
Vol.:(0123456789)1 3

The International Journal of Cardiovascular Imaging 
https://doi.org/10.1007/s10554-020-01954-x

REVIEW PAPER

Physiology and coronary artery disease: emerging insights 
from computed tomography imaging based computational modeling

Parastou Eslami1  · Vikas Thondapu1 · Julia Karady1 · Eline M. J. Hartman2 · Zexi Jin1 · Mazen Albaghdadi3 · 
Michael Lu1 · Jolanda J. Wentzel2 · Udo Hoffmann1

Received: 2 June 2020 / Accepted: 23 July 2020 
© Springer Nature B.V. 2020

Abstract
Improvements in spatial and temporal resolution now permit robust high quality characterization of presence, morphology 
and composition of coronary atherosclerosis in computed tomography (CT). These characteristics include high risk features 
such as large plaque volume, low CT attenuation, napkin-ring sign, spotty calcification and positive remodeling. Because 
of the high image quality, principles of patient-specific computational fluid dynamics modeling of blood flow through 
the coronary arteries can now be applied to CT and allow the calculation of local lesion-specific hemodynamics such as 
endothelial shear stress, fractional flow reserve and axial plaque stress. This review examines recent advances in coronary 
CT image-based computational modeling and discusses the opportunity to identify lesions at risk for rupture much earlier 
than today through the combination of anatomic and hemodynamic information.

Keywords Computational fluid dynamics · Coronary computed tomography angiography · Plaque burden · 
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Introduction

Despite the advances in medical therapy and development 
in cardiovascular invasive and noninvasive diagnostic test-
ing, cardiovascular disease remains the number one cause of 
death worldwide [1]. Of these deaths, the majority of them 
are from coronary artery disease (CAD) and stroke [2]. In 
United States alone, by year 2035, the number of people 
with CAD is expected to grow to approximately 24.1 mil-
lion, an additional ~ 8 million patients since year 2015, still 
remaining the leading cause of death [3]. This is largely 
due to the silent atherosclerotic plaque progression towards 
erosion or rupture, clinically presenting as acute coronary 
syndrome (ACS).

Major efforts in cardiovascular imaging have improved 
plaque assessment based on coronary anatomy to predict 
future atherosclerotic cardiovascular disease on a per patient 
basis. These include large clinical trials demonstrating non-
invasive coronary computed tomography angiography (CTA) 
as a powerful prognosis imaging tool. Coronary CTA allows 
for noninvasive assessment of atherosclerotic coronary 
plaques by providing information regarding the coronary 
tree and the plaques morphology beyond simple narrowing. 
In the CONFIRM (COronary CT Angiography EvaluatioN 
For Clinical Outcomes: An InteRnational Multicenter Reg-
istry) trial, both plaque burden (C-index 0.64, p < 0.0001) 
and stenosis > 50%( C-index 0.56, p = 0.002) assessed on 
CTA particularly in proximal segments added incremental 
prognosis value to the traditional clinical risk score [4]. The 
PROMISE (Prospective Multicenter Imaging Study for Eval-
uation of Chest Pain) trial also demonstrated that coronary 
plaque anatomy assessment based on CTA when stratified 
to mild, moderately, or severely abnormal, when compared 
with normal assessments, the hazard ratios of having events 
increased proportionally (2.94, 7.67, 10.13, all P < 0.001) 
[5]. A secondary analysis in the PROMISE trial also showed 
that plaque morphology and high-risk plaques based on CTA 
although strong prognosis predictors of events, they are not 
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as strong in predicting the vulnerable lesions [6]. Similar 
conclusions were made based on other larger clinical trials 
such as the SCOT-Heart (Scottish COmputed Tomography 
of the HEART Trial) [7] and ICONIC (Incident COroNary 
Syndromes Identified by Computed Tomography) [8] trails 
showing lower sensitivity of high-risk plaque features based 
on coronary anatomy in identifying the vulnerable lesions. 
Hence, the ability to identify lesions prone to erosion or rup-
ture early on has been a specific goal of cardiovascular medi-
cine for decades and atherosclerotic plaque characterization 
using CTA will continue to be an active area of research.

Atherosclerosis is a highly complex disease and the cas-
cade of this disease development and progression involves 
cycles of disruption to physiologic flow, endothelial dys-
function, lipid accumulation, arterial inflammation, and 
vascular remodeling leading to development of plaque, its 
progression and finally rupture [9, 10]. As mentioned, coro-
nary plaque anatomy delivers important information about 
the degree of stenosis and insights into morphology of the 
plaque. However, the lesion specific predictive value of this 
information to a clinical event due to erosion or rupture 
remains extremely low. Thus, combination of anatomy with 
physiology may be considerably more powerful in predicting 
lesion specific future acute coronary events [11, 12].

Among the physiologic measures that can be obtained 
are fractional flow reserve (FFR)—measured to identify 
coronary lesions for significantly limiting the blood flow to 
the myocardium [13–15]. Moving beyond flow limitation, 
the anatomic and physiological characteristics of a plaque 
may provide novel insights and understanding of patho-
physiology of plaque with the potential to better treatment 
and management of patients with CAD [16]. For example, 
endothelial shear tress (ESS) based on invasive coronary 
imaging has been shown to be linked with atherogenesis, 
plaque progression and vulnerability in addition to plate-
let and leukocyte activation [17–21]. ESS is calculated via 
computational fluid dynamics (CFD) where hemodynamics 
is simulated in realistic models of coronary arteries. Addi-
tional hemodynamic derived factors such as axial plaque 
stress (APS) [22], plaque structural stress modeling tissue 
behavior (PSS) [21] and transluminal attenuation gradient 
[23, 24] have also been studied in relationship to CAD and 
coronary events.

Traditionally, using CFD, hemodynamic factors are 
assessed via invasive coronary imaging such as coronary 
angiograms coupled with intravascular ultrasound (IVUS) 
or optical coherence tomography (OCT). Coronary CTA, 
however, permits the noninvasive evaluation of the coronary 
atherosclerotic plaque and the 3D anatomy of the coronary 
trees. With advances in coronary CTA, it now has the tem-
poral and spatial resolution to capture the lumen, plaque type 
and coronary wall allowing for patient-specific image based 
assessment of hemodynamics via computational modeling 

[25–27]. The ability to utilize CTA images to calculate the 
hemodynamics via CFD and identifying high-risk plaques 
beyond the coronary lumen and plaque will significantly 
empower this technique towards development of person-
alized medicine enabling therapeutic interventions strati-
fied based on plaque characteristics. In this review we will 
explore the role of hemodynamics in evolution of CAD as 
reflected by plaque progression and vulnerability focus-
ing on the contribution of coronary CTA and image-based 
computational modeling on the prospective identification of 
high-risk coronary lesions.

Image‑based computational fluid and solid 
mechanics

Blood flow and tissue behavior can be modeled via consti-
tutional mathematical equations that describe these behav-
iors. For example, with the proper input and output bound-
ary conditions and patient anatomical 3D reconstructions 
based on imaging, coronary blood velocity and pressure 
can be computed solving the governing equations of fluid 
dynamics, known as the Navier–Stokes equations. Once the 
blood flow is solved in the coronaries, then hemodynamic 
parameters such as FFR, ESS, APS, etc. can be derived dur-
ing post-processing steps. Similarly, finite element analy-
sis (FEA) is based on solution of partial differential equa-
tions that describe the mechanics of coronary plaque and 
the resulting stresses in the coronary walls upon exposure 
to blood pressure. By prescribing realistic tissue geometry 
and elastic mechanical properties, it is possible to derive 
various internal tissue stresses. Fluid structure interaction 
(FSI) is a combination of fluid and solid mechanics allowing 
for simultaneous analysis of solid and fluid domains such 
as interaction of blood flow and coronary lesions. Recent 
advances in computational modeling provides a platform for 
such image-based computational analysis to become increas-
ingly applicable to relevant clinical problems given advances 
in both computational power and coronary imaging. In the 
following sections, we will examine different hemodynamic 
parameters derived from CFD and FEA analysis based on 
coronary CTA imaging.

Hemodynamic Indices

FFR, originally defined as the maximal myocardial blood 
flow through a stenosed artery versus the hypothetical 
flow in the normal vessel—is perhaps one of the most 
well-known and widely practiced physiologic indices in 
the clinics. However, due to unknown “normal” blood 
flow information through the un-stenosed artery, it was 
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reformulated to be the ratio of pressure across a lesion 
in hyperemic condition. FFR first coined by Pijls et al. 
[13] in 1996 is traditionally obtained invasively through a 
pressure wire and to date is the gold standard diagnostic 
hemodynamic factor for ischemia detection [14, 28] which 
is performed in hyperemic conditions. In 1978 Gould [29] 
studied pressure drop in stenosed arteries in canine models 
introducing the concept of quantitative flow ratio (QFR) as 
a potential clinical application concluding flow response 
during coronary hyperemia is a quantitative measure for 
physiological assessment of coronary stenosis and flow 
reserve. QFR, (Medis medical imaging system, The Neth-
erlands) has been recently proposed as an alternative way 
to measure FFR by the means of 3D quantitative coro-
nary angiography (QCA) and thrombolysis in myocardial 
infarction frame counting [30]. In Wire-Free Functional 
Imaging II (WIFI II), a sub-study of Danish Study of Non-
Invasive Diagnostic Testing in Coronary Artery Disease 
(Dan-NICAD study), in a total 240 lesions, QFR correctly 
classified 83% of the lesions using FFR with cutoff at 0.80 
as a reference standard [31]. Instantaneous wave-free ratio 
(iFR) is another pressure-derived hemodynamic index 
defined as ratio of diastolic coronary and aortic diastolic 
“wave-free” period [32] which can be obtained at rest 
without the use of vasodilators. In the SWEDHEART 
[33] (Swedish Web-Based System for Enhancement and 
Development of Evidence-Based Care in Heart Disease 
Evaluated According to Recommended Therapies) and 
DEFINE-FLAIR [34] (Functional Lesion Assessment of 
Intermediate Stenosis to Guide Revascularization) trials, 
iFR showed non-inferiority to FFR in prognosis of sig-
nificance of coronary artery stenosis [32]. The underlying 
assumption of the iFR technique is that resistance at rest 
conditions is equivalent to time-averaged resistance during 
FFR measurements, however, the diastolic resting myo-
cardial resistance does not equal mean hyperemic resist-
ance which raised some controversy in the literature [35]. 
It should be noted that FFR and iFR as pressure-derived 
indices are recommended by clinical practice guidelines 
such as American College of Cardiology and European 
Society of Cardiology for decisions on percutaneous 
coronary intervention procedures. Lastly, coronary flow 
reserve (CFR)-defined as the ratio of the hyperemic flow 
to the resting flow in a vessel—is a flowrate-based index 
which reflects flow limitations across the entire coronary 
circulation system including the microcirculation [36]. 
CFR is also an invasive measurement and in 737 vessels, 
low categorical CFR values were shown to be an inde-
pendent predictor of vessel-oriented composite outcome 
(composite of cardiac death, vessel-specific myocardial 
infarction, and vessel-specific revascularization) in the 

high FFR groups (hazard ratio (HR) 4.99. 95% CI 2.104 
to 11.879, p < 0.001) [36].

Fractional flow reserve‑CT

Recently, patient-specific CFD modeling has been applied to 
coronary CTA enabling calculation of FFR, noninvasively 
without additional imaging—termed as  FFRCT. In the Diag-
nosis of Ischemia-Causing Stenosis Obtained Via Noninva-
sive Fractional Flow Reserve (DISCOVER-FLOW) study, 
one of early studies of  FFRCT, on a per-vessel basis,  FFRCT 
showed an accuracy, positive predictive value and a negative 
predictive value of 84.3%, 73.9% and 92.2%, respectively 
[27]. In patients with stable CAD scheduled to undergo inva-
sive angiography, the investigators in the NXT (Analysis of 
Coronary Blood Flow Using CT Angiography: Next Steps) 
study showed a significantly better area under the receiver-
operating characteristic curve for  FFRCT (AUC = 0.90) 
versus standard coronary CTA (AUC = 0.81) [37]. Moreo-
ver, they reported a per-vessel sensitivity and specificity of 
84% and 86%, respectively. In a more recent study, in the 
PROMISE trial, among patients with stable chest pain, an 
 FFRCT ≤ 0.80 was shown to be a significantly better predic-
tor for recalculation of major averse cardiac events (MACE) 
than severe CTA stenosis (p < 0.033) [25].  FFRCT is now 
approved by the United States Food and Drug Adminis-
tration for functional evaluation of CAD and is currently 
commercially available. In addition, the United Kingdom’s 
NICE (National Institute of Health and Care Excellence) 
has updated their chest pain guidelines which recommend 
coronary CTA as the initial diagnostic test for patient with 
stable chest pain and suspected CAD where  FFRCT has been 
mentioned as a safe with high accuracy technology [38, 39]. 
Therefore, CTA has shown a tremendous potential as an 
imaging modality to study hemodynamics via CFD.

Besides  FFRCT, other hemodynamic indices mentioned 
above (i.e. iFR and QFR) remain to be calculated based on 
invasive imaging and methodologies. Future CT-based cal-
culations of these indices and their comparison with  FFRCT 
in diagnosing of patients with stable chest pain can shed 
the light into further computational calculations of hemo-
dynamic indices based on CTA.

Biomechanical and Pathophysiological 
Forces

The vast majority of the evidences based on CTA are studies 
for CFD computed FFR. Although FFR and stress distribu-
tions are gained through CFD simulation, their derivation 
differs slightly. Blood velocity and pressure are calculated 
by CFD simulation (from which FFR is directly derived), 
but stress distributions are calculated based on the raw data 
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during post-processing steps. When blood flows through an 
artery it exerts three kinds of biomechanical stress of axial, 
circumferential, and shear contributing to the overall bio-
mechanical strain distribution within vascular tissue. These 
stresses accumulatively are responsible for maintaining the 
arteries shape and regulating arterial wall function.

Endothelial shear stress‑CT

ESS is the tangential force generated by the friction of blood 
flowing on the endothelial surface of the arterial wall and 

is proportional to fluid viscosity and the gradient of the 
velocity of the blood at the wall. In a cardiac cycle, due to 
flow pulsatility, complex vessel anatomy such as curvature, 
branching and obstructions, dynamic motion of the arter-
ies as well as dynamic changes in coronary perfusion, local 
blood velocity changes in magnitude and direction. These 
alterations can result in locations with abnormally low or 
high ESS with flow disturbance, turbulence and flow rever-
sal initiating endothelial cell dysfunction (Fig. 1). Conse-
quently, as a result of this flow-induced endothelial injury 
and arterial inflammation, early atherosclerosis forms in 

Fig. 1  A schematic illustration of interaction of physiological condi-
tions and biomechanical stresses contributing in regulation of ath-
erosclerosis. Morphology and functional characteristics of stable vul-
nerable plaque a with stable calcification and small lipid pools. The 
plaque leads to mild narrowing of the lumen with no disruption to the 
flow and no ischemia after the lesion (FFR > 0.8; green). ESS near 
the plaque is normal and in physiologic range. b Rupture prone vul-
nerable plaque with a large lipid-rich necrotic core, neovasculariza-
tion, spotty calcium, thin fibrous cap and presence of inflammatory 
cells (macrophages). In the positively remodeled vessel wall at the 
site of plaque, the lesion causes severe luminal narrowing resulting 

in ischemia (FFR < 0.8; red). The lesion also causes flow disruption 
causing low ESS proximal to the lesion, low and oscillatory ESS dis-
tal to the lesion and high ESS at the neck of the lesion. The upstream 
low ESS at the shoulder of the plaque is more inflamed (indicated by 
presence of macrophages) whereas the downstream plaque region 
with low and oscillatory ESS promotes plaque growth. The heterog-
enous nature of ESS along the lesion may be the contributing factor 
in destabilization of the plaque and future ruptures. Since this is an 
upstream dominant plaque, the APS is high at the upstream shoulder 
adding to stresses promoting rupture. FFR: fractional flow reserve; 
ESS: endothelial shear stress; APS: axial plaque stress
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these regions. Similar to APS and PSS, direct in-vivo meas-
urements of ESS is not possible. Therefore, ESS is derived 
from 3-dimensional reconstruction of coronary arteries and 
CFD simulations of blood flow in these arteries.

Thus far, the majority of research studies performed has 
been based on invasive coronary angiograms coupled with 
IVUS and OCT [9, 19, 40, 41]. The purpose of this review 
is to provide insights in study advancements of ESS related 
pathology as derived from coronary CTA. However, to 
understand ESS and its association with plaque morphology, 
we will briefly discuss the important role that ESS plays in 
the pathophysiology of CAD.

ESS, plaque biology, progression and rupture

Animal studies

The pathophysiological role of ESS (high, low and oscilla-
tory) was debated starting in late 1960s and early 1970s. In 
1968, Fry [42] studied fluid dynamics in the thoracic aorta 
of dogs and reported that exposure to high shear stress 
resulted in deterioration of endothelial surface consisting of 
endothelial cytoplasmic swelling, cell deformation, degen-
eration and finally erosion of cell substance. Additionally, 
the influence of low and oscillatory ESS on atherosclerotic 
plaque initiation and progression was first described in 1971 
by Caro et al. [43]. However, in-vivo computational mod-
eling was not at the capacity to conduct a study that would 
calculate ESS measurements in association with pathophys-
iology of CAD. In arteries including the coronaries with 
undisturbed blood flow and physiological ESS, endothelial 
cells express atheroprotective genes and suppress proathero-
genic genes leading to vascular quiescence. However, in a 
region with disturbed flow, such as outer edges of branch-
ing segments, highly curved segments or distal to stenosis, 
due to flow separation and secondary flows, low ESS dis-
rupts endothelial function and triggers proatherogenic gene 
expression [44–46]. Once the plaque is formed and results 
in a stenosis, there is a positive feedback loop caused by 
flow disruption where a heterogeneous ESS pattern forms 
with low ESS at upstream shoulder of the plaque, low and 
oscillatory ESS downstream to the stenosis and high ESS 
at the neck of the stenosis. The persistent low ESS reduces 
nitric oxide production, increases low density lipoprotein 
(LDL) uptake, promotes endothelial cell apoptosis, and 
induces local oxidative stress and inflammation stimulat-
ing an atherogenic endothelial phenotype and subsequently 
leads to acceleration of atherogenesis and plaque vulner-
ability [9, 47] (Fig. 1b). In serial IVUS studies of coronary 
arteries studies of diabetic pigs, the majority of vulnerable 
plaques developed in vessel segments with low ESS [9, 41, 
48]. In addition, the magnitude of low ESS at baseline was 

significantly associated with the severity of high-risk plaque 
features at follow up [49]. In a more recent animal study, 
in hypercholesterolaemic pigs, a more detailed analysis of 
ESS showed low and multidirectional ESS promote both ini-
tiation and progression of coronary atherosclerotic plaques 
[17].

Human studies

Invasive coronary angiography and IVUS

Human studies also showed a consistent pattern. The first 
pilot studies in 2000s based on intracoronary imaging and 
biplanar angiography showed regions of low ESS devel-
oped progressive atherosclerosis and outward remodeling 
in native and stented arteries [50, 51]. Other natural-history 
IVUS study in humans followed up where twenty patients 
with CAD underwent baseline and 6-month virtual histology 
IVUS (VH-IVUS) follow up. Low ESS segments developed 
increased plaque area and necrotic core as well as constric-
tive remodeling, whereas high ESS segments developed 
greater necrotic core and regression of fibrous and fibro-
fatty tissue resulting in a more constrictive remodeling in 
low compared with high ESS segments in follow-up [20]. 
In a larger study from the Prediction of Progression of Coro-
nary Artery Disease and Clinical Outcome Using Vascular 
Profiling of Shear Stress and Wall Morphology (PREDIC-
TION) trial, a total of 506 patients with ACS underwent 
three-vessel IVUS examination and had a 1-year follow up 
[18]. The results of this study demonstrated that independent 
of plaque morphology at baseline, in a subset of 374 patients 
low ESS can predict plaques that progressively enlarge and 
develop substantial lumen narrowing [18]. In the Provid-
ing Regional Observations to Study Predictors of Events 
in the Coronary Tree (PROSPECT) trial 697 patients with 
ACS underwent 3-vessel intracoronary imaging and were 
assessed after 3.4 years follow up. In the 97 patients that 
were analyzed in this trial, local ESS showed a strong asso-
ciation with MACE and no lesion without low ESS led to 
non-culprit MACE during follow-up, regardless of plaque 
burden, minimal lumen area, or lesion phenotype at baseline 
[19]. In the Fame II (Fractional Flow Reserve Versus Angi-
ography for Multivessel Evaluation II) among 441 patients 
with FFR ≤ 0.80 who were randomized to medical therapy 
alone had 3 years of follow up for cardiac events. 29 patients 
with myocardial infarction (MI) were matched with a con-
trol group (n = 29) who did not have MI to study ESS in the 
coronary lesions. However, in this study in patients with sta-
ble CAD, high ESS proximal to the lesion had a significant 
incremental value to FFR in predicting myocardial infarction 
[52].These detailed observations highlight the importance of 
ESS-whether high or low in natural history and progression 
of CAD.
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Noninvasive coronary CTA 

Three dimensional (3D) coronary geometry visualization 
by coronary CTA enables CFD to calculate ESS-CT and 
subsequent coronary plaque behavior assessment (Fig. 2). 
In fact, more recently, ESS-CT has become an attractive 
avenue. In 72 patients with ACS, continuous ESS-CT as 
well as  FFRCT and axial plaque stress were studied to define 
an adverse hemodynamic characteristics and showed to 
have an incremental discriminant and reclassification abil-
ity for prediction of ACS [53]. In another CTA based study, 
in 100 patients who underwent CTA and invasive coronary 
angiography, high ESS was associated with adverse plaque 
characteristics (i.e. low attenuation plaque, positive remod-
eling, napkin-ring sign, and spotty calcification) independ-
ent of stenosis severity [54]. Despite promising evidence to 
assess ESS based on CTA, a more detailed study comparing 
CTA to the higher resolution invasive imaging modalities 

should be performed to provide more assurance that CTA 
captures the same ESS pattern as invasive imaging modali-
ties (Fig. 3a–h. The fact that both low and high ESS have 
been associated with plaque vulnerability and ACS with 
ischemia demonstrates the complexity of fluid flow around 
the plaques and suggest that high or low ESS may be both 
responsible and it is the heterogeneous nature and gradient 
of ESS that destabilizes the plaque; hence rupture may occur 
at the site of both levels of ESS. In addition, mapping ESS 
distribution in each cross-section of plaque can inform us 
about the association of multidirectional ESS and plaque 
morphology characteristics such as large plaque volume, low 
CT attenuation, napkin-ring sign, spotty calcification and 
positive remodeling (Fig. 3i–k).

Prevention of MACE is challenging as over 50% of 
patients with MACE have no prior symptoms of myocardial 
ischemia or manifestations of CAD [55]. The development 
of MACE in patients without prior symptoms is commonly 
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Fig. 2  Elements of patient-specific computational fluid dynam-
ics (CFD) modeling: Coronary CTA imaging acquisition, anatomi-
cal segmentation of the coronary tree, 3D model reconstruction and 
meshing, physiologic boundary condition assignment and simula-

tion and data analysis. In this figure, time-averaged pressure drop in 
the coronary artery tree and time averaged endothelial shear stress 
(TAESS) is shown as the results extracted from the CFD calculations
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caused by progression and/or disruption of non-calcified 
plaques and locations with previously no significant obstruc-
tive CAD [56]. Since coronary CTA is now widely endorsed 
as the primary diagnostic imaging modality for patients with 

stable chest pain, a comprehensive investigation on asso-
ciation of ESS based on serial coronary CTA and natural 
history of CAD and identification of future culprit lesions 
would be of a very high value. These studies open an avenue 
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Fig. 3  A representative comparison of TAESS calculating based on 
invasive IVUS and coronary CTA imaging. Long-axis view of left 
anterior descending (LAD) based on IVUS and CTA with location of 
plaque marked with yellow arrows (a, e). 3D anatomy reconstruction 
with TAESS mapped on the LAD (b, f). The “unrolled” 360° values 
of continuous TAESS (c, g) and categorical low, medium and high 

TAESS (d, h). Short-axis view of a lesion in LAD on CTA with shear 
stress and plaque morphology mapped at the proximal, minimal lumi-
nal narrowing and distal to the narrowing along the lesion. Colors in 
the plaque morphology represent dense calcium (white), necrotic core 
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to apply CTA as an alternative non-invasive imaging modal-
ity to study ESS in a larger population where CAD manage-
ment could be reexamined—being medical therapy, revas-
cularization or both. For example, interaction of medical 
therapy such as statins and hemodynamic milieu (e.g. ESS) 
will inform us in which patients would medical therapy be 
effective by reducing blood cholesterol, preventing athero-
genesis, improvement of endothelial cell function and hence 
physiologic ESS (Fig. 4). In fact, in limited number of few 
patients, previous studies have shown the potential of CTA 
as an imaging modality coupled with CFD to model LDL 
accumulation in a left coronary artery [57] as well as 3D 
models of plaque formation and progression [58].

Axial stress‑CT

In a cylindrical shaped object such as coronary arteries, an 
axial stress is referred to the longitudinal direction of the 
vessel exposed to cylindrical blood flow pressure and cardiac 
motion. Axial stress is the least studied biomechanical force. 
However, when coronary arteries develop a plaque, due to 
the obstruction, the flow generates a pressure gradient across 
the lesion resulting in increased axial stress (referred to as 
axial plaque stress or APS) and overall plaque strain that 
may contribute to rupture [59, 60]. APS occurs at magni-
tudes  103 to  104 times higher than ESS for different degrees 
of stenosis and thus may be the biomechanical factor con-
tributing to plaque rupture. APS is difficult to measure in-
vivo and has not been well studied compared to ESS and 
circumferential stress. In a recent study, patients with stable 
angina and suspected CAD, APS calculated based on CTA 
has been shown to be significantly higher in the upstream 

segment of upstream-dominant lesions and in the down-
stream segment of downstream-dominant lesions implying 
that APS characterizes the stenotic segment and has a strong 
relationship with lesion geometry [22].

Along with this concept plaque structural stress (PSS) is 
a biomechanical stress located inside the body of an athero-
sclerotic plaque or the arterial wall when vessels expand and 
stretch due to higher arterial pressure. Since PSS involves 
tissue and solid biomechanics, it is also determined partly 
by plaque composition, morphology and material proper-
ties. Therefore, it demands FEA computational modeling 
to calculate the structural stress in the plaque. Localized 
high PSS levels have shown to result in thrombosis and 
sudden ischemic clinical events [21]. PSS studies have only 
been done based on invasive coronary angiograms cross-
sections and IVUS where detailed plaque morphology 
as well as coronary wall can be assessed [21, 61]. Future 
advances with more accurate assessment of coronary wall 
and plaque morphology based on coronary CTA may enable 
PSS calculations.

Elements of computational fluid dynamics 
modeling and advances

As mentioned briefly above, Navier–Stokes equations, are 
a set of nonlinear equations that describe the blood flow in 
3D. However, these governing equations can only be solved 
analytically under special circumstances such as steady or 
pulsatile flow in an idealized circular cylindrical geom-
etries. For a realistic patient-specific model of the human 
coronary arteries however, a robust numerical method (or 
CFD) must be used instead to approximate the governing 
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therapy on distribution of TAESS. A representative calculation of 
TAESS mapped on the coronary tree based on baseline CT imaging 
showing low ESS has resulted in progression of CAD in patient ran-

domized to placebo therapy (A) whereas despite the presence of low 
ESS in the baseline models, the patient’s plaque on statin (B) therapy 
did not progress
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equations providing solutions to velocity and pressure at a 
finite number of points. This requires solving millions of 
nonlinear partial differential equations simultaneously and 
iteratively for thousands of small time steps in a cardiac 
cycle. These equations are not sufficient to solve for blood 
flow and there are multiple elements that are required in 
this process [62]: (i) image-based anatomy geometrical con-
struction (ii) proper mesh generation (iii) realistic boundary 
conditions and (iv) blood properties and rheology (Table 1).

Image‑based anatomy geometrical construction

The characteristics of blood flow in the coronary arteries 
are strongly dependent on the 3D curvature, the presence of 
branches and bifurcations, and lumen shape including plaque 
geometry as well as flow pulsatility. These parameters intro-
duce complex hemodynamic features and flow structures 
such as secondary flow, and flow separations—playing a 
critical role in assessment of local hemodynamics such as 
ESS and APS. Therefore, the more complete anatomical 
information that can be extracted from coronary images, the 
more realistic models can mimic the physiology in the arter-
ies. Hence, coronary CTA is an ideal candidate to capture 
the 3D anatomy of the coronary tree. Coronary anatomy 
geometries of the lumen can be reconstructed by segmenta-
tion of each major coronary artery with visible branches 
limited by the CTA resolution where left and right sides 
are connected by the ascending aorta to connect the full 
coronary tree (Fig. 2). This segmentation involves extract-
ing the topology of the coronary artery tree, identifying and 
segmenting plaque lesions and borders in each vessel and 
extracting the luminal boundary. These segmentation tools 
including commercial software packages such as QAngioCT 
[63] (Leiden, Netherlands) and Syngo.via (Siemens Medical 
Solutions, USA) have been shown to have a high accuracy 
and validated to be used clinically.

Mesh generation procedure

For CFD to solve the blood flow, the geometry needs to 
be divided into many smaller connected meshing elements 
representing the volume of the blood within the region of 
interest. In this meshing process, the individual grid spac-
ing, or mesh size, is determined by the complexity of the 
arteries of interest as well as the balance of spatial and time 
resolution for a stable convergent simulation. For example, 
a finer grid spacing should be assigned for regions where 
larger gradients in the velocity profile are expected. These 
regions include, higher curvature, branching points and ste-
nosis. The optimal mesh size needs to be also determined 
by a mesh convergence analysis to demonstrate that further 

mesh refinement will not result in significant changes to the 
estimation of target hemodynamic factor such as ESS.

Boundary conditions

Imposing realistic patient-specific boundary conditions is 
another essential element in CFD simulations of blood flow. 
Incorrect inlet and outlet boundary conditions will result 
in unrealistic and wrong representation of coronary artery 
physiology. For example, in simulations with steady flow, 
time variation of pulsatile flow is neglected. In invasive 
imaging based CFD modeling, the time averaged inlet blood 
flow information can be obtained by using thrombolysis in 
myocardial infarction (TIMI) frame count [64]. Although 
less widely available, the inlet flow information can be 
obtained by intra coronary Doppler ultrasound blood flow 
velocity measurements providing the entire waveform infor-
mation [65]. However, in CTA when invasive measurements 
are not available, cardiac output may be calculated using 
dynamic coronary CTA in multiple phases based on imag-
ing [66] to prescribe the inflow boundary condition at the 
aortic level. In the absence of dynamic (or phasic) CTA and 
availability of a proximate time ejection fraction measured 
by echocardiogram, the cardiac output can be calculated by 
the left ventricle volume (extracted from CTA) and ejection 
fraction. Once, the cardiac output is measured and prescribed 
at the inlet (the aortic root), the model can be solved using 
optimized flow solvers for cardiovascular systems to calcu-
late the flow distribution in the coronary tree [67]. However, 
ideally, patient-specific data should be used to determine the 
flow re-distribution obtained during computed tomography 
perfusion [68], transluminal flow encoding equations [69] or 
myocardial volume [70]. Another widely used methodology 
is the application of scaling laws. Various scaling laws are 
available that relate the local diameter of the artery to the 
average velocity and flowrates [71–74].

The outlet boundary condition is generally set as constant 
pressure to regular the flow distribution. However, to model 
the downstream flow of ascending aorta and circulatory sys-
tem, a lump parameter network (LPN) model can be used 
to match the patient’s measured mean brachial pressure at 
the time of scan. In addition, assignment of coronary outlet 
boundary conditions can be done such that unique resistance 
values for each outlet, based on morphometry laws relating 
form and function optimized previously [67, 75]. The results 
shown in this review were obtained by implementing the 
described LPN boundary conditions (Fig. 2).

Coronary arteries’ pulsatile circulation is unique in the 
body as it is out of phase from the rest of the circulatory 
system. In the recent years, increasing effort in recreating the 
correct waveform and capturing the phase have been studied 
to analyze the temporal variation of hemodynamic factors 
including the shear stress [76, 77]. Suitable modifications to 
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the boundary conditions such as including a pressure source 
in the LPN model can be implemented to impose an out of 
phase with the systemic circulation. Including an intramyo-
cardial pressure source to impede flow during systole and 
relax during diastole adjusts the coronary circulation phase 
[78]. In addition, appropriate time dependent LPN at the 
outlets of coronary arteries can also capture the difference 
between phasic coronary flow in the left and right coronar-
ies [79].

Lastly, in coronary models with rigid geometry assump-
tions, a no slip boundary conditions at the wall is prescribed 
to ensure zero velocity of fluid flow at the wall. Although 
coronary artery walls are elastic by nature, the majority of 
the studies have been implemented using rigid wall assump-
tions. Simulations with elastic models are computationally 
expensive calculations. Recent FSI investigations using cou-
pled momentum method (CMM) [80]—treating the fixed 
fluid meshes with a solid boundary as a linear membrane—
have shown that although phasic ESS has different patterns 
in the rigid and elastic wall models of the coronary arteries, 
time-averaged ESS in each cardiac cycle showed a negli-
gible difference [66, 81]. Therefore, rigid models with no 
FSI modeling are justified to be used to solve the flow in the 
coronaries. Other FSI techniques include Arbitrary Lagran-
gian–Eulerian (ALE) [82] method which tracks boundaries 
and interfaces of both fluid and structural computational 
domains during each iteration, requires both the lumen and 
wall mesh domains and, are computationally more expen-
sive simulations. Another alternative FSI technique includes 
immersed boundary method (IBM) [83, 84] using Carte-
sian grids where the fluid meshes are fixed with boundaries 
defined by a set of moving Lagrangian points. The IBM 
technique however is not efficient for coronary simulations 
where there are unused grids that still have to be computa-
tional solved but are not I the fluid domain. Prescribed heart 
motion has been used previously for simulating the blood 
flow in left [85] and right coronary arteries [86, 87], how-
ever, to capture heart motion and large deformations during 
a cardiac cycle, more efficient and robust FSI techniques 
are necessary. While rigid model assumptions are justified 
for calculation of ESS, FSI modeling is the only means of 
coupling ESS and PSS requiring inclusion of both lumen and 
coronary wall geometires [21, 88].

Blood properties and rheology

Generally, CFD models of blood flow in coronary arteries 
assume that blood is a Newtonian fluid with constant vis-
cosity. However, blood comprises a mixture of red blood 
cells, white blood cells, platelet, and plasma consisting 
of both solid and liquid phases. Therefore, blood exhibits 
non-Newtonian properties such as shear-thinning where 
its apparent viscosity lowers at higher shear rates. While Ta
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Newtonian assumptions are generally acceptable in larger 
arteries such as the aorta and coronaries, it may not be as 
accurate in the setting of complex flow patterns, particu-
larly at the sight of severe stenosis or stented regions in the 
coronary arteries [89, 90]. There are multiple constitutive 
models of shear-thinning non-Newtonian fluids such as the 
Carreau–Yasuda [91], Quemada [92] and Herschel-Bukley 
[93] models that should be studied and used according to the 
shear rate imposed on the blood cells.

Future directions and limitations 
of CTA‑based computational modeling

Imaging artifacts and lower resolution of CTA may affect 
CTA interpretability, including calcification, motion and 
misregistration and beam hardening effect caused by the 
potential stents in the arteries [94]. Since CFD modeling 
heavily relies on accurate anatomical reconstruction of the 
coronary tree, these artifacts may limit the accuracy of the 
models. One way to lower errors and segmentation time is 
to develop optimized, automated segmentation algorithms. 
With the availability of large dataset, recent deep learning 
convolutional neural network development have shown 
promising techniques to automatically identify coronary 
plaques and stenosis level based on coronary CTA [95, 96]. 
This is a great step towards segmentation of the lumen in the 
entire coronary tree [97]. Appropriate physiologic boundary 
conditions is another essential component to model patient-
specific models. The more generic assumptions the model 
includes, the more deviation the model may have from the 
individual patient’s physiologic conditions.

Clinical implementation of computational modeling is 
another limitation of image-based physiologic modeling. 
At the current stage, computational modeling is not a trivial 
bed-side application that can provide real-time information 
to the physicians. Accurate modeling requires the expertise 
of trained engineers to reconstruct models from medical 
imaging, run theoretical validated simulations and extract 
the relevant data. Although image-based computational 
modeling has advanced immensely in the recent years (e.g. 
 FFRCT), it is still limited by the computational time, segmen-
tation, reconstruction and post-processing which requires 
3–8 h for each patient-specific coronary tree. Therefore, opti-
mized flow solvers for cardiovascular problems are required 
to efficiently solve the flow with high accuracy [98]. Never-
theless, this appears to be changing rapidly with continuous 
increase in computational power and availability. Simpli-
fication of CFD assumptions including steady flow versus 
pulsatile flow would allow for faster implementation of the 
arteries, yet, there is always an optimization battle between 
accurate modeling, local flow details captured by the mod-
els and computational time. Furthermore, other technical 

advances such as deep-learning estimation of CFD-based 
parameters is a novel way of decreasing computational time. 
For instance, as a growing body of evidence has validated 
the diagnostic accuracy of  FFRCT techniques compared with 
invasive FFR, the data acquired can be utilized to train deep-
learning networks to estimate the FFR based on CT images 
 (FFRML; ML: machine learning) [99, 100].

Conclusion

In this review we examined the state-of-the-art evidence of 
utilization of coronary CTA and assessing physiologic con-
ditions relative to the natural history of coronary plaque. 
We showed that coronary CTA has been successfully used 
as a standard noninvasive imaging modality to provide 
 FFRCT—less affected on local geometry— as a physiologi-
cal parameter to identify flow limiting lesions. However, 
since ESS, APS and PSS are all biomechanical factors that 
are very sensitive to the local geometry, more accurate CFD 
modeling elements need to be implemented to calculate and 
report these physiologic parameters. Improved non-invasive 
plaque imaging and computational characterization will be 
necessary for an accurate assessment and primary prevention 
of clinically significant vulnerable plaque. Thus, although 
CTA-based assessment of these parameters may have high 
impact for a larger group of patients, validation with invasive 
imaging provides the necessary insight in improvement of 
technical and clinical approaches.
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