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Introduction
Multidimensional scaling (MDS) is a popular technique

for  embedding  items  in  a  low-dimensional  spatial
representation  from a  matrix  of  the  dissimilarities  among
items  (Shepard,  1962).  MDS has  been  used  simply  as  a
visualization aid or  dimensionality  reduction  technique  in
statistics and machine learning applications, but in cognitive
science, MDS has also been interpreted as a cognitive model
of similarity perception or similarity judgment, and is often
part of a larger framework for modeling complex behaviors
like  categorization  (Nosofsky,  1992)  or  generalization
(Shepard,  2004).  However,  a  persistent  challenge  in
application of MDS is selecting the latent dimensionality of
the inferred  spatial  representation;  the dimensionality is  a
hyperparameter that the modeler must specify when fitting
MDS.

Perhaps  the  most  well-known  procedure  for  selecting
dimensionality is constructing a scree plot of residual stress
(the  difference  between  empirical  dissimilarities  and
dissimilarities  implied  by  the  model)  as  a  function  of
dimensionality,  and  then  looking  for  an  elbow:  the
dimensionality where stress has decreased dramatically but
then plateaus. This elbow is taken to indicate that extending
the space with additional dimensions does not substantially
improve  the  fit  of  the  model  to  the  input  similarities.
Unfortunately,  this  procedure  is  highly  subjective.  Often
such elbows do not exist, and instead the scree plots show a
smooth decrease in stress as MDS increasingly overfits to
noise at higher dimensionalities. In response, various more
principled  statistical  techniques  for  model  selection  have
been proposed that account for the trade-off between model
complexity  (dimensionality)  and  model  fit  (stress),
including likelihood ratio tests (Ramsay, 1977), BIC (Lee,
2001), and Bayes factors (Gronau and Lee, in press). While
such  techniques  are  valuable,  they  can  be  prohibitively
computationally complex for novice MDS users, and rely on
a number of assumptions that are not necessarily met (e.g.,
Storms, 1995).

An alternative technique that may avoid such problems is
cross-validation.  Under  this  approach,  MDS  of  a  given
dimensionality  would  be  fit  to  some  subset  of  available
dissimilarity data, the model’s predicted distances for held-
out  dissimilarity  data  would  be  evaluated,  and  the
dimensionality which maximizes performance on the held-

out  data  would  be  selected.  Despite  the  simplicity  and
generality  of  cross-validation  as  a  model  selection
procedure,  cross-validation  has  seen  relatively  little
application  to  MDS  or  related  methods  (Steyvers,  2006;
Roads & Mozer,  2019; Gronau & Lee, in press),  with no
systematic exploration of its capabilities, as there has been
for likelihood ratio tests, BIC, and Bayes factors (Ramsay,
1977; Lee, 2001; Gronau & Lee, in press).  In the present
work,  we  therefore  examine  the  usefulness  of  cross-
validation over cells of a dissimilarity matrix in simulations
and applications to empirical data.

Simulations
We conducted a standard model recovery exercise, whereby
we simulated spaces of known dimensionality, from which
we collected  and aggregated  noisy dissimilarity  data,  and
applied  cross-validation  to  attempt  to  recover  the  true
dimensionality. Our simulations were conducted as follows:
1. Sample  n items uniformly from the unit hypercube of

dimensionality between 1 and 7
2. For each simulated subject, add noise ~ N(0, sd) to the

item coordinates, and compute the inter-item Euclidean
distances

3. Average over subject distance (dissimilarity) matrices
4. Derive a weight for each cell  of the average distance

matrix equal to the inter-subject precision of that cell
5. Generate  10  random  80-20  train-test  splits  of  the

averaged  matrix  such  that  each  row of  each  training
matrix is missing no more than 75% of its cells

6. For each train-test split:
1. For each dimensionality from 1 to 7:

1. Fit  ratio  MDS  to  the  training  dissimilarities
and the cell  weights  given by (4),  using the
smacof  library in R (de Leeuw & Mair, 2017)

2. Use the fitted MDS to obtain distances for the
cells of the test split

3. Compute  Pearson  correlation  between  the
MDS distances and held-out dissimilarities

7. Select  the  dimensionality  with  the  highest  median
correlation across all train-test splits

Figure 1 shows distributions of best-fitting dimensionalities
(y-axis)  over  50  simulations  of  a  particular  true
dimensionality  (x-axis),  number  of  subjects  (hue),  noise
level  (columns),  and  number  of  items  (rows).  Figure  1
shows the true dimensionality is recoverable across a range
of conditions.
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Empirical application
We applied steps 3-7 above to an empirical dataset of 
similarity judgments from Hout, Goldinger, and Ferguson 
(2013), who had 92 subjects use the Spatial Arrangement 
Method to judge similarity among a set of 27 artificial 
‘bugs’ which varied on 3 dimensions (darkness, pincer 
shape, number of legs). Figure 2 shows distributions of 
Pearson correlations between MDS distances and held-out 
dissimilarities under 100 train-test splits for each fitted 
dimensionality from 1 to 7. Cross-validation correctly 
selects a 3-dimensional spatial representation for these data.

Discussion
We have demonstrated the utility of cross-validation for

determining the dimensionality of multidimensional scaling
models,  given  subject-averaged  similarity  data  and
assumptions (or knowledge) that dissimilarity data are on a
ratio  scale and were  generated  from a Euclidean distance
metric.  We  cross-validated  across  individual  cells  of  a
dissimilarity matrix, whereas previous applications of cross-
validation to MDS cross-validated over subjects (Steyvers,
2006). We believe our approach has certain advantages, e.g.,

it can be applied to single subject data, and might eventually
be applicable in individual differences scaling, a direction
we  are  now  pursuing.  This  latter  extension  may  be
especially  important,  because  averaging  dissimilarity
matrices might not always be warranted (Ashby, Maddox, &
Lee, 1994). We are also currently exploring simulations and
empirical applications when certain current constraints are
relaxed, e.g., when similarity data are on a likert scale.
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Figure 1. Error bars are 95% confidence intervals.
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