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a b s t r a c t 

Total Factor Productivity Toolbox is a new set of functions to calculate the main Total Factor Productivity 

(TFP) indices and their decompositions, based on Shephard’s distance functions, and using Data Envelop- 

ment Analysis (DEA) programming techniques. The package includes code for the standard Malmquist, 

Moorsteen–Bjurek, price-weighted and share-weighted TFP indices, allowing for the choice of orienta- 

tion (input or output), reference period (base, comparison, geometric mean), returns to scale (variable or 

constant), and specific decompositions (aggregate, or identifying scale effects, as well as input and out- 

put mix effects). Classic definitions of TFP corresponding to the Laspeyres, Paasche, Fisher, or Törnqvist 

formulas can also be calculated as particular cases. This paper describes the methodology and implemen- 

tation of the productivity functions in MATLAB . We compare the results corresponding to the different 

definitions by studying productivity trends in the US agriculture at the individual state level. 

© 2019 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

Total factor productivity (TFP) change is an important con-

ept in economics because it measures the ability of firms, in-

ustries, and national economies to increase the aggregate vol-

me of outputs they yield, relative to the aggregate volume of

nputs they use. TFP constitutes a standard instrument for moni-

oring and benchmarking observations, and represents the corner-

tone in multilateral studies of technological and economic perfor-

ance, OECD (2001) . Defined as the ratio of an output quantity in-

ex to an input quantity index, TFP change can be calculated and

ecomposed in various ways. 

TFP measurement has grown in importance over the past

ecades due to the increasing availability of data to study the

roductive performance of units, regardless of their market, gov-

rnmental, or not-for-profit orientation. However, there are many

ays to measure TFP depending on whether quantities and prices

re available. TFP measurement requires the aggregation of quan-

ities through suitable functions. If prices are available, it is pos-
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ible to aggregate output and input quantities by index formu-

as of Laspeyres, Paasche, Fisher, or Törnqvist. If only quanti-

ies are available, the concept of distance function as introduced

y Shephard emerges as the building block in the definition of

almquist and Moorsteen–Bjurek indices. Aggregation then relies

n optimization—mathematical programming—techniques such as 

he non-parametric Data Envelopment Analysis (DEA, Cooper et al.,

007 ). 

There are various ways to decompose TFP change to identify

he components. This applies both to the classical definitions us-

ng prices as aggregators, and those relying only on quantities

hrough distance functions. These components are (technical) ef-

ciency change, technological change, scale effect, and changes in

he mix of inputs and outputs. The various definitions of these

erms that have been proposed over the years gave rise to a

ealthy debate between authors, including ( Balk, 20 01; 20 03; Färe

t al., 2008; 1994; Lovell, 2003; Ray and Desli, 1997; Zofío, 2007 ),

nd, more recently, ( O’Donnell, 2018 ). Balk and Zofío (2018) ex-

mine how to identify those terms that allow a meaningful in-

erpretation and decomposition of TFP in a general framework.

lthough the present paper is self-contained, the toolbox follows

hese authors, where more detailed theoretical and empirical con-

iderations can be found. The toolbox implements several functions
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1 The address of the repository is https://github.com/joselzofio/TFPMATLAB . 
to calculate the main quantity-only and price-based TFP indices

proposed in the literature, along with their associated decompo-

sitions. The toolbox allows for a choice of orientation (input or

output), reference period (base, comparison, geometric mean), re-

turns to scale (variable or constant), and specific decompositions

(aggregate or identifying scale effects, as well as input and out-

put mix effects). The code calculates Shephard’s input and output

distance functions approximating a production technology empiri-

cally through DEA. The toolbox also calculates classic TFP measures

that do not rely on distance functions for their definition, including

Laspeyres, Paasche, Fisher, and Törnqvist. 

Quantity-only TFP indices based on distance functions, corre-

sponding mainly to the Malmquist index, and coupled occasionally

with the Moorsteen–Bjurek index, can be found in standard soft-

ware packages like Stata ( StataCorp, 2015 ); through user-written

commands as Lee et al. (2011) ; in LIMDEP ( Econometric Soft-

ware (2014) ; in dedicated non-commercial software accompany-

ing academic handbooks such as in Cooper et al. (2007) and

Bogetoft and Otto (2011) (implemented in R ); in commer-

cial software, including trial versions ( O’Donnell, 2011 and

Emrouznejad and Thanassoulis, 2011 ); in free-ware programs

( Coelli, 1998 ); and even in tutorials for spreadsheets ( Zhu, 2014 ).

For the classic TFP indices using prices as aggregators, Shehata and

Mickaiel (2015) developed a Stata module to calculate value index

numbers, while Coelli (1999) offered a stand-alone program that

calculates Fisher and Törnqvist indices, including transitive ver-

sions using the EKS method. O’Donnell (2011) expanded this last

option to Lowe-type indices under a commercial license. Recently,

Dakpo et al. (2018) have coded an R -based productivity package,

based on O’Donnell (2011, 2012, 2018) . However, while it covers

many of the definitions considered in this toolbox, the factors cor-

responding to technological change, as well as the scale and the

input- and output-mix effects vary as result of differences in the

underlying theoretical models. As remarked by O’Donnell (2012) ,

there is a potentially infinite number of exhaustive decompositions

of a TFP index. For example, one family of these decompositions,

identified by Dakpo et al. (2018) and O’Donnell (2011, 2012, 2018) ,

defines technological change globally as the change in maximum

productivity between two time periods, while in this toolbox a lo-

cal measure of technological change is considered. Consequently,

the rest of factors must accommodate the numerical difference be-

tween the two. However, all these decompositions can be rightly

interpreted, while complementing each other. Hence, researchers

can rely on one or another depending on their preferred defini-

tions, and compare them using all the available packages. Addi-

tionally, as a novelty of this toolbox, we offer the possibility of de-

composing share-weighted geometric indices, which is unavailable

in previous packages. Finally, a comprehensive review of the avail-

able general purpose and dedicated software options for efficiency

and productivity analysis can be found in Daraio et al. (2019) . 

Although these packages implement the main TFP indices, there

is a lack of a full set of functions for MATLAB , and none of

them includes a complete decomposition of productivity change

according to its multiple components. Thus, besides implement-

ing the basic TFP definitions based on quantities and prices in

the MATLAB environment, our toolbox calculates a large array

of index numbers capturing (technical) efficiency change, techno-

logical change, as well as scale effects, and input and output mix

effects. Quantities-only Malmquist and Moorsteen–Bjurek indices,

as well as price-based Fisher and Törnqvist indices, are decom-

posed into mutually exclusive factors with meaningful interpreta-

tions in terms of economic index number theory. The Total Fac-

tor Productivity Toolbox introduces a set of functions, covering

a wide range of TFP indices, and reports numerical results using

a common example to ease comparability and to illustrate their

use. The toolbox is available as free software, under the GNU Gen-
ral Public License version 3, and can be downloaded from http:

/www.tfptoolbox.com , with all the supplementary material (data,

xamples, and source code) to replicate all the results presented

n this paper. The toolbox is compatible with the 2017b (8.5) ver-

ion of MATLAB , ( The MathWorks, Inc., 2017 ). The U.S. agricultural

ata employed in this article, as well the code used to calculate the

arious productivity indices are available as supplementary on-line

aterial. The toolbox is also hosted on an open source repository

n GitHub. 1 

This paper is organized as follows. Section 2 presents the data

tructures characterizing the production possibility sets, the struc-

ure of the functions, results, and the U.S. agricultural data that is

sed as real-case study and to illustrate the toolbox. Section 3 cov-

rs the Malmquist productivity indices, relying on radial output

r input distance functions. We show how these indices can be

ecomposed into factors with meaningful interpretations, such as

echnical efficiency change, technological change, scale effect, and

nput and output mix effect. We also relate and interpret these fac-

ors in terms of the output code that is obtained when running the

pecific functions. Malmquist productivity indices take into consid-

ration only one of the two sides of the production process, out-

ut or input. In Section 4 we consider the class of Moorsteen–

jurek indices, defined as ratio of an output quantity index to an

nput quantity index, which in turn can be expressed in terms of

utput and input distance functions, respectively. We present the

ecomposition of these indices using various alternatives to iden-

ify the above effects. If input and output prices are available, it

s possible to calculate and decompose classical indices such as

isher and Törnqvist. The price-weighted productivity indices are

onsidered in Section 5 . Rather than multiplying input and output

uantities by their prices, one can aggregate individual quantity ra-

ios by a geometric mean, weighing with cost or revenue shares.

ection 6 deals with the class of share-weighted indices, whose

est known representative is the Törnqvist productivity index. Ad-

anced options, including displaying and exporting results are dis-

ussed in Section 2.2 . Section 8 concludes. 

. Data structures, output tables and empirical analysis 

.1. Data structures 

Total Factor Productivity change measures the temporal varia-

ion in the productive performance of a DMU (decision making

nit such as a plant, firm, industry, or economy) over time. In

ime period t = 0 , 1 , . . . , T each DMU transforms a vector of in-

uts x kt ∈ R N ++ into a vector of outputs y kt ∈ R 

M 

++ (k = 1 , . . . , K) .

iecewise linear approximations of the period-specific technologies

an be obtained through Data Envelopment Analysis techniques.

pecifically, the constant returns to scale (CRS) production possi-

ility set introduced by Charnes et al. (1978) (CCR), corresponds to

 

t = 

{(
x t , y t 

) | x t � X t λ, y t � Y t λ, λ � 0 
}
, where X t = (x kt ) ∈ R 

N×K 

nd Y t = (y kt ) ∈ R 

M×K are matrices, and λ = ( λ1 , . . . , λK ) 
′ 

is a semi-

ositive vector. Alternatively, the variable returns to scale (VRS)

roduction possibility set introduced by Banker et al. (1984) (BCC),

orresponds to S t = 

{(
x t , y t 

) | x t � X t λ, y t � Y t λ, eλ = 1 , λ � 0 
}
,

here e is a row vector with all elements equal to 1. The only

ifference with the CCR model is the adjunction of the condition
 K 
k =1 λk = 1 . If input and output prices are available, w 

kt ∈ R 

N 
++ 

nd p 

kt ∈ R 

M 

++ , we have the following panel data structure: ( w 

kt ,

 

kt , p 

kt , y kt ) (k = 1 , . . . , K; t = 0 , 1 , . . . , T ) . Data are managed as reg-

lar MATLAB vectors and matrices, constituting the inputs of the

stimation functions that are described in what follows. 

http://www.tfptoolbox.com
https://github.com/joselzofio/TFPMATLAB
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Table 1 

Fields of the tfpout structure available for the dispstr string. 

Common fields 

Field Data 

names DMU names 

EC Technical efficiency change 

TC Technological change 

Productivity indices 

tfp.M Malmquist productivity index (after deatfpm ) 
tfp.MB Moorsteen–Bjurek productivity index (after deatfpmb ) 
tfp.Prod Price-weighted productivity index (after deatfprod ) 
tfp.GProd Share-weighted productivity index (after deatfpgprod ) 

Output orientation 

tfp.SEC Scale effect (geometric mean) 

tfp.OME Output mix effect (geometric mean) 

tfp.SEC_100 SEC t o (x 1 , x 0 , y 0 ) 

tfp.OME_110 OME t ( x 1 , y 1 , y 0 ) 

tfp.SEC_101 SEC t o (x 1 , x 0 , y 1 ) 

tfp.OME_010 OME t ( x 0 , y 1 , y 0 ) 

Input orientation 

tfp.SEC Scale effect (geometric mean) 

tfp.IME Input mix effect (geometric mean) 

tfp.IME_100 IME t ( x 1 , x 0 , y 0 ) 

tfp.SEC_110 SEC t 
i 
(x 1 , y 1 , y 0 ) 

tfp.IME_101 IME t ( x 1 , y 0 , y 1 ) 

tfp.SEC_010 SEC t 
i 
(x 0 , x 1 , y 0 ) 
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All estimation functions return a structure tfpout that con-

ains fields with the estimation results as well as the input of the

stimation function. Fields can be accessed directly using the dot

otation, and the whole structure can be used as an input to other

unctions that print or export results (e.g., tfpdisp ). Some of the

elds of the tfpout structure are the following: 2 

• X and Y : Contain the input and output quantities, respectively. 
• W and P : Contain the input and output prices, respectively. 
• n : Number of observations. 
• m and s : Number of input and output variables, respectively. 
• orient , period , decomp : Strings containing the orientation

of the TFP model, reference period, and decomposition depend-

ing on scale and mix effects assumptions. 
• tfp.M , tfp.MB , tfp.PROD , and tfp.GPROD : Computed

Malmquist, Moorsteen–Bjurek, price-weighted, and share- 

weighted productivity indices. 
• tfp.EC , and tfp.TC : Computed technical efficiency change

and technological change factors. 
• tfp.SEC , tfp.OME , tfp.IME and tfp.RTS : Computed scale

effect, output mix effect, input mix effect, and returns to scale

factors. 
• names : Names of the DMUs. 

.2. Displaying and exporting results 

.2.1. Custom display 

Throughout the text, we illustrate how to display output tables

y calling the tfpdisp(out, dispstr) function after comput-

ng a certain decomposition. In the table header appropriate infor-

ation concerning the estimated model is displayed on the screen.

his setting can be changed to display bespoke information by

pecifying in the tfpdisp function the string dispstr (display

tring) as a second parameter. 

For example, the default dispstr after using the

eatfpgprod function with the geometric mean option is

ames/tfp.GProd/tfp.EC/tfp.TC/tfp.IME/tfp.SEC . 
he fields displayed in the output table must be separated by

 / and include the names corresponding to the field names of

he tfpout structure. The available fields are those presented in

able 1 . 

.2.2. Exporting results 

Results can easily be exported to various file formats for

osterior analysis and sharing. First, the tfpout structure

hould be converted to a MATLAB table data type by us-

ng the tfp2table(out, dispstr) function with the desired

ispstr . If the dispstr parameter is omitted, the default is

sed. 

The table can then be exported by using the function

ritetable . 3 

.3. Agricultural productivity in the US 

To illustrate the toolbox we compare the various productiv-

ty trends in US agriculture obtained with the existing TFP def-
2 For a full list see the help of the function typing help tfpout in MATLAB . 
3 See the official documentation for this function at http://www.mathworks.com/ 

elp/matlab/ref/writetable.html . 

3

 

m  
nitions. The data has been collected and tabulated by the Eco-

omic Research Section (ERS) of the United States Department of

griculture (USDA) in an effort to study long term productivity

rends. It corresponds to a subset of the state-level tables includ-

ng price indices and implicit quantities of farm outputs and in-

uts. It is readily available in MATLAB format as supplemental

n-line material to this article. We calculate productivity growth

etween 1960 and 2004, corresponding to the first and last avail-

ble years in the dataset. The full data, corresponding to Table #23,

an be downloaded from https://www.ers.usda.gov/data-products/ 

gricultural-productivity-in-the-us/ . Our dataset consists of three

utputs (livestock, crops, and other farm related output), and four

nputs (capital, land, labor, and intermediate inputs). More infor-

ation on the data, including descriptive statistics and a discus-

ion of the agricultural productivity growth in the US can be found

n the above link. Due to its comprehensiveness and reliability, this

ataset has been used over the years by many authors, whose re-

ults are complemented with those obtained by solving the models

ncluded in this toolbox; see, to cite but a few, Färe et al. (2008) ,

all et al. (2001) , and Zofío and Lovell (2001) . Once downloaded,

ata on input and output quantities and prices can be brought into

he workspace by running the following code included in the ex-

mple file: 

. Malmquist productivity index 

When only quantities are available the most popular measure-

ent instrument is the Malmquist productivity index (MPI). The

http://www.mathworks.com/help/matlab/ref/writetable.html
https://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us/
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Fig. 1. Visualization of the structures for model parameters and results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M  

n  

a

3

 

o  

d  

‘

M
 

 

w

 

 

 

 

 

 

 

 

 

 

g  

p  

m

MPI requires calculation of the output- or input-orientated dis-

tance of observation ( x kt , y kt ) in two consecutive periods (say, base

period t = 0 and comparison period t = 1 ) to the frontier of a cer-

tain benchmark technology exhibiting CRS. The imposition of CRS

is necessary for the distance function to satisfy the homogene-

ity conditions that ensure that the MPI has the required propor-

tionality properties, see Balk and Zofío (2018) . Thus in general the

benchmark technology will differ from any actual technology. 

It is usual to take the cone technology of a certain period t , Š t ,

as benchmark. Its output distance function is defined by Ď 

t 
o ( x , y ) ≡

inf { δ | δ > 0 , (x , y/δ) ∈ Š t } . Operationally, within the DEA frame-

work, this can be calculated by solving the program Ď 

t 
o ( x , y ) 

−1 =
max 

φ̌,λ
{ ̌φ | x � X t λ, y ̌φ � Y t λ, λ � 0 } . Then (x , y/ ̌D 

t 
o (x , y)) is the

point on the frontier of the period t cone technology that is ob-

tained by holding the input quantity vector x constant while radi-

ally expanding the output quantity vector y . 

The input distance function is defined as Ď 

t 
i 
(x , y) ≡ sup { δ |

δ > 0 , (x /δ, y) ∈ Š t } , and can be calculated by solving the pro-

gram Ď 

t 
i 
( x , y ) −1 = min 

θ̌ ,λ
{ ̌θ | x ̌θ � X t λ, y � Y t λ, λ � 0 } . Then

(x / ̌D 

t 
i 
(x , y) , y) is the point on the frontier of the period t cone

technology that is obtained by holding the output quantity vector

y constant while radially contracting the input quantity vector x .

Notice that Ď 

t 
i 
(x , y) = 1 / ̌D 

t 
o (x , y) . 

The counterparts of the above output and input distance func-

tions, defined on the actual technology S t which in general exhibits

VRS, denoted by D 

t 
o (x , y) and D 

t 
i 
(x , y) , are computed in the same

way, with eλ = 1 as additional constraint. 

3.1. The output-orientated MPI 

The output-orientated MPI, conditional on the period t cone

technology, for a certain DMU, is defined by 4 

M̌ 

t 
o (x 1 , y 1 , x 0 , y 0 ) ≡ Ď 

t 
o (x 1 , y 1 ) 

Ď 

t (x 0 , y 0 ) 
. (1)
o 

4 Here and in the sequel the superscript k , designating a specific DMU, is deleted 

to simplify presentation. 

d

f

Selecting the base period cone technology then leads to
ˇ
 

0 
o (x 1 , y 1 , x 0 , y 0 ) , and selecting the comparison period cone tech-

ology leads to M̌ 

1 
o (x 1 , y 1 , x 0 , y 0 ) . The TFP toolbox calculates both,

s well as their geometric mean. Let us start with the first option. 

.1.1. The base-period-output-orientated MPI 

Following Balk and Zofío (2018) , who provide meaningful the-

retical interpretations for the different factors, the first extended

ecomposition of the base-period-output-orientated MPI (termed

Path A’) is 

ˇ
 

0 
o (x 1 , y 1 , x 0 , y 0 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 1 , y 1 ) 

× SEC 0 o (x 1 , x 0 , y 0 ) × OME 0 (x 1 , y 1 , y 0 ) . 
(2)

In this expression there are four mutually independent factors,

ith the following interpretation: 

• Efficiency change: EC o (x 1 , y 1 , x 0 , y 0 ) = D 

1 
o (x 1 , y 1 ) /D 

0 
o (x 0 , y 0 ) ,

representing the change in the technical efficiency of the DMU,

also known as the catch-up effect . 
• Technological change: T C 1 , 0 o (x 1 , y 1 ) = D 

0 
o (x 1 , y 1 ) /D 

1 
o (x 1 , y 1 ) ,

capturing the change in the actual technological frontier, also

known as the frontier-shift effect . 
• Radial scale and input mix effect: SE C 0 o (x 1 , x 0 , y 0 ) =

[ ̌D 

0 
o (x 1 , y 0 ) /D 

0 
o (x 1 , y 0 )] × [ D 

0 
o (x 0 , y 0 ) / ̌D 

0 
o (x 0 , y 0 )] , corresponding

to scale efficiency improvements associated to radial increases

in the input quantities, and the additional effect from changes

in the input quantity mix. 5 

• Output mix effect: OM E 0 (x 1 , y 1 , y 0 ) = [ ̌D 

0 
o (x 1 , y 1 ) /D 

0 
o (x 1 , y 1 )] ×

[ D 

0 
o (x 1 , y 0 ) / ̌D 

0 
o (x 1 , y 0 )] , showing the counterpart effect associ-

ated to changes in the output quantity mix. 

Factors with values greater than 1 contribute to productivity

rowth (e.g., through technical efficiency gains or technological

rogress), while factors whose values are smaller than 1 are detri-

ental. 
5 Balk and Zofío (2018) show that SEC 0 o (x 1 , x 0 , y 0 ) can be decomposed into a ra- 

ial scale effect and an input quantity mix effect. The implementation in a DEA 

ramework is however too complicated to be practically useful. 
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ted MPI reverses the order in which changes in the input and output 

s s 

M x 0 , y 1 ) × OME 0 (x 0 , y 1 , y 0 ) , (3) 

w ition and that in expression (2) are subtle but noteworthy. The parts 

c  The factor capturing the radial scale effect and the input mix effect is 

c e reverse happens with the output mix effect; this effect is conditional 

o

s of the Malmquist productivity index M̌ 

0 
o (x 1 , y 1 , x 0 , y 0 ) . If there is no 

p s (2) and (3) can be taken, reading 

M  x 0 , y 0 ) × SEC 0 o (x 1 , x 0 , y 1 )] 1 / 2 
(4) 

, Y, ...) function with i) the orient parameter set to the output 

o decomposition parameter decomp set to complete . With the optional 

p he DMUs, which in this case are the names of the U.S. states. 6 

found in the editor under tfpm_oo_base_complete . The results are 

d e variables and results can be found in the workspace by clicking on 

t the model parameters and results in the MATLAB editor. 

technical efficiency change factor ( EC ), the technological change factor 

( metric mean of the output mix effect factors ( OME ), and the separate 

v  above. These values are identified by the time superscripts of the input 

a ponds to SEC 0 o (x 1 , x 0 , y 0 ) in expressions (2) and (4) above. The function 

a Finally, a relevant clarification concerns the nature of returns to scale. 

T y, independently of whether the actual technology is characterized by 

g  technologies, which is identified by the corresponding returns-to-scale 

h The case of a technology characterized by global CRS is considered in 

t

 trends of the first and last three states. Most states increased their 

a e, corresponding to the percentage change of the maximum MPI value. 

E ported, and West Virgina (WV), with a 18.23% reduction (the minimum 

v n average 215.99%, is technological progress, which generally outpaces 

e 1.01%, respectively). Changes in the scale of production or the output 
An alternative decomposition of the base-period-output-orienta

pace take place in the last two factors in expression (2) . This yield

ˇ
 

0 
o (x 1 , y 1 , x 0 , y 0 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 1 , y 1 ) × SEC 0 o (x 1 , 

hich is termed ‘Path B’. The differences between this decompos

apturing efficiency change and technological change are identical.

onditional on y 0 in expression (2) , but on y 1 in expression (3) . Th

n x 1 in expression (2) , but on x 0 in expression (3) . 

Consequently, there are two, equally meaningful, decomposition

reference for one of them then the geometric mean of expression

ˇ
 

0 
o (x 1 , y 1 , x 0 , y 0 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 1 , y 1 ) × [ SEC 0 o (x 1 ,

× [ OME 0 (x 0 , y 1 , y 0 ) × OME 0 (x 1 , y 1 , y 0 )] 1 / 2 . 

To compute the MPI in MATLAB the user calls the deatfpm(X
rientation oo ; 2) the period parameter set to base ; and iii) the 

arameter names we can specify a cell string with the names of t

The model parameters and all the ancillary information can be 

isplayed in the ‘command window’, and the structure with all th

fpm_oo_base_complete.tfp . Fig. 1 shows the structures for 

The output of the function successively shows the MPI ( M ), the 

 TC ), the geometric mean of the scale effect factors ( SEC ), the geo

alues of the two last factors corresponding to ‘Path A’ and ‘Path B’

nd output arguments in each factor; for example, SEC_100 corres

lso returns the main descriptive statistics of the various factors. 

he Malmquist index is defined with respect to a cone technolog

lobal CRS or not. Thus the default decomposition is based on VRS

eader below; i.e., “Returns to scale: vrs (Variable) ”. 

he following subsection. 

We exemplify individual results by discussing the productivity

gricultural productivity, Illinois (IL) leading with a 592.00% increas

xceptions exhibiting productivity decline are Oklahoma (OK), unre

alue of the MPI). The main component of productivity growth, o

fficiency gains by far (on average they contribute 199.44% and 1
6 If the optional parameter names is omitted, the DMUs will be numbered from 1 to n . 
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en relevant changes in the production scale and the input and output 

imilar comments can be made for each individual state. 7 

I 

proposals in the literature. First, they generalize the earlier proposal by 

ix effect in expressions (2) or (3) , both decompositions reduce to the 

 

1 , x 0 , y 0 ) , (5) 

x 0 , y 0 )] . Lovell (2003) suggests that this factor measures the contribu- 

rpretation, if it is greater than 1, increasing returns to scale result in 

rns to scale are detrimental. If equal to one, constant returns to scale 

s in the extended one but with the parameter decomp set to rts . In 

rns-to-scale to productivity change. 

rowth, consistent with small values of the scale and output mix effects, 

ecreasing returns to scale, along with the subsidence of the production 

one, results in the previously reported productivity decline to the tune 

ge terms common to expressions (2), (3) , and (4) correspond to the 

) (CCD), 

) 

) 
. (6) 

yields alternative expressions, 

x 1 , y 1 , y 0 ) (7) 

x 0 , y 1 , y 0 ) (8) 

 

1 , x 0 , y 1 )] 1 / 2 × [ OME 0 (x 0 , y 1 , y 0 ) × OME 0 (x 1 , y 1 , y 0 )] 1 / 2 . (9) 

et to ccd . 
mix do not play a significant role, implying that there have no be

structure of the states over the forty-four year period 1960–2004. S

3.1.2. Related decompositions of the base-period-output-orientated MP

The above four-factor decompositions can be related to simpler 

Ray and Desli (1997) . By merging the scale effect and the output m

same three-factor decomposition: 

M̌ 

0 
o (x 1 , y 1 , x 0 , y 0 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 1 , y 1 ) × RT S 0 (x 1 , y

where RT S 0 (x 1 , y 1 , x 0 , y 0 ) ≡ [ ̌D 

0 
o (x 1 , y 1 ) /D 

0 
o (x 1 , y 1 )] / [ ̌D 

0 
o (x 0 , y 0 ) /D 

0 
o (

tion of returns-to-scale to productivity change. Following this inte

productivity growth, while if it is smaller than 1, decreasing retu

prevails at the observed input-output values. 

To obtain this simpler decomposition, the syntax is the same a

the output table the column RTS contains the contribution of retu

Notice that the contribution of returns-to-scale to productivity g

is quite limited. In the case of West Virginia (WV) the existence of d

frontier, associated to values of technological change smaller than 

of −18 . 23% . 

Second, the technical efficiency change and technological chan

base-period-output-orientated index proposed by Caves et al. (1982

M 

0 
o (x 1 , y 1 , x 0 , y 0 ) ≡ EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 1 , y 1 ) = 

D 

0 
o (x 1 , y 1 

D 

0 
o (x 0 , y 0 

Substituting expression (6) in any of the above decompositions 

M̌ 

0 
o (x 1 , y 1 , x 0 , y 0 ) = M 

0 
o (x 1 , y 1 , x 0 , y 0 ) × SEC 0 o (x 1 , x 0 , y 0 ) × OME 0 (

M̌ 

0 
o (x 1 , y 1 , x 0 , y 0 ) = M 

0 
o (x 1 , y 1 , x 0 , y 0 ) × SEC 0 o (x 1 , x 0 , y 1 ) × OME 0 (

M̌ 

0 
o (x 1 , y 1 , x 0 , y 0 ) = M 

0 
o (x 1 , y 1 , x 0 , y 0 ) × [ SEC 0 o (x 1 , x 0 , y 0 ) × SEC 0 o (x

To obtain this decomposition the parameter decomp must be s
7 Descriptive statistics, productivity distributions, and associated graphs, can be easily calculated and plotted in MATLAB . 
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D index frequently figures under the name ‘the (output orientated) 

M n (6) , cannot be regarded as a productivity index. First, it cannot be 

w asure of aggregate input growth, the corresponding aggregators being 

n . O’Donnell (2012) uses the term “multiplicatively complete” to refer to 

T dex does not satisfy the proportionality property, as initially shown by 

G ology exhibits CRS. In the specific case of a technology satisfying CRS, 

a identical to 1, and the MPI M̌ 

0 
o (x 1 , y 1 , x 0 , y 0 ) reduces to the CCD index 

M d by Färe et al. (1994) , 8 

M (10) 

can be calculated by setting the parameter decomp to crs , 

b

c

In the extant literature on productivity measurement, the CC

almquist productivity index’. However, the CCD index, expressio

ritten as a measure of aggregate output growth divided by a me

on-negative non-decreasing linearly homogenous scalar functions

FP indexes constructed in this way. More importantly, the CCD in

rifell-Tatjé and Lovell (1995) , unless the actual base period techn

ll the SEC and OME terms in expressions (7), (8) , and (9) become 

 

0 
o (x 1 , y 1 , x 0 , y 0 ) . The MPI is then decomposed as initially propose

ˇ
 

0 
o (x 1 , y 1 , x 0 , y 0 ) = ĚC o (x 1 , y 1 , x 0 , y 0 ) × Ť C 

1 , 0 

o (x 1 , y 1 ) . 

The two-factor decomposition of the MPI for a CRS technology 
8 The toolbox offers the possibility of testing the hypothesis that a certain technology is characterized by VRS or CRS. The function implements the algorithms developed 

y Simar and Wilson (2002) , following Bogetoft and Otto (2011) , to determine whether the VRS and CRS distance function values are significantly different or not. The test 

an be performed by calling the deatestrtsm(X, Y, ...) function, with the orient parameter set to the same orientation as the MPI. 
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logy, its outcomes are identical to those in the previous tables. The 

differences are not large, as for most of the DMUs the RTS factor in 

prominent role played by technological change in most of the American 

 West Virginia (WV). 

logy, Š 1 , as benchmark. The comparison-period-output-orientated MPI 

position analogous to expressions (2) and (3) are, respectively, 

x 0 , y 0 ) × OME 1 (x 1 , y 1 , y 0 ) , (11) 

x 0 , y 1 ) × OME 1 (x 0 , y 1 , y 0 ) , (12) 

018) . Again, if there is no preference for either of the two then it is 

 x 0 , y 0 ) × SEC 1 o (x 1 , x 0 , y 1 )] 1 / 2 
(13) 

by 

) 

) 
. (14) 

-orientated MPI is calculated by calling the deatfpm(X, Y, ...) 
ter, and leaving the other parameters unchanged: 

 and is therefore not reported here. Also, obtaining the related decom- 

ccd , or crs . 

n period benchmarks will deliver different results. A compromise be- 

Ď 

0 
o (x 1 , y 1 ) 

Ď 

0 
o (x 0 , y 0 ) 

Ď 

1 
o (x 1 , y 1 ) 

Ď 

1 
o (x 0 , y 0 ) 

]1 / 2 

. (15) 
Notice that, as the MPI does not depend on an actual techno

decompositions in EC and TC factors, however, are different. The 

expression (5) resides in the neighbourhood of 1. We again see the 

states, except Oklahoma (OK), not reported in the table above, and

3.1.3. The comparison-period-output-orientated MPI 

As anticipated, we can also select the comparison period techno

is then given by M̌ 

1 
o (x 1 , y 1 , x 0 , y 0 ) . The complete four-factor decom

M̌ 

1 
o (x 1 , y 1 , x 0 , y 0 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 0 , y 0 ) × SEC 1 o (x 1 , 

and 

M̌ 

1 
o (x 1 , y 1 , x 0 , y 0 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 0 , y 0 ) × SEC 1 o (x 1 , 

which are identified by ‘Path C’ and ‘Path D’ in Balk and Zofío (2

advised to take the geometric mean of these two decompositions, 

M̌ 

1 
o (x 1 , y 1 , x 0 , y 0 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 0 , y 0 ) × [ SEC 1 o (x 1 ,

×[ OME 1 (x 0 , y 1 , y 0 ) × OME 1 (x 1 , y 1 , y 0 )] 1 / 2 . 

The comparison-period-output-orientated CCD index is defined 

M 

1 
o (x 1 , y 1 , x 0 , y 0 ) ≡ EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 0 , y 0 ) = 

D 

1 
o (x 1 , y 1 

D 

1 
o (x 0 , y 0 

The complete decomposition of the comparison-period-output

function, replacing base by comparison in the period parame

The output has the same structure as the base period analogue

positions is done by setting the parameter decomp to either rts , 

3.1.4. The geometric-mean-output-orientated MPI 

In general the output-orientated MPIs with base and compariso

tween the two MPIs is their geometric mean, 

M̌ o (x 1 , y 1 , x 0 , y 0 ) ≡ [ M̌ 

0 
o (x 1 , y 1 , x 0 , y 0 ) × M̌ 

1 
o (x 1 , y 1 , x 0 , y 0 )] 1 / 2 = 

[
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M )] 1 / 2 

 , y 0 ) SEC 1 o (x 1 , x 0 , y 1 )] 1 / 4 

 , y 1 , y 0 ) OME 1 (x 1 , y 1 , y 0 )] 1 / 4 . (16) 

T  to geomean in the deatfpm(X, Y, ...) function. 

B’, ‘Path C’, or ‘Path D’ can be recovered by running the previous base 
o o decompositions are indeed different and their geometric mean is a 

u by setting the parameter decomp to rts , ccd , or crs . 
US agriculture. The geometric mean of the base and comparison period 

b  year period. This is substantially lower than the previously reported 

r e comparison period benchmark delivers a rather limited productivity 

c .01%), the reduction in productivity growth corresponds to lower TC to 
t rk technology, input and output scale and mix effects barely contribute 

t

3

 

t 
i 
(x t , y t ) . Thus the output-orientated MPI defined by expression (1) can 

a

M (17) 

t chnology, Š t . 

llel to those already presented for the output-orientated counterpart, 

a  be introduced in the MATLAB functions to obtain the different de- 

c n of the input decompositions see Balk and Zofío (2018 , Section 4). In 

g t parameter in the MPI function. 

y 0 ) , is calculated and decomposed by running the following code: 

d MPI the related decompositions can be obtained. Merging the input 

m ree-factor decomposition counterpart to expression (5) . To obtain this 

s  rts . 
This index can be decomposed into the following factors, 

ˇ
 o (x 1 , y 1 , x 0 , y 0 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × [ T C 1 , 0 o (x 0 , y 0 ) T C 1 , 0 o (x 1 , y 1 

× [ SEC 0 o (x 1 , x 0 , y 0 ) SEC 0 o (x 1 , x 0 , y 1 ) SEC 1 o (x 1 , x 0

× [ OME 0 (x 0 , y 1 , y 0 ) OME 0 (x 1 , y 1 , y 0 ) OME 1 (x 0

his decomposition is computed by setting the period parameter

The corresponding individual terms associated to ‘Path A’, ‘Path 

r comparison options. It is then possible to confirm that the tw

seful compromise. Also, the related decompositions are obtained 

The importance of the benchmark period is clear in the case of 

enchmarks delivers a 54.94% increase in productivity over the 44

esult from the base period benchmark, 215.99%, suggesting that th

hange. Since the EC factor is common to both decompositions (11

he tune of 33.52%. Finally, regardless of the choice of the benchma

o productivity growth, their magnitudes being close to one. 

.2. The input-orientated MPI 

Recall that a cone technology exhibits CRS, thus Ď 

t 
o (x t , y t ) = 1 / ̌D

lso be written as 

ˇ
 

t 
o (x 1 , y 1 , x 0 , y 0 ) = 

Ď 

t 
i 
(x 0 , y 0 ) 

Ď 

t 
i 
(x 1 , y 1 ) 

≡ M̌ 

t 
i (x 1 , y 1 , x 0 , y 0 ) , 

hat is, as input-orientated MPI, conditional on the period t cone te

The options for decomposing an input-orientated MPI run para

nd therefore it is sufficient to describe the changes that need to

ompositions. For formal definitions and a graphical representatio

eneral, all that is required is to substitute io for oo in the orien
The base-period-input-orientated MPI, defined as M̌ 

0 
i 
(x 1 , y 1 , x 0 , 

Following procedures identical to those for the output-orientate

ix and scale effects into the returns-to-scale factor yields the th

impler decomposition the parameter decomp must be changed to
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change and technological change factors into the base-period-input- 

eter decomp must be changed from complete to ccd . 

omp to crs . 

mparison-period-input-orientated MPI, M̌ 

1 
i 
(x 1 , y 1 , x 0 , y 0 ) . The complete 

riod parameter of the deatfpm(X, Y, ...) function. 

perspectives, M̌ i (x 1 , y 1 , x 0 , y 0 ) 

he output-orientated MPI (expression (15) ) is obtained by setting the 

tric-mean-input-orientated MPI are obtained by setting the parameter 

t of the function is interpreted in the same way as their base-period 

quantities takes into account both the output and input orientations. 

BPI) is defined as the ratio of a Malmquist output quantity index to a 

ology S t . A Malmquist output quantity index, comparing output quanti- 

s Q 

t 
o (y 1 , y 0 , x̄ ) ≡ D 

t 
o ( ̄x , y 

1 ) /D 

t 
o ( ̄x , y 

0 ) . Similarly, a Malmquist input quan- 

ain output quantities ȳ , is defined as Q 

t 
i 
(x 1 , x 0 , ȳ ) ≡ D 

t 
i 
(x 1 , ȳ ) /D 

t 
i 
(x 0 , ȳ ) . 

) , and their properties were extensively discussed in Balk (1998) . Typi- 

ld be chosen as vectors of sample means. This is the approach followed 

(18) 

 productivity levels. Up to a scalar normalization, and conditional on x̄ 

thereby measured as D 

t 
o ( ̄x , y) /D 

t 
i 
(x , ȳ ) , where superscript t refers to the 

ultiplicatively complete” TFP indices, as defined by O’Donnell (2012) . 

 that this index can be decomposed into factors corresponding to those 

utput distance functions or input distance functions. As benchmark the 

ollow the order in which the MPI decompositions were discussed. 

 the MBPI is decomposed as 

 

 

(x 0 , y 0 ) 
 

 

(x 1 , y 0 ) 

D 

0 
i 
(x 0 , ȳ ) 

D 

0 
i 
(x 1 , ȳ ) 

)
×

(
D 

0 
o ( ̄x , y 

1 ) 

D 

0 
o ( ̄x , y 

0 ) 

D 

0 
o (x 1 , y 0 ) 

D 

0 
o (x 1 , y 1 ) 

)
. (19) 

t, respectively, technical efficiency change, technological change (condi- 

l on y 0 ), and the output mix effect (conditional on x 1 ). 

ing decomposition is obtained: 

 

 

(x 0 , y 1 ) 
 

 

(x 1 , y 1 ) 

D 

0 
i 
(x 0 , ȳ ) 

D 

0 
i 
(x 1 , ȳ ) 

)
×

(
D 

0 
o ( ̄x , y 

1 ) 

D 

0 
o ( ̄x , y 

0 ) 

D 

0 
o (x 0 , y 0 ) 

D 

0 
o (x 0 , y 1 ) 

)
. (20) 

t mix effect are now conditional on y 1 , while the output mix effect is 

s is computed by the deatfpmb(X, Y, ...) function with: (i) the 
As in expression (6) , one can merge the technical efficiency 

orientated version of CCD index. For this decomposition the param

The CRS version can be calculated by setting the parameter dec

Choosing the cone technology Š 1 as benchmark leads to the co

decomposition requires changing base to comparison in the pe

Finally, the geometric mean of the base and comparison period 

≡ [ M̌ 

0 
i 
(x 1 , y 1 , x 0 , y 0 ) × M̌ 

1 
i 
(x 1 , y 1 , x 0 , y 0 )] 1 / 2 , as in the case of t

period parameter to geomean . 

Related decompositions for the comparison-period- and geome

decomp to either rts , ccd , or crs . For each variant, the outpu

counterparts. 

4. Moorsteen–Bjurek productivity index 

The second definition of a productivity index based only on 

Specifically, the family of Moorsteen–Bjurek productivity indices (M

Malmquist input quantity index, conditional on a benchmark techn

ties y 1 to y 0 , conditional on certain input quantities x̄ , is defined a

tity index, comparing input quantities x 1 to x 0 , conditional on cert

Both indices can be traced back to suggestions by Moorsteen (1961

cally, in empirical applications involving many DMUs, x̄ and ȳ wou

in the toolbox. The MBPI is then defined by 

MB 

t (x 1 , y 1 , x 0 , y 0 ; x̄ , ȳ ) ≡ Q 

t 
o (y 1 , y 0 , x̄ ) 

Q 

t 
i 
(x 1 , x 0 , ȳ ) 

= 

D 

t 
o ( ̄x , y 

1 ) /D 

t 
i 
(x 1 , ȳ ) 

D 

t 
o ( ̄x , y 

0 ) /D 

t 
i 
(x 0 , ȳ ) 

. 

The last term shows that the MBPI can be seen as a ratio of two

and ȳ , the productivity level at the input-output situation ( x , y ) is 

benchmark technology S t . Thus, the MBPI belongs to the class of “m

Based on the properties of the MBPI, Balk and Zofío (2018) show

already shown and interpreted. Decompositions can be based on o

technologies of the base period 0 and comparison 1 are used. We f

4.1. The output-orientated decomposition of MBPI 

4.1.1. The base-period MBPI 

Taking as benchmark the base-period technology, along ‘Path A’

MB 

0 (x 1 , y 1 , x 0 , y 0 ; x̄ , ȳ ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 1 , y 1 ) ×
(

D 

0
o

D 

0
o

The factors on the right-hand side of the equality sign represen

tional on ( x 1 , y 1 )), the radial scale and input mix effect (conditiona

With the same benchmark technology, along ‘Path B’ the follow

MB 

0 (x 1 , y 1 , x 0 , y 0 ; x̄ , ȳ ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 1 , y 1 ) ×
(

D 

0
o

D 

0
o

The first two terms are the same but the radial scale and inpu

conditional on x 0 . The geometric mean of the two decomposition
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o arameter set to base ; and (iii) the decomposition parameter decomp 
s  input quantities x̄ and output quantities ȳ in the two periods 0 and 1 

a

, EC , TC , and the geometric mean of the SEC and OME factors. The 

l factors corresponding to ‘Path A’ and ‘Path B’, identified by the time 

s nce, SEC_100 identifies the third factor in expression (19) , counterpart 

t

o compare the results corresponding to the Malmquist and Moorsteen–

B , as average growth for the latter amounts to 229.52% versus 215.99% 

f e factors are common to both indices, the difference between the two 

m ts were clearly negative in the case of the MPI, with values well below 

u ity growth. Nevertheless we conclude that, for the US agriculture, the 

c esult in relevant differences at the aggregate or individual level. Indeed, 

t lly significant at the 1% confidence level with a value of ρ = 0 . 8629 . 

4

D index, defined in expression (6) . Thus the two expressions can be 

r

M
ȳ ) 

ȳ ) 

)
×

(
D 

0 
o ( ̄x , y 

1 ) 

D 

0 
o ( ̄x , y 

0 ) 

D 

0 
o (x 1 , y 0 ) 

D 

0 
o (x 1 , y 1 ) 

)
(21) 

M
ȳ ) 

ȳ ) 

)
×

(
D 

0 
o ( ̄x , y 

1 ) 

D 

0 
o ( ̄x , y 

0 ) 

D 

0 
o (x 0 , y 0 ) 

D 

0 
o (x 0 , y 1 ) 

)
. (22) 

following code: 

ing MBPI and its decomposition is obtained by setting the parameter 

d

4

 the comparison period technology is selected as benchmark, 

M  along ‘Paths C and D’ is obtained by setting the period parameter to 

c decomp parameter to ccd or crs . 
rient parameter set to output orientation oo ; (ii) the period p
et to complete . In this function, the (arithmetic) averages of the

re automatically calculated from the arrays of X and Y . 

The output of the function successively shows the MBPI ( MB )
ast four columns show the separate values of the SEC and OME 

uperscripts of each of their input and output arguments. For insta

o SEC 0 o (x 1 , x 0 , y 0 ) in expression (3) . 

Regarding US agricultural productivity growth, it is interesting t

jurek definitions. The difference between the two is rather small

or the former. Since the efficiency change and technological chang

ust be due to the scale and output mix effects. While these effec

nity, here we observe that they positively contribute to productiv

hoice of the Malmquist or Moorsteen–Bjurek definition does not r

he Spearman rank correlation between the two indices is statistica

.1.2. Related decompositions 

The MBPIs in expressions (19) and (20) are related to the CC

ewritten as 

B 

0 (x 1 , y 1 , x 0 , y 0 ; x̄ , ȳ ) = M 

0 
o (x 1 , y 1 , x 0 , y 0 ) ×

(
D 

0 
o (x 0 , y 0 ) 

D 

0 
o (x 1 , y 0 ) 

D 

0 
i 
(x 0 , 

D 

0 
i 
(x 1 , 

B 

0 (x 1 , y 1 , x 0 , y 0 ; x̄ , ȳ ) = M 

0 
o (x 1 , y 1 , x 0 , y 0 ) ×

(
D 

0 
o (x 0 , y 1 ) 

D 

0 
o (x 1 , y 1 ) 

D 

0 
i 
(x 0 , 

D 

0 
i 
(x 1 , 

The geometric mean decomposition is obtained by running the 

If the base period technology exhibits CRS then the correspond

ecomp to crs : 

.1.3. The comparison-period MBPI 

Similar decompositions of the MBPI can be obtained if

B 1 (x 1 , y 1 , x 0 , y 0 ; x̄ , ȳ ) . The geometric mean of the decompositions

omparison . Related decompositions are obtained by setting the 
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lts unless the benchmark technologies satisfy extremely restrictive 

 the productivity index MB t (x 1 , y 1 , x 0 , y 0 ; x̄ , ȳ ) from an output ori- 

 of MB 0 (x 1 , y 1 , x 0 , y 0 ; x̄ , ȳ ) . There are two similar decompositions of 

 a decomposition of the geometric mean index MB (x 1 , y 1 , x 0 , y 0 ; x , y ) = 

 

0 , 1 
o 

(
x 0 , y 0 

)]1 / 2 ×
 

 

 

 

 

 

1 / 4 

︸ 
×

 

 

 

 

 

 

1 / 4 

︸ 
×

 

 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

1 / 4 

︸ 
×

 

 

 

 

 

 

1 / 4 

︸ 
. 

(23) 

d technological change effects, respectively. The second and third rows 

ring the third factors in the component decompositions), and the fourth 

e fourth factors in the component decompositions). This decomposition 

e period parameter to geomean . 
4.1.4. The geometric-mean MBPI 

The base- and comparison-period MBPIs yield different resu

conditions. As we have seen, there are four decompositions of

entation. Expressions (19) and (20) provide two decompositions

MB 1 (x 1 , y 1 , x 0 , y 0 ; x̄ , ȳ ) . By taking their geometric mean, we obtain

[ MB 0 (x 1 , y 1 , x 0 , y 0 ; x , y ) MB 1 (x 1 , y 1 , x 0 , y 0 ; x , y )] 
1 / 2 

. Thus, 

MB 

(
x 1 , y 1 , x 0 , y 0 ; x , y 

)
= EC o 

(
x 1 , y 1 , x 0 , y 0 

)
×

[
T C 0 , 1 o 

(
x 1 , y 1 

)
× T C⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

( 

D 

0 
o 

(
x 0 , y 0 

)
D 

0 
o 

(
x 1 , y 0 

) D 

0 
i 

(
x 0 , y 

)
D 

0 
i 

(
x 1 , y 

)
) 

︸ ︷︷ ︸ 
Third term Path A, SEC 

×
( 

D 

1 
o 

(
x 0 , y 0 

)
D 

1 
o 

(
x 1 , y 0 

) D 

1 
i 

(
x 0 , y 

)
D 

1 
i 

(
x 1 , y 

)
) 

︸ ︷︷ ︸ 
Third term Path C, SEC 

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ 
Third terms paths AC , SEC ⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

( 

D 

0 
o 

(
x 0 , y 1 

)
D 

0 
o 

(
x 1 , y 1 

) D 

0 
i 

(
x 0 , y 

)
D 

0 
i 

(
x 1 , y 

)
) 

︸ ︷︷ ︸ 
Third term Path B, SEC 

×
( 

D 

1 
o 

(
x 0 , y 1 

)
D 

1 
o 

(
x 1 , y 1 

) D 

1 
i 

(
x 0 , y 

)
D 

1 
i 

(
x 1 , y 

)
) 

︸ ︷︷ ︸ 
Third term Path D, SEC 

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ 
Third terms paths BD , SEC 

×

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

( 

D 

0 
o 

(
x , y 1 

)
D 

0 
o 

(
x , y 0 

) D 

0 
o 

(
x 1 , y 0 

)
D 

0 
o 

(
x 1 , y 1 

)
) 

︸ ︷︷ ︸ 
Four th term Path A, OME 

×
( 

D 

1 
o 

(
x , y 1 

)
D 

1 
o 

(
x , y 0 

) D 

1 
o 

(
x 1 , y 0 

)
D 

1 
o 

(
x 1 , y 1 

)
)

︸ ︷︷ ︸
Four th term Path C, OME ︸ ︷︷ 

Four th terms paths AC , OME ⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

( 

D 

0 
o 

(
x , y 1 

)
D 

0 
o 

(
x , y 0 

) D 

0 
o 

(
x 0 , y 0 

)
D 

0 
o 

(
x 0 , y 1 

)
) 

︸ ︷︷ ︸ 
Four th term Path B, OME 

×
( 

D 

1 
o 

(
x , y 1 

)
D 

1 
o 

(
x , y 0 

) D 

1 
o 

(
x 0 , y 0 

)
D 

1 
o 

(
x 0 , y 1 

)
) 

︸ ︷︷ ︸ 
Four th term Path D, OME 

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ 
Four th terms paths BD , OME 

The first row of expression (23) delivers the efficiency change an

together correspond to the radial scale plus input mix effect (gathe

and fifth rows together measure the output mix effect (gathering th

is obtained by setting in the deatfpmb(X, Y, ...) function th
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 from the previous decompositions under the base or comparison 
s nging the argument complete in the decomp parameter to ccd or 

c
trends delivered by the geometric-mean-output-orientated Moorsteen–

B iod perspective comparison, both sets of results are highly correlated 

w ificant at the 1% level. Indeed, average productivity growth according 

t an the Malmquist index at 54.97%. Also the maximum and minimum 

v DE) and Oklahoma (OK), respectively. The only difference between the 

t nces are rather small. 

4

) – taking the technology of the base period as benchmark, along ‘Path 

E

M
 (x 1 , y 0 ) 
 (x 0 , y 0 ) 

D 

0 
i 
(x 0 , ȳ ) 

D 

0 
i 
(x 1 , ȳ ) 

)
×

(
D 

0 
o ( ̄x , y 

1 ) 

D 

0 
o ( ̄x , y 

0 ) 

D 

0 
i 
(x 1 , y 1 ) 

D 

0 
i 
(x 1 , y 0 ) 

)
. (24) 

nt, respectively, technical efficiency change, technological change (con- 

d the radial scale plus output mix effect (conditional on x 1 ). The decom- 

p ct is conditional on y 1 and the radial scale plus output mix effect is 

c s is calculated setting the orient parameter to io , and the period 
p

arameter to ccd or crs . 
arison-period MBPI along ‘Path G’ and ‘Path H’, and their geometric 

m on . Changing the decomp parameter to ccd or crs yields the related 

d

dex MB t (x 1 , y 1 , x 0 , y 0 ; x̄ , ȳ ) from the input orientation: two from the 

b spective. By taking the geometric mean of these four decompositions 

w  

1 , x 0 , y 0 ; x̄ , ȳ ) = [ MB 0 (x 1 , y 1 , x 0 , y 0 ; x̄ , ȳ ) MB 1 (x 1 , y 1 , x 0 , y 0 ; x̄ , ȳ )] 1 / 2 . This 

c on input distance functions instead of output distance functions. 
The separate TC , SEC , and OME components can be recovered

pecification. The related decompositions can be obtained by cha

rs . 
Again, for US agriculture, it is possible to compare productivity 

jurek index and its Malmquist counterpart. As with the base-per

ith a Spearman coefficient equal to ρ = 0 . 8763 , statistically sign

o the Moorsteen–Bjurek index amounts 47.96%, slightly smaller th

alues are very similar, corresponding in both cases to Delaware (

wo indices is in the scale and output mix effects, but these differe

.2. The input-orientated decomposition of MBPI 

The counterpart decomposition of the MBPI – see expression (19

’ is given by 

B 

0 (x 1 , y 1 , x 0 , y 0 ; x̄ , ȳ ) = EC i (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 
i 

(x 1 , y 1 ) ×
(

D 

0
i 

D 

0
i 

The factors on the right-hand side of the equality sign represe

itional on ( x 1 , y 1 )), the input mix effect (conditional on y 0 ), and 

osition along ‘Path F’ is the same except that the input mix effe

onditional on x 0 . The geometric mean of the two decomposition

arameter to base in the deatfpmb(X, Y, ...) function. 

Related decompositions are obtained by changing the decomp p
Alternatively, the input-orientated decompositions of the comp

ean, are obtained by setting the period parameter to comparis
ecompositions. 

All in all, there are four decompositions of the productivity in

ase period perspective, and two from the comparison period per

e obtain a decomposition of the geometric mean index MB(x 1 , y

orresponds to the decomposition in expression (23) , but is based 
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eriod parameter to geomean . 

mparing ( x 1 , y 1 ) to ( x 0 , y 0 ), conditional on input prices w 

t and output 

(25) 

, respectively, it can also be seen as a ratio of the productivity levels of 

eriod, determining the prices with which quantities are multiplied. For 

t e Paasche productivity index. The geometric mean of these two is the 

d output quantities ( X and Y matrices) but also corresponding prices ( W 
 dimension corresponding to the time periods t = 0 , 1 , . . . , T . Note that 

ny set of prices provided by the user. However, if prices are chosen as 

ices by default. 

[
D 

0 
o (x 0 , y 0 ) 

D 

0 
o (x 1 , y 0 ) 

w 

0 · x 0 

w 

0 · x 1 

]
×

[
D 

0 
o (x 1 , y 0 ) 

D 

0 
o (x 1 , y 1 ) 

p 

0 · y 1 

p 

0 · y 0 

]
. (26) 

ciency change, and the second factor measures technological change. 

 scale (including input mix) effect, while the fourth factor corresponds 

 

[
D 

0 
o (x 0 , y 1 ) 

D 

0 
o (x 1 , y 1 ) 

w 

0 · x 0 

w 

0 · x 1 

]
×

[
D 

0 
o (x 0 , y 0 ) 

D 

0 
o (x 0 , y 1 ) 

p 

0 · y 1 

p 

0 · y 0 

]
, (27) 

 the scale and output mix effects. Taking the geometric mean of these 

 

 

)1 / 2 
p 

0 · y 1 

p 

0 · y 0 

] 

. (28) 

...) function. The orient parameter should be set to the output 

sition parameter decomp should be complete . 
The geometric mean decomposition is obtained by setting the p

5. Price-weighted productivity indices (Fisher) 

The generic definition of a price-weighted productivity index co

prices p 

t , is 

P ROD (x 1 , y 1 , x 0 , y 0 ; w 

t , p 

t ) ≡ p 

t · y 1 / w 

t · x 1 

p 

t · y 0 / w 

t · x 0 
= 

p 

t · y 1 / p 

t · y 0 

w 

t · x 1 / w 

t · x 0 
. 

Defined as a ratio of Lowe quantity indices of output and input

period 1 and period 0, respectively. Period t serves as benchmark p

 = 0 we obtain the Laspeyres productivity index, and for t = 1 th

Fisher productivity index. 

To calculate these indices, users must provide not only input an

and P matrices), which are three-dimensional arrays, with the third

in principle, the price-weighted indices could be calculated using a

above, the toolbox calculates the Laspeyres, Paasche, and Fisher ind

5.1. The output-orientated decomposition 

5.1.1. The Laspeyres PI 

Following ‘Path A’, the decomposition of the Laspeyres PI is 

P ROD (x 1 , y 1 , x 0 , y 0 ; w 

0 , p 

0 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 1 , y 1 ) ×

At the right-hand side, the first factor measures technical effi

Balk and Zofío (2018) show that the third factor corresponds to the

to the output mix effect. Following the alternative ‘Path B’ delivers

P ROD (x 1 , y 1 , x 0 , y 0 ; w 

0 , p 

0 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 1 , y 1 ) ×

which differs from expression (26) in the conditioning variables of

two expressions yields 

P ROD (x 1 , y 1 , x 0 , y 0 ; w 

0 , p 

0 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 1 , y 1 ) ×

[ (
D 

0 
o (x 0 , y 0 ) 

D 

0 
o (x 1 , y 0 ) 

D 

0 
o (x 0 , y 1 ) 

D 

0 
o (x 1 , y 1 ) 

)1 / 2 
w 

0 · x 0 

w 

0 · x 1 

] 

×
[ (

D 

0 
o (x 1 , y 0 ) 

D 

0 
o (x 1 , y 1 ) 

D 

0 
o (x 0 , y 0 )

D 

0 
o (x 0 , y 1 )

This decomposition is computed by the deatfprod(X, Y, 
orientation oo , and the period parameter to base . The decompo
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C , TC , the scale (plus input mix) factor SEC , and the output mix factor 

O nd output mix effects along ‘Path A’ and ‘Path B’. They are identified by 

t nce, SEC_100 identifies the third right-hand side factor in expression 

(  In particular cases distance functions may be infeasible, and therefore 

s ed. This is why the toolbox directly computes the Laspeyres PI by using 

e

ard Laspeyres PI with the previous quantities-only counterparts. Using 

p h magnitudes which are much smaller. Over the whole period Laspeyres 

p action (about ten percent) of the 215.99% and 229.52% increase of the 

b . Since the EC and TC factors are the same, we see that the SEC and 

O d, these terms are responsible for a negative contribution to the tune 

o then clear that the overall picture greatly changes when moving from 

q interpretations and policy conclusions could be drawn depending on 

t al level. Oregon (OR) now leads the productivity growth with a 75.75% 

i ecrease. However, the rankings are relatively similar, exhibiting positive 

c almquist indices is ρ = 0 . 3088 , while that between the Laspeyres and 

M t at the usual 5% level. 

5

P
 · x 0 

 · x 1 

]
×

[
D 

0 
o (x 1 , y 0 ) 

D 

0 
o (x 1 , y 1 ) 

p 

0 · y 1 

p 

0 · y 0 

]
. (29) 

 decomposition, the decomp parameter must be set to ccd , combined 

w  Laspeyres PI we would run 

e corresponding decomposition is obtained by setting the parameter 

d

5

compositions, the decomposition of the Paasche Pi (that is, expression 

(

P[
 

 

)1 / 2 
p 

1 · y 1 

p 

1 · y 0 

] 

, (30) 
Again, the output successively shows the Laspeyres PI ( PROD ), E
ME . The last four columns show the separate values of the scale a

he time superscripts of the input and output arguments; for insta

26) , which is the counterpart to SEC 0 o (x 1 , x 0 , y 0 ) in expression (3) .

ome of the factors in the above decompositions cannot be calculat

xpression (25) . 

For the US agriculture, we can compare the results of the stand

rices to aggregate inputs and outputs results in productivity growt

roductivity ( PROD ) increased by 20.31% on average, which is a fr

ase-period Malmquist and Moorsteen–Bjurek productivity indices

ME effects are responsible for the reduction in productivity. Indee

f −45 . 55% and −22 . 06% , respectively, over forty-four years. It is 

uantities-only to price-based productivity indices, and different 

he specific definitions. There are also some changes at the individu

ncrease, and Oklahoma (OK) resides at the bottom with a 32.88% d

orrelation. The Spearman correlation between the Laspeyres and M

oorsteen–Bjurek indices is ρ = 0 . 3067 , both statistically significan

.1.2. Related decompositions of the Laspeyres PI 

Using expression (6) , expression (26) can be simplified to 

 ROD (x 1 , y 1 , x 0 , y 0 ; w 

0 , p 

0 ) = M 

0 
o (x 1 , y 1 , x 0 , y 0 ) ×

[
D 

0 
o (x 0 , y 0 ) 

D 

0 
o (x 1 , y 0 ) 

w 

0

w 

0

The same holds for expressions (27) and (28) . To obtain such a

ith the base, comparison, or geometric mean perspective. For the

If the base period technology is characterized by CRS, then th

ecomp to crs . 

.1.3. The Paasche PI 

Following “Path C” and ’Path D’ and avaraging the resulting de

25) with t = 1 ) reads 

 ROD (x 1 , y 1 , x 0 , y 0 ; w 

1 , p 

1 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 0 , y 0 ) ×
 (

D 

1 
o (x 0 , y 0 ) 

D 

1 
o (x 1 , y 0 ) 

D 

1 
o (x 0 , y 1 ) 

D 

1 
o (x 1 , y 1 ) 

)1 / 2 
w 

1 · x 0 

w 

1 · x 1 

] 

×
[ (

D 

1 
o (x 1 , y 0 ) 

D 

1 
o (x 1 , y 1 ) 

D 

1 
o (x 0 , y 0 )

D 

1 
o (x 0 , y 1 )
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 set to comparison in the deatfprod(X, Y, ...) function. For 

ox, however, computes the Paasche PI directly rather than as a product 

gn in expression (30) correspond to the CCD index M 

1 
o (x 1 , y 1 , x 0 , y 0 ) , 

 by changing the decomp parameter from complete to ccd . Also, if 

sition is obtained by setting the decomp parameter to crs . 

he PIs. By merging expressions (28) and (30) its decomposition is 

 x 0 ) 

] 

×

 

0 ) 

] 

, (31) 

y 0 )] 1/2 is the Fisher output quantity index, and Q 

F ( w 

1 , x 1 , w 

0 , 

ity index. 

 Y, ...) function with the period parameter set to geomean , the 

o complete . 

OD ), EC , the geometric mean of the TC factors, the geometric mean of 

ression (31) , and the geometric mean of the four separate OME effects 

se four separate terms in SEC or OME corresponds to a specific path, A, 

arison period decompositions as explained above. To ensure that the 

unction values may be infeasible to compute, the toolbox calculates the 

dex to those of the geometric-mean Malmquist and Moorsteen–Bjurek 

n the last two indices were minimal, with high correlation coefficients, 
To obtain this decomposition the period parameter must be

specific DMUs some factors may be infeasible to compute. The toolb

of the components. 

The first two factors at the right-hand side of the equality si

defined by expression (14) . The related decomposition is obtained

CRS holds for the comparison period technology, then the decompo

5.1.4. The Fisher PI 

The Fisher PI is the geometric mean of the Laspeyres and Paasc

P ROD (x 1 , y 1 , x 0 , y 0 ; w 

1 , p 

1 , w 

0 , p 

0 ) ≡ Q 

F (p 

1 , y 1 , p 

0 , y 0 ) 

Q 

F (w 

1 , x 1 , w 

0 , x 0 ) 
= 

EC o (x 1 , y 1 , x 0 , y 0 ) × [ T C 1 , 0 o (x 1 , y 1 ) × T C 1 , 0 o (x 0 , y 0 )] 1 / 2 ×
[ (

D 

0 
o (x 0 , y 0 ) 

D 

0 
o (x 1 , y 0 ) 

D 

0 
o (x 0 , y 1 ) 

D 

0 
o (x 1 , y 1 ) 

D 

1 
o (x 0 , y 0 ) 

D 

1 
o (x 1 , y 0 ) 

D 

1 
o (x 0 , y 1 ) 

D 

1 
o (x 1 , y 1 ) 

)1 / 4 
1 

Q 

F (w 

1 , x 1 , w 

0 ,[ (
D 

0 
o (x 1 , y 0 ) 

D 

0 
o (x 1 , y 1 ) 

D 

0 
o (x 0 , y 0 ) 

D 

0 
o (x 0 , y 1 ) 

D 

1 
o (x 1 , y 0 ) 

D 

1 
o (x 1 , y 1 ) 

D 

1 
o (x 0 , y 0 ) 

D 

1 
o (x 0 , y 1 ) 

)1 / 4 

Q 

F (p 

1 , y 1 , p 

0 , y

where Q 

F ( p 

1 , y 1 , p 

0 , y 0 ) ≡ [( p 

0 · y 1 / p 

0 · y 0 )( p 

1 · y 1 / p 

1 ·
x 0 ) ≡ [( w 

0 · x 1 / w 

0 · x 0 )( w 

1 · x 1 / w 

1 · x 0 )] 1/2 the Fisher input quant

This decomposition is obtained by calling the deatfprod(X,
orientation parameter set to oo , and the decomp parameter t

The output of the function successively shows the Fisher PI ( PR
the four separate SEC effects as presented in the third row of exp

as presented in the fourth row of the same expression. Each of the

B, C or D, which can be recovered by running the base and comp
Fisher index is reported, regardless of the fact that some distance f

geometric mean of the Laspeyres and Paasche PIs. 

It is interesting to compare the results obtained for the Fisher in

productivity indices (MPI and MBPI). While the differences betwee
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t the values in this case are in the same order of magnitude, as opposed 

t indices was rather large. Average US agricultural productivity change 

m BPI indices, 54.94% and 47.96%, respectively. The range of productivity 

c g states being Rhode Island (RI) and Oklahoma (OK), the latter state 

c rity across rankings for the geometric-mean indices is captured by the 

S for Fisher-MBPI, both statistically significant at the 1% confidence level. 

T , ρ = 0 . 8763 . Notice that, as in the base-period case, SEC and OME are 

r

 the geometric-mean CCD index is obtained by changing the decomp 
p ting the parameter to crs . 

5

 be decomposed from the input-orientated perspective. 

e Laspeyres PI similar to expressions (26) and (27) , except that input 

d eir geometric mean, corresponding to expression (28) , is 

P

[
 

 

)1 / 2 
p 

0 · y 1 

p 

0 · y 0 

] 

. (32) 

chnological change, respectively. The third and fourth factors measure 

t spectively. 

, ...) function by setting the orient parameter to the input orien- 

t  decomposition parameter decomp to complete . 

osition, the decomp parameter must be set to ccd . If CRS holds for 

t deatestrtsm(X, Y, ...) with the orient parameter set to io ), 
t decomposition. In this case, the third factor measures the input-mix 

e ince under CRS the scale effect vanishes. 

e obtains the input-orientated decomposition of the Paasche PI. In the 

d hen be set to comparison . The related decompositions require setting 

t

xpression (32) and its comparison period counterpart, one obtains the 

i  is calculated by setting the period parameter set to geomean , the 

o mplete . 

obtained by setting the decomp parameter to ccd . The CRS specifica- 

t etting this parameter to crs . 

6

eometric mean of output quantity changes divided by a weighted ge- 

o nput quantity changes, x 1 n /x 0 n , and output quantity changes, y 1 m 

/y 0 m 

, are 

w eriod t . The generic definition is 

G (33) 

w  

 

/p t · y t > 0 (m = 1 , . . . , M) , 
∑ M 

m =1 u 
t 
m 

= 1 . For t = 0 the index is called 

G eometric mean of the two indices is the Törnqvist productivity index. 

T point for the cost and revenue shares, s 0 , 1 ≡ (s 0 + s 1 ) / 2 and u 

0 , 1 ≡
his is not the case when compared to the Fisher index. However, 

o the base period counterparts where the spread between the 

easured by the Fisher index is 39.51%, lower than the MPI and M

hange is also rather similar, with the best and worst performin

onsistently ranking last as in the previous two cases. The dissimila

pearman coefficients: ρ = 0 . 5199 for Fisher-MPI, and ρ = 0 . 5680 

hese values are notably smaller than the coefficient for MPI-MBPI

esponsible for the diffferences between the indices. 

Finally, expression (31) with the EC and TC factors replaced by

arameter to ccd . Under CRS the decomposition is obtained by set

.2. The input-orientated decomposition 

The Laspeyres, Paasche, and Fisher productivity indices can also

Along ‘Path E’ and ‘Path F’ one obtains decompositions for th

istance functions are used instead of output distance functions. Th

 ROD (x 1 , y 1 , x 0 , y 0 ; w 

0 , p 

0 ) = EC i (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 
i 

(x 1 , y 1 ) ×

 (
D 

0 
i 
(x 1 , y 0 ) 

D 

0 
i 
(x 0 , y 0 ) 

D 

0 
i 
(x 1 , y 1 ) 

D 

0 
i 
(x 0 , y 1 ) 

)1 / 2 
w 

0 · x 0 

w 

0 · x 1 

] 

×
[ (

D 

0 
i 
(x 1 , y 1 ) 

D 

0 
i 
(x 1 , y 0 ) 

D 

0 
i 
(x 0 , y 1 )

D 

0 
i 
(x 0 , y 0 )

The first two factors capture technical efficiency change and te

he input-mix effect and the scale (including output-mix) effect, re

This decomposition is obtained through the deatfprod(X, Y
ation io , setting the period parameter to base , and setting the

To see the CCD index M 

0 
i 
(x 1 , y 1 , x 0 , y 0 ) as part of the decomp

he base period technology (determined after running the function 

hen setting the decomp parameter to crs provides the correct 

ffect, but the fourth factor measures only the output-mix effect, s

By combining the results of following ‘Path G’ and ‘Path H’ on

eatfprod(X, Y, ...) function the period parameter must t

he decomp parameter to ccd or crs . 

Finally, by taking the geometric mean of the decomposition in e

nput-distance-function based decomposition of the Fisher PI. This

rientation parameter to io , and the decomp parameter to co

The decomposition featuring the geometric-mean CCD index is 

ion, valid if both technologies indeed exhibit CRS, is obtained by s

. Share-weighted productivity indices (Törnqvist) 

A share-weighted productivity index is defined as a weighted g

metric mean of input quantity changes. In particular, individual i

eighted by their respective cost and revenue shares in a certain p

P ROD (x 1 , y 1 , x 0 , y 0 ; s t , u 

t ) ≡
∏ M 

m =1 (y 1 m 

/y 0 m 

) u 
t 
m ∏ N 

n =1 (x 1 n /x 0 n ) 
s t n 

, 

here s t n ≡ w 

t 
n x 

t 
n /w 

t · x t > 0 (n = 1 , . . . , N) , 
∑ N 

n =1 s 
t 
n = 1 , u t m 

≡ p t m 

y tm
eoLaspeyres, and for t = 1 the index is called GeoPaasche. The g

his index can also be obtained by considering the ‘average’ view

(u 

0 + u 

1 ) / 2 . 



18 B.M. Balk, J. Barbero and J.L. Zofío / Computers and Operations Research 115 (2020) 104853 

[ 

D 

0 
o (x 0 , y 0 ) 

D 

0 
o (x 1 , y 0 ) 

N ∏ 

n =1 

(x 0 n /x 1 n ) 
s 0 n 

] 

×
[ 

D 

0 
o (x 1 , y 0 ) 

D 

0 
o (x 1 , y 1 ) 

M ∏ 

m =1 

(y 1 m 

/y 0 m 

) u 
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first two factors of the Laspeyres PI in expression (26) ; that is, technical 

 factor captures the scale (including input-mix) effect, and the fourth 
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 effect. Taking the geometric average of these two expressions yields 

 , y 0 ) 
 , y 1 ) 

)1 / 2 M ∏ 

m =1 

(y 1 m 

/y 0 m 

) u 
0 
m 

] 

. (36) 

(X, Y, ...) , with the orient parameter set to output orientation 

eter decomp must be set to complete . 

es productivity index ( GPROD ), EC , TC , and the geometric means and 

ath A’ and ‘Path B’. The components are identified by the time super- 

nce, SEC_100 represents the third factor in expression (34) , counter- 

distance function values may be infeasible, the toolbox calculates the 

heir price-weighted counterparts. For instance, the GeoLaspeyres and 

Also the maximum and minimum values are very similar, but on this 

ans that the individual rankings differ substantially between the two 

 inputs makes a difference. Indeed, the Spearman correlation between 

t still significant at the 5% level. However, the correlations between the 

MBPI) indices are even lower: ρ = 0 . 078 and ρ = 0 . 2224 , respectively, 

nce the technical efficiency change ( EC ) and technological change ( TC ) 
utput-mix effects. All this calls for caution on the part of practitioners 

s are available and reliable, then using a popular definition may yield 

finitions. 
6.1. The output-orientated decomposition 

6.1.1. The GeoLaspeyres PI 

Following ‘Path A’, the GeoLaspeyres PI is decomposed as 

GP ROD (x 1 , y 1 , x 0 , y 0 ; s 0 , u 

0 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 1 , y 1 ) ×

The first two factors after the equality sign are the same as the 

efficiency change and technological change, respectively. The third

factor measures the output-mix effect. 

Following the alternative ‘Path B’ delivers 

GP ROD (x 1 , y 1 , x 0 , y 0 ; s 0 , u 

0 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 1 , y 1 ) ×

which differs from expression (34) in the scale and the output-mix

GP ROD (x 1 , y 1 , x 0 , y 0 ; s 0 , u 

0 ) = EC o (x 1 , y 1 , x 0 , y 0 ) × T C 1 , 0 o (x 1 , y 1 ) ×[ (
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o (x 0
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0 
o (x 0

The function to calculate these decompositions is deatfgprod
oo and the period parameter to base . The decomposition param

The output of the function successively shows the GeoLaspeyr

component values of the SEC and OME effects corresponding to ‘P

scripts of the input and output arguments in each factor; for insta

part to SEC 0 o (x 1 , x 0 , y 0 ) in expression (2) . As calculation of some 

GeoLaspeyres PI directly from the data. 

The share-weighted results for US agriculture are similar to t

the Laspeyres deliver on average 24.25% and 20.31%, respectively. 

occasion corresponding to Georgia (GA) and Florida (FL). This me

indices. Thus, using prices or value shares to aggregate outputs and

the two is ρ = 0 . 5404 , the lowest across all possible pairs so far, bu

GeoLaspeyres and the Malmquist (MPI) or the Moorsteen–Bjurek (

and not statistically significant at the standard confidence levels. Si

factors are the same, this shows the importance of the scale and o

when choosing a specific definition of productivity change. If price

results which differ substantially from analogous quantities-only de
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tain these decompositions, the decomp parameter must be set to ccd . 

e parameter decomp to crs . 

6

eoPaasche PI. Their geometric mean, the analogue to expression (36) , 
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.) function the period parameter must be set to comparison . 

 , y 1 , x 0 , y 0 ) , as defined by expression (14) . The corresponding table can 

b to ccd . If CRS holds for the comparison period technology then results 

a

6

e Törnqvist PI, the share-weighted analogue of the Fisher PI, 
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1 , x 1 , w 

0 , x 0 ) ≡∏
in the deatfgprod(X, Y, ...) function the user sets period to 

g

.1.2. Related decompositions of the GeoLaspeyres PI 

Recalling expression (6) , expression (34) can be written as 
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Similar simplifications hold for expressions (35) and (36) . To ob

If the base period technology exhibits CRS then one must set th

.1.3. The GeoPaasche PI 

Along ‘Path C’ and ‘Path D’ we obtain decompositions of the G

eads 
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here the Törnqvist output and input quantity indices are defined
 N 
n =1 (x 1 n /x 0 n ) 

(s 0 n + s 1 n ) / 2 , respectively. To calculate this decomposition, 

eomean , orientation to oo , and decomp to complete . 
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roductivity index ( GPROD ), the technical efficiency change factor ( EC ), 
 the geometric mean of the four component scale efficiency effects in 

 the four component output-mix effects in the fourth row of the same 

pecific path A, B, C, or D, and can be recovered by running the previous 

lates the Törnqvist index as the geometric mean of the GeoLaspeyres 

 infeasible distance function values. 

 CCD index is obtained by changing the decomp parameter to ccd . If 

 decomposition is calculated by setting the same parameter to crs . 
y index to those of the geometric-mean output-orientated Malmquist 

ctivity growth in US agriculture, 37.68%, is the lowest compared to the 

ll these indices share the same efficiency change ( EC ) and technological 

scale and output-mix effects ( SEC ) and ( OME ). In this case the states 

 observed for the Fisher index, that is, Rhode Island (RI) and Oklahoma 

tween the two is almost one, ρ = 0 . 9948 , and statistically significant. 

 and ρ = 0 . 5397 , respectively. 

ious subsection can also be decomposed using input distance functions. 

) and (35) , but now using input distance functions. The geometric mean 
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0 
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. (40) 

hnological change, respectively. The third factor measures the input-mix 

mix) effect. In the deatfgprod(X, Y, ...) function, this decom- 

od parameter to base , and the decomposition parameter decomp to 

eter must be set to ccd . If the base period technology exhibits CRS 

iate decomposition. 

0) , corresponding to the geometric mean of ‘Path G’ and ‘Path H’, is 

e decompositions featuring the comparison-period CCD index, and the 

equire setting the decomp parameter to ccd or crs , respectively. 
The output of the function successively shows the Törnqvist p

the geometric mean of the two technological change factors ( TC ),
the third row of expression (39) ( SEC ), and the geometric mean of

expression ( OME ). Each of these four components corresponds to a s

base and comparison period decompositions. The toolbox calcu

and GeoPaasche indices. Some factors might be missing because of

The three-factor decomposition exhibiting the geometric-mean

technologies of base and comparison periods exhibit CRS, then the

We can now compare the results of the Törnqvist productivit

(MPI), Moorsteen–Bjurek (MBPI), and Fisher indices. Average produ

previous three: 54.94% (MPI), 47.96% (MBPI), and 39.51% (Fisher). A

change ( TC ) factors, and therefore the differences come from the 

exhibiting the maximum and minimum values coincide with those

(OK). As for the rankings, the Spearman correlation coefficient be

Those for Törnqvist-MPI and Törnqvist-MBPI are lower: ρ = 0 . 4822

6.2. The input-orientated decomposition 

All the share-weighted productivity indices discussed in the prev

Along ‘Path E’ and ‘Path F’ one obtains expressions analogous to (34

counterpart to expression (36) is 
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The first two factors measure technical efficiency change and tec

effect and the fourth factor measures the scale (including output-

position requires setting the orient parameter to io , the peri
complete . 

To recover the CCD index M 

0 
i 
(x 1 , y 1 , x 0 , y 0 ) , the decomp param

then setting the decomp parameter to crs calculates the appropr

Alternatively, the comparison-period analogue of expression (4

computed by setting the period parameter to comparison . Th

decomposition under CRS (of the comparison period technology), r
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Fig. 2. Box-plots of the productivity distributions, geometric means. 

Table 2 

Correlation and distribution tests between TFP growth according to USDA and this paper. 

Pearson’s r Spearman’s ρ Kendall’s τ t test Wilcoxon 

Malmquist 0.5516 ∗ 0.6081 ∗ 0.4175 ∗ 10.2777 ∗ 5.703 ∗

Moorsteen–Bjurek 0.6431 ∗ 0.7099 ∗ 0.5127 ∗ 12.6546 ∗ 5.567 ∗

Fisher 0.8489 ∗ 0.8254 ∗ 0.6368 ∗ 24.3226 ∗ 6.031 ∗

Törnqvist 0.8424 ∗ 0.8206 ∗ 0.6301 ∗ 24.3960 ∗ 6.031 ∗

Note: ∗ denotes significance at the 0.001 level. 

 comparison-period analogue, one obtains the input-orientated decom- 

p  obtained from the deatfprod(X, Y, ...) function by setting the 

p  io , and the decomp parameter to complete . 

CD indices, is obtained by setting the decomp parameter to ccd . The 

d crs . 

7

h a number of implementations. However, most of these implementa- 

t to be partial, usually concerning only one or two decompositions at a 

t ossible decompositions are applied to the same US agricultural dataset 

w ataset, we are able to judge the extent to which the various measures 

a metric mean definitions, average productivity growth in US agriculture 

i e and individual TFP growth is mostly driven by technological progress, 

c cale, and input- and output-mix effects play a lesser role. 

mquist, Moorsteen–Bjurek, Fisher, and Törnqvist. Each box represents 

t ity change distribution, and the horizontal line represents the median. 

T es appears to be rather small. Finally, the higher and lower whiskers 

s  dots represent outliers laying beyond those values. In the case of the 

M  values correspond to the state of Delaware (DE) and Oklahoma (OK), 

r ability and no outliers. 

 the USDA (see Table 19, Indices of Total Factor Productivity by State, 

a oductivity-in-the-us/ ). The USDA Economic Research Service (ERS) pub- 

l uction accounts. The measures are based on a translog transformation 

f e cost-share weighted growth rates of labor, capital, and intermediate 

i

FP growth reported by the USDA and those obtained by the indices 

d t correlation — Pearson’s r , Spearman’s ρ , and Kendall’s τ — between 

t Bjurek index numbers, and a stronger correlation with the Fisher and 

T eans and the Wilcoxon matched-pairs signed-rank test reject the null 

h d this paper’s index numbers are the same. The underlying reason is 

p cedure employed by USDA substantially differ from those obtained by 

D  the ranking of states tends to be preserved, as shown by the positive 

S

Finally, by taking the geometric mean of expression (40) and its

osition of the Törnqvist productivity index. This decomposition is

eriod parameter to geomean , the orientation parameter to

The three-factor decomposition featuring the geometric-mean C

ecomposition under CRS is obtained by setting this parameter to 

. Empirical results: TFP growth in US agriculture 

As for the empirical applications, the literature provides us wit

ions, sometimes on microdata, sometimes on macrodata, appear 

ime. The unique feature of this paper is that all the theoretically p

ith information at the state level. In the particular case of our d

nd decompositions are empirically different. Focusing on the geo

n the period 1960–2004 lays in the 40 . 0% − 50 . 0% range. Aggregat

ontributing around 30%. There are also mild efficiency gains, but s

Fig. 2 depicts box-plots for the four productivity indices: Mal

he interval between the first and third quartiles of the productiv

he dispersion of the distributions within these interquartile rang

ignal values one and half times the interquartile range, while the

almquist and Moorsteen–Bjurek indices, the highest and lowest

espectively. Note also that the price-based indices exhibit less vari

It is interesting to compare our results with those reported by

vailable at https://www.ers.usda.gov/data-products/agricultural-pr

ishes TFP measures based on a sophisticated system of farm prod

unction which relates the growth rates of multiple outputs to th

nputs. See Ball et al. (1999) for a detailed description. 

Table 2 displays correlations and distribution tests between T

iscussed in this paper. The results show a positive and significan

he USDA TFP index numbers and the Malmquist and Moorsteen–

örnqvist index numbers. However, the t test on the equality of m

ypotheses that the means and the distributions of the USDA an

resumably that input cost shares obtained via the estimation pro

EA or conventional indices. It is, however, reassuring to see that

pearman and Kendall rank correlation coefficients. 

https://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us/
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8. Conclusion 

The Total Factor Productivity Toolbox allows the calculation

and decomposition of the most popular productivity indices in an

organized environment. The concept of distance function, imple-

mented through non-parametric Data Envelopment Analysis, is the

building block for the various decompositions. If only quantities

are available, the toolbox calculates and decomposes TFP change

according to the Malmquist and Moorsteen–Bjurek definitions. If

also prices are available, classical TFP indices such as Fisher and

Törnqvist can be calculated and decomposed. 

Complex and lengthy decompositions involving panel data are

rendered operational in a systematic way. The toolbox allows for

many options concerning orientation, benchmark period, VRS or

CRS, type of TFP index, and type of decomposition, so as to iden-

tify the contribution that different factors make to productivity

change. We showed how to organize the data, use the avail-

able functions, and interpret the results. To illustrate the toolbox

we calculated all the indices on a common example so that re-

sults can easily be compared. The toolbox is a valid self-contained

MATLAB package for the measurement and decomposition of TFP

change. 

From the empirical findings, we draw some general conclu-

sions: 

(i) Since the benchmark period matters empirically, we recom-

mend researchers to use geometric means of base-period

and comparison-period benchmark indices, unless there are

compelling reasons that a particular benchmark should be

used. 

(ii) The Malmquist and Moorsteen–Bjurek indices, based on

quantities only, deliver higher productivity growth figures

than the price-weighted and share-weighted indices which

are based on quantities and (market) prices. To which extent

this is due to the fact that the technologies were estimated

by DEA in our empirical exercise remains to be seen. 

(iii) The results of price-weighted (for example, Fisher) and

share-weighted (for example, Törnqvist) indices are numer-

ically very close. Thus the choice between the two families

of indices is immaterial. 

(iv) In our empirical example (local) technological change gener-

ally appeared to be the main component of TFP change. 

Finally, since the code is freely available in an open source

repository, users will benefit from the collaboration and review of

the community. They can check and modify the code to adapt it to

their own needs and extend it with new definitions. 
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