelerated change during
young and middle adulthood.

3.5. Linear mixed model for ICV trajectory

To take into account the dependency in our data (repeated mea-
Fig. 3. Individual longitudinal fits of ICV as a function of age. (a) Values of the sl
were made. Each dot represents the age-dependent slope for an individual, as wa
consecutive ICV measurements. Lines are fits of the data to linear functions. Vertical r

of {ICVSlope�fit
Individual} as a function of a normalized index between 0 and 1. (c) Same as (

selection criterion of the reduced ICV{age} dataset. In (a)–(c) blue color is for female
for both females and males. The table below the graphs shows the fitting-values for th
females and males together are not shown. R2- goodness of fit. p-value - statistical s
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surements of the same individual and family relatedness), we analyzed

our data using an LMM approach. The results of the {ICVLMM�Slope
Individual }

analysis predictions minus the global Age effect of the LMM model as a
function of {AgeIndividual} are shown in Fig. 4a. The statistical charac-
teristics and the fitting-values for the corresponding fits are shown in the
adjoined table to Fig. 4. From the results of the LMM model, we have
obtained statistically significant age-dependent ICV change for females
and males, as well as for females and males together (see table in Fig. 4).

We were further interested in checking whether higher-order terms in
the longitudinal ICV trajectories exist behind a linear age-dependent

change. A running average window analysis of the whole ICVLMM�Slope
Individual

database did not show a clear-cut indication for the existence of higher-
order terms in the longitudinal ICV trajectories (see Fig. S13a of the SI).
Similarly, an ANOVA result of the GAMmodels of one and two degrees of
freedom had a p-value of 0.068, and an ANOVA result of the GAMmodels
of one and three degrees of freedom had a p-value of 0.097. Thus, we did
not obtain a statistical indication for the existence of higher-order terms
in the longitudinal ICV trajectories.

It should be noted, however, that the nature of the LMM as a global fit
with a small number of degrees of freedom (eight in our case) can cause it
to be sensitive to the existence of extreme cases in the dataset that is
fitted. To check this possibility, we again inspected the residuals of the
LMM analysis. Indeed, the residuals Q-Q plot of the LMM model shows
the existence of large non-linearities though it still has equal statistical
variances across the whole fitting range (See Figs. S14a and b of the SI).
Interestingly, the existence of large non-linearities in the LMMmodel did
not cause similar non-linearities or heteroskedasticity in the

{ICVLMM�Slope
Individual } fit analysis for females and males (see Figs. S14c and d of

the SI). Nor did it caused this effect to occur in the {ICVLMM�Slope
Individual } fit of

both females and males (see Figs. S14e and f of the SI). Still, the residual
analysis of the LMM model suggests that the extreme cases that were
included in the LMM analysis may have skewed its results.

To account for these extreme cases, we filtered them out, constructed
a reduced dataset, and again run an LMM analysis (see the Materials and
Methods section). The results of the LMM analysis of the reduced dataset
showed no sign of heteroskedasticity or non-linearity (see Figs. S15a and
opes of the individual ICV fits as a function of the average age at which the scans
s obtained from a linear model fitting in R to two or three (when available)
ed lines represents the minimum age for inclusion in the fits. (b) Cumulative plot

a) for the reduced ICV{age} dataset. See also Fig. S12 of the SI for the precise
s and pink for males. Dashed green lines are 95% confidence intervals of the fits
e cases of females, males, and females and males together. For clarity, the fits for
ignificance of the slope parameter of the fit. Error-values - � s.e.



Fig. 4. Linear mixed models for ICV as a function of age. (a) Predicted ICVLMM�Slope
Individual as a function of age. Each dot represents the age-dependent ICV slope for a

specific individual. Lines are fits of the data to linear functions. (b) Cumulative measured individual ICVmax � ICVmin as a function of a normalized index between 0 and
1. Green line - fit of the 200 subjects with the smallest ICVmax � ICVmin (for both females and males) to a straight line. Vertical lines - limits of the normalized index
criterion for inclusion in the linear mixed model reduced datasets for females and males. Inset - Distributions of ICVmax � ICVmin. Green and Orange lines are fits of the

distribution data to log-normal distributions for males and females respectively. (c) Same as (a) for the reduced {ICVLMM�Slope
Individual } dataset. In (a) and (c), vertical red lines

represent the minimum age for inclusion in the fits. In (a)-(c), blue color is for females and pink for males. Dashed green lines are 95% confidence intervals of the fits
for both females and males. The table below the graphs shows the fitting-values for the cases of females, males, and females and males together. For clarity, the fits for
females and males together are not shown. In (c), ‘Excluded’ represents the females individual that most influenced the fit. Excluding it did not cause the fit to reach
the statistical significance limit. Data in the table includes this individual. R2- goodness of fit. p-value - statistical significance of the slope parameter of the fit. Error-
values - �s.e.
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b of the SI). We have used the LMM model of the reduced dataset to
calculate the slope of the ICV age dependency for individuals and to
obtain a reduced dataset longitudinal ICV trajectory. The behavior of the

reduced {ICVLMM�Slope
Individual } values as a function of age is shown in Fig. 4c. As

expected, as a result of filtering out the individuals with large ICVmax;min,
we obtained a broader spread of the predicted LMM age-dependent
slopes. A linear fit of the predicted individuals’ LMM age-dependent
ICV changes as a function of age resulted in a statistically significant
linear behavior for males (see Fig. 4c and the table therein). However, for
females, the fit was not statistically significant (p-value¼ 0.283).
Excluding the subject with the most substantial influence on the linear fit
slope did not increase the statistical significance of the fit substantially
(p-value¼ 0.157 see Fig. 4c). Since the residuals Q-Q plot and the re-
siduals vs. fitted values did not show signs of non-linearity or hetero-
skedasticity (see, Figs. S15c and d of the SI), the lack of statistical
significance for the female group is probably connected to a lack of sta-
tistical power for the females group relative to the larger males group in
the cohort. Indeed, lumping together the females andmales and fitting all
the predicted ICV age-dependent changes for the reduced dataset LMM
still resulted in a statistically significant longitudinal age-dependent
linear behavior of the ICV change (p-value¼ 0.029; see table in Fig. 4).
Moreover, there were no signs of non-linearity or heteroskedasticity in
this fit (see Figs. S15e and f of the SI).

Results of a running average over the {ICVSlope�fit
Individual} of the reduced

dataset for both females and males together did not show signs of higher-
order terms ICV acceleration above a linear one (see Fig. S13b of the SI).
Similarly, a GAM analysis with one, two, and three degrees of freedom
showed that one degree of freedom GAM model (meaning a linear one),
is the most statistically significant (ANOVA p-values 0.1465 and 0.0816
for the one and two, and one and three degrees of freedom models,
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respectively).

Thus, consistent with the ΔICVT3;T1 and the ICVSlope�fit
Individual analyses, the

LMM analyses, both for the complete ICV dataset and for the reduced
one, showed an average linear accelerated change of the total ICV. Such
linear accelerated ICV change results in a small but consistent net ICV
reduction starting from the beginning of the fourth decade of life ac-
cording to the complete dataset analysis or from the beginning of the fifth
decade of life according to the reduced dataset analysis. It should be
noted, however, that the LMM analyses predict a much smaller acceler-
ation for the ICV change in comparison to the ΔICVT3;T1 and the

ICVSlope�fit
Individual analyses. Nevertheless, the critical finding of this research is

that, on average, the ICV is not constant during young and middle
adulthood.

3.6. Analysis without patients

As mentioned in the Methods section, the cohort contains three
groups (people that were diagnosed with schizophrenia, their relatives,
and a control group). A reservation can be made regarding the inclusion
of people that were diagnosed with schizophrenia in our analysis. These
reservations might be related to differences in trajectories of brain tissue
changes (but not necessarily is the skull) between people that were
diagnosed with schizophrenia and control groups. We have tried to
control for this factor by including the group status in the LMM analysis,
which resulted in a high ANOVA p-value. To further check the possibility
that the inclusion of people that were diagnosed with schizophrenia
caused a bias in our results, we re-run the longitudinal analysis while
removing all members of this group. The longitudinal results for the three
analysis methods are shown in Figs. S16–S18. In this case, for the linear-
mixed-model analysis of the reduced dataset, we did not include the MRI
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machine status (ANOVA p-value 0.294). As can be seen, no substantial
differences appear between the analyses with the people that were
diagnosed with schizophrenia and the analyses without this group.

3.7. FreeSurfer analysis

To obtain a further corroboration of our findings, we have recalcu-
lated ICV change using the FreeSurfer pipeline and re-run the analyses.
The results of the FreeSurfer eTIV estimation are shown in Figs. S19–S21.
Again, the eTIV estimation resulted in long tails with large ICV differ-
ences estimations (see Fig. S19b, S20b, and S21b). As can be seen from
Figs. S19–S21, we were able to replicate our results for females, but not

for males for ΔICVT3;T1, and ICVSlope�fit
Individual. However, for the linear mixed

model in the complete dataset, we also incorporated the MRI machine
identification as this was statistically significant (ANOVA p-value 0.039).
For the linear mixed model of the reduced dataset, we removed the MRI
scanner identification as this effect was not significant (ANOVA p-value
0.21). Using linear mixed modeling, we obtained a change in the ICV of
males and females, both in young andmiddle adulthood, that is similar to
the one that we obtained with our in-house ICV algorithm (with maybe a
small disagreement whether the ICV continues to grow at young adult-
hood). Possibly, the discrepancy in the first two measures between the
results of our in-house ICV extraction algorithm for males and these of
FreeSurfer is related to the inherent bias of the FreeSurfer method (see
(Klasson et al., 2018), see also the FreeSurfer manual http://freesurfer
.net/fswiki/eTIV). Similarly, the discrepancy between the results of the

ΔICVT3;T1 and ICVSlope�fit
Individual analyses and those of the linear-mixed model

for the FreeSurfer analysis is probably related to the nature of the
linear-mixed model-fitting algorithm. Given the results of the FreeSurfer
pipeline eTIV estimations, we tend to believe more to the results of the
first two analysis methods of the same FreeSurfer result.

3.8. Relationship to CSF, gray matter and white matter

Having detected age-dependent ICV changes, it might be interesting
to ask about the correlation between these age-dependent ICV changes
and the trajectories of changes in the brain tissues and the CSF (see
Supporting Text). We found moderate to low Pearson correlation-
coefficients (PCorr) between ΔICVT3;T1 and CSFT3;T1 (0.25, see table in
Fig. S22), moderate to low PCorr between ΔICVT3;T1 and GMT3;T1 (0.31,
see table in Fig. S23), and moderate to low PCorr between ΔICVT3;T1 and
ΔWMT3;T1 (0.25, see table in Fig. S24). Similar results were obtained by
linear-fitting of ΔICVT3;T1 to ΔCSFT3;T1, to ΔGMT3;T1 or ΔWMT3;T1 (see
Figs. S22a–d, S23a-d, and S24a-d and tables therein).

However, when we studied the relationship between ΔICVT3;T1 and
ΔCSFT3;T1 or ΔWMT3;T1 as a function of age (see Supporting Text and
Fig. 25-26 and 29-30), no meaningful relationships were observed (note
that some correlation for males for the CSF case was detected, but only
for one of the analysis methods). We concluded that changes in these two
measures are unrelated to age-dependent changes in the ICV. By contrast,
there might be some very small correlations between age-dependent
changes in the ICV and those of the gray matter (see Figs. S27–28 and
the supporting text), but it is questionable how significant are they.

3.9. Cross-sectional analysis

Note that the rate of ICV change that we measure in the ΔICVT3;T1 and

the ICVSlope�fit
Individual analyses (let alone in the LMM analyses) is not only

accelerating but is also smaller than several previous reports that sug-
gested an ICV reduction rate of 0.05–0.29%/year during most of the
young and middle adulthood period (DeCarli et al., 2005; Fillmore et al.,
2015). For example, our ΔICVT3;T1 analysis shows that only at an average
age of 57, the ICV reduction rate reaches a value of 0.1%/year. To try to
understand this discrepancy, we have calculated the cross-sectional ICV
age dependency of our data with the same dataset that was used for the
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longitudinal analysis. The results of this analysis are shown in Fig. 5. We
measured a statistically significant constant ICV value decrease with the
cross-sectional approach for all time points for both males and females
(see table in Fig. 5). Stratifying the cross-sectional data according to the
group status in our cohort (control group, sibling group, and people that
were diagnosed with schizophrenia), showed that in most of the cases we
observed a statistically significant average cross-sectional age-dependent
decreased ICV value (at least on the 0.1 significant level). The calculated
ICV reduction rates in those cases are similar to the one that is observed
in the general cross-sectional analysis (see Fig. S31 of the SI). Exception
for this observation, such as for the females control group, where the
p-value of the cross-sectional ICV analysis was always above 0.1, can be
attributed to a lack of statistical power due to a small number of
participants.

The calculated cross-sectional rate of ICV change for females and
males based on the average slopes of the fits for the three time-points in
Fig. 5 and the predicted average ICV at age 20 based on the same data is
0.21%/years for males (3:8� 0:5 ml/year) and 0.22%/year for females
(3:5� 0:6 ml/year). We attribute this rate of ICV change to a genera-
tional effect rather than to a real ICV reduction with age.

Analysis of higher-order terms above the linear one in the cross-
sectional data (see Material and Methods) is not statistically significant
for females (p-values of ANOVA between GAM fits with one and two
degrees of freedom¼ 0.62, 0.6, 0.35 for the first, second, and third waves
of the study. p-values of ANOVA between GAM fits with one and three
degrees of freedoms¼ 0.7, 0.7, 0.19 for the first, second, and third waves
of the study). For males, we did obtain a statistically significant indica-
tion for higher-order terms at the second and third waves of the study, see
Fig. 5b (p-values of ANOVA between GAM fits with one and two degrees
of freedom¼ 0.078, 0.12, 0.01 for the first, second, and third waves of
the study. p-values of ANOVA between GAM fits with one and three
degrees of freedoms¼ 0.11, 0.035, 0.006 for the first, second, and third
waves of the study). However, only for the third wave of the study, the
data suggest an apparent quadratic or cubic behavior. Similarly, a
running average analysis with a window of six years did not show de-
viation from linearity for females (see Fig. S32a of the SI), and only a
marginal deviation from linearity for males at the second and third waves
of the study (see Fig. S32b of the SI). Thus, the cross-sectional data may
show some marginal non-linearity. However, we also attribute that non-
linearity to a generational effect.

4. Discussion

In this work, we have studied the aging-trajectory of the ICV by
applying a longitudinal analysis. Using the data from our cohort, we have
shown that the ICV does not stay constant during adulthood. Instead, our
analysis suggests that, in the Dutch GROUP cohort, the ICV shows a non-
linear aging pattern. To get a feeling for the amount of ICV change be-
tween the ages of 20 and 55 years according to different analysis modes
that we applied, we present several possible ICV aging trajectories in
Fig. 6a and b (assuming the average ICV at age 20). To the best of our
knowledge, this study is the first extensive longitudinal ICV aging-
analysis during early and middle adulthood.

All three analysis methods that we have used showed a consistent
pattern of ICV changes, which amount to an increase in the ICV during
young adulthood that is replaced by an ICV shrinkage later on at middle
adulthood (see Figs. 2–4). Nevertheless, using the three different modes
of analysis, we detected somewhat different rates of age-dependent ICV
changes. For example, the ΔICVT3;T1 analysis suggests an average ICV
enlargement rate of þ0.03%/year immediately after age 20 years
(0.5 ml/year for an averaged male with an ICV of 1.65 L or 0.4 ml/year
for an averaged female with an ICV of 1.48 L) that evolves to an ICV
reduction rate of �0.09%/year at the age of 55 (1.5 ml/year for an
averaged male with an ICV of 1.64 L or 1.2 ml/year for an averaged fe-

male with an ICV of 1.46 L). Similarly, the ICVSlope�fit
Individual analyses for both

http://freesurfer.net/fswiki/eTIV
http://freesurfer.net/fswiki/eTIV


Fig. 5. Cross-sectional results for the ICV. Cross-sectional relationship between the ICV and the age of the subjects at the time of scan for females (a) and males (b).
Each dot represents the ICV value for an individual. Lines are fits of the cross-sectional data to linear functions. Gray vertical lines indicate the minimum age that was
used for the fitting. Red - first scan; Green - second scan; Blue - third scan. Dashed lines in (b) are the GAM fits with three degrees of freedom. For clarity, the GAM fits
with two degrees of freedom are not shown. Statistical characteristics of the fit are shown in the table below the graphs for the cases of females and males at different
time points. R2- goodness of fit. p-value - statistical significance of the slope parameter of the fit. Error-values - �s.e.
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males and females suggest an average addition of 0.5ml/year to the ICV
at age 20 years that is replaced by a decrease of 1.3ml/year at age 55. In
principle, these changes are at least one order of magnitude smaller than
the ones that were detected for total brain change at this age range
(Hulshoff Pol and Kahn, 2008).

Interestingly, the decade of life where we found the ICV to change
direction between growth and decline corresponds well to the decade of
life where the amount of white matter in the brain stops growing and
starts shrinking or starts accelerated shrinking (Good et al., 2001;
Kruggel, 2006; Schippling et al., 2017). This correspondence raises the
possibility that these two processes result from a shared genetic cause.
However, the fact that we did not detect age-dependent correlations
between the change in the ICV and these of the WM testify against this
hypothesis. Further research is needed to clarify the relationship between
the age-dependent trajectories of these two processes. Moreover, the
small correlation between the age-dependent changes in the gray matter
and those of the ICV calls for further research that will try to find out if
the aging of the ICV and aging of the gray matter are indeed very slightly
correlated. And if they are, are they related one to the other by a common
cause, or are they only non-causally correlated?

It is also notable that using the ICVSlope�fit
Individual analysis, we obtain a total

increase of 2.9ml from the age of 20 to the age of 35. This result is the
same order of magnitude as in (Liu et al., 2003). Similarly, if we

extrapolate the ICVSlope�fit
Individual model until the age of 75, we obtain a total

ICV reduction of 3:0% for males and 3:4% for females (based on the ICV
at age 20). This estimate is the same order of magnitude as in (Royle
et al., 2013). Thus, most probably, ICV continues to grow, or stays con-
stant, until sometime during the fourth decade of life. Subsequently, it
starts to decline in a non-linear manner. We suggest that (Liu et al., 2003)
did not observe such a decline in people older than 35 years due to a lack
of statistical power. In addition, it is possible that at an older age than 55,
the ICV decline depends on higher age powers than age2 that we did not
detect. Higher-order age dependency may be the reason that our pre-
dictions are somewhat smaller than in (Royle et al., 2013). It should be
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noted, however, that using the LMMmodels we predict a smaller positive
change at age 20 and a smaller reduction at age 55 (an order of magni-
tude for the complete dataset analysis, and an ICV change that is in
practice almost equal to zero with the reduced dataset analysis at the
same age). These small inconsistencies between our different analysis
models call for future longitudinal studies with a larger cohort, a longer
duration between repetitive MRI scans, and a broader age range.

What could be the source of the ICV aging trajectory? In principle, we
can think about three possible physical mechanisms that are not mutually
exclusive as correlates with the ICV changes. The first possible physical
mechanism is the thickening of the meninges. Indeed, it is known the
dura mater becomes thicker at old age (Adeeb et al., 2012). However, it is
hard to believe that an ICV change of the size that our model predicts for
old age will purely result out of meninges thickening. A possible second
source of ICV age-dependent changes is the thickening of the skull bone.
In principle, if, to what extent, and at which age the skull bone gets
thicker is still under dispute. The reason for this dispute is that two
mechanisms operate on the skull bone. On the one hand, it is known that
aging is accompanied by bone mass loss. On the other hand, changes in
the ICV must be compensated by parallel changes in other tissues.
Interestingly, a thickening of the skull was detected in several cases (May
et al., 2012; Royle et al., 2013). Thus, it is plausible that skull bone
thickening is responsible for all, part of, or correlates with, the ICV
changes. Finally, shape-changes transformations of the skull as a function
of age (e.g., in the cephalic index) may also result in ICV changes (Albert
et al., 2007; Urban et al., 2014). The elucidation of the causal mecha-
nisms for the longitudinal ICV changes that we measure is outside the
scope of this article and awaits future work.

When comparing the longitudinal analysis to the cross-sectional one
(see Fig. 6a,b,c), the cross-sectional analysis suggests a much larger ICV
difference in comparison to the longitudinal analysis between the ages of
20 and 55. What can be the source of this discrepancy? The most obvious
answer is the population level of secular growth throughout the life of the
cohort participants. Indeed, evidence for environmental-dependent
secular growth in the last century was documented all around the



Fig. 6. Cross-sectional vs. longitudinal results. Models for the cross-sectional and the longitudinal ICV trajectories for females (a) and males (b). Dark-gray lines
with orange dots and light gray lines with blue dots - ICV trajectories calculated based on the individual ICV fits for males and females separately or males and females
together for the reduced dataset (see table in Fig. 3). Gray lines with blue dots and dark lines with yellow dots - ICV trajectories calculated based on the linear mixed
models for the reduced and the complete datasets receptively (see table in Fig. 4). Smooth red lines - predicted ICV effect calculated based on the average values of the
cross-sectional linear fits for males and females separately (see table in Fig. 5). In (b), red dots with error bars - average and SD of the cross-sectional GAM model fits
with three degrees of freedom. Insets - zoom-in of the corresponding graphs over the whole x-axis range and over the y-axis range of 1.46–1.4845 L for females and
1.625–1.659 L for males (graph background way grayed for emphasis). For clarity, the males cross-sectional GAM model results are emitted from the inset. (c) Absolute

value ratio ([%]/[%]) of the cross-sectional generational effect based on the linear fits and the longitudinal ICV loss. For clarity, only the case for the ICVSlope�fit
Individual model

for females and males together is shown. Note that the graph represents absolute values so that negative ratio (before the age of 
31) and positive ones after that age
are depicted with the same value. The table below the graphs shows, as an example, the predicted ICV loss between the of age 20 and 55 according to the linear mixed
models for females and males of the reduced dataset (see table in Fig. 4) and the general model for the ICVIndividual

Slope�fit (see table in Fig. 3). In parentheses - the cor-

responding same values based on the ICVIndividual
Slope�fit fits for females and males separately or the LMM model for the complete dataset. The table also shows the predicted

generational effect for females and males based on the linear models cross-sectional analysis (see table in Fig. 5). For the longitudinal case, trajectories were
calculation by integrating the ICV rate of change equation: dICVdt ¼ aþ b � t, to obtain: ICVðAgeÞ ¼ ICVðAge0Þþ a � ðAge � Age0Þþ 0:5 � b �ðAge2 � Age20Þ. Since there was
no substantial difference between the GAM model for males and the linear model, only the results of the linear fit are shown in the table.
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globe (Cole, 2003; Simsek et al., 2005; Arcaleni, 2006; Marques-Vidal
et al., 2008). In particular, the Dutch population has gone through a
period of bodily enlargement since the middle of the 19th century,
probably due to an improvement of nutrient and health conditions during
childhood (Fredriks et al., 2000). A large cross-sectional comparison has
shown that, on average, between 1950 and 1997, Dutch adults’ height
increased by roughly 8 cm. The rate of height increased was, however,
subsidizing over these decades so that between 1980 and 1997, the rate
was only 1.3 cm/decade. Moreover, recently, this trend has stopped
(Sch€onbeck et al., 2013). The first wave of the GROUP cohort was ac-
quired between 2004 and 2008, and participants in that wave were born
between 1951 and 1991. To assess a similar stature effect in our data, we
note that the average height of the GROUP cohort participants correlates
negatively with age (See Fig. S33 of the SI). The average rate of change in
height that was measured in the GROUP cohort was 1� 0:5 cm/decade.
Thus, it is clear that a generational effect subsists in our data. The fact
that we, like others before us, attribute the cross-sectional result to a
generational effect, can also explain why in different cross-sectional
based studies, different rates of ICV change were found, sometimes
reaching the statistically significant limit and sometimes not. Most
probably, these different cross-sectional rates are the results of different
secular growth rates.

These results also call for caution when comparing different groups in
MRI research. For the Dutch case, even if the control and study group age
characteristics deviate one from another by three years, there can be an
average difference of 
 0:6 % in their ICVs. This difference may bias the
conclusions of such studies. One way to get over this age matching
problem is to normalize all brain measures to the ICV. However, this
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procedure assumes a one-to-one correspondence between the extent of
the ICV and other brain biomarkers. Thus, it is important to keep strict
age matching characteristics in case-control comparative cross-sectional
studies.

It is interesting to note that the rate of cross-sectional ICV change that
we detected (
 0:2 %/year) is larger than the corresponding cross-
sectional secular height growth rate in the same cohort (0:05� 0:06
%/year based on the height at age 20, see Fig. 33 of the SI). Indeed,
additional to secular growth in height, there is also evidence for cranial
changes over the last decades in different parts of the world
(Bureti�c-Tomljanovi�c et al., 2006; Little et al., 2006; Cymek et al., 2015;
Kim et al., 2018). Since there need not exist a necessary one-to-one
correspondence between height and cranial dimensions, it is possible
that the relative secular ICV growth was more significant than that of the
height. The fact that 4 out of 7 genetic loci for ICV are known genetic
height loci, but that in some cases these loci act discordantly (Adams
et al., 2016), stands in accord with this suggestion. In this context and in
the light of the correlation between the ICV and the IQ, it is interesting to
speculate about the relationships between secular growth rates and the
Flynn effect. The Flynn effect is the worldwide increase in phenotypic IQ
in the last decades (Flynn, 1987). It is usually assumed that the source of
the Flynn effect is purely sociological, i.e., results from better education.
However, the possibility that part of this secular rise in IQ is also physical
by origin was also suggested (Mingroni, 2004). Thus, it is interesting to
ask whether the more significant rate of ICV growth relative to the body
(height) liberates more brain material for cognitive abilities that are
measured by the IQ scale, which results in the secular rise in the
phenotypic IQ. Though outside the scope of this work, we believe that
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such a hypothesis merits additional future inspection.
This study has several limitations that need to be addressed when

interpreting its finding. First, for the two individual analysis modes that

we used (ΔICVT3;T1 and ICVSlope�fit
Individual), we obtained statistically significant

ICV changes only after applying a filtering procedure over the data.
Similarly, for the global LMM analysis, the age-related ICV changes that
were calculated using the reduced dataset are somewhat smaller than
those that were obtained from the complete dataset. One may question
our filtering procedure.

We believe that we are not imposing arbitrary filtering criteria to
obtain a statistically significant result. On the contrary, using the filtering
mechanism, we are exposing a genuine relationship between ICV and age
that was hidden under the noise. Two reasons lead us to believe that this
is indeed the case. First, we have filtered out results with a rather large
effect (more substantial ICV difference). In general, one would expect
that keeping cases with a rather large ICV change will enhance the false
positive probability and not the other way around. Second, a post hoc
additional manual inspection of several MRI scans that were filtered out
by our criteria show that, in many cases, small cranium or meninges
segments were included in the ICVmask. These segments were the reason
that the data for these individuals showed substantial ICV changes.
However, these segments were not detected during the original manual
inspection of the ICV masks. It is easy to understand why this is the case.
The most considerable ICV difference that we measured was around
100ml (see Fig. 4b). It can be expected that small non-ICV segments
sometimes cannot be detected by a human inspection in a large cohort
when the researcher inspects only a limited number of slices and the non-
ICV tissue is distributed over a large part of the ICV surface.

A second limitation of this study is related to the field strength of the
scanners that were used for the T1w acquisition. We have used MRI scans
that were acquired on 1.5 T scanners. However, modern scanners usually
operate at 3 T and sometimes at higher field strengths. The reason that
the data was acquired with a rather low field strength is tightly related to
its longitudinal acquisition protocol, which started with the recruitment
of first individuals in 2004 (when not many 3 Tesla scanners were
operational) and ended in 2014. Since we are interested only in a global
measure of the total ICV and not in detailed regional gray or white matter
trajectories, we believe that this limitation is less crucial. MRI studies that
used similar field strength were commonly used to study brain aging
before the advance for higher field strength scanners, and many of their
findings were corroborated by later research (see, e.g. (Good et al., 2001;
Buckner et al., 2004)). Nevertheless, future studies will probably use
higher field strength when corroborating our findings.

A third limitation of our study is related to the fact that the acquisition
was performed on two scanners and not one. It is known that different
scanners introduce a systemic error, and that can lead to a bias in our
results (Jovicich et al., 2009). Indeed, when applying the linear mixed
model analysis to the reduced dataset, we found that incorporating the
scanner identifier as a confounder into the model made the linear mixed
model statistically significantly better. Nevertheless, in that case, we also
found changes in ICV in young and middle adulthood. Thus, we believe
that even if the acquisition protocol that included two scanners intro-
duced some bias to our results. It did not change their nature. Still,
despite an extended longitudinal acquisition period, future studies will
be better using only a single scanner to minimize bias.

A fourth limitation of our study is related to the fact that we do not
have information regarding childhood conditions. Aging and develop-
ment are related, and each one of these processes is also related to
environmental conditions. For example, it is known that the puberty
timing is genetically related to risk for prostate and breast cancer at old
age (Day et al., 2017). Similarly, the age of menarche is associated with
mortality from cardiovascular disease at old age (Lakshman et al., 2009).
In addition, the age of menarche changed over the last 50 years in the
Netherlands (Talma et al., 2013). Thus, it is possible that childhood
conditions that influenced development and growth may also influence
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ICV changes in adulthood. It should also be noted that our cohort is
primarily a Dutch one, and specific conditions of the Dutch population
(genetic or environmental) could have influenced the rate and nature of
the ICV aging trajectory. Thus, future longitudinal studies will be better
to incorporate childhood data as an additional confounder. Moreover, it
is crucial to study ICV aging in populations that are not from European
and European-North American origin to obtain a better representation of
ICV and brain aging processes over a wide range of human conditions
(Okonkwo et al., 2012; Falk et al., 2013).

A fifth limitation of our study is related to head motion during
scanning. It is known that head motion can hinder brain imaging mea-
sures (Reuter et al., 2015). These head motions were related to genetic
factors that characterize each individual (Zeng et al., 2014) but also
become more apparent for older people (especially above the age of 50,
see (Savalia et al., 2017)). In principle, head motions can act as a
confounder for the estimate of age effects since what is estimated as a
longitudinal age effect may be due to more substantial head motion
during the scan. There are a couple of ways to address this problem in the
future, including collecting multiple T1w scans for the same subject at
each wave of the study or utilizing orthogonal scan protocols such as
fMRI (Reuter et al., 2015; Savalia et al., 2017). Nevertheless, we believe
that there is a high chance that our result represents a real longitudinal
ICV effect for two reasons. First, previous studies suggested that increase
head motion is more pronounced at old age while our study sample is
composed of young and middle adults. Second, brain measures such as
the ICV, when they are obtained by global registration of the scan with
high contrast, should be less sensitive to the ‘smearing’ effect of the gray
levels in the scans due to head motion.

A sixth limitation of this study might be related to the type of cohort
that was used that includes people that were diagnosed with schizo-
phrenia, their relative, and a control group. Including the first group of
these three in the study may place an unwarranted confounding factor.
Indeed, as stated in the introduction, it is known that people who suffer
from psychosis have, on average, smaller ICV (Mean Weighted Cohen's
d of �0.14 see (Haijma et al., 2012)). Nevertheless, this fact does not
necessarily mean that, besides the small overall ICV difference, also the
trajectory of ICV change in young and middle adulthood is different
among people that were diagnosed with schizophrenia and those that
were not. Indeed, we were not able to detect a difference in the behavior
of the ICV changes between these three groups. Incorporation of the
group status to the linear mixedmodel analysis resulted in a high p-value.
Similarly, the exclusion of this group of people from our analysis did not
change the results. One can still claim that the incorporation of relatives
of people that were diagnosed with schizophrenia might have biased our
result. We did not carry an analysis of the control group alone, mainly
due to statistical power issues. However, it is hard to conceive that the
relative group will substantially bias the results as these people are not
recognized as possessing a sickness in any medical sense. Still, more
subtle issues regarding the relative group might operate here (see the
discussion in the next paragraph). Hence, future corroboration of our
results in other cohorts is advisable.

Finally, a seventh limitation of the study is that we cannot tell for sure
if our finding represents normal aging or underlying aging processes that
are related to the lifestyle or genetics of the participants. Today, it is
known that several brain pathological processes start well before any
clinical signs are observed (e.g., for Alzheimer's disease, see (Filippini
et al., 2009; Berti et al., 2011; Okonkwo et al., 2012; Dowell et al.,
2016)). Thus, it can be the case that the longitudinal changes that we
detected are related to some environmental factors, genetic factors, or
their interactions. Nevertheless, the fact that the group status (patient,
sibling, control) did not come up significantly in our linear mixed model
suggests that, as long as normal aging is defined as the average degen-
erative processes in some general population due solely to shared con-
ditions (environmental or genetic) in that population, our study at least
indicate such behavior in the Dutch population.

To sum up the main result of this work, in this manuscript, we present
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an extensive longitudinal analysis of the ICV aging-trajectory that shows
a non-linear behavior. We hope that this work will inspire a future lon-
gitudinal analysis of the ICV and other brain biomarkers aging-
trajectories, especially using big data cohorts. We believe that con-
ducting longitudinal-designed studies over multiple conditions and in
multiple populations is the most reliable method to obtain accurate
measures of brain aging and its dependency on various genetic and
environmental factors.
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