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Abstract
Background. Glioblastoma (GBM) stemlike cells (GSCs) are thought to be responsible for the maintenance and 
aggressiveness of GBM, the most common primary brain tumor in adults. This study aims at elucidating the in-
volvement of deregulations within the imprinted delta-like homolog 1 gene‒type III iodothyronine deiodinase gene 
(DLK-DIO3) region on chromosome 14q32 in GBM pathogenesis.
Methods. Real-time PCR analyses were performed on GSCs and GBM tissues. Methylation analyses, gene ex-
pression, and reverse-phase protein array profiles were used to investigate the tumor suppressor function of the 
maternally expressed 3 gene (MEG3).
Results. Loss of expression of genes and noncoding RNAs within the DLK1-DIO3 region was observed in GSCs and 
GBM tissues compared with normal brain. This downregulation is mainly mediated by epigenetic silencing. Kaplan–
Meier analysis indicated that low expression of MEG3 and MEG8 long noncoding (lnc)RNAs significantly correlated 
with short survival in GBM patients. MEG3 restoration impairs tumorigenic abilities of GSCs in vitro by inhibiting cell 
growth, migration, and colony formation and decreases in vivo tumor growth, reducing infiltrative growth. These effects 
were associated with modulation of genes involved in cell adhesion and epithelial-to-mesenchymal transition (EMT).
Conclusion. In GBM, MEG3 acts as a tumor suppressor mainly regulating cell adhesion, EMT, and cell proliferation, 
thus providing a potential candidate for novel GBM therapies.

Key Points

1.  The expression of imprinted DLK-DIO3 region at chromosome 14q32 is downregulated in 
GSCs and GBM tissues compared with normal brain, mainly by epigenetic silencing.

2.  Downregulation of MEG3 and MEG8 lncRNAs significantly correlates with a poor clinical 
outcome.

3.  MEG3 functions as a tumor suppressor by regulating genes involved in cell adhesion and EMT.
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Glioblastoma (GBM) is the most frequent and aggres-
sive primary adult brain tumor, with a 5.1% survival rate 
at 5  years.1 Even with the current multimodal therapy, 
the mean survival of GBM patients is still approximately 
15 months. Because of its extremely unfavorable prognosis, 
it is imperative to develop more effective therapeutic strat-
egies for this cancer.

The identification of GBM initiating stemlike cells (GSCs) 
has introduced a new paradigm in therapy, since these 
cells are likely to comprehend a population uniquely 
able to support tumor growth and should represent a 
primary therapeutic target.2 Analyzing a collection of 
patient-derived GSC lines by complementary molecular 
approaches, we previously identified 2 GSC clusters: one 
characterized by a proneural-like phenotype (GSf-like) and 
the other showing a mesenchymal-like phenotype (GSr-
like).3 Furthermore, by investigating the GSC micro (mi)
RNA profiles, we identified a set of 3 miRNAs able to dis-
criminate GSf- and GSr-like GSC phenotypes as well as 
mesenchymal and proneural GBM patient subtypes with 
different clinical outcomes.4 In the same study we also 
noticed that, independently of GSC phenotypes, many of 
the miRNAs mapping to region q32.2 of chromosome 14 
were downregulated compared with normal neural stem 
cells of both adult and fetal origin. This region, spanning 
from delta-like homolog 1 (DLK1) to type III iodothyronine 
deiodinase (DIO3), is subject to imprinting and plays an 
important role in development. Patients with imprinting 
defects in the DLK1-DIO3 region suffer from a range of ab-
normalities, including growth delay, skeletal malforma-
tions, developmental delay/intellectual disability, and even 
perinatal death.5,6

The 14q32 imprinted region is regulated by 2 differen-
tially methylated regions (DMRs), the paternally meth-
ylated imprinting control region, called the InterGenic 
(IG)-DMR, and the somatic DMR within the maternally ex-
pressed 3 (MEG3) promoter.7

This region contains the paternally expressed im-
printed genes DLK1, DIO3, and retrotransposon-like 1 
(RTL1), the maternally expressed imprinted long non-
coding (lnc)RNAs (MEG3, MEG8, MEG9 and LINC00524, 
and anti-sense RTL1), a large miRNA cluster (53 
miRNAs), and 2 families of small nucleolar RNAs 
(SNORDs; SNORD113 and SNORD114 coding for 9 and 31 
SNORDs, respectively).

Correlation between methylation patterns in the MEG3-
DMR promoter and expression of noncoding (nc)RNAs 
and several miRNAs in the 14q32 cluster has been sug-
gested.5 Deregulated expression of the ncRNAs from this 

region has been implicated in several human malignan-
cies, including gliomas.8 Particularly, either the loss or 
the downregulation of MEG3 lncRNA is reported in an ex-
panding list of human tumors of nervous origin, including 
neuroblastomas,9 meningiomas,10 and gliomas.8

While several studies recently explored the mode of ac-
tion of MEG3 and its association with transcription factors 
and chromatin, we focused our attention on the cellular 
processes and pathways regulated by MEG3 lncRNA in the 
context of GBM pathophysiology.

Materials and Methods

Cell Cultures

GSCs were isolated from surgical samples of adult pa-
tients who underwent craniotomy at the Institute of 
Neurosurgery, Catholic University of Rome, upon pa-
tient informed consent and approval by the local ethical 
committee.11 Information of human adult neural stem cell 
(NSC) lines and human neural progenitor cell (HNPC) lines 
are described in the Supplementary Methods.

Real-Time PCR

Total RNAs were extracted from cells using TRIzol rea-
gent (Life Technologies) and from microdissected paraffin 
embedded GBM sections using the miRNeasy FFPE kit 
(Qiagen) and reverse transcribed by Moloney murine leu-
kemia virus reverse transcriptase (Life Technologies). Real-
time (RT) PCR was performed with SYBR Green Master 
Mix in the StepOnePlus Real-Time PCR System (Applied 
Biosystems). Primers are listed in Supplementary Table 1.

Methylation Analysis

Methylation-specific multiple ligation probe amplifica-
tion (MS-MLPA) analysis was performed by using the 
ME032 UPD7-UPD14 A1 Kit (MRC-Holland) according to 
manufacturer’s instructions. The assay we used does not 
evaluate the methylation status of DLK1 or RTL1.

Methylation profile (Infinium Methylation 450K, Illumina) 
was performed by Genomix4life (Laboratory of Molecular 
Medicine and Genomics, University of Salerno). The de-
tailed methods are described in the Supplementary 
Methods.

Importance of the Study

Despite current multimodal therapies, treatment of GBM 
poses a significant clinical challenge, and the life expect-
ancy of GBM patients remains dismal. LncRNAs have 
emerged as important players in cancer. The present 
study provides evidence of the role of lncRNAs in GBM 
pathobiology. Our data show that MEG3 is involved in 

a complex network that regulates cell adhesion, DNA 
damage, cell proliferation, and stemness by targeting a 
multitude of genes. The analysis of biological processes af-
fected by MEG3, coupled with functional in vitro and in vivo 
assays, identifies known as well as unexplored pathways 
that can be targeted by innovative therapies.
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Array-Based Comparative Genomic Hybridization 

Array comparative genomic hybridization (array-CGH) was 
performed on GBM tissues using SurePrint G3 Human CGH 
Microarrays, 8x60K (Agilent) according to manufacturer’s 
instructions and scanned on a DNA Microarray Scanner 
(Agilent). Feature extracted data were then analyzed using 
CytoGenomics Software (Agilent).

Plasmid Constructs and Lentivirus Infection

The MEG3 variant 1 (NR_002766), from HNPCs was cloned in 
a GFP lentiviral vector. Primers used were: forward 5′-agcccc
tagcgcagacggcgga-3′ and reverse 5′-ttgttaagacaggaaacacattt
attgagagcac-3′. Short hairpin (sh)MEG3 lentiviral green fluo-
rescent protein (GFP) vectors (TL320132) were from OriGene 
Technologies. Lentiviral particles were produced in 293T 
packaging cell line and infection performed as previously 
described.12 After infection, GFP fluorescence was evaluated 
by FACSCanto (BD Biosciences) and GFP-positive cells were 
flow sorted by FACS ARIA (BD Biosciences).

Cell Growth, Migration, and Colony 
Formation Assays

Detailed information on viability assay, cell proliferation, 
motility, and colony formation ability are described in the 
Supplementary Methods.

Intracranial and Subcutaneous Implantation of 
Glioma Stemlike Cells in Immunocompromised 
Mice and Analysis of Brain Xenografts

Experiments involving animals were approved by the 
Ethical Committee of the Istituto Superiore di Sanità, 
Rome, Italy. For intracranial implantation, 4- to 6-week-
old nonobese diabetic severe combined immunodeficient 
mice (Charles River) were implanted intracranially with 
2 × 105 GFP-MEG3 or empty vector transduced GSC#1 cells 
(Supplementary Methods).13 For subcutaneous implan-
tation, 4- to 6-week-old Hsd:athymic nude mice (Charles 
River) were implanted subcutaneously with 5 × 105 GSC#61 
cells either overexpressing MEG3 or carrying the empty 
vector (see Supplementary Methods).

Gene Array

Total RNA, extracted from MEG3 and empty vector 
transduced cells, was labeled and hybridized to the 
Agilent-019118 array for miRNAs (Agilent) and Affymetrix 
GeneChip1.0ST array (Affymetrix) following the 
manufacturer’s instructions. Hybridization values were 
normalized by the RMA (robust multi-array average) 
method.

Reverse-Phase Protein Arrays

Cell lysates for reverse-phase protein lysate microarray 
(RPPA) analysis were performed as previously described.14 

The list of antibodies selected for RPPA analysis is avail-
able in Supplementary Table 2. See the Supplementary 
Methods for details.

Statistical Methods

Detailed information of all the statistical analyses per-
formed is described in the Supplementary Methods.

Results

Dysregulation of DLK1-DIO3 Transcripts in 
GBM and GSCs: Expression of MEG3 and MEG8 
lncRNAs Is Associated to GBM Patient Overall 
Survival

By investigating the miRNA profiles by gene expression 
microarrays, we found that miRNAs from a large cluster 
on chromosome 14q32 were significantly downregulated 
in GSCs compared with normal NSCs (P < 0.05, Student’s 
t-test) (Supplementary Table 3, Supplementary Figure 1A 
and Figure 1A). MiRNA microarray results were validated 
by RT-quantitative (q)PCR on an independent set of GSC 
lines (n = 10) (Supplementary Figure 1B). Analyzing the ex-
pression of genes and ncRNAs located on the 14q32 im-
printed region by RT-qPCR, we found that the DLK1 and 
DIO3 genes, SNORD113-1, SNORD114-1, MEG3, and MEG8 
were significantly downregulated in GSCs and tumor 
tissue derived from GBM patients compared with normal 
brain and with NSCs (Figure 1B). Noteworthy, MEG3 and 
MEG8 expression levels are directly correlated in both 
GSCs and GBM (Spearman correlation coefficients 0.81 
and 0.75, respectively; P < 0.0001) (Supplementary Figure 
2). Moreover, MEG3 expression, although significantly 
lower than in normal brains, appears to be heterogeneous 
among GSCs (coefficient of variation [CV] 0.53 in normal 
brain and 1.86 in GSCs, CV ratio 3.51) (Figure 1B). These 
results suggested that deregulated expression of the tran-
scripts contained in the DLK1-DIO3 region could be in-
volved in GBM pathogenesis.

Since lncRNAs have been implicated in glioma pro-
gression, we analyzed more in detail the heterogeneity of 
MEG3 and MEG8 expression in GSCs.

Thirty-five GSCs derived from GBM surgical specimens 
were assessed for the expression of MEG3 and MEG8 by 
RT-PCR. Clinical and pathological features are summar-
ized in Supplementary Table 4. Survival analysis adjusted 
for relevant predictors as well as multivariate analysis for 
survival are shown in Supplementary Figure 3. Based on 
the expression value of MEG3 (median = 0.044) and MEG8 
(median = 0.0063), GSCs were classified into 4 subgroups 
(ie, MEG3 high and MEG8 high; MEG3 high and MEG8 low; 
MEG3 low and MEG8 high; MEG3 low and MEG8 low). 
Kaplan–Meier analysis showed that patients whose tumors 
expressed low levels of both MEG3 and MEG8 had sig-
nificantly shorter overall survival than patients with high 
expression of both MEG3 and MEG8 (P = 0.0002; hazard 
ratio [HR], 0.1818; 95% CI: 0.07422–0.4452; Figure  1C). 
Kaplan–Meier survival curves of MEG3 and MEG8 individ-
ually evaluated as prognostic factors did not significantly 
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Fig. 1 Expression of gene transcripts from DLK1-DIO3 region: MEG3 and MEG8 downregulation correlates with patient overall survival. (A) Volcano-
plot representing the expression level of miRNAs on chromosome 14q32 from GSCs (n = 9) compared with normal neural stem cells (NSCs) from both 
adult (olfactory bulb) and fetal origin (n = 3). The bigger plot represents the 8 miRNA samples with the same value (miRs -433, -432*, -380*, 323–5p, -300, 
-453, -496, -412). P-values are based on Student’s t-test and adjusted by Bonferroni correction. (B) Real time RT-PCR analysis performed on normal brain 
samples (NB), GBM tissues (GBM), NSCs, and GSCs. The colored points in MEG3 and MEG8 panels represent GBM tissue and GSCs derived from the 
same patient. Samples were run in duplicate and normalized with glyceraldehyde 3-phosphate dehydrogenase. No statistically significant differences 
(P = 0.30) were observed among paired samples. (C-D) Kaplan–Meier survival curves: MEG3 and MEG8 downregulation significantly correlates with a 
poor clinical outcome in our cohort of patients (C; P = 0.0002) and in patients from the glioblastoma database of TCGA (D; P = 0.0066).
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correlate with clinical outcome (Supplementary Figure 4). 
Our results were confirmed by an analysis performed on 
the database of The Cancer Genome Atlas (TCGA), using 
the University of California Santa Cruz Xena software 
(https://xena.ucsc.edu/). After downloading raw data and 
grouping the GBM into low and high expression groups, 
we found that patients with high expression of both 
MEG3 and MEG8 had a better prognosis compared with 
those showing low expression of both lncRNAs (n = 51; 
P = 0.0066; HR, 0.2700; 95% CI: 0.1049–0.6945; Figure 1D). 
Further, in silico analysis of the other ncRNAs within the 
DLK1-DIO3 region was not performed due to the limited 
availability of data on these transcripts in the database of 
TCGA.

Epigenetic Modifications Are the Main Regulator 
of Chromosome 14q32 Gene Expression in GSCs

Multiple mechanisms may contribute to nullizygosity of 
the DLK1-DIO3 region in tumors, including genomic de-
letions, epigenetic modifications, or a combination of the 
two. To determine the type of derangement of this region 
in our cohort, we performed MS-MLPA analysis of 14 GSC 
lines, 20 GBM tissue specimens, and 6 normal brain tis-
sues. Samples from normal brain and peripheral blood 
displayed the same monoallelic methylation pattern at the 
MEG3 locus (Figure 2A).

Five out of the 20 GBMs (25%) displayed hypermethylation 
of MEG3. Hypermethylation was detected for at least 1 of 
the 3 methylation-sensitive MEG3 probes included in the 
MLPA kit. In 3 of these (C, E, and U), one MEG3 allele was 
deleted, as demonstrated by MS-MLPA analysis and con-
firmed by array-CGH (Supplementary Figure 5A, B). The 
deletion likely involved the maternal allele, since the allele 
retained in these samples was hypermethylated. The other 
2 samples with MEG3 hypermethylation (G and R) did not 
show MEG3 copy number changes.

Of the 14 GSCs, 7 (50%) were hypermethylated at the 
3 MEG3 cytosine-phosphate-guanine (CpG) islands ana-
lyzed. The discrepancy between tumors and cell lines could 
be due to the presence of a mixed cell population in tu-
mors or to a consequence of prolonged in vitro culture.

However, the methylation pattern was similar be-
tween matched pairs of GBM samples and cell lines 
(Supplementary Figure 5C) and was consistent in most 
of the GSCs analyzed at early and late passages (ie, up to 
10 and more than 20 passages, respectively) except for 
GSC#76, which displays differences limited to a single 
MEG3 probe. Overall, our data indicate that maintenance 
of GSCs in vitro did not affect the methylation status of 
MEG3 (Supplementary Figure 5D).

Since the data obtained with MLPA were limited to a re-
stricted number of probes, we analyzed the methylation 
profile in 6 GSC lines (#61, #30p, #83, #163, #1, and #76) 
established from primary GBM specimens as well as in 6 
human normal brain tissue samples (Infinium Methylation 
450K, Illumina). The 6 GSCs were selected based on their 
MEG3 expression levels, GSCs #30p and #163 were chosen 
among the lowest expressing cells, GSCs #1 and #76 
among the medium, and GSCs #61 and #83 among the 
highest (Supplementary Table 5).

Methylation profiles clearly separated GSCs and 
normal brain samples into discrete groups (Figure  2B 
and Supplementary Figure 6). Particularly, the analysis 
revealed a significant hypermethylation (P < 0.01) of 12 
Infinium probes within the MEG3-DMR and of 1 probe 
(cg16126137) within the putative MEG8-DMR15 in all GSC 
samples analyzed compared with normal brain (Figure 2C 
and Supplementary Table 6). Nine of the 12 probes were 
present in the database of TCGA and covaried (first prin-
cipal component explaining 73.8% of cumulative variance), 
implying a combined regulation of these 12 CpG methyla-
tion sites (Supplementary Table 7).

Starting from the methylation profiling obtained with 
Illumina array 450K, we considered the probes annotated 
on the genes of interest and extracted the associated beta 
values. These data were used to create the heatmaps, and 
Euclidean Distance Metric was applied to cluster the sam-
ples (Supplementary Figure 7). The obtained heatmaps 
confirmed a clear distribution of the samples between 
the 2 groups, and showed a higher methylation level for 
probes annotated on the MEG3 gene of the GSC samples 
compared with normal brain.

Interestingly, unlike the other GSC lines analyzed, GSC 
#76 showed poor level of MEG3 expression and low level of 
methylation (Supplementary Figure 8A). To assess whether 
other epigenetic modifications, such as histone acetyla-
tion, take part in MEG3 silencing, we treated the 6 profiled 
GSC lines with valproic acid (VPA), an inhibitor of histone 
deacetylases (classes I and IIa). VPA treatment resulted in 
a 1.3- to 2-fold increase of MEG3 levels in GSCs #1, #30p, 
#163, #61, and #83 while, in GSC #76 lacking constitutive 
MEG3 hypermethylation, the expression of MEG3 was 
7-fold increased following VPA treatment (Supplementary 
Figure 8B), suggesting that diverse epigenetic modifica-
tions may contribute to MEG3 silencing.

An inverse correlation between MEG3 expression and 
methylation level (r = −0.68; P < 0.01) was observed indeed 
only in GSCs #1, #30p, #163, #61, and #83 (Supplementary 
Figure 8C).

Restoration of MEG3 Impairs Tumorigenic 
Properties of GSCs In Vitro and In Vivo

Since restoration of the whole DLK1-DIO3 genomic region 
was not feasible and accumulating evidence shows that 
MEG3 deregulation might be involved in gliomagenesis, 
we decided to focus our attention on MEG3 and performed 
enforced reexpression of MEG3 in GSCs. To this end we 
overexpressed MEG3 (NR_002766) in 3 GSC lines (#1, 
#61, #83), chosen for different MEG3 expression levels, 
by transducing a lentiviral vector carrying MEG3 and GFP 
as reporter genes used to select cells by flow cytometry 
sorting. LncRNA restoration was confirmed by RT-PCR 
(Supplementary Figure 9A).

Ectopic expression of MEG3 induced a significant, 
stable decrease in the growth rate of all GSC lines 
tested (Figure  3). In detail, MEG3 significantly reduced 
bromodeoxyuridine (BrdU) incorporation showing a de-
creased progression in the cell cycle through the S phase. 
Moreover, MEG3-GSCs formed significantly fewer colonies 
compared with empty vector transduced cells (Figure 3). 
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 8 Buccarelli et al. DLK1-DIO3 region deregulation and GBM

The motility of MEG3-transduced GSCs was dramatically 
reduced (Figure  3). Thus, MEG3 restoration resulted in a 
considerable inhibition of proliferation, migration, and 
colony formation of all the GSCs tested.

These results were implemented by MEG3 silencing. To 
this end, 2 shMEG3 lentiviral GFP constructs were trans-
duced in the MEG3 highly expressing line GSC#83. MEG3 
silencing, verified by RT-PCR (Supplementary Figure 9B), 
significantly increased proliferation, migration, and colony 
formation of GSC#83 (Figure 3D).

Following orthotopic injection into immunocom-
promised mice, patient-derived GSCs generate highly 
infiltrative tumors that closely reproduce the parent neo-
plasm.14 Therefore, we utilized this model to test in vivo the 
effects of MEG3 overexpression on the growth of brain tu-
mors. Kaplan–Meier analysis of mice outcome showed that 
mice grafted with MEG3-GSCs did significantly better than 
those grafted with control GSCs (n = 12, P = 0.0133 log-rank 
test) (Figure 4A). At 12 weeks after grafting, mice grafted 
with control GSCs (n = 6)  harbored tumors that invaded 
extensively the striatum, piriform cortex, and amygdaloid 
area and spread through the corpus callosum, anterior 
commissure, optic chiasm, septal nuclei, and fimbria hip-
pocampus. In mice grafted with MEG3-GSCs (n = 6), the 
degree of brain invasion was highly reduced, as demon-
strated by the significant reduction of tumor cell density in 
the striatum, amygdaloid area, anterior commissure, and 
optic chiasm (Figure 4B, C).

As a second in vivo model, we used subcutaneous grafts 
of GSC#61 cells either overexpressing MEG3 or carrying an 
empty vector (CNTR).

We found that 8 weeks after inoculation, mice injected 
with MEG3 GSC#61 cells developed significantly smaller 
tumors (Supplementary Figure 10A, B). Tumor prolifera-
tion, as assessed by Ki67 staining, which ranged between 
76% and 85% in CNTR GSC#61 xenografts, was dramati-
cally lower in MEG3 GSC#61 xenografts (range 14–35%). 
MEG3 GSC#61 tumors also showed expression of glial fi-
brillary acidic protein in 16–26% of cells, which was com-
pletely absent in CNTR GSC#61 subcutaneous xenografts, 
indicating an astrocyte differentiation (Supplementary 
Figure 10C).

To confirm that MEG3 reactivation may inhibit tumor 
growth, in vivo severe combined immunodeficient mice 
(n = 12)  were grafted onto the right striatum either with 
untreated GFP + GSC#1 cells (n = 8) or with GFP + GSC#1 
cells pre-treated in vitro with VPA (4 mM; n = 4), as epige-
netic drug that has been administered for the prevention 
or treatment of seizure disorder in GBM patients.16 One 
week after surgery, the mice were either treated with saline 
i.p. (0.2 mL, b.i.d. for 5 d/wk over 3 wk) (n = 4) or treated 
with VPA i.p. (n = 8; 200 mg /kg in 0.2 mL, b.i.d. for 5 d/wk 
over 3 wk). Beginning and duration of i.p. treatment were 
chosen to maximize VPA passage across the damaged 
blood–brain barrier in the grafted brain area.17 Mice were 
sacrificed at 8 weeks after grafting.

Results are shown in Supplementary Figure 11. In mice 
treated with VPA i.p., the brain xenografts were significantly 
smaller than in saline-treated controls (P = 0.017; unpaired 
Student’s t-test). In vitro exposure of GFP + GSC#1 to VPA 
further inhibited tumor growth, whereby mice grafted with 
VPA pretreated GFP + GSC#1 cells that received additional 

VPA i.p. after surgery developed significantly smaller 
tumor than mice treated with VPA i.p. only (P = 0.003; un-
paired Student’s t-test) (Supplementary Figure 11A, B). 
Immunostaining with Ki67 showed that cell proliferation 
was 24.4 ± 2.1% (mean ± SEM), 13.1 ± 1.4%, and 7.9 ± 0.9% 
in saline-treated controls, VPA i.p. treated mice, and VPA 
i.p. treated mice grafted with VPA pretreated GPF GSC#1 
cells, respectively. Thus, treatment with VPA i.p. reduced 
significantly tumor cell proliferation compared with sa-
line (P < 0.001; unpaired Student’s t-test), and pretreating 
the tumor cells with VPA further inhibited cell proliferation 
(P < 0.01; unpaired Student’s t-test) compared with VPA i.p. 
only (Supplementary Figure 11C). This experiment sug-
gests that epigenetic silencing of MEG3 is important for 
activation of the glioma malignancy, and those epigenetic 
targeting drugs such as VPA can inhibit tumor growth.

Tumor-Suppressor Function of MEG3 Involved 
Cell Adhesion Signaling Pathways

To further investigate the molecular mechanism underlying 
the tumor-suppressor function of MEG3, we analyzed gene 
expression profiles of GSCs transduced with MEG3 or with 
an empty vector. In detail, we selected GSC lines #1 and 
#61, characterized by a “pro-neural-” and “mesenchymal”-
like signature,3 respectively, as prototype GSCs with op-
posing basal expression of MEG3.

In order to identify the most deviating genes from what 
was expected by the shared tissue attractor, we computed 
for both cell lines the linear regression equation, linking 
the logarithm expression level in control GSCs with the 
expression levels of MEG3-GSC transduced cells. Both 
cell lines gave rise to robust and statistically significant 
models allowing us to predict the “expected” expression 
value for each gene in MEG3-transduced GSC based on its 
corresponding levels in control cells. The 2 linear equations 
were: MEG3 (expected) = 0.097 + 0.974*GFP (GSC line 
#61), and MEG3 (expected) = 0.137 + 0.968*GFP (GSC line 
#1). The 2 regression models gave rise to Pearson correla-
tion coefficients equal to 0.98 and 0.87 for line #1 and line 
#61, respectively (Figure 5A).

The genes most deviating from the regression lines are 
those more affected by MEG3 reexpression: we opted for 
a threshold equal to 2 standard deviations of the residuals 
(difference of observed and expected expression values) in 
order to select potentially interesting genes. We selected 
only those genes that significantly deviate from their ex-
pected value in both lines.

The genes selected were then analyzed for pathway en-
richment analysis by gene set enrichment analysis (GSEA) 
online tool; http://www.broadinstitute.org/gsea/index.jsp), 
setting Gene Ontology biological process terms and Kyoto 
Encyclopedia of Genes and Genomes pathways. The most 
significantly enriched pathways were related mainly to cell 
adhesion (Figure 5B and Supplementary Table 8).

On the other hand, previous studies showed that 
MEG3 regulates EMT, cell cycle, DNA damage, and Wnt 
pathways in several human malignancies.18,19 Since our 
data showed that enforced MEG3 reexpression inhib-
ited cell growth, migration, and colony-forming ability 
of GSCs, we sought to investigate the effects of MEG3 
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reintegration on GSC signaling. We selected a set of 
endpoints related to these pathways (Supplementary 
Table 2) and measured their expression by RPPA in con-
trol and MEG3-transduced GSCs.

In line with a reinstatement of the epithelial program, 
we found that MEG3 induced a marked downmodulation 
of vimentin along with an increased β-actin content 
and inhibitory phosphorylation of Src (Src_pY527). 
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Fig. 4 Effect of MEG3 over-expression on the growth of brain xenografts of GFP expressing GSC #1. (A) Kaplan–Meier analysis of mice with brain 
grafts of GSCs (left). Mice grafted with MEG3 GSCs showed weight loss (>20% of initial weight) or neurological signs later than those grafted 
with control GSCs (n = 12; P = 0.0133, log rank test). Coronal sections of brain across the grafting site in a control and MEG3 mouse (right). (B) 
The density of tumor cells spreading in the striatum, amygdala, anterior commissure, and optic chiasm is highly reduced in xenografts of MEG3 
overexpressing cells. (C) Graphs showing results of tumor cell counts in the brain regions analyzed; **P < 0.01; ***P < 0.001.
  

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/article-abstract/doi/10.1093/neuonc/noaa127/5847771 by U

niversita C
attolica del Sacro C

uore user on 30 June 2020

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa127#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa127#supplementary-data


 10 Buccarelli et al. DLK1-DIO3 region deregulation and GBM

Furthermore, MEG3 restoration caused a reduction of 
total and active focal adhesion kinase (FAK_pY397) as 
well as an increase in caveolin-120 and connexin-4321 
levels together with activated N-myc downstream regu-
lated gene 1 (NDRG1_pT346), the latter previously shown 
to suppress metastasis and cell migration in a colorectal 
cancer model.22 Intriguingly, RPPA levels of total glycogen 
synthase were decreased by MEG3, pointing to an active 
inhibition by GSK3, which ultimately targets and activates 
NDRG1. We did not detect significant changes in the levels 
of key players of the Wnt pathway.

Along similar lines, reexpression of MEG3 by GSCs was 
associated with a decrease of DNA damage-related com-
ponents and targets such as total (but not phosphorylated) 
ataxia telangiectasia mutated kinase, activated ataxia telan-
giectasia and Rad3-related protein (ATR_pS428), poly(ADP-
ribose) polymerase, and H2AX-gamma_pS140. Despite 
a reduction in total and inactive Wee1 (Wee1_pS642) fol-
lowing MEG3 overexpression, we found that readouts of 
cell proliferation such as cyclin-B1, MEK1_pS217_S221, 
MAPK_pT202_Y204, and Rb_pS807_S811 were not affected 
by MEG3. Therefore, the downregulation of DNA damage 
markers may correlate with the absence of an active 

proliferative state of GSCs after transduction with MEG3. 
Finally, we found that MEG3 reexpression might contribute 
to the reduction of the levels of some endpoints involved in 
stemness, such as sex determining region Y–box 2 (Sox2), 
Notch, and transforming growth factor beta (TGF-β) family 
members (Figure 6 and Supplementary Figure 12).

Discussion

Loss of expression of loci contained in the DLK1-DIO3 
region on chromosome 14q32 is a frequent event in several 
types of cancers7 and is mainly mediated by epigenetic si-
lencing.5 Here we report that deregulated expression of 
genes and several noncoding RNAs within this region is a 
common event in tumor samples and GSCs derived from 
GBM patients compared with normal brain.

Importantly, the overall survival of GBM patients with 
low expression of both MEG3 and MEG8 was significantly 
lower than that of patients with high expression of both 
lncRNAs. These data were confirmed on a cohort of GBM 
patients available from the database of TCGA.
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Our analysis showed that downregulation of genes 
within the DLK1-DIO3 region in GBM is mainly me-
diated by epigenetic alterations and, particularly, by 
hypermethylation within the differentially methylated 
region MEG3-DMR as described in the other tumors.23

Since MEG3 dysregulation has been implicated in 
gliomagenesis,24 we decided to study the functional impact 
of MEG3 restoration on GSCs. Interestingly, we found that 
MEG3 inhibited cell growth, migration, and colony-forming 
ability of GSCs in vitro and significantly decreased the 
growth of GSC-derived tumors in vivo, as demonstrated 
by the significant reduction of cell density in several brain 
regions that are usually invaded by GSCs.

A number of studies have shown lncRNAs as cru-
cial components of complex gene regulatory networks 
by regulating gene expression at the transcriptional, 
posttranscriptional, and epigenetic levels. Some of them 
can serve as scaffolds to regulate protein-protein interac-
tion, decoys binding microRNAs, or guides to recruit epi-
genetic regulators on chromatin.

Previous studies in colon and brain cancer first demon-
strated a function of MEG3 as a tumor suppressor through 
activation of p53, leading to increased p53 protein levels 
and stimulation of p53-dependent transcription.8,25

Recently, MEG3 has been shown to interact with com-
ponents of the polycomb repressive complex 2 (PRC2), 
an epigenetic regulator involved in transcriptional re-
pression. Acting in tandem with PRC2 components, 
MEG3 negatively regulates the activity of a set of genes 
of the TGF-β pathways, and suppresses c-Met gene 
transcription.26–28

Besides regulating 2 of the most potent EMT inducers by 
transcriptional repression, MEG3 inhibits EMT by acting as 
competing endogenous RNA (ceRNA).

The cross talk of ceRNAs with other RNA species (eg, 
miRNA sharing) suggests that ceRNAs may regulate di-
verse biological processes. Therefore, disruption of axes 
involving ceRNAs and miRNAs could represent a critical 
step in cancer pathogenesis.29

MEG3 inhibits cell proliferation, migration, and invasion 
and induces apoptosis by acting as ceRNA of miR-19a30 in 
glioma cells and of miR-499-5p in melanoma,31 by regu-
lating E-cadherin and forkhead box O1 expression through 
competitive binding to miR-9 in esophageal cancer,32 
and by sponging miR-421, upregulating E-cadherin and 
downregulating zinc finger E-box-binding homeobox 1 
(ZEB1), ZEB2, and vimentin in breast cancer.33

A further functional role of MEG3 has been revealed 
from studies on liver functions and vascular endothelium 
whereby MEG3 acts as an RNA scaffold.34,35

Altogether, data available in the literature underline the 
molecular complexity of MEG3 interactome, pointing to 
multiple modes of action in several and diverse biological 
processes, in a cell-specific manner.

GSEA revealed cell adhesion and EMT as principal bio-
logical processes affected by MEG3 ectopic expression in 
GSCs. MEG3 restoration predominantly increased the ex-
pression of protocadherin (PCDH)-beta genes. PCDHs are 
a group of cell-cell adhesion molecules, belonging to the 
cadherin family, predominantly expressed in the nervous 
system, and having a major role in regulating neuronal 
function.36,37

Recently, PCDHs have been reported to be broadly 
involved in tumor suppression,38–42 and epigenetic 
dysregulation of several PCDHs has been observed in a va-
riety of tumors.43,44

Besides PCDHs, MEG3 restoration modulated the ex-
pression of matrix gamma-linolenic acid protein,45,46 
periostin,47,48 and versican,49 which play a major role in 
glioma invasion, angiogenesis, and migration and signif-
icantly contribute to malignant progression.

The complexity of MEG3 activity is further highlighted by 
the diversity of RPPA endpoint activated. In line with the 
MEG3-dependent reinstatement of an epithelial program, 
we found that MEG3 induced a marked downmodulation 
of vimentin in GSCs along with an increased β-actin con-
tent coupled to elevated inhibitory Src phosphorylation. 
Furthermore, MEG3 restoration caused (i) a reduction of 
total and active FAK, (ii) an increase in connexin-4321 and 
caveolin-1, the latter being a negative regulator of GBM 
growth,20 and (iii) upmodulation of activated NDRG1, a 
metastasis suppressor.22

Notably, enforced expression of MEG3 in GSCs caused 
a decrease of DNA damage-related players, which correl-
ates with the absence of readouts of cell proliferation by 
RPPA analysis. Finally, we found that MEG3 reexpression 
reduced the levels of some proteins involved in stemness 
(ie, Sox2 and Notch and TGF-β family members).

It should be emphasized that although the regulation 
by MEG3 of the endpoints analyzed is heterogeneous in 
different cell lines, in both cell lines tested MEG3 func-
tions as a tumor suppressor regulating the same path-
ways. The inconsistencies of the individual analytes 
indicates that a similar effect can be produced in each 
GSC line through different effectors belonging to the 
same pathway, depending on the specific complex net-
work of interactions of the cell line. This hypothesis is 
likely for a tumor like GBM, which is highly heteroge-
neous at the inter- and intratumor level.

Overall, our data confirm and expand on those present 
in the literature and show that lncRNA MEG3 is involved in 
a complex network regulating diverse signaling pathways. 
Nonetheless, the molecular mechanisms governing the 
tumor suppressor activity of MEG3 in GBM remain elusive.

We hypothesize that other members of the DLK1-DIO3 
region may participate in the regulation of processes 
involving MEG3 and that aberrant expression of this cluster 
may trigger cell growth and proliferation while modulating 
cell adhesion, thus promoting EMT and ultimately contrib-
uting to GBM pathogenesis.

Supplementary Material

Supplementary data are available at Neuro-Oncology 
online.
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