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Abstract
Background Recent technological advances have led to the development and implementation of machine learning (ML) in
various disciplines, including neurosurgery. Our goal was to conduct a comprehensive survey of neurosurgeons to assess the
acceptance of and attitudes toward ML in neurosurgical practice and to identify factors associated with its use.
Methods The online survey consisted of nine or ten mandatory questions and was distributed in February and March 2019
through the European Association of Neurosurgical Societies (EANS) and the Congress of Neurosurgeons (CNS).
Results Out of 7280 neurosurgeons who received the survey, we received 362 responses, with a response rate of 5%, mainly in
Europe and North America. In total, 103 neurosurgeons (28.5%) reported using ML in their clinical practice, and 31.1% in
research. Adoption rates of ML were relatively evenly distributed, with 25.6% for North America, 30.9% for Europe, 33.3% for
Latin America and the Middle East, 44.4% for Asia and Pacific and 100% for Africa with only two responses. No predictors of
clinical ML use were identified, although academic settings and subspecialties neuro-oncology, functional, trauma and epilepsy
predicted use of ML in research. The most common applications were for predicting outcomes and complications, as well as
interpretation of imaging.
Conclusions This report provides a global overview of the neurosurgical applications of ML. A relevant proportion of the
surveyed neurosurgeons reported clinical experience with ML algorithms. Future studies should aim to clarify the role and
potential benefits of ML in neurosurgery and to reconcile these potential advantages with bioethical considerations.
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Introduction

Recent years have witnessed the rise of machine learning ap-
plications in the scientific literature, both in basic science and
clinical medicine [18, 26]. Neurosurgical practice has always
relied on the individual experience of surgeons to carefully

balance surgical indications, operative risk and expected out-
come [30]. The advent of evidence-based medicine has
framed the surgical decision-making process into guidelines
based on the results of high-quality data, and of randomized
controlled clinical trials—not devoid of several flaws in de-
sign themselves [19]. This approach, despite remaining the
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gold standard, is limited by the oversimplification of patients’
individual characteristics that often do not allow patient-
specific analytics. With the exponential growth of data in the
era of big data, it is increasingly important to provide clini-
cians with tools for integrating this individual patient data into
reliable prediction models. The latter primarily aims to en-
hance the surgical decision-making processes and potentially
improve outcomes, but predictive analytics furthermore har-
bour the potential to reduce unnecessary health-care costs [21,
29, 31, 34, 36, 37, 41].

It is often difficult for clinicians to integrate the many de-
scribed risk factors and outcome predictors into a single work-
able prognosis [3]. Neurosurgical research and clinical prac-
tice is ideal for the application of machine learning (ML),
which harbours the potential for predictive analytics to inte-
grate all relevant patient factors in a way that is often too
complex for natural intelligence [28, 40]. Moreover, ML can
be used to extract deep features from data such as radiological
and histological images, or genomic data [16, 38–40, 43].

At present, the neurosurgical literature is increasingly fo-
cusing on substituting traditional statistical models with more
complex ML models with the aim of improving predictive
power [29, 31]. For example, ML has been used in neurosur-
gery to predict post-operative satisfaction [2], early post-
operative complications [41] or cerebrospinal fluid leaks
[37]. Despite this encouraging trend and the presence of recent
publications reviewing the large range of publications on ML
in neurosurgery [28–30], data on the worldwide adoption and
perception of ML in our specialty are currently lacking. Our
aim was to carry out a worldwide survey among neurosur-
geons to assess the adoption of ML algorithms into neurosur-
gical clinical practice and research and to identify factors as-
sociated with their use.

Materials and methods

Sample population

The survey was distributed via the European Association of
the Neurosurgical Societies (EANS) and Congress of
Neurological Surgeons (CNS) in January, February and
March 2019. The EANS is the professional organization that
represents European neurosurgeons. An email invitation was
sent through the EANS newsletter on January 28, 2019.
Furthermore, the membership database of the CNS was
searched for email addresses of active members and congress
attendants. The CNS is a professional, US-based (US) orga-
nization, that represents neurosurgeons worldwide. At the
time of the search, the database contained 9007members from
all continents. A total of 7280 neurosurgeons had functioning
email addresses and were recipients of the survey. The survey
was hosted by SurveyMonkey (San Mateo, CA, USA) and

sent by email alongside an invitation letter. Reminders were
sent after 2 and 4 weeks to non-responders to increase the
response rate. To limit answers to unique site visitors, each
email address was only allowed to fill in the survey once. All
answers were captured anonymously. No incentives were
provided.

Survey content

The online survey was made up of nine or ten compulsory
questions, depending on the participants’ choice of whether
they had or had not usedML in their neurosurgical practice. A
complete overview of survey questions and response options
is provided in Table 1. The order in which potential reasons
for use/non-use were displayed was randomized to avoid sys-
tematic bias. The definition of ML applications that were pro-
vided within the survey was: “Any form of artificial intelli-
gence (AI)–based or algorithm-based assistance, including but
not limited to (online) prediction models, automated radio-
graphic analysis (i.e. segmentation, classification), diagnostic
models, ML-based scoring systems, etc. Logistic and linear
regressions are also considered ML. Other commonML algo-
rithms include (deep) neural networks, random forests, deci-
sion trees, gradient boosting machines and naïve Bayes clas-
sifiers. The survey was developed by the authors based on
prior, similar surveys carried out in a similar population [9,
10]. This report was constructed according to the Checklist for
Reporting Results of Internet E-Surveys (CHERRIES) guide-
lines [8].

Statistical analysis

Continuous variables are given as means ± standard devia-
tions (SD), whereas categorical variables are reported as num-
bers (percentages). By use of multivariable logistic regression
models, we identified independent predictors of adoption of
ML algorithms into clinical practice and research, respective-
ly. Countries were grouped by region (Europe/North America/
Latin America/Asia and Pacific/Middle East/Africa) accord-
ing to a previous worldwide survey by Härtl et al. [10], and
response rates per region were calculated. Fisher’s exact test
was applied to compare ML implementation rates among re-
gions. The importance of reasons for use or non-use of ML
was compared among regions using Kruskal-Wallis H tests.
When calculating the ratio of respondents who had applied
ML in research, we incorporated both respondents who had
never used ML in their research as well as those who do not
participate in medical research into the denominator. All anal-
yses were carried out using R version 3.5.2 (the R Foundation
for Statistical Computing, Vienna, Austria). A p ≤ 0.05 was
considered statistically significant in two-sided tests.
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Results

Response rate and respondent characteristics

A total of 7280 CNS/EANS members were sent the survey
and 362 complete or incomplete answers were received for

analysis. The descriptive data of respondents are provided in
Table 2. The most represented age range was 30–40 (32.6%),
and 89.2% of the answers were from male participants. Most
of surveyed neurosurgeons were specialized in spine surgery
(36.2%). As far as the work setting was concerned, more than
two-thirds of the neurosurgeons were practicing in an

Table 1 Elements contained within the survey. Depending on the participants’ choice, nine or ten questions were displayed

Question Response options Response
type

What is your primary subspecialty? Spine; neurovascular; neuro-oncology; trauma;
epilepsy, paediatric; peripheral nerve;
neuro-intensive care; functional; other

Single choice;
free text

What setting do you primarily practice in? Academic hospital; non-academic hospital;
private practice; other

Single choice;
free text

What is your level of experience? Resident; fellow; board-certified/attending;
chairperson; medical student; other

Single choice;
free text

What is your gender? Male; female Single choice

What age group are you in? < 30 years; 30–40 years; 40–50 years;
50–60 years; > 60 years

Single choice

What country are you currently based in? List Single choice

In your clinical practice, have you ever
made use of machine learning?

Yes, no Single choice

If yes:

What have you used machine learning for?
Please select any of the applicable

Shared decision-making/patient information;
outcome prediction; prediction of complications:
interpretation/quantification of imaging;
grading of disease severity; diagnosis; other

Multi-choice;
free text

Please rate the importance of the following
reasons for using machine learning
from 1 to 4, based on your own
clinical experience
Improved preoperative surgical
decision-making/treatment selection

1 (Not important) to 4 (Highly important) Single choice

Improved anticipation of complications 1 (Not important) to 4 (Highly important) Single choice

Objectivity in diagnosis/grading/risk
assessment

1 (Not important) to 4 (Highly important) Single choice

Improved shared decision-making/
patient information

1 (Not important) to 4 (Highly important) Single choice

Time savings 1 (Not important) to 4 (Highly important) Single choice

If no:

Please rate the importance of the
following reasons for not using machine
learning from 1 to 4
Not personally convinced of added value 1 (Not important) to 4 (Highly important) Single choice

Lack of skilled resources (staff, equipment)
to develop a model

1 (Not important) to 4 (Highly important) Single choice

Lack of data (quantity/quality) to develop a model 1 (Not important) to 4 (Highly important) Single choice

Limited time to implement ML in clinical practice 1 (Not important) to 4 (Highly important) Single choice

Limited affordability 1 (Not important) to 4 (Highly important) Single choice

Difficulties in deciding which processes may
benefit most from application of ML algorithms

1 (Not important) to 4 (Highly important) Single choice

Lack of ML models for my indications 1 (Not important) to 4 (Highly important) Single choice

In your research, have you ever made use of machine
learning?

Yes; No; I do not engage in medical research Single choice

ML, machine learning
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academic hospital (67.4%), followed by non-academic hospi-
tals (15.5%), private practice (15.5%) and other settings
(1.7%). We also sought to describe the level of experience
of the surveyed population. Participants were mostly board-
certified/attending neurosurgeons (59.9%), while residents
(19.1%), department chairs (11.3%), fellows (5.0%), medical

students (2.2%) and others (2.5%) were less represented.
Geographic distribution of the answers was skewed in favour
of North America (69.1%) and Europe (18.8%), while less
answers were received from surgeons from Asia and Pacific
(4.1%), Latin America (5.0%), Middle East (2.5%) and Africa
(0.6%), with only two responses for the latter region.

Machine learning in clinical practice and research

A total of 28.5% and 31.1% of the surveyed population
responded positively when asked about the use of ML in clin-
ical practice and in clinical research, respectively. Concerning
the use of ML in clinical practice, stratified by region
(Table 3), adoption rates of ML were homogenously distrib-
uted (p = 0.125), with 25.6% for North America, 30.9% for
Europe, 33.3% for Latin America and the Middle East, 44.4%
for Asia and Pacific and 100% for Africa, albeit with only two
responses. Figure 1 illustrates the worldwide clinical use of
ML. We also asked respondents to list the kinds of applica-
tions that they employedML for (Table 4). The most frequent-
ly reported uses of ML were for prediction of outcome
(60.2%) and complications (51.5%), as well as to interpret
or quantify medical imaging (50.5%). In addition, neurosur-
geons applied ML to better inform their patients (38.8%), to
grade disease severity (37.9%) and for diagnostic analytics
(19.4%).

Predictors of machine learning use

Multivariate logistic regression analysis (Table 5) was used
to investigate independent predictors of ML use in clinical
practice and research. Our analysis revealed that none of
the studied variables was associated with increased or de-
creased use of ML in clinical practice, demonstrating the
wide and homogenous adoption of ML globally. On the
other hand, surgeons specialized in neuro-oncology (odds
ratio (OR) = 2.76, 95% confidence interval (CI) = 1.28 to
6.05, p = 0.010), functional neurosurgery (OR = 2.79, 95%
CI = 1.03 to 7.47, p = 0.040), trauma (OR = 3.8, 95% CI =
1.44 to 10.02, p = 0.007) and epilepsy (OR = 3.8, 95% CI =
1.14 to 12.9, p = 0.030) were found to be significantly
more likely to apply ML for research purposes with respect
to the reference group. Also, when referenced to neurosur-
geons working in academic hospitals, those working in
non-academic centres (OR = 0.23, 95% CI = 0.08 to
0.57, p = 0.003) or in private practice (OR = 0.36, 95%
CI = 0.14 to 0.85, p = 0.026) were significantly less likely
to engage in ML-based research.

Attitudes towards machine learning in neurosurgery

The surveyed population was also asked to rate the impor-
tance of the factors that encouraged or prevented the

Table 2 Basic demographics of the respondent population

Characteristic Value (n = 362)

Age groups, n (%) (years)

< 30 28 (7.7)

30–40 118 (32.6)

40–50 96 (26.5)

50–60 61 (16.9)

> 60 59 (16.3)

Male gender, n (%) 323 (89.2)

Specialty, n (%)

Spine 131 (36.2)

Neuro-oncology 64 (17.7)

Neurovascular 49 (13.5)

Paediatric 32 (8.8)

Functional 27 (7.5)

Trauma 16 (4.4)

Epilepsy 5 (1.4)

Neuro-intensive care 4 (1.1)

Skull base 1 (0.3)

Peripheral nerve 2 (0.6)

Other 31 (8.6)

Work setting, n (%)

Academic hospital 244 (67.4)

Non-academic hospital 56 (15.5)

Private practice 56 (15.5)

Other 6 (1.7)

Level of experience, n (%)

Board-certified/attending 217 (59.9)

Resident 69 (19.1)

Chairperson 41 (11.3)

Fellow 18 (5.0)

Medical student 8 (2.2)

Other 9 (2.5)

Geographic origin, n (%)

North America 250 (69.1)

Europe 68 (18.8)

Asia and Pacific 15 (4.1)

Latin America 18 (5.0)

Middle East 9 (2.5)

Other 2 (0.6)

Use of machine learning in clinical practice, n (%) 103 (28.5)

Use of machine learning in research, n (%) 108 (31.1)
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application of ML in neurosurgical clinical practice (Table 6).
Among those the surgeons adopting who had already adopted
ML into their clinical practice, their most important reasons
determining this choice were first improved preoperative sur-
gical decision-making/treatment selection (3.27 ± 0.86),
followed by objectivity in diagnosis/grading/risk assessment
(3.22 ± 0.84), improved anticipation of complications (3.13 ±
0.92) and improved shared decision-making/patient informa-
tion (3.07 ± 0.9), while less importance was given to potential
time savings (2.62 ± 1.07). These attitudes towards the bene-
fits of ML in clinical practice were compared among regions,
with no significant differences between the regions apart from
the anticipation of complications (p = 0.048).

On the other hand, when asked to rate reasons for not using
ML, lack of skilled resources (staff, equipment) to develop a
model received the highest score (3.11 ± 0.98), followed by
time limitations restricting ML application in clinical practice
(2.85 ± 0.96), lack of available ML models for the indications
of interest (2.84 ± 1), uncertainty concerning which processes
may benefit most from application of ML algorithms (2.75 ±
0.96) and, less importantly, lack of data quantity/quality to
develop a ML model (2.67 ± 0.99). The lack of personal
conviction of the added value of ML scored last (2.04 ±
1.05). The only differences among regions were observed in
terms of the affordability of ML applications—this reason for
non-use of ML was rated significantly higher in the Middle
East and Latin America (p = 0.034).

Discussion

There exists no prior published data on the worldwide adop-
tion of ML in neurosurgery. This global survey reached a
diverse cohort of neurosurgeons at different levels of training.
Our results indicate that ML has already quickly gained wide
acceptance in the neurosurgical community, without notable
heterogeneity in its global distribution. Almost a third of neu-
rosurgeons reported having applied ML in either clinical prac-
tice or research, a value that exceeded expectations.
Furthermore, the most common applications of ML in neuro-
surgery were for prediction of complications and outcomes, as
well as to interpret or automatically quantify imaging. No
predictors of clinical ML use were identified, again stressing
that the availability and acceptance of readily developed ML
tools are not bound by socio-demographic factors. On the
other hand, among research-active neurosurgeons, some sub-
specialties as well as academic surgeons appear to apply ML
more frequently for their research.

Our study is the first to our knowledge to provide a world-
wide overview of the implementation of ML in neurosurgical
clinical practice and research. To our surprise, almost a third
of respondents stated making use of ML, and this was true for
both clinical practice and research. Although this can be par-
tially explained by response bias—with academic surgeons
active in the EANS and CNS targeted and with a likely higher
response rate to our survey among surgeons interested in

Table 3 Proportions of neurosurgeons who report having usedmachine learning in clinical practice or clinical research among the responders, stratified
by region

Domain Region p

Overall
(n = 362)

North America
(n = 250)

Europe
(n = 68)

Latin America
(n = 15)

Asia & Pacific
(n = 18)

Middle East
(n = 9)

Africa
(n = 2)

Clinical practice, n (%) 103/362 (28.5) 64 (25.6) 21 (30.9) 5 (33.3) 8 (44.4) 3 (33.3) 2 (100.0) 0.125

Clinical research, n (%)a 108/347 (31.1) 69/239 (28.9) 27/67 (40.3) 3/15 (20.0) 6/16 (37.5) 1/8 (12.5) 2/2 (100.0) 0.087

aWhile all responders answered the question on machine learning use in clinical practice, a subset did not answer the second question on application of
machine learning in clinical research

Table 4 Reported applications of
machine learning in clinical
practice

Application Frequency, n (%) (n = 103)

Outcome prediction 62 (60.2)

Prediction of complications 53 (51.5)

Interpretation/quantification of imaging 52 (50.5)

Shared decision-making/patient information 40 (38.8)

Grading of disease severity 39 (37.9)

Diagnosis 20 (19.4)
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ML—our results still indicate that ML is quickly becoming
one of the foremost technologies in neurosurgical practice.
Importantly, the heterogeneity in adoption rates among re-
gions was relatively low, and adoption of ML into clinical
practice was not apparently influenced by limitations in costs
or socioeconomic status, as is the case with other less acces-
sible technologies such as robotics [33, 35]. While the devel-
opment of ML models can often be expensive and resource-
intensive, the application of readily trained ML algorithms
does not usually require especially high technological stan-
dards or expenses. Many ML applications are web-based
[25]. For this reason, we expect that ML will increasingly
enable enhanced diagnostic, prognostic and predictive analyt-
ics around the world, even in the most rural areas.

After controlling for potential confounding factors, we
could not identify factors associated with increased or de-
creased use of ML in clinical practice. This again demon-
strates how homogenously ML use seems to be distributed
among the neurosurgical community. On the other hand, sub-
specialists in neuro-oncology, functional neurosurgery, trau-
ma and epilepsy were significantly more likely to applyML in
their research. As expected, surgeons working in non-
academic centres and private practice were less likely to en-
gage in ML-based neurosurgical applications, consistent with

the development of ML models currently being rather con-
fined to academic institutions possessing the resources,
protected time, expertise, extensive databases and computa-
tional power to create and distribute algorithms. However, it
has to be considered that the development of e.g. ML-based
prediction models has been massively eased by free software
packages released by the major technology companies, which
nowadays enable training of simple ML models on even the
most basic notebooks. Still, the development of models may
be limited by a lack of high-quality, structured datasets [24].

In fact, ML has already been broadly applied to several
subspecialties in neurosurgery spanning from cranial [1, 7,
39], vascular [15, 32], spinal [5, 11, 13, 25, 31, 36] and radio-
surgery, among others [23, 41]. Several examples of how ML
outperforms traditional statistics and prognostic indexes com-
monly applied in the clinical practice are already available in
the medical literature. For example, a recent study by van
Niftrik et al. reported the use of a gradient boosting machine
to predict early post-operative complications after intracranial
tumour surgery [41]. The authors were able to show improved
performance with respect to conventional statistical modelling
based on logistic regression and interestingly observed that
among the variables in their model, features that were not
taken into account in the statistical model, such as histology,

Fig. 1 Proportions of neurosurgeons who report having used machine learning in their clinical practice among the 362 responders, stratified by region
and plotted on a world map (Mercator projection)
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anatomical localization or surgical access in fact contributed
strongly in the ML model [41]. Oermann et al. also showed
that artificial neural networks performed better at 1-year sur-
vival prediction than more traditional models in patients with

brain metastases treated with radiosurgery [22]. The same
group also was able to show an improvement in predictions
of arteriovenous malformation radiosurgery outcomes [23].
Staartjes et al. found that a deep learning approach was

Table 5 Multivariable logistic regression models describing the relationship between covariates and adoption of machine learning into clinical practice
and research, respectively

Variable Clinical practice Clinical research

OR 95% CI p value OR 95% CI p value

Age group

< 30 1.21 0.52 to 2.74 0.658 1.33 0.55 to 3.19 0.520

30–40 Reference - - Reference - -

40–50 0.97 0.41 to 2.2 0.938 1.33 0.56 to 3.17 0.520

50–60 1.62 0.71 to 3.7 0.248 0.85 0.33 to 2.1 0.730

> 60 1.82 0.47 to 6.93 0.382 3.25 0.78 to 13.7 0.110

Male gender 0.97 0.43 to 2.27 0.935 2.19 0.89 to 5.94 0.100

Specialty

Spine Reference - - Reference - -

Neuro-oncology 1.12 0.53 to 2.32 0.763 2.76 1.28 to 6.05 0.010*

Neurovascular 1.13 0.51 to 2.43 0.754 0.67 0.26 to 1.61 0.380

Paediatric 0.58 0.19 to 1.57 0.301 1.00 0.33 to 2.85 0.997

Functional 1.00 0.37 to 2.50 0.996 2.79 1.03 to 7.47 0.040*

Trauma 1.46 0.55 to 3.68 0.425 3.80 1.44 to 10.02 0.007*

Epilepsy 2.27 0.75 to 6.74 0.140 3.80 1.14 to 12.9 0.030*

Neuro-intensive care NA NA 0.991 NA NA 0.990

Peripheral nerve NA NA 0.993 2.82 0.11 to 75.5 0.570

Skull base 1 0.05 to 8.93 0.997 2.01 0.09 to 20.12 0.480

Other NA NA 0.995 NA NA 0.990

Setting

Academic hospital Reference - - Reference - -

Non-academic hospital 0.67 0.30 to 1.43 0.315 0.23 0.08 to 0.57 0.003*

Private practice 0.59 0.26 to 1.28 0.195 0.36 0.14 to 0.85 0.026*

Other 1.11 0.13 to 6.89 0.915 NA NA 0.990

Experience

Board-certified/attending Reference - - Reference - -

Resident 1.40 0.56 to 3.6 0.458 1.14 0.44 to 3.00 0.790

Chairperson 1.58 0.68 to 3.58 0.279 2.03 0.80 to 5.17 0.130

Fellow 1.36 0.38 to 4.63 0.628 0.42 0.08 to 1.79 0.270

Medical student 1.18 0.17 to 7.37 0.860 1.10 0.17 to 8.04 0.920

Other 0.77 0.11 to 3.69 0.767 1.60 0.27 to 8.07 0.570

Geographic origin

North America Reference - - Reference - -

Europe 1.12 0.57 to 2.16 0.738 1.32 0.65 to 2.63 0.440

Latin America 2.48 0.81 to 7.52 0.547 0.49 0.10 to 1.83 0.330

Asia and Pacific 1.43 0.41 to 4.46 0.106 1.42 0.35 0.630

Middle East 1.64 0.30 to 7.45 0.536 0.16 0.01 to 1.15 0.110

Other NA NA 0.992 NA NA 0.999

*p ≤ 0.05

OR, odds ratio; CI, confidence interval
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significantly better at predicting intraoperative cerebrospinal
fluid leaks and gross total resection in pituitary surgery than
logistic regression, while no predictors could be identified
using traditional interferential statistics for the former outcome
[34, 37].

In spinal neurosurgery, applications of ML have included
prediction of outcome in patients with lumbar disc herniation
and lumbar spinal stenosis [2, 31, 36], or to predict complications
following elective adult spinal deformity procedures [14]. For
example, Khor et al. developed a prediction model from a
state-wide database to predict clinically relevant improvement
after lumbar spinal fusion and integrated their model into a freely
available web app, which was then externally validated [13, 25]..
Again, this shows that while it may be resource-intensive to
develop such models, they can be rolled out to clinicians and
patients around the world for free using simple interfaces.

Radiological applications are ideally suited to machine learn-
ing algorithms given the magnitude and complexity of data ex-
tractable from examinations such as CT and MRI scans.
Interestingly, ML models can establish a hidden relationship
between deep radiological features (“radiomics”) and outcomes
of the pathology of interest. Lao et al., for example, were able to
stratify patients into different prognostic subgroups based on
radiomic features [17]. Similarly, it has been shown that it is
possible to identify IDH mutation status in gliomas from

radiomic features alone [4]. Finally, more extravagant applica-
tions of ML in neuroradiology include e.g. the generation of
synthetic CT images—practically indistinguishable from actual
CTs—from cranial MRI [6, 42].

Despite these positive results, still many present and future
potential ML applications remain unknown to the majority of
neurosurgical specialists. Our study determined that the fac-
tors deterring the use of ML were, in decreasing order, lack of
skilled resources (staff, equipment) to develop a model, time
limitations restricting ML application in clinical practice, lack
of ML models for the indications of interest, uncertainty
concerning which processes may benefit most from the appli-
cation of ML algorithms, as well as—less importantly—lack
of data to develop a model, and lack of personal convincement
of the added value of this new technology.

Our results warrant some considerations. First, once a ML
model with clinical relevance is developed and after it has
been externally validated [25], the focus has to shift on mak-
ing it easy to implement and widely available in clinical prac-
tice. Web-based apps that are clinician- or patient-friendly are
ideal [12, 13, 25]. Second, while a large proportion of neuro-
surgeons may already be applying ML in their clinical prac-
tice, it is important to foster ML literacy in the neurosurgical
community. As with randomized studies forming the basis of
evidence-based practice, clinicians should be able to make an

Table 6 Tabulation of reasons for use and non-use of machine learning (ML) in clinical practice, stratified per region

Region

All North America Europe Asia and Pacific Latin America Middle East Africa p
value

Reasons for use
Improved preoperative surgical decision-
making/treatment selection

3.27 ± 0.86 3.14 ± 0.92 3.57 ± 0.6 3.6 ± 0.55 3.5 ± 0.76 3 ± 1.41 3 ± 1.41 0.430

Improved anticipation of complications 3.13 ± 0.92 2.92 ± 0.96 3.57 ± 0.6 3.2 ± 0.84 3.62 ± 0.74 3 ± 1.41 3 ± 1.41 0.048*
Objectivity in diagnosis/grading/risk
assessment

3.22 ± 0.84 3.25 ± 0.85 3.05 ± 0.74 3.4 ± 0.55 3.5 ± 0.76 3 ± 1.41 2.15 ± 2.12 0.680

Improved shared decision-making/
patient information

3.07 ± 0.9 3.06 ± 0.97 3.14 ± 0.65 2.8 ± 0.84 3.38 ± 0.74 2.5 ± 0.71 2.5 ± 2.12 0.720

Time savings 2.62 ± 1.07 2.72 ± 1.03 2.29 ± 1.1 2.8 ± 1.1 2.5 ± 1.2 3 ± 1.41 2.5 ± 2.12 0.720
Reasons for non-use
Not personally convinced of added value 2.04 ± 1.05 2.13 ± 1.05 1.77 ± 1.07 2 ± 0.94 1.56 ± 0.73 2.5 ± 1.22 NA 0.070
Lack of skilled resources (staff, equipment)
to develop a model

3.11 ± 0.98 3.14 ± 0.97 3.02 ± 1.07 3.1 ± 1.1 2.78 ± 0.83 3.33 ± 0.82 NA 0.670

Lack of data (quantity/quality) to develop a
model

2.67 ± 0.99 2.67 ± 0.99 2.72 ± 0.99 2.8 ± 0.92 1.78 ± 0.67 3.33 ± 0.82 NA 0.160

Limited time to implement ML in clinical
practice

2.85 ± 0.96 2.85 ± 0.98 2.98 ± 0.94 2.9 ± 0.88 2.33 ± 0.71 2.33 ± 0.52 NA 0.160

Limited affordability 2.74 ± 1.08 2.77 ± 1.06 2.51 ± 1.16 2.5 ± 0.85 3.22 ± 1.09 3.33 ± 1.03 NA 0.034*
Difficulties in deciding which processes may
benefit most from the application of ML
algorithms

2.75 ± 0.96 2.77 ± 0.93 2.64 ± 1.11 2.6 ± 0.97 2.78 ± 0.83 3 ± 0.89 NA 0.900

Lack of ML models for my indications 2.84 ± 1 2.82 ± 0.99 2.79 ± 1.12 2.7 ± 0.67 3.44 ± 0.73 3.33 ± 0.82 NA 0.250

Continuous variables are presented as mean ± SD. The importance of reasons for use or non-use of robotics was compared among regions using Kruskal-
Wallis H tests

*p ≤ 0.05
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informed decision as to whichMLmodels published are likely
valid and have applied good methodology, and which ones
should probably not be trusted in clinical practice. Lastly, ML
relies on the availability of “big data” to be exploited for
algorithm training and validation subsequently [21, 24]. A
wide and complete collection of patient data in the sense of
population-based databases enables more representative ML
models. Integrated databases with automated comprehensive
data collection that are necessary for such applications are
currently few and far between, preventing the development
of highly generalizable models [20, 21, 24, 27].

Limitations

Survey-based studies, while able to provide important insights,
have inherent limits because of several potential biases. During
survey distribution, selection and response bias are frequent.
Time constraints on responders may have limited their ability
to answer with maximal accuracy, and in fact concerning the
adoption of ML into clinical research, we obtained several in-
complete or blank answers. The data is mostly based on sub-
jective impressions of surgeons. Knowing this, bias could arise
from the fact that surgeons who are more exposed to neurosur-
gical ML can value it more positively than those who do not
routinely make use of it, and vice-versa. However, the reasons
for advantages and disadvantages were specifically captured
separately for users and non-users. Additionally, the relative
percentage of geographic regions was skewed in favour of
western countries, limiting the sensitivity of our survey for what
concerns regions such as Asia and Pacific, South America and
in particular Africa with only two responses.

Conclusions

This study provides a first global overview of the adoption of
ML into neurosurgical practice. Machine learning has the po-
tential to improve diagnostic work-up and neurosurgical
decision-making by shedding light on radiological interpreta-
tion, surgical outcome and complication prediction and as a
consequence patients’ quality of life and surgical satisfaction.
A relevant proportion of neurosurgeons appears to already have
adopted ML into their clinical practice in some form. The ho-
mogenous distribution of ML users in neurosurgery is a testi-
mony to the accessibility of readily developed ML algorithms,
even in low-resource settings. Still, many structural issues need
to be addressed in order for ML to achieve its full potential in
neurosurgery. These include easy-to-access resources for sur-
geons and patients; prospective-integrated data collection sys-
tems to allow model development; and surgeon education on
ML, all of which can add to the rapid development of ML in
neurosurgery while ensuring high quality of the introduced

tools and their correct application. Best practice recommenda-
tions, external validation and sound methodology are necessary
for anyML tool before its application in our high-stakes clinical
practice. Furthermore, future trials may be conducted to assess
the real clinical impact—and any changes in decision-mak-
ing—that may be caused by ML algorithms in neurosurgery.
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