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Early diagnosis of Alzheimer’s disease (AD) supposedly increases the effectiveness of
therapeutic interventions. However, presently available diagnostic procedures are either
invasive or require complex and expensive technologies, which cannot be applied at a
larger scale to screen populations at risk of AD. We were looking for a biomarker allowing
to unveil a dysfunction of molecular mechanisms, which underly synaptic plasticity
and memory, before the AD phenotype is manifested and investigated the effects
of transcranial direct current stimulation (tDCS) in 3 × Tg-AD mice, an experimental
model of AD which does not exhibit any long-term potentiation (LTP) and memory
deficits at the age of 3 months (3 × Tg-AD-3M). Our results demonstrated that tDCS
differentially affected 3 × Tg-AD-3M and age-matched wild-type (WT) mice. While tDCS
increased LTP at CA3-CA1 synapses and memory in WT mice, it failed to elicit these
effects in 3 × Tg-AD-3M mice. Remarkably, 3 × Tg-AD-3M mice did not show the
tDCS-dependent increases in pCREBSer133 and pCaMKIIThr286, which were found in
WT mice. Of relevance, tDCS induced a significant increase of plasma BDNF levels
in WT mice, which was not found in 3 × Tg-AD-3M mice. Collectively, our results
showed that plasticity mechanisms are resistant to tDCS effects in the pre-AD stage.
In particular, the lack of BDNF responsiveness to tDCS in 3 × Tg-AD-3M mice suggests
that combining tDCS with dosages of plasma BDNF levels may provide an easy-to-
detect and low-cost biomarker of covert impairment of synaptic plasticity mechanisms
underlying memory, which could be clinically applicable. Testing proposed here might be
useful to identify AD in its preclinical stage, allowing timely and, hopefully, more effective
disease-modifying interventions.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder responsible for the most common form of dementia.
To date, therapeutic interventions against AD failed most likely
because of late treatment initiation, i.e., when brain function
and structure are already irreversibly damaged. Several lines of
evidence suggest that pathogenic mechanisms of AD may affect
the brain in the dark for many years owing to the brain’s ability
to cope with failures exploiting the so-called “cognitive reserve.”
Compensatory mechanisms can stave off neurodegeneration
symptoms maintaining memory encoding for long time, and
exhaustion of such brain ability may mark AD onset (Merlo
et al., 2019). Thus, one primary goal is to detect preclinical AD,
inasmuch as therapeutic interventions may have a higher success
probability. Furthermore, some signs and symptoms, which
manifested at early AD stages (e.g., depressive and cognitive
symptoms in the measure of semantic memory and conceptual
formation), are sometimes not recognized and/or mistaken for
symptoms of other pathologies (Bature et al., 2017). This further
stresses the need of reliable disease biomarkers, which may help
early AD diagnosis.

Cognitive decline in AD is linked to pathological
accumulation of amyloid-beta (Aβ) and Tau proteins and
their aggregation in brain regions which are essential for
memory encoding and storage, such as the medial temporal
lobe and related cortical areas (Serrano-Pozo et al., 2011;
Bloom, 2014Q14 ). Striking evidence from preclinical studies
indicates that both Aβ and Tau have detrimental effects
on molecular machinery of synapses, ultimately leading
to decreased hippocampal long-term potentiation (LTP), a
cellular correlate of memory (Irvine et al., 2008; Kopeikina
et al., 2012; Ripoli et al., 2014; Fá et al., 2016; Puzzo
et al., 2017; Gulisano et al., 2018a,b). However, decreased
synaptic plasticity, similarly, to memory impairment, is
manifested when the pathology has already developed.
Molecular pathways, underlying synaptic plasticity, potentially
deregulated or vulnerable in the pre-symptomatic stage,
might provide early biomarkers to predict the onset and/or
progression of the disease.

Recent studies, including ours, have shown that molecular
determinants of synaptic plasticity, including brain-derived
neurotrophic factor (BDNF), phosphorylation of CREB at
Ser133 (pCREBSer133), calcium-calmodulin kinase II (CaMKII)
at Thr286 (pCaMKIIThr286) and AMPA receptor GluA1
subunit at Ser831 (pGluA1Ser831), are engaged and boosted
by transcranial direct current stimulation (tDCS) – a non-
invasive neuromodulatory technique – resulting in increased
LTP and enhanced cognitive or motor functions, depending
on the stimulated brain area (Ranieri et al., 2012; Rohan
et al., 2015; Podda et al., 2016; Kim et al., 2017; Paciello et al.,
2018; Stafford et al., 2018; Barbati et al., 2019; Yu et al., 2019;
Kronberg et al., 2020).

We hypothesized that tDCS might differentially impact LTP
and memory in 3 × Tg-AD mice, a common model of AD, at
a stage when the AD phenotype is not manifested yet (i.e., at 3
months of age, hereinafter referred to as 3 × Tg-AD-3M mice)

(Oddo et al., 2003; Stover et al., 2015; Belfiore et al., 2019), thus
unveiling early dysfunction of synaptic plasticity mechanisms.

We found that tDCS failed to enhance LTP at CA3-CA1
synapses and memory in 3 × Tg-AD-3M mice whereas it
increased these parameters in age-matched wild-type (WT)
mice. Of note, 3 × Tg-AD-3M mice did not show increased
pCREBSer133, pCaMKIIThr286, and BDNF following tDCS,
suggesting that these molecular changes could serve as novel early
biomarkers for AD. Remarkably, BDNF responsiveness to tDCS
was assessed in blood samples, providing an easy-to-detect and
low-cost biomarker.

MATERIALS AND METHODS

Animals
Data of male triple transgenic AD (3 × Tg-AD) mice, harboring
the Swedish human APP, presenilin M146V and tauP301L
mutations (Oddo et al., 2003) were compared to C57BL/6 wild-
type (WT) mice (Li et al., 2018; Chakroborty et al., 2019; Joseph
et al., 2019). The colonies were established in-house at the Animal
Facility of the Università Cattolica from breeding pairs purchased
from the Jackson Laboratory. The study was performed on 3-
month-old (3M) 3 × Tg-AD and WT mice (n = 78 and n = 88,
respectively). Seven-month-old (7M) 3× Tg-AD mice and aged-
matched WT mice (n = 21 each group) were also tested to validate
the time course of AD phenotype in terms of synaptic plasticity
and memory impairment in our experimental conditions. The
animals were housed under a 12 h light-dark cycle at a controlled
temperature (22–23◦C) and constant humidity (60–75%).

Ethics Statement
All animal procedures were approved by the Ethics Committee of
the Catholic University and were fully compliant with guidelines
of the Italian Ministry of Health (Legislative Decree No. 26/2014)
and European Union (Directive No. 2010/63/UE) legislations on
animal research. All efforts were made to minimize the number
of animals used and their suffering.

Electrode Implantation and tDCS
Protocol
TDCS over the hippocampus was delivered using a unilateral
epicranial electrode arrangement as previously described (Podda
et al., 2016; Barbati et al., 2019). The active electrode consisted of
a tubular plastic cannula (internal diameter 3.0 mm) filled with
saline solution (0.9% NaCl) just prior to stimulation; the counter
electrode was a conventional rubber-plate electrode surrounded
by a wet sponge (5.2 cm2) positioned over the ventral thorax.
The center of the active electrode was positioned on the skull
over the left hippocampal formation 1 mm posterior and 1 mm
lateral to the bregma (Franklin and Paxinos, 1997). A unilateral
arrangement was chosen, as in our previous study, to reduce
the electrode contact area and to prevent currents bypassing
the two juxtaposed epicranial electrodes, which might occur
using a bipolar configuration. Stimulation of the left side was
preferred since experimental evidence suggests that long-term
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memory processing are strictly dependent on this hemisphere
(Shipton et al., 2014). This electrode montage was previously
shown to target the hippocampus causing neurophysiological,
behavioral and molecular changes all related to this brain
structure. Furthermore, no changes in BDNF levels were detected
in non-stimulated areas such as the cerebellum, and tDCS of
the motor cortex caused no changes in the hippocampus (see
details in Podda et al., 2016). For electrode implant, animals
were anesthetized by an intraperitoneal injection of a cocktail
with ketamine (87.5 mg/Kg) and xylazine (12.5 mg/Kg) and
temperature during surgery was maintained at 37◦C. The scalp
and underlying tissues were removed and the electrode was
implanted using a carboxylate cement (3M ESPE, Durelon,
3M Deutschland GmbH, Germany). All animals were allowed
to recover for 3–5 days before tDCS. During this period, as
well as during the electrical stimulations, mice were placed in
individual cages.

TDCS was applied to awake mice using a battery-driven,
constant current stimulator (BrainSTIM, EMS, Italy). The
current intensity was ramped for 10 s instead of switching it on
and off to avoid a stimulation break effect.

A repeated tDCS protocol was used consisting in 3 single
stimulation sessions (at a current intensity of 250 µA for 20 min,
current density of 35.4 A/m2) once per day, on 3 consecutive
days. According to clinical and brain slice conventions (Jackson
et al., 2016; Rahman et al., 2017), we applied “anodal” tDCS
corresponding to a positive electric field (positive electrode over
the hippocampus). Electrode montage and current density were
similar to those recently adopted for rodent models and close to
the recommended safety limits in rodents (Rohan et al., 2015;
Podda et al., 2016; Jackson et al., 2017; Paciello et al., 2018).

On the 3 consecutive days, tDCS was performed
approximately at the same time (around 10 a.m.). No abnormal
behaviors were observed related to the stimulation and no
morphological alterations were found in brain tissues of mice
subjected to tDCS.

Three-month-old WT and 3 × Tg-AD mice were randomly
assigned to the following experimental groups: (i) sham mice
(sham-WT-3M, sham-3 × Tg-AD-3M), which underwent the
same manipulations as in the “real” stimulation condition, but
no current was delivered; (ii) tDCS mice (tDCS-WT-3M, tDCS-
3× Tg-AD-3M), which were subjected to repeated anodal tDCS.
Different groups of mice were used for each experimental test.

Electrophysiology
Field recordings were performed on hippocampal coronal slices
(400 µm-thick) as previously described (Podda et al., 2008, 2016).
Briefly mice were anesthetized by isoflurane inhalation (Esteve)
and decapitated. The brain was rapidly removed and placed in
ice-cold cutting solution (in mM: 124 NaCl, 3.2 KCl, 1 NaH2PO4,
26 NaHCO3, 2 MgCl2, 1 CaCl2, 10 glucose, 2 sodium pyruvate,
and 0.6 ascorbic acid, bubbled with 95% O2-5% CO2; pH 7.4).
Slices were cut with a vibratome (VT1200S) and incubated in
artificial cerebrospinal fluid (aCSF; in mM: 124 NaCl; 3.2 KCl; 1
NaH2PO4, 26 NaHCO3, 1 MgCl2, 2 CaCl2, 10 glucose; 95% O2-
5% CO2; pH 7.4) at 32◦C for 60 min and then at RT until use.
Slices were prepared ∼30 min after tDCS or sham stimulation

protocol. Slices containing the stimulated hippocampus were
used for subsequent analyses.

Slices were transferred to a submerged recording chamber
and continuously perfused with aCSF (flow rate: 1.5 ml/min).
The bath temperature was maintained at 30–32◦C with an
in-line solution heater and temperature controller (TC-344B,
Warner Instruments). Identification of slice subfields and
electrode positioning were performed with 4× and 40× water
immersion objectives on an upright microscope (BX5IWI,
Olympus) and video observation (C3077-71 CCD camera,
Hamamatsu Photonics).

All recordings were made using MultiClamp 700B amplifier
(Molecular Devices). Data acquisition and stimulation protocols
were performed with the Digidata 1440A Series interface and
pClamp 10 software (Molecular Devices). Data were filtered at
1 kHz, digitized at 10 kHz, and analyzed both online and offline.

Field recordings were made using glass pipettes filled with
aCSF (tip resistance 2–5 M�) and placed in the stratum radiatum
of the CA1 region. Field excitatory post-synaptic potentials
(fEPSPs) were evoked by stimulation of the Schaffer collateral
using a concentric bipolar tungsten electrode (FHC) connected
to a constant current isolated stimulator (Digitimer Ltd.). The
stimulation intensity that produced one-third of the maximal
response was used for the test pulses and LTP induction. The
fEPSP amplitude was measured from baseline to peak. The slope
of the rising phase of the fEPSP was also calculated.

For LTP recordings, stable baseline responses were recorded to
test stimulations (0.05 Hz for 10 min) and then a high-frequency
stimulation (HFS) protocol was delivered (4 trains of 50 stimuli
at 100 Hz, 500 ms each, repeated every 20 s). Responses to test
pulses were recorded every 20 s for 60 min to assess LTP. LTP was
expressed as the percentage of change in the mean fEPSP slope or
peak amplitude normalized to baseline values (i.e., mean values
for the last 5 min of recording before HFS, taken as 100%). HFS-
elicited fEPSP changes in both amplitude and slope higher than
15% of baseline values were subjected to data analysis.

Memory Test
Object recognition test, also known as novel object recognition
(NOR) test and Morris water maze (MWM) test were used
to assess non-spatial (i.e., recognition) and spatial memory,
respectively. These tests were chosen since they are the most
widely used and standardized tests of hippocampal-dependent
forms of learning and memory (Vorhees and Williams, 2014;
Cohen and Stackman, 2015).

Behavioral tests were carried out from 9 a.m. to 4 p.m. and data
were blindly analyzed using an automated video tracking system
(Any-Maze).

The NOR protocol lasted 3 consecutive days including a
familiarization session, a training session and a test session. On
the first day, animals were familiarized for 10 min to the test arena
(45 cm× 45 cm). On the second day (training session), they were
allowed to explore two identical objects placed symmetrically in
the arena for 10 min. On the third day (test session), a new
object replaced one of the old objects. Animals were allowed to
explore for 10 min and a preference index, calculated as the ratio
between time spent exploring the novel object and time spent
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exploring both objects, was used to measure recognition memory
(Fusco et al., 2019).

MWM was performed as previously described (Podda et al.,
2014, 2016). A circular plastic pool (127 cm in diameter)
filled with water colored with nontoxic white paint, to obscure
the location of an hidden platform, was used as experimental
apparatus. The pool was ideally separated into four equal
quadrants (NE, corresponding to the target quadrant, SE, NW,
and SW) and the platform (10 cm × 10 cm) was placed at the
center of the target quadrant. Visual cues were placed on the walls
around the pool to orient the mice. Animals were trained for 4
days, six times a day and the probe test was administered 24 h
after the last training day. Starting positions were varied daily and
latencies to reach the platform were recorded. In the probe test,
the platform was removed and time spent in the target quadrant
was measured (60 s of test duration).

According to published protocols, the following exclusion
criteria were applied: total exploration time < 5 s in the NOR
test and floating behavior during training (i.e., not actively
searching for the platform) in the MWM test. No animal met
exclusion criteria and all results of behavioral studies were
included in data analysis.

Western Immunoblot
Total proteins were extracted from the stimulated hippocampus
of control and tDCS-mice sacrificed 2 h after stimulation,
using ice cold RIPA buffer [Pierce; 50 mM Tris, 150 mM
NaCl, 1 mM EDTA, 1% DOC, 1% Triton X-100, 1% SDS,
and 1× protease, phosphatase-1, and phosphatase-2 inhibitor
cocktails (Sigma)]. Tissues were incubated for 15 min on
ice with occasional vortexing and the lysate was spun down
at 22,000 × g for 15 min, 4◦C, and 2 µl aliquot of the
supernatant was assayed to determine the protein concentration
(microBCA kit, Pierce). SDS-PAGE reducing sample buffer was
added to the supernatant, and samples were heated to 95◦C for
5 min. Protein lysates (40 µg) were loaded onto 10% or 8%
Tris-glycine polyacrylamide gels for electrophoretic separation.
Precision Plus Protein Dual Color Standards (Bio-Rad) were
used as molecular mass standards. Proteins were then transferred
onto nitrocellulose membranes at 330 mA for 2 h at 4◦C
in transfer buffer containing 25 mM Tris, 192 mM glycine
and 20% methanol. Membranes were incubated for 1 h with
blocking buffer (5% skim milk in TBST), and then incubated
overnight at 4◦C with primary antibodies directed against one
of the following proteins: pCREBSer133, CREB, pCaMKIIThr286,
CaMKII, and GAPDH (Supplementary Table 1). After three
10 min rinses in TBST, membranes were incubated for 2 h at
RT with HRP-conjugated secondary antibodies (Supplementary
Table 1). The membranes were then washed, and the bands
were visualized with an enhanced chemiluminescence detection
kit (GE Healthcare, United Kingdom). Protein expression was
evaluated and documented using UVItec Cambridge Alliance.
Experiments were performed in triplicate.

ELISA Measurements
Blood samples were collected from the retro-orbital plexus
with sterile glass Pasteur pipettes. Samples were taken before

and 1 week after tDCS. After centrifugation, plasma was
separated and stored at −80◦C until further use. Plasma levels of
BDNF were determined using commercially available ELISA kits
(Immunological Sciences). The assay was performed according
to the manufacturer’s instructions on samples collected from 4
animals per group, and each sample was analyzed in duplicate.

Statistical Analysis
Sample sizes were chosen with adequate statistical power (0.8)
according to results of prior pilot data sets or studies, including
our own using similar methods or paradigms. Sample estimation
and statistical analysis were performed using the SigmaPlot 14.0
software. Data were first tested for equal variance and normality
(Shapiro-Wilk test) and then the appropriate statistical tests were
chosen. The statistical tests used [i.e., one-way ANOVA, one-way
ANOVA for repeated measures (RM), Friedman RM ANOVA on
Ranks, two-way ANOVA, two-way RM ANOVA] are indicated
in the main text and in the corresponding figure legends for
each experiment. Post hoc multiple comparisons were performed
with Bonferroni correction. The level of significance was set
at 0.05. Results are presented as mean ± SEM Analyses were
performed blinded.

RESULTS

Characterization of Memory and
Synaptic Plasticity Impairments in
3 × Tg-AD Mice
The objective of the study was to test whether anodal tDCS can
be exploited to unmask covert impairment of brain plasticity
mechanisms in 3 × Tg-AD mice before synaptic plasticity and
memory deficits are clearly manifested in this AD mouse model,
with the ultimate goal to identify early neurophysiological and
molecular biomarkers allowing to predict disease onset.

Our first step was to characterize the time course of the 3×Tg-
AD mouse phenotype in our experimental conditions, given that
some variability has been reported in literature (Belfiore et al.,
2019). Specifically, memory and LTP were assessed in 3 and 7
months old AD mice, chosen as putative pre-symptomatic and
AD models, respectively. Different cohorts of mice were used
for 3 and 7 months.

Results were compared to those obtained in age-matched
WT animals. We found that, at 3 months of age, 3 × Tg-
AD mice did not exhibit any impairment in recognition and
spatial memory, as assessed by NOR and MWM tests, respectively
(Figures 1A–C). In particular, in the NOR test the preference
index was comparable in 3 × Tg-AD and age-matched WT mice
(63.8± 1.7% and 65.7± 1.7%, respectively, n = 9 for each group;
P = 0.40, one-way ANOVA; Figure 1A; exploration time: WT-
3M mice, novel object (NO) 11.3 ± 1 s, familiar object (FO)
5.9 ± 0.5 s; 3 × Tg-AD-3M mice, NO 11.5 ± 2.6 s, FO 6.4 ± 1.3
s). Similarly, in the acquisition session of the MWM, all mice
successfully acquired the task with latency to reach the platform
decreasing progressively across training days [main effect of days:
F(3, 48) = 34.13, P < 0.001, two-way RM ANOVA] and no
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FIGURE 1 | Age-dependentQ6

Q7

pathological memory and synaptic plasticity changes in 3 × Tg-AD mice. (A–D) 3-month-old 3 × Tg-AD mice did not differ from
age-matched WT mice in: (A) the preference toward the novel object in the NOR test (n = 9 mice for each group; P = 0.40, one-way ANOVA); (B) the latency to
platform in the training phase of the MWM test (n = 9 mice for each group; P = 0.73, two-way RM ANOVA) and (C) the time spent in the target quadrant during the
probe test performed on day 5 of MWM (P = 0.66, one-way ANOVA); (D) the magnitude of LTP at hippocampal CA3-CA1 synapses (n = 9 slices from 5
3 × Tg-AD-3M mice; n = 9 slices from 6 WT-3M mice; P = 0.89, one-way ANOVA). Time course shows LTP at CA3-CA1 synapses induced by HFS (4 trains of 50
stimuli at 100 Hz for 500 ms repeated every 20 s) delivered at time 0 (arrow). Results are expressed as percentages of baseline fEPSP slope ( = 100%). Insets show
representative fEPSPs at baseline (gray line) and during the last 5 min of LTP recording (black line). Bar graphs compare LTP observed during the last 5 min of
recording. (E–H) Compared to aged-matched WT mice, 7-month-old 3 × Tg-AD mice showed significant decreases in: (E) preference index in the NOR test
(P < 0.001); (F) latency to platform in the training phase of the MWM test (n = 8 mice for each group P = 0.009, two-way RM ANOVA) and (G) time spent in the
target quadrant during the probe test of MWM (P = 0.032, one-way ANOVA); (H) LTP (n = 10 slices from 5 3 × Tg-AD-7M mice; n = 10 slices from 5 WT-7M mice,
P = 0.0001, one-way ANOVA). Data are expressed as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001; n.s., not significant.
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significant differences between WT-3M and 3× Tg-AD-3M mice
in all trials (n = 9 for each group; P = 0.73, two-way RM ANOVA;
Figure 1B) were noted. In the probe test, the time spent in
the target quadrant was similar in 3 × Tg-AD-3M and WT-
3M mice (28.6 ± 2.8 s vs. 27.0 ± 2.5 s, respectively, P = 0.66,
one-way ANOVA; Figure 1C). Both groups spent significantly
more time in the target quadrant compared to random quadrant
occupancy [i.e., 15 s; WT-3M mice, F(1, 19) = 16.38, P = 0.0006;
3 × Tg-AD-3M mice, F(1, 19) = 18.50, P = 0.0003, one-way
ANOVA]. Memory deficits were, instead, manifested in 7-month-
old 3 × Tg-AD mice (3 × Tg-AD-7M). In the NOR test, they
showed a lower preference index than age-matched WT mice
(53.2 ± 1.5% vs. 65.6 ± 1.4% in WT-7M mice; n = 8 for each
group; P < 0.001, one-way ANOVA; Figure 1E; exploration time:
WT-7M mice, NO 9.2 ± 1.2 s, FO 4.9 ± 0.7 s; 3 × Tg-AD-7M,
NO 6.2 ± 1.5 s, FO 5.5 ± 1.3 s). In the acquisition session of the
MWM, all mice displayed decreased latency to reach the hidden
platform over training days [main effect of days: F(3, 42) = 14.72,
P < 0.001, two-way RM ANOVA, but 3 × Tg-AD-7M mice took
longer time to find the platform than WT-7M mice (n = 8 for
each group; P = 0.009, two-way RM ANOVA; Figure 1F). In the
probe test, 3 × Tg-AD-7M mice explored the target quadrant
less than controls (17.4 ± 3.5 s vs. 27.0 ± 2.5 s in WT-7M mice;
P = 0.032, one-way ANOVA; Figure 1G). Finally, WT-7M mice
spent significantly more time in the target quadrant compared to
random quadrant occupancy while 3× Tg-AD-7M mice failed to
do so [WT-7M mice, F(1, 18) = 16.17, P = 0.0008; 3× Tg-AD-7M
mice, F(1, 18) = 0.85, P = 0.36, one-way ANOVA].

As expected, behavioral data were paralleled by
electrophysiological data showing a significant reduction of
LTP at CA3–CA1 hippocampal synapses in brain slices from
3× Tg-AD-7M mice [34.37± 4.36%; (n = 10 slices from 5 mice)
vs.78.85 ± 8.09% (n = 10 slices obtained from 5 WT-7M mice);
P = 0.0001, one-way ANOVA; Figure 1H], whereas LTP was not
significantly different in transgenic and WT mice at 3 months of

age [65.11 ± 4.86% (n = 9 slices from 5 3 × Tg-AD-3M mice)
vs. 63.68 10.74% (n = 9 slices from 6 WT-3M mice); P = 0.89,
one-way ANOVA; Figure 1D]. Data reported above refer to
analysis of fEPSP slope. A similar picture emerged when LTP
was assessed by analyzing fEPSP amplitude (Supplementary
Figures 1A,B). In agreement with our previous result (Leone
et al., 2019) Western immunoblot experiments, performed with
the 6E10 antibody recognizing human Aβ, revealed Aβ oligomers
in hippocampal lysates of 3 × Tg-AD-7M mice (Supplementary
Figure 1C). A faint band was observed at the same molecular
weight in tissues from 3× Tg-AD-3M.

Altogether these data indicate that, at 3 months of age, 3× Tg-
AD mice do not show synaptic plasticity and memory deficits
and, therefore, they are a suitable model of a pre-symptomatic
AD stage to test our hypothesis.

Anodal tDCS Fails to Enhance
Recognition and Spatial Memory in
3 × Tg-AD-3M Mice
We then compared memory performances of 3 × Tg-AD-3M
and age-matched WT mice subjected to a protocol of triple tDCS
or sham stimulation. Consistently with our previous findings
(Podda et al., 2016), WT mice subjected to tDCS showed a
greater preference toward the novel object than sham-stimulated
mice [preference index: 70.7 ± 1.1% (n = 10) and 63.5 ± 1.8%
(n = 9), respectively, P = 0.001, one-way ANOVA; Figure 2A].
As expected from data reported above, sham-3 × Tg-AD-
3M mice showed intact recognition memory [preference index:
61.0 ± 2.1% (n = 9), P = 0.36 vs. sham-WT-3M mice, one-
way ANOVA; Figure 2A]. Of note, preference for the novel
object was not increased by tDCS in 3 × Tg-AD-3M mice
[preference index: 64.6± 4.3% (n = 8), P = 0.42 vs. sham-3× Tg-
AD-3M mice, (n = 9) one-way ANOVA; Figure 2A]. Similar
results were obtained with MWM, as shown in Figures 2B,C.

FIGURE 2 | Effect of tDCS on memory in 3 × Tg-AD-3M and WT-3M mice. (A–C) Memory was enhanced by tDCS in 3-month-old WT but not in 3 × Tg-AD-3M
mice, as shown by: (A) preference toward the novel object in NOR test (n = 9 sham-WT-3M mice vs. n = 10 tDCS-WT-3M mice, P = 0.001; n = 9
sham-3 × Tg-AD-3M mice vs. n = 8 tDCS-3 × Tg-AD-3M mice, P = 0.42, one-way ANOVA); (B) latency to reach the platform in the training phase of the MWM test
(n = 10 sham-WT-3M mice and n = 9 tDCS-WT-3M mice, P < 0.001; n = 9 sham-3 × Tg-AD-3M mice and n = 9 tDCS-3 × Tg-AD-3M mice, P < 0.001, two-way
RM ANOVA across training days) and (C) time spent in the target quadrant during probe test (sham-WT-3M mice vs. tDCS-WT-3M mice, P = 0.029;
sham-3 × Tg-AD-3M mice vs. tDCS-3 × Tg-AD-3M mice; P = 0.24, one-way ANOVA). Data are expressed as mean ± SEM. *P < 0.05; **P < 0.01; n.s., not
significant.
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FIGURE 3 | tDCS differentiallyQ15

Q16

impacts hippocampal LTP in 3 × Tg-AD-3M and WT mice. (A,B) Time course of LTP at CA3-CA1 synapses induced by HFS delivered
at time 0 (arrow). Results are expressed as percentages of baseline fEPSP slope ( = 100%). Insets show representative fEPSPs at baseline (gray line) and during the
last 5 min of LTP recording (black line). Bar graphs compare LTP observed during the last 5 min of recording. (A) Slices obtained from tDCS-WT-3M mice (n = 12
slices from 7 mice) showed enhanced LTP compared to sham-WT-3M mice (n = 12 slices from 9 mice, P = 0.007, one-way ANOVA). (B) tDCS failed to enhance LTP
in 3 × Tg-AD-3M mice (n = 10 slices from 5 tDCS mice; n = 12 slices from 5 sham mice, P = 0.71; one-way ANOVA). Data are expressed as mean ± SEM;
*P < 0.05; n.s., not significant.

In the acquisition session of the MWM, all mice successfully
acquired the task with latency to reach the platform decreasing
progressively across training days [WT-3M mice: main effect
of days: F(3, 51) = 23.85, P < 0.001, two-way RM ANOVA;
3 × Tg-AD-3M mice: main effect of days: F(3, 48) = 21.33,
P < 0.001, two-way RM ANOVA; Figure 2B], with no significant
differences between sham and tDCS in both groups (WT-3M
mice: P = 0.81; 3× Tg-AD-3M: P = 0.71, two-way RM ANOVA).
In the probe test, WT mice, but not 3× Tg-AD-3M mice, showed
improvement following tDCS [tDCS-WT-3M, 33.5± 2.5 s (n = 9)
vs. 25.5 ± 2.5 s (n = 10) sham-WT-3M; P = 0.029, one-way
ANOVA; tDCS-3× Tg-AD-3M, 19.8± 3.9 s (n = 9) vs. 24.9± 2.2
s (n = 9) sham-3 × Tg-AD-3M; P = 0.24, one-way ANOVA;
Figure 2C).

Anodal tDCS Fails to Enhance LTP in
3 × Tg-AD-3M Mice
TDCS effects on memory have been reportedly associated to
increased hippocampal LTP (Podda et al., 2016; Yu et al., 2019).
We therefore asked whether the behavioral unresponsiveness to
tDCS of 3 × Tg-AD-3M mice was associated to the lack of tDCS

effects on synaptic plasticity. FEPSP slope was measured in the
CA1 area after standard HFS of Schaffer collaterals and LTP was
studied in slices from WT and 3 × Tg-AD-3M mice subjected
to tDCS or sham stimulation. Sixty min after HFS, slices from
tDCS-WT mice showed significantly greater LTP than slices from
sham-WT mice [79.65± 6.58% (n = 12 slices from 7 tDCS mice)
vs. 57.0 ± 4.4% (n = 12 slices from 9 sham mice); P = 0.007,
one-way ANOVA; Figure 3A and Supplementary Figure 2A].
Conversely, LTP was not increased by tDCS in 3 × Tg-AD-
3M mice [54.71 ± 3.89% (n = 10 slices from 5 tDCS mice) vs.
57.49 ± 6.23% (n = 12 slices from 5 sham mice); P = 0.71,
one-way ANOVA; Figure 3B and Supplementary Figure 2B],
demonstrating that in these mice the cellular correlate of memory
is also resistant to the boosting action of tDCS.

Molecular Determinants of Plasticity Are
Resistant to tDCS Boosting Effects in
3 × Tg-AD-3M Mice
The above reported results demonstrate that, before the AD-
like phenotype is manifested, 3 × Tg-AD mice – despite
normal memory and hippocampal LTP – exhibit decreased
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FIGURE 4 | Molecular changes in 3 × Tg-AD-3M and WT-3M mice following tDCS. Representative immunoblots revealed increased pCREBSer133 (A) and
pCaMKIIThr286 (B) following tDCS in WT-3M mice but not in 3 × Tg-AD-3M mice. Bar graphs in the lower panel show results of densitometric analyses on all
samples (n = 3 mice for each group; pCREBSer133, P = 0.003 tDCS-WT-3M vs. Sham-WT-3M; P = 0.77 tDCS-3 × Tg-AD-3M vs. Sham-3 × Tg-AD-3M;
pCaMKIIThr286, P = 0.045 tDCS-WT-3M vs. Sham-WT-3M; P = 0.58 tDCS-3 × Tg-AD-3M vs. Sham-3 × Tg-AD-3M two-way ANOVA, Bonferroni post hoc)
normalized to both the corresponding total protein levels and GAPDH. (C) Plasma BDNF levels were measured before (pre) and 1 week after (1 week post) tDCS.
BDNF was increased by tDCS in WT mice (P = 0.031, one-way RM ANOVA) but not in 3 × Tg-AD-3M mice (P = 0.12, Friedman RM ANOVA on Ranks) (n = 4 mice
for each group). Data are expressed as mean ± SEM. *P < 0.05; **P < 0.01; n.s., not significant.

responsiveness to the boosting action of tDCS. The reduced
response to tDCS might result from initial dysfunction
of the molecular pathways underlying plasticity that are
challenged by tDCS.

To test this hypothesis, we performed molecular analyses on
hippocampi and blood samples from WT and 3 × Tg-AD-3M
mice subjected to tDCS or sham stimulation. Our analyses were
focused on known upstream mechanisms of tDCS action, such
as Ca2+-dependent phosphorylation of CREB at Ser133 and of
CaMKII at Thr286, and a pivotal downstream effector, i.e., the
neurotrophin BDNF (Podda et al., 2016; Kim et al., 2017; Paciello
et al., 2018; Stafford et al., 2018; Barbati et al., 2019).

Our previous observations indicated that tDCS induced CREB
activation in the hippocampus 2 h after stimulation (Podda et al.,
2016). Accordingly, immunoblot analyses revealed that, 2 h after
the end of the last tDCS session, hippocampi of WT mice (n = 3)
showed increased levels of pCREBSer133 [+110% vs. sham-WT-
3M mice (n = 3), P = 0.003; two-way ANOVA, Bonferroni

post hoc; Figure 4A] and pCaMKIIThr286 (+109% vs. sham-WT-
3M mice, P = 0.045 two-way ANOVA, Bonferroni post hoc;
Figure 4B]. Intriguingly, these post-translational modifications
were not observed in 3 × Tg-AD-3M mice following tDCS
(pCREBSer133: +11% vs. sham-3 × Tg-AD-3M mice; P = 0.77;
pCaMKIIThr286: +19% vs. sham-3 × Tg-AD-3M mice; P = 0.58;
two-way ANOVA, Bonferroni post hoc; n = 3 mice each group;
Figures 4A,B).

We previously reported that enhanced pCREBSer133 following
tDCS increases BNDF expression in the hippocampus by
epigenetic regulation of Bdnf promoter I (Podda et al., 2016),
and similar results were observed in auditory and motor cortices
exposed to tDCS (Paciello et al., 2018; Barbati et al., 2019). We,
therefore, hypothesized that tDCS could differentially impact
BNDF expression in WT-3M and 3 × Tg-AD-3M mice. Given
that changes of brain BDNF expression are reflected in blood
(Laske et al., 2006; Brunoni et al., 2015), we asked whether
assessment of changes in plasma BDNF following tDCS could
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be a reliable biomarker of altered brain plasticity in AD. Blood
samples used for BDNF testing were collected from each studied
mice before starting the tDCS and 1 week after the completion
of the tDCS protocol. This time point was chosen based on
the results of a meta-analysis showing that increased plasma
BDNF levels are more frequently observed some days after
different protocols of non-invasive brain stimulation (NIBS)
than soon after (Brunoni et al., 2015), and our previous studies
demonstrated enhanced BDNF expression in the hippocampus 1
week after tDCS (Podda et al., 2016).

Remarkably, we found that plasma BNDF levels were
significantly increased after tDCS in WT-3M (78.5 ± 20.2 vs.
42.3 ± 9.9 pg/ml pre-stimulation; n = 4 mice, P = 0.031, one-
way RM ANOVA) but not in 3× Tg-AD-3M mice (40.1± 4.9 vs.
47.8± 5.0 pg/ml pre-stimulation; n = 4 mice, P = 0.12, Friedman
RM ANOVA on Ranks; Figure 4C).

Our findings indicate that in 3 × Tg-AD-3M mice molecular
determinants of plasticity such as CREB, CaMKII and BDNF are
resistant to the boosting effects of tDCS. More importantly, the
early impairment of molecular machinery underlying synaptic
plasticity and memory in 3 × Tg-AD-3M mice can be detected
by BDNF blood testing following tDCS.

DISCUSSION

AD is the most common form of dementia in elderly,
characterized by a severe and progressive cognitive decline. So
far, no effective treatments have been identified, but accumulating
evidence suggests that therapeutics might work best if started
at an early disease stage. The preclinical and prodromal phases
of AD are considered promising time-windows for disease-
modifying interventions (Galluzzi et al., 2016; Joe and Ringman,
2019). Therefore, early diagnosis is critical to successfully
implement effective treatments.

The diagnosis of preclinical and prodromal AD is presently
performed using cerebrospinal fluid analysis, neuroimaging
investigations and neuropsychological testing (Lashley et al.,
2018). Recently, graph theory analysis of brain connectivity
from EEG signals combined with apolipoprotein E genotyping
has been proposed to distinguish prodromal to AD from non-
prodromal mild cognitive impairment (MCI) subjects (Vecchio
et al., 2018). While these diagnostic approaches are valid and
reliable, they cannot be employed for a wide ranging screening
of persons at risk of AD, because they are invasive, expensive
and require equipment and expertise usually only available in
specialized hospitals.

Looking for an easy, non-invasive, low-cost and affordable
method to screen populations at risk of AD, we investigated
brain plasticity responses to tDCS in an AD mouse model
before phenotype manifestation. This approach unveiled early
electrophysiological and molecular dysfunction leading to the
unresponsiveness of 3 × Tg-AD-3M mice to tDCS boosting
effects on memory, LTP and molecular determinants of
synaptic plasticity.

Our data suggest that the assessment of plasticity-related
molecular biomarkers before and after tDCS could represent

a novel approach to predict AD onset and progression. Of
particular relevance for a translational point of view, are the
differential effects of tDCS on plasma BDNF levels.

In this study 3-month-old 3 × Tg-AD mice were used as a
model of preclinical AD. These mice showed normal memory,
as their performance in the NOR and MWM tests was similar to
that of age-matched WT mice. At 3 months of age LTP values
were also comparable in WT and transgenic mice. Impaired
memory and LTP were, instead, observed in AD mice at 7
months of age. Although a certain degree of 3 × Tg-AD mouse
model heterogeneity has been reported regarding the onset
and progression of cognitive deficits, the timeline of the AD
phenotype, in our experimental conditions, is in agreement with
literature (Chakroborty et al., 2019; Joseph et al., 2019).

The NIBS techniques have recently gained considerable
attention as promising approaches to slow the progression of
AD (Rajji, 2019a). Despite encouraging data, conflicting results
have been reported so far, likely due to different study designs,
patient selection criteria, populations, or sample sizes, therefore,
the efficacy of NIBS in AD is still uncertain (Rajji, 2019b). As far
as animal models are concerned, tDCS failed to rescue learning
and memory deficits in 3 × Tg-AD mice when the phenotype is
manifested (i.e., >6 months of age) (Gondard et al., 2019).

We propose to use tDCS in AD differently, namely, as a tool to
probe and challenge plasticity pathways in the pre-symptomatic
phase of the disease in order to unveil their earliest alterations.

Indeed, several studies, including our own, indicated that
molecular determinants of plasticity and, particularly, the
neurotrophin BDNF, are engaged and boosted by anodal tDCS,
leading to enhanced plasticity and memory (Rohan et al., 2015;
Podda et al., 2016; Kim et al., 2017; Cocco et al., 2018; Paciello
et al., 2018; Stafford et al., 2018; Barbati et al., 2019; Kronberg
et al., 2020).

Consistently, we found that 3-month-old WT mice, subjected
to a daily session of anodal tDCS for three consecutive days,
showed enhanced hippocampus-dependent recognition and
spatial memory as assessed by NOR and MWM tests as well as
enhanced LTP – the cellular underpinning of memory (Bliss and
Collingridge, 1993). Interestingly enough, none of these effects
was seen in 3× Tg-AD-3M mice.

We, therefore reasoned that the lack of tDCS effects on
LTP and memory in 3 × Tg-AD-3M mice might be due to
the unsuccessful recruitment of plasticity-related pathways. We
previously identified the signaling cascade engaged by tDCS in
the hippocampus, including increased CREB phosphorylation
at Ser133 that triggers epigenetic modifications relying on
CREB binding to the Bdnf promoter I and recruitment of
the histone acetyltranferase CREB-binding protein leading to
enhanced acetylation at lysine 9 on Bdnf promoter I and
increased BDNF expression. Blockade of H3 acetylation as
well as of BDNF-specific TrkB receptors hindered tDCS effects
on LTP and memory. Collectively, data summarized above
suggested a causal link among the tDCS-induced increases
in: (i) CREB phosphorylation; (ii) BDNF expression; (iii)
synaptic plasticity; and (iv) memory (Podda et al., 2016). It
has also been hypothesized that molecular events underlying
tDCS effects are initiated by increased Ca2+ signaling via
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NMDAR and voltage-gated calcium channel activation (Pelletier
and Cicchetti, 2014; Rohan et al., 2015). Indeed, Ca2+-
dependent intracellular responses observed following tDCS
include increased phosphorylation of CREB and CaMKII along
with nitric oxide synthase activation (Kim et al., 2017; Cocco
et al., 2018; Barbati et al., 2019). In keeping with these data, our
Western immunoblot analyses showed enhanced pCREBSer133

and pCaMKIIThr286 in tDCS-WT-3M mice. Of relevance, the
lack of tDCS effects on LTP and memory in 3 × Tg-AD-3M
mice was paralleled by its inability to enhance pCREBSer133

and pCaMKIIThr286, indicating that these differential response
could serve as novel AD biomarker. Investigating the role
of Ca2+ signal dysregulation in the tDCS ineffectiveness on
LTP and memory in 3 × Tg-AD-3M mice was beyond the
scope of this research. However it is worth mentioning that
enhanced Ca2+ signaling has been reported in the earliest stages
of the disease in mouse AD models (Del Prete et al., 2014;
Chakroborty et al., 2019) and it has also been observed in cells
from familial AD patients (Nelson et al., 2010). Furthermore,
convergent evidence indicates Ca2+ dyshomeostasis within
synaptic compartments as an early and critical factor in driving
synaptic pathophysiology, leading to cognitive impairment in AD
(Whitcomb et al., 2015).

The main purpose of our study was to identify an early
and easy-to-detect AD biomarker potentially translatable to
clinical application. Of course, molecular changes only occurring
in the brain would not meet these requirements; therefore,
we looked for biomarkers available in the circulating blood.
Changes in pCREB and pCaMKII levels in the brain might
be paralleled by similar changes in neuron-derived exosomes
isolated from circulating blood, which is a promising though
still experimental approach (Shi et al., 2016; Badhwar and
Haqqani, 2020) we are planning to implement in future
studies. Instead, we focused on a much simpler and cheaper
approach, based on plasma BDNF level assessment by ELISA
(Naegelin et al., 2018), which could be employed in any
laboratory performing blood sample testing and therefore, widely
accessible to any population. As already mentioned, enhanced
BDNF expression in hippocampal lysates was demonstrated
in our previous study following tDCS. Although different
organs may contribute to determine plasma BDNF levels,
several evidences suggest that changes in blood BDNF levels
may reflect changes occurring in the brain. Indeed, changes
in blood BDNF levels have been associated with a number
of neurological diseases including AD (Laske et al., 2006),
and they have also been more frequently reported days or
weeks after stimulation following tDCS in different clinical
conditions or experimental models (Brunoni et al., 2015).
We, therefore, compared plasma BDNF levels before and
1 week after tDCS and found that they were significantly
increased in WT but not in 3 × Tg-AD-3M mice. Investigating
the specific contribution of hippocampus vs. other cortical
and subcortical areas underneath the stimulating electrode
to plasma BDNF levels as well as its different forms (i.e.,
mature vs. pro-BDNF) was beyond the scope of this paper.
Similarly, our study did not address the role of BDNF in AD
pathophysiology.

Instead, our novel finding provides a peripheral biomarker
of covert neuroplasticity impairment that could be detected in
blood samples and easily translated to clinical use. The non-
invasiveness and lack of adverse effects of tDCS (Antal et al.,
2017) support future longitudinal studies in patient cohorts at
risk of AD including elderly people diagnosed for amnestic
MCI or those with genetic risk factors. In summary, our study
unravels the unresponsiveness of neuroplasticity mechanisms
in the hippocampus to boost stimuli in a pre-AD stage. The
combined use of a non-invasive method such as tDCS and plasma
BDNF level assessment before and after treatment appears a
novel promising approach to detect synaptic dysfunction far
earlier than the appearance of any clinical signs. Although our
findings still need to be validated in humans, they indicate a very
promising perspective for large population analyses of subjects
at risk to develop AD, with far reaching implications for both a
personalized approach to AD patients and public health.
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