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Estimating Level of Engagement from Ocular Landmarks
Zeynep Yücel , Serina Koyama, Akito Monden , and Mariko Sasakura

Department of Computer Science, Division of Industrial Innovation Sciences, Okayama University, Okayama, Japan

ABSTRACT
E-learning offers many advantages like being economical, flexible and customizable, but also has
challenging aspects such as lack of – social-interaction, which results in contemplation and sense of
remoteness. To overcome these and sustain learners’ motivation, various stimuli can be incorporated.
Nevertheless, such adjustments initially require an assessment of engagement level. In this respect, we
propose estimating engagement level from facial landmarks exploiting the facts that (i) perceptual
decoupling is promoted by blinking during mentally demanding tasks; (ii) eye strain increases blinking
rate, which also scales with task disengagement; (iii) eye aspect ratio is in close connection with
attentional state and (iv) users’ head position is correlated with their level of involvement. Building
empirical models of these actions, we devise a probabilistic estimation framework. Our results indicate
that high and low levels of engagement are identified with considerable accuracy, whereas medium
levels are inherently more challenging, which is also confirmed by inter-rater agreement of expert
coders.

1. Introduction

E-learning has progressed rapidly in the recent years, and
became a popular choice of learning medium at schools
(Arkorful & Abaidoo, 2015; Haßler et al., 2016) as well as
corporate training and life-long learning (Beinicke & Bipp,
2018; Seta et al., 2014). The rapid propagation of e-learning is
suggested to be due to a series of reasons including being
economical (Piskurich, 2006) customizable (Liu et al., 2017)
and rich in content (O’Donnell et al., 2015).

Despite these advantages, learners may experience some dif-
ficulties in using e-learning systems. Arkorful and Abaidoo
(2015) point out to the lack of social interaction as one of the
most important challenges of e-learning. Namely, lack of social
interaction implies a bigger burden of motivation and requires
better time management skills for overcoming contemplation
and remoteness. In educational psychology, such commitment
and involvement of students in learning activity is termed – in
the broad sense – as “engagement” (Fredricks et al., 2004). In
e-learning, where students often feel isolated and disconnected,
sustaining learners’ engagement arises as a serious challenge
(Dixson, 2015). In particular, any effective design scheme or
intervention to an e-learning session for enhancing engagement
initially requires assessment of users’ state.

For this purpose, this study proposes using visual feedback
from users to estimate automatically their level of engage-
ment. Namely, we focus on users’ frontal view video footage
and search for indications of decline in level of engagement
on face images. These indications are chosen on the basis of
the findings of several studies in the fields of cognitive science,
affective computing, eye physiology, etc.

In particular, we exploit the following findings. Smilek et al.
(2010) ascertain that perceptual decoupling from external sti-
muli is promoted by blinking during mental/cognitive fatigue.
Besides, it is known that eye strain due to prolonged exposure to
digital displays increase blinking rate (Rosenfield, 2011).
Interestingly, Matthews and Desmond (1998) also establish the
connection between blinking and visual fatigue due to increased
task load. Namely, suppression of blinks due to increased task
load eventually causes drying of the eyes and leads to a higher
blinking rate. In addition to blinking, the aspect ratio of the eye is
also a prominent factor in detection of subject’s attentional state
(Ji et al., 2004). Moreover, Asteriadis et al. (2011) show that
users’ head pose and position present significant correlation to
their level of involvement in computer-based tasks.

Based on these findings, we propose several features, which
are expected to provide relevant information on users’ level of
engagement. Subsequently, we confirm that there is
a significant correlation between these features and level of
engagement coded by professional teachers. By building
a probabilistic method based on the empirical observations
of such feature distributions, we prove that level of engage-
ment can be estimated from video footage with significant
accuracy.

The proposed approach has several advantages. First of all, it
can be integrated into e-learning systems so as to provide
continuous on-the-fly assessment of engagement. Therefore, it
potentially enables stimulation of the user immediately upon
detection of a decline in level of engagement by, for instance,
providing motivational advice or interactive content (e.g., with
an avatar) with possible adjustments to interpersonal variations
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in behavior. In addition to applications involving individual
users, the proposed method has also the potential of being
deployed in collaborative learning scenarios, where the socially
shared regulation of learning poses several coordination pro-
blems, one particular aspect relating communication of the
shared understanding through joint attention. Although this
issue is often treated under the assumption that directing gaze
to a target indicates sustained visual attention (Yücel et al.,
2013), recent studies ascertain that such an approach over-
simplifies human attentional process. In this respect, our
study offers a potential to detect the declines in engagement
level of a partner in collaborative learning.

2. Background and related work

In their seminal work, Fredricks et al. (2004) define “engage-
ment” in broad terms as active commitment, willing partici-
pation and involvement of students in school activity. In
particular, engagement is suggested to be a multidimensional
phenomenon, governed by three fundamental elements as
behavior, cognition, and emotion (Fredricks et al., 2016).

Behavioral engagement relates attendance, participation,
completion of assignments, etc., in conventional classroom
settings. On the other hand, in technology-mediated learning,
behavioral engagement is quantified in terms of computer-
recorded indicators such as frequency of logins, number and
frequency of responses/views, time spent online and number
of accessed resources (e.g., podcasts or screencasts). Obviously
such indicators are quite easy to access in computer medium
(Ben-Zadok et al., 2011). However, as pointed out by Arkorful
and Abaidoo (2015), there are a number of issues with
employing such metrics, one of the most important being
the difficulty of incorporating them on-the-fly, i.e. in a live
session.

Cognitive engagement is the focused effort to effectively
understand the lesson and involves students’ cognitive strat-
egy/planning, and self-regulation. In this respect, unlike beha-
vioral engagement, cognitive engagement may not always be
observed or assessed in a quantitative way and require self-
reporting (Greene, 2015). However, self-reports or question-
naires suffer from the varying implicit standards of respon-
dents, heterogeneous frame of reference, social desirability
bias, and memory call limitations (D’Mello et al., 2017). For
this reason, there have been some attempts to quantify cog-
nitive engagement fusing with behavioral indicators (e.g., time
on task) or gauging cognitive processes such as reflection,
interpretation, synthesis, or elaboration. However, it is
shown that achieving a clear distinction between behavioral
and cognitive elements of engagement is quite complex
(Kong, 2011). Nevertheless, the interplay between cognitive
engagement and various behaviors/actions is evident. For
instance, numerous studies have shown that a large set of
postural processes/behaviors is in close relation with cognitive
engagement (Balaban et al., 2004; Bonnet & Baudry, 2016;
Bonnet et al., 2017; Hunter & Hoffman, 2001), while others
call attention to the interplay with eye movements
(Ballenghein & Baccino, 2019; Kaakinen et al., 2018; Miller,
2015).

Emotional engagement includes positive or negative emo-
tions toward learning, classmates, or instructors, etc., and may
be observed through visible expressions (Henrie et al., 2015).
D’Mello et al. (2017) discuss on the significant capabilities of
advanced, analytical, and automated methods in measuring
engagement. In particular, they point out to the potential of
facial features, body movements, posture, eye gaze, and con-
textual cues, which relate the emotional dimension of
engagement.1 Since emotional engagement is more flexible
to incorporate than behavioral engagement and more feasible
to detect than cognitive engagement, it is often used in auto-
matic assessment of e-learning users’ state and various pro-
mising results have been reported over the years regarding
emotion-aware interventions (Aslan et al., 2018; Eliot &
Hirumi, 2019). Nevertheless, there is no a universal consensus
on a concrete definition of (each aspect of) engagement,
neither is there a well-accepted method of an effective mea-
surement (Sinatra et al., 2015). In what follows, we list several
works employing visual cues in estimating users’ state/level of
engagement.

Whitehill et al. use frontal videos of users cropped at
varying time scales, which are classified at a frame-by-frame
basis into two classes as high and low engagement through
several feature and classifier combinations (e.g., Gabor fea-
tures and SVM) (Whitehill et al., 2014). In that sense, they
explore the possibility of using low level and abstract features
(i.e., in no direct relation with the cause or effect of disen-
gagement), and they make an effort to achieve comparable
performance (in estimation) to human expert labeling.

Another very recent and interesting engagement estima-
tion study aimed at technology-mediated learning belongs to
Bosch and D’Mello, where upper-body movement, head pose,
facial textures, facial action units and their temporal dynamics
are employed in conjunction with support vector machines
and deep neural networks for detecting mind wandering
(Bosch & D’Mello, 2019; Smilek et al., 2010), which is some
form of disengagement, where attention shifts from the
immediate external environment to internal trains of thought
(Killingsworth & Gilbert, 2010).

In mind wandering, “blinks” are suggested to have
a particular role. In particular, spontaneous blinks are
shown to help humans disengage from the outside stimuli in
favor of the internal processing in two ways, (i) by physically
closing the eyelid and thus interrupting the visual stimuli; and
(ii) by applying a cortical suppression before and after lid
closure (Smilek et al., 2010). In this respect, blinks can be
considered as a particular means for the embodiment of
“mind wandering” (Schooler et al., 2011).

In addition to these findings in universal settings, blinking
is particularly important in human-computer interaction,
where the interaction interface is in most cases an LCD
display. Due to the intensity and frequency of the emitted
light, users may feel visual fatigue (or eye strain) over
a certain duration of time, which may affect their blinking
pattern as well (Rosenfield, 2011). In addition to these phy-
siological reasons, certain cognitive factors may result in
similar consequences (i.e., increased blinking rate) in com-
puterized tasks requiring mental workload. Namely, it is
shown that task disengagement scales substantially
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correlated with aspects of visual fatigue (Matthews &
Desmond, 1998). In particular, blinks are suppressed in
response to increased visual workload and this inhibition in
turn may cause drying of the eyes followed by a higher
blinking rate. In addition to blinking, the state of the eye
can also be represented using percentage of eyelid closure
(PERCLOS) to detect alertness or drowsiness. This kind of
marker is particularly popular in driver monitoring systems
and has been used in numerous works over the years (Ji
et al., 2004; Mbouna et al., 2013).

3. Experiments and data set

The outline of experimentation and compilation of ground
truth are as follows. We designed three tasks as explained in
Section 3.1 and asked several participants to carry out each
task for a time long enough to observe a wide spectrum of
engagement levels. During experiments, we collected video
data of participants’ face, head, and upper torso. As detailed
in Section 3.2, we asked two licensed teachers to label these
videos and annotate their (ground truth) engagement levels.
On these annotations, we carried out an inter-rater agreement
analysis and verified that the assigned labels are sufficiently
reliable as illustrated in Section 3.3. In what follows, we
present the details of each of these steps.

3.1. Experiment tasks

We designed three sorts of tasks such that each one requires
a different skill. However, denomination of the tasks is specified
by the required level of user involvement. In particular, we use
the terms passive, semi-active, and active (Koyama et al., 2019).

Specifically, in the passive task, the participants watch
a slide show of images, which are selected from
a benchmark saliency data set (Borji & Itti, 2015). The sub-
jects are told that they will be given a memory test afterward
as a motivation to attend the images but no test is given. This
task is considered to be similar to passive online learning in
being linear and straightforward.

In the semi-active task, the participants listen to the narration
of a story in English accompanied by illustrations, requiring
listening comprehension and inference skills.2 At the end of
each story, a multiple choice question with a single keyed answer
is displayed for a limited duration.3 We consider the narration
part of this task to be passive, where the participants need to
comprehend the information, and the subsequent test to be active,
which requires reasoning, deduction, and inference (Mayer,
2017).

The active task is Wisconsin card sorting (Heaton et al.,
1993), which is a common tool in neuropsychology for exam-
ining the functioning of the frontal lobe. The test requires
users to match a stimulus with one of the four options based
on an undisclosed rule, which changes at uneven steps so that
the participants need to discover the new rule by trial and
error, entailing the necessity of keeping continuous focus on
previous and subsequent rules as well as refuted ones (see
(Yücel, 2020) for implementation details). This task requires
strategic planning and organized search skills, as well as

utilization of feedback, modulation of impulsive response,
and directing behavior toward a goal.

Since the three tasks require different skills, we expect to
observe a wide spectrum of engagement levels. Moreover, for
eliminating individual behavioral variations, we asked five
people4 to perform all three tasks.5We call the specific implemen-
tation of a certain task carried out by a certain participant
a session. Thereby, we implemented a total of 15 sessions, where
each session takes approximately 2 hours. In this manner, we
gathered a data set composed of roughly 30 hours of video
recordings.

3.2. Coding process and ground truth

At each session, we used a notebook computer for presenting the
task to the participant and recording his/her behavior. Namely,
we collected a video footage depicting the face, head, and upper
torso using the built-in webcam of the computer (see Figure 1).6

The ground truth for the level of engagement is obtained
by manual annotation of video footage by licensed (and prac-
ticing) teachers. At this point, we would like to address several
works on teachers’ reliability regarding assessment of learners’
affective states. In particular, inter-rater reliability is shown to
be higher within teachers than between teacher-learner pairs
(X. Wu et al., 2013). In addition, teachers are considered to
estimate certain affective states such as confusion better than
others (e.g., boredom) (Graesser & D’Mello, 2012), indepen-
dent of the rating method (Urhahne & Zhu, 2015; Zhu &
Urhahne, 2014). Since teachers are shown to have consistent
judgments between each other and their level of judgment
does not depend on practical specifics of coding, we consider
them to be a reliable source of ground truth.

Nevertheless, the substantial duration of the footage makes
it hard for the teachers to view and label the entire data.
A common approach in dealing with this issue is to crop
segments of the video footage (henceforth referred as clips),
which are expected to involve representative cues on the
mental/cognitive state of a participant within a certain period
(Thomas & Jayagopi, 2017). By this means, the amount of
coding work is reduced to a reasonable level and the labeling
process becomes more affordable for the annotators. In addi-
tion, the set of clips summarizes the entire term of the

Figure 1. Experimental setup. User’s face, head and upper torso are observed
using the built-in webcam, as he/she performs tasks on the computer. Facial
landmarks are derived from the video footage.
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experiments and provides a comprehensive overview of parti-
cipants’ behavior.

Specifically, we cropped 15 clips from the raw footage of
a single session. To that end, we defined a set of time instants,
which describe the initial time (or equivalently initial frame
number) of every clip.7 We then cropped the portion of the
raw footage starting from each element of this set for
a duration of 10 sec. This time scale is regarded as reassuring
by (Whitehill et al., 2014), since level of engagement is not
subject to a serious variation throughout such observation
window.

Two licensed teachers (henceforth referred as coders) eval-
uated the clips according to the apparent level of engagement
of the participants. The coders practice regularly teaching
foreign languages and have vast experience of interacting
with students in conventional classroom settings. In that
respect, they are not provided any guidelines or sets of learner
actions/behaviors for judging the level of engagement, but are
rather asked to decide relying on their experience and feelings
without overthinking. Specifically, they assign each clip an
engagement label e on a Likert scale from 1 to 5, where e ¼
1 denotes “disengaged” and e ¼ 5 represents “engaged.”8 As
a result of the coding process, a total of 189 clips are labeled
by each of the two expert coders and considered in the forth-
coming analysis on estimation of engagement.9

3.3. Assessment of inter-rater agreement

In order to judge the consensus of the expert coders in the
evaluation of engagement levels, we examined the assigned
labels in a qualitative manner as well as in a quantitative
manner. In qualitative analysis, we considered the dependence
of assigned labels on two factors: (i) the type of task (i.e.,
passive, semi-active, or active) and (ii) assigned labels.

By examining the distribution of e with respect to task
type, the coders are observed to agree that the active task is
performed with a relatively higher rate of engagement in
general, followed by semi-active and passive tasks.

By examining the dependence of engagement on assigned
labels, it is observed that for extremities (i.e., “disengaged”
and “engaged”) the coders very often agree on side of the
spectrum. Namely, if one coder labels a certain clip as
“engaged” (e ¼ 5), then even when the other coder does not
assign the exact same label, he/she often labels the same clip
as “moderately engaged” (e ¼ 4) or fairly engaged (e ¼ 3), but
only very rarely as “poorly engaged” (e ¼ 2) or “disen-
gaged” (e ¼ 1).

Subsequent to these qualitative observations, we carried
out a methodological analysis quantifying the degree of agree-
ment between the coders. In literature, various statistical
methods are available for analyzing such inter-rater agree-
ment. Most methods consider “agreement” as improvement
in joint probability over expected agreement due to chance.
Some commonly adopted metrics such as Cohen’s κ coeffi-
cient or Fleiss’ κ coefficient apply only to qualitative (i.e.,
nominal) items and thus are not feasible for our case, where
the labels have a gradual relationship (i.e., increasing progres-
sively from “disengaged” to “engaged”) (Cohen, 1960; Fleiss,

1971). Therefore, in this study we choose using Krippendorff’s
α coefficient, which is a powerful metric applicable to labels
from various measurement scales (e.g., ordinal and interval)
(Krippendorff, 2004). Since our labels have a ranked relation,
we computed Krippendorff’s α for ordinal variables and found
an inter-rater agreement rate of α ¼ 0:78, which is considered
to be sufficient based on the remarks of Krippendorff (2004).
Having coders’ agreement confirmed, we arbitrarily chose one
coder and based our computations on her labels.

4. Method

The outline of the proposed approach is as follows. Based on
the ocular landmarks derived from the videos in Section 4.1,
we define a set of features in Section 4.2, which are shown in
Section 4.3 to be in close relation with coded levels of engage-
ment. Subsequently, the probability density functions of these
features are constructed based on a kernel density estimation
scheme in Section 4.4. By ascertaining the independent nature
of the features in Section 4.5, the distributions presented in
Section 4.6 are built. Finally, from a given set of observations,
engagement level is estimated within a probabilistic frame-
work as explained in Section 4.7.

4.1. Estimation of landmarks and detection of blinks

Facial landmarks are the set of points marking the locations
(or boundaries) of facial components such as eyes, nose, jaw-
line, etc., (Wang et al., 2018). Over the years, numerous land-
mark estimation methods have been proposed. These
methods consider a variety of templates (or maps), which
potentially involve a different number of markers (see
Figure 2a for a sample template). However, essentially the
same facial features are addressed by all templates. In other
words, varying templates describe similar facial features,
actions, or expressions at varying resolutions. For instance,
W. Wu et al. (2018) consider a total of 98 landmarks, whereas
Uřičář et al. (2016) consider 68 landmarks and Kasinski et al.
(2008) consider 30 landmarks. Since this study focuses on the
eyes, we take a closer look at the landmarks describing the
eyes (henceforth referred as ocular landmarks) in the afore-
mentioned studies.10 We notice that in all three studies the
descriptors of the eyes are constituted by lateral canthus,
medial canthus, and palpebral fissure (Neog, 2018).

Figure 2. (a) Landmarks detected by Dlib and (b) landmarks on a sample frame.
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Basically, lateral and medial canthi are represented by a single
marker in all approaches, whereas the number of markers
over the palpebral fissure is the varying factor. Since the
contraction of the palpebral fissure mostly does not involve
any lateral movements and the relative positions of the con-
cerning landmarks are expected to be quite stable and depen-
dent, we consider descriptions of the palpebral fissure using
different number of markers to have virtually the same effect
in representing the state of the eye, provided that the accuracy
of landmark estimation is comparable.

Therefore, in choosing the landmark estimation method
and the template entailed by that, we regard speed and accu-
racy to be the determining factors and opt for the method
proposed by Kazemi and Sullivan (2014), which is considered
to be the state-of-the-art in terms of both factors (Y. Wu & Ji,
2019). Pursuant to this choice, we employ the Dlib toolbox in
deriving the landmark locations (King, 2018), which is based
on the principles of Kazemi and Sullivan (2014). In this
manner, using a shape predictor pre-trained on the iBUG
300-W data set (Sagonas et al., 2016), a set of 68 landmarks
are obtained as seen in Figure 2.

Using these landmarks, we study spontaneous blink pat-
terns (Cruz et al., 2011).11 In blink detection, we employ the
simple and yet powerful real-time blink detection method
proposed by Soukupová and Cech (2016). Specifically, this
method is based on the changes in aspect ratios of the right
and the left eye, rL and rR, respectively. Namely, concerning
the landmarks in Figure 2a, rL is defined as,

rL ¼ jp37 � p41j þ jp38 � p40j
2jp36 � p39j : (1)

Moreover, blinks being symmetric (to the right and the left
eyes), it is plausible to use the average of the two eye aspect
ratios rL and rR in detection of blinks.

Since the time course of -average- eye aspect ratio can be
subject to individual variations on the speed of closing and
opening, or the degree of squeezing the eye, etc., Soukupová
and Cech (2016) account for the effect of these individual
variations by training an SVM classifier on sample blinking
and non-blinking patterns from several data sets (Duda et al.,
2012). In addition, a detailed analysis on the estimation accu-
racy on two standard eye blink data sets with ground truth
annotations (Drutarovsky & Fogelton, 2014; Pan et al., 2007)
reveals that this approach yields an almost perfect estimation
accuracy.

As result of this detection process, we obtain (i) the loca-
tions of the 12 ocular landmarks (for the both eyes) at each
frame and (ii) a binary function b½i� which describes the
blinking state of the eyes at every frame i with a 0 for blink
and 1 for non-blink.

4.2. Derivation of features

Subsequent to the detection of ocular landmarks (see Figure 3)
and blinks, we define a set of four features derived thereof as
duration of blinks tb, frequency of blinks fb, average aspect ratio
for open eyes �ro, and interocular breadth dio. Note that
although the current study considers these features as reflec-
tions of emotional engagement, several other studies consider
similar features to represent directly cognitive engagement,
since their tasks and probes are designed to assure a firm
relation. (Ballenghein & Baccino, 2019; Kaakinen et al., 2018).
In what follows, we describe the features in detail.

The average duration of blinks tb is considered basically as
the ratio of the number of frames at a blinking state to the
number of blinks. Using the binary function b½i� defining the
state of the eyes at frame i with a 0 for blink and 1 for non-
blink, tb is found as,

tb ¼
Nf �

P
i b½i�

fbNf
; (2)

where fb is the frequency of blinks and Nf stands for the total
number of frames of the input video.12 For determining the
frequency of blinks fb, we first count how many times a blink
is initialized by the closing of the eye (i.e., blink onset).13 The
frequency of blinks is found as,

fb ¼
P

i H �b½iþ 1� þ b½i�ð Þ
Nf

; (3)

where H is the left-continuous Heaviside step function
(Abramowitz et al., 1988). Note that, tb and fb are particularly
beneficial in representing the degree of perceptual decoupling
due to blinks (Smilek et al., 2010).

Average aspect ratio �ro for open eyes is the average of the
aspect ratios of both eyes over the time interval while the eyes
are open,

�ro ¼ �rL;R½i�b½i� ¼ 1
n o

: (4)

In this sense, �ro presents similarity to percentage of eyelid
closure, which is a common indicator in identifying drowsi-
ness in driver monitoring systems (Ji et al., 2004).

Interocular breadth dio is in close relation to the depth of the
user, i.e., distance between the user and screen, which is
a common feature in evaluation of engagement (Asteriadis
et al., 2011). In this study, rather than the explicit value of
depth, we consider interocular breadth dio, which can be con-
sidered to be inversely proportional to the depth of the user. On
the landmark map depicted in Figure 2a, dio corresponds
to jp39 � p42j.14

Interocular breadth is a de facto feature that does not
depend on the blinking state, whereas fb and tb account for

Figure 3. Eye regions and corresponding landmarks as eyes are (a) open, and (b) closed.
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the time intervals while the eyes are closed due to blinking,
whereas the remaining time intervals (i.e., when eyes are at
a non-blinking state) are accounted for by �ro. Henceforth, we
denote the set of all features tb; fb; �ro; diof g with Σ, an
arbitrary feature in Σ with σ and a subset of several features
with Σ

0
.

Since duration of the clips (i.e., 10 sec) is chosen so as to
enable assuming stability of engagement (Whitehill et al.,
2014), a set of features concerning a particular clip can be
considered to represent the level of engagement assigned to
that clip by the two expert coders.

4.3. Verifying relevance of features

Due to the inferences from previous literature, it is plausible
to assume that the features defined in Section 4.2 are expected
to be correlated with the subjective evaluations of engagement
level e (Asteriadis et al., 2011; Matthews & Desmond, 1998;
Rosenfield, 2011; Smilek et al., 2010). In order to confirm that,
we first present the descriptive statistics of the variables and
then determine in a quantitative manner (through polyserial
correlation) the extent of this correlation.

Table 1 reports descriptive statistics for three states of
engagement (e ¼ 1 disengaged, e ¼ 3 fairly engaged, e ¼ 5
fully engaged). It can be observed from this table that for
the duration of blinks tb, the values for e ¼ 5 are lower than
those relating e ¼ 3, which are lower than the ones of e ¼ 1,
all in line with the expectations. Moreover, fb is lower for e ¼
5 (fully engaged) as compared to e ¼ 3 and e ¼ 1, which
means that they blink more often for these values.
Nevertheless, there is not a monotonic decrease. For the
aspect ratio of the eyes �ro, eyes are more widely open for
higher levels of engagement and the values of �ro are smaller
for users with lowers levels of engagement. In addition,
interocular breadth dio gets lower as e decreases, which
means that participants prefer staying further away from the
monitor as they lose their engagement. Although the general
tendency is mostly monotonic for the four variables, by taking
a closer look at the standard deviations, we can see that the
distinction between variable values is lower for similar states
of engagement (i.e., closer values of e).

In addition, we compute the polyserial correlation coeffi-
cient ρ. In particular, polyserial correlation defines the corre-
lation between a quantitative variable and an ordinal variable.
It is based on the assumption that the joint distribution of the
quantitative variable and a latent continuous variable under-
lying the ordinal variable is bivariate normal.

In our case, we consider the values of the proposed features
described in Section 4.2 relating each clip as the numerical
variables. The corresponding ordinal variables are the labels

assigned by the expert coder. For estimating their correlation,
we opt for a maximum likelihood approach, which maximizes
the bivariate-normal likelihood with respect to the ordinal
variable.15

Computing polyserial correlation coefficient ρ for duration
and frequency of blinks, we demonstrate that they have
a mild- negative correlation with engagement, namely ρðtbÞ ¼
�0:29 and ρðfbÞ ¼ �0:31 . Specifically, these values ascertain
that when the level of engagement decreases, the average
duration of blinks gets longer and frequency of blinks
increases. This finding is in line with the suggestion of
(Smilek et al., 2010), which state that blinking helps humans
disengage from the outside stimuli, in favor of the other
cognitive processing (i.e., mind wandering); as well as the
fact that increased workload causes a higher blinking rate in
the long term (Matthews & Desmond, 1998).

On the other hand, the interocular breadth dio and eye
aspect ratio �ro have a somewhat stronger positive correlation
with the apparent level of engagement, namely ρðdioÞ ¼ 0:58
and ρð�roÞ ¼ 0:66 . In other words, as the level engagement
increases, interocular breadth and normalized eye size
increase as well. This indicates that when the user is concen-
trated on the task, his/her face is closer to the screen and; he/
she looks at the screen with eyes wider open.

4.4. Deriving probability distributions

Subsequent to verifying that the proposed features present
credible correlation with the assigned levels of engagement,
we propose a method to probabilistically assess the level of
engagement. To that end, we derive probability density func-
tion (pdf) of the features described in Section 4.2 from their
respective empirical observations. In doing that, we utilize
kernel density estimation (KDE), which is one of the most
popular non-parametric methods in estimating the underlying
pdf of a set of observations (Alpaydin, 2016).

Let x be a random variable and (x1; x2; . . . ; xn) be a set of n
samples drawn from a distribution with an unknown density
f . KDE of f can be expressed as,

f̂ ðxjhÞ ¼ 1
nh

Xn
i¼0

F
x� xi
h

� �
; (5)

where F is the kernel (a non-negative function) and h > 0 is
the smoothing hyper-parameter (i.e., bandwidth). Regarding
the kernel F, Gaussian distribution is considered to give
satisfactory results in most cases and we adopt this conven-
tion. On the other hand, the selection of the smoothing hyper-
parameter h in Equation (5) emerge as one sensitive point of
KDE, which often bears a bias-variance trade-off (Heidenreich
et al., 2013). Since the bandwidth estimate selected by the least
squares cross-validation is known to be subject to large sam-
ple variation, we use grid search over a given interval at evenly
spaced points (VanderPlas, 2016).

In addition to bandwidth selection, KDE needs to be
handled carefully also against curse of dimensionality.
Namely, the principles explained using Equation (5) based
on a single variable can in theory be extended easily to
a multivariate case. However, in practice, multivariate kernel

Table 1. Descriptive statistics for the values of the variables regarding e ¼ 1,
e ¼ 3 and e ¼ 5. The values in the table are organized as μ� σðεÞ, where μ is
the mean, σ is the standard deviation and ε is the standard error.

e ¼ 1 e ¼ 3 e ¼ 5

tb 0:26� 0:06 ð0:04Þ 0:16� 0:11 ð0:02Þ 0:07� 0:06 ð0:02Þ
fb 0:12� 0:03 ð0:02Þ 0:16� 0:08 ð0:02Þ 0:07� 0:07 ð0:02Þ
�ro 0:22� 0:01 ð0:01Þ 0:28� 0:02 ð0:00Þ 0:29� 0:02 ð0:01Þ
dio 0:21� 0:00 ð0:00Þ 0:25� 0:03 ð0:00Þ 0:29� 0:03 ð0:01Þ
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density estimation is usually restricted to 2-D due to the curse
of dimensionality. Similar to most other applications, also in
our case, operating in the full (4-D) variable space Σ poten-
tially yields an overwhelmingly large number of bins, and thus
the space is sparsely populated by data points. Therefore, we
prefer using a set of 1-D variable spaces. However, this choice
needs a justification for conditional independence of observa-
tions, which is elaborated on in Section 4.5.

4.5. Verification of conditional independence of feature
distribution

To verify that the features are conditionally independent, we
adopt an information theoretic approach and use relative
entropy distance. Principally, entropy distance of two random
variables as Θ and Δ is defined as

DHðΘ;ΔÞ ¼ HðΘ;ΔÞ � IðΘ;ΔÞ; (6)

where HðΘ;ΔÞ and IðΘ;ΔÞ are, respectively, the joint entropy
and mutual information of these variables (MacKay, 2017).

In explicit terms, joint entropy is

HðΘ;ΔÞ ¼ �
X
i;j

pðθi; δjÞ log2ðpðθi; δjÞÞ; (7)

whereas the mutual information is defined as

IðΘ;ΔÞ ¼
X
i;j

pðθi; δjÞ log2
pðθi; δjÞ
pðθiÞpðδjÞ

� �
: (8)

On the other hand, the relative entropy distance, which is
defined as

DðΘ;ΔÞ ¼ DHðΘ;ΔÞ
HðΘ;ΔÞ ; (9)

is useful for our purposes since it is a true metric. Namely, as
it is elaborately explained in (Li et al., 2003), it is non-
negative, symmetric and it satisfies the triangle inequality. In
addition, it is bounded to the interval ½0; 1�, which makes it
easy to interpret. Specifically, for uncorrelated variables, the
relative entropy distance DðΘ;ΔÞ should be 1, and closer to 0
for correlated ones.

Table 2 shows relative entropy distance values between
each pair of variables.16 From the values presented in Table
2, we can infer that there is a reasonable degree of indepen-
dence between all pairs.17 As a result, we can claim that the
curse of dimensionality can be overcome using
a decomposition of individual density distributions.

4.6. Resulting 1-D feature distributions

The outcomes of the estimation process described in Section 4.4
applied to each individual feature are presented in Figure 4. For

the sake of simplicity, Figure 4 provides a comparison between
the two extremities of engagement (i.e., fully engaged and dis-
engaged) regarding the features defined in Section 4.2.

From Figure 4a, it is clear that as e decreases, there is
a trend of observing longer blinks. On the other hand, the
frequency of blinks has the tendency to be higher for disen-
gaged participants as presented in Figure 4b. These findings
support the conclusions of (Schooler et al., 2011) relating the
effect of blinks on perceptual decoupling. Regarding �ro pre-
sented in Figure 4c, as e decreases, eye aspect ratio decreases.
This observation is also in line with the findings of Section 4.3
and (Koyama et al., 2019). From Figure 4d, it can be seen that
the interocular breadth is smaller for e ¼ 1, indicating that as
the level of engagement decreases participants prefer staying
further away from the display (Asteriadis et al., 2011).

4.7. Probabilistic determination of engagement level

Potentially, the procedure described in Section 4.4 can be
applied on all values of e 2 ½1; 5� and five pdfs can be derived
for each feature. In that regard, given the observed value of an
arbitrary feature σ and its concerning pdfs, it is trivial to
estimate the level of engagement, where the most intuitive
approach would be to evaluate this value in pdfs relating all
e 2 ½1; 5� and consider the engagement level with the highest
likelihood as the final (discrete) estimation result. Note that it
is still necessary to blend together the discrete estimations
(relating each individual feature) into one decisive estimation.

However, a qualitative comparison of the KDEs reveals
that neighboring engagement levels, namely e ¼ j and e ¼ jþ
1 present a quite similar behavior, which is not completely
surprising, given the subjective nature of these labels.
Nevertheless, the difference between the two extremities, e ¼
1 and e ¼ 5, is obviously larger than the parameter variation.
For this reason, we consider the distributions representing
e ¼ 1 (disengaged) and e ¼ 5 (fully engaged) as benchmarks
in estimation of engagement level. In relation to that, we also
opt for a probabilistic estimation method rather than
a discrete one.

Without loss of generality, consider initially the case con-
cerning an arbitrary σ. By evaluating the observed value of σ
in its pdf relating e ¼ 1, we compute the likelihood that this
observation belongs to a disengaged person, LdðσÞ,

LdðσÞ ¼ p σje ¼ 1ð Þ: (10)

Similarly, by evaluating it in its pdf concerning e ¼ 5, the
likelihood that σ comes from a distribution relating fully
engaged users is computed as, LeðσÞ,

LeðσÞ ¼ p σje ¼ 5ð Þ: (11)

Then, we can derive in an empirical way, the probability of
being engaged pe and the probability of being disengaged pd,
where

pe ¼ LeðσÞ
LeðσÞ þ LdðσÞ ; (12)

and pd is simply the complementary probability, pd ¼ 1� pe.

Table 2. Relative entropy distances for all pairs of variables.

tb fb �ro dio
tb 0.00 0.95 0.93 0.92
fb 0.00 0.91 0.91
�ro 0.00 0.90
dio 0.00
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Clearly, it is possible to apply the above procedure on any
σ 2 Σ as well as on the entire set of features Σ or a subset of

several features Σ
0 � Σ. In other words, by exploiting the

property of conditional independence of features illustrated
in Section 4.5, we can compute the likelihood that the user is
engaged as,

LeðΣ0 Þ ¼
Y
σ2Σ0

LeðσÞ: (13)

Upon determining LdðΣ0 Þ in a similar fashion, we can use the
same idea as in Equation (12) (i.e., complementarity of being
engaged and disengaged) and compute the probability of
engagement pe based on Σ

0
.

5. Results and discussion

In investigating the efficacy of the proposed features and
estimation method, we adopt the following assessment
approach. First of all, for evaluating the effectiveness of each
particular feature σ 2 Σ, we apply the probabilistic approach
presented in Equation (12) to individual features. Next, by
applying the estimation method on the set of all features Σ as
in Equation (13), we determine the potentially optimum
performance.

Figure 5 demonstrates the probability of being engaged
based on each of the four features described in Section 4.2.
From this figure, it is clear that pe is monotonically increasing
for growing values of e for most σ, although the rate of
increase varies between the features. Nevertheless, the overall

Figure 4. Probability distributions for (a) tb , (b) fb, (c) �ro, and (d) dio for two extremities of engagement level (e ¼ 1 disengaged, and e ¼ 5 fully engaged).

Figure 5. The probability of being engaged pe computed using each individual feature. Error bars represent standard deviation and shaded region represents
standard error.
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tendency still presents supporting evidence for the efficacy of
the proposed features, particularly for dio and �ro, which are in
line with the conclusions based on polyserial correlation
values given in Section 4.3.

Moreover, it is not surprising that standard deviation
values are smaller for extremities, since the extremities are
adopted as benchmarks. On the other hand, standard devia-
tions are higher for the intermediate values of e. However,
from qualitative observations, we know that these values of
e are the ones, which the coders agree less, thus it is
expected that there is a larger deviation on those. In addi-
tion, due to the large number of samples, the standard error
is much smaller than standard deviation for all values of e.

As presented in Figure 6, we obtain a clear improvement in
estimation of engagement by integrating the information from
all the features, i.e., employing Σ. As expected, the values of pe
obtained by the integration of all σ is monotonically increas-
ing. Also, it yields a considerable separation between values of
pe relating e 2 ½1; 2� (i.e., disengaged or poorly engaged) and

e 2 ½4; 5� (i.e., moderately engaged to fully engaged). In parti-
cular, we see that when the user is not engaged pe is almost 0,
whereas it increases steeply as he/she reaches fair or higher
levels of engagement. These findings suggest that by estimat-
ing pe with the proposed method and setting a threshold at
some value around 0:50, we can detect the engagement levels
below average and above average with a satisfactory accuracy.

In addition to this integration approach (i.e., employing
the set of all features Σ), we can also apply a “differential
approach,” where we remove one feature at a time from the
input set, Σ

0 ¼ Σ� σ, as another means to evaluate the sensi-
tivity of the method to each individual feature. The curves in
Figure 7 present the outcomes of the differential approach. In
agreement with the previous inferences, dio is found to make
the largest contribution to performance, since its removal
causes a larger degradation. Yet this degradation is no more
than 0:1 on the average. It is interesting to note that removing
dio we achieve a slight degradation at the extremities but also
a smaller deviation at intermediate levels, which indicates

Figure 6. The probability of being engaged pe computed integrating all features. Error bars represent standard deviation and shaded region represents standard
error.

Figure 7. The probability of being engaged pe computed by removing one feature at a time from the feature set, Σ
0 ¼ Σ� σ. Error bars represent standard deviation

and shaded region represents standard error.
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a trade-off. Nevertheless, the small standard error values show
that provided that a larger sample size is achieved, the effect
of this deviation will diminish.

In addition to the above-mentioned differential approach
on input variables, we also examined the dependence of pe on
the type of users’ task. We observed that the active task
receives slightly higher values regarding e ¼ 3, and quite
similar values for the remaining levels of engagement.
Nevertheless, the behavior at e ¼ 3 is not significant once it
is compared to the variation of pe values for other values of e,
in particular for e 2 2; 4f g.

In addition, we would like to mention several limitations of
our approach. The first issue relates the generalization of impli-
cations due to certain actions. Namely, some actions such as
perceptual decoupling may indicate disengagement in certain
settings (e.g., closing the eyes to take a break from studying),
while they may indicate to engagement in others (e.g., closing
the eyes to stop distracting stimuli). Although the learning tasks
used in this study are designed in a way that such contradictory
implications will not be observed, a generalized version of this
study addressing a larger variety of learning tasks needs to
account for such issues, possibly by considering sets or
sequences of actions (of the eyes or the mouth, etc.) rather
than isolated actions (e.g., of only the eyes).

Another limitation is that only the semi-active task has
ecological validity in actual learning settings. In addition, the
passive task can be considered to be somewhat similar to
passive online learning, since it is linear and straightforward.
Nevertheless, tasks such as the active one do not have direct
correspondence in e-learning.

Note that several kinds of performance data are collected
involving participants’ subjective evaluations as well as objec-
tive measures such as user activity logs in the active task, or
answers to the questions in the semi-active task. However, we
could not find a smooth way to incorporate them with the
behavioral variables derived from the video-clips. The main
reason for this is that the video-clips span a too short time
window to assess performance in a reliable way. In other
words, either the performance values inherently concern the
entire duration/segment of the task (longer than the anno-
tated 10 s window) or the number of data points (e.g., derived
from the computer registered values) are too small to establish
a direct relation between the video-clip of interests and task
performance.

6. Conclusion

Although conventional approaches in joint attention rely on
the assumption that gaze indicates sustained visual attention
(Yücel et al., 2013), elaborate studies on brain activity show
that humans may seem to attend but lose engagement over
time (Eldenfria & Al-Samarraie, 2019; Szafir & Mutlu, 2012).
In that sense, this study focuses particularly on technology-
mediated learning systems and offers a method to estimate
users’ level of engagement in a probabilistic manner.

In order to detect declines in levels of engagement, we
choose a set of features relying on the findings of several
works from the research fields of cognitive science, affective

computing, eye physiology. In particular, we exploit the fol-
lowing findings: (i) mental or cognitive fatigue is in close
connection with perceptual decoupling, which is enhanced
by blinking (Smilek et al., 2010); (ii) involvement in compu-
ter-based tasks correlates significantly with depth of the users
(Asteriadis et al., 2011); (iii) visual fatigue due to exposure to
digital displays is correlated with blinking rate and this corre-
lation is expected to grow if the user is under high task load
(Matthews & Desmond, 1998; Rosenfield, 2011), (iv) aspect
ratio of the eyes present significant information on attentional
state of users (Ji et al., 2004). Based on these results, we define
a set of four features, all derived from ocular landmarks and
search for subtle cues of dis/engagement.

Specifically, we compute facial landmarks from videos of
human subjects carrying out various tasks and derive several
features from the landmarks describing the eyes. Namely, we
derive the frequency and duration of spontaneous blinks;
interocular breadth and eye aspect ratio. These features are
confirmed to involve valuable information about labels of
engagement assigned by expert coders (Koyama et al., 2019).
Building concerning pdfs from empirical observations
through kernel density estimation, we propose
a probabilistic method for engagement level. We show the
features and the method achieve a considerable performance
in estimation of engagement. In addition, we evaluate the
performance using each individual feature and the set of all
features, as well as subset of features (removing a single fea-
ture at a time).

The proposed approach has several advantages as (i) cap-
ability of on-the-fly assessment of engagement, (ii) potential
stimulation of the user with motivational advice, etc., imme-
diately upon detection of disengagement, (iii) enabling
a customization to person-specific factors by a simple cali-
bration of the fundamental models and adjustment to inter-
personal variations in behavior, and (iv) a possibility of
detection of dis/engagement (or its embodiment) by inter-
action agents.

Notes

1. D’Mello et al. call attention to biological or physical indicators
such as skin conductance or mouse pressure, etc., as well. But
these require a specific sensory configuration and can not be
easily incorporated with existing systems.

2. The participants speak English as a foreign language, have fol-
lowed a similar academic curricula and, thus, are assumed to have
a similar level of proficiency in English. In addition, NASA TLX
surveys carried out following the semi-active task, as well as
investigation of correctness of participants’ answers to the ques-
tions on the narrations, reveal that they do not experience any
problems due to any insufficiency in English proficiency.

3. The participants listen to 35 stories narrated on the average for
251� 47 sec. After each narration, they are given 15 sec to answer
a question on the story.

4. There are one male and four female participants with age
26:8� 2:7.

5. The participants performed only a single task on each day and
finished all tasks within a time window of 2 weeks.

6. The video footage has a resolution of 1280� 720 and a frame rate
of 30 fps, which are in line with the specifications of most off-the-
shelf recording products or built-in computer hardware.

1536 Z. YÜCEL ET AL.



7. The start instants of the video clips are determined (from the
beginning of the task) in minutes as follows:
½5; 10; 15; 25; 30; 40; 50; 60; 70; 80; 85; 90; 100; 105; 110�.

8. In particular, we consider e ¼ 5 as “fully engaged,” e ¼ 4 as
“moderately engaged,” e ¼ 3 as “fairly engaged,” e ¼ 2 as “poorly
engaged,” and e ¼ 1 as “disengaged.” However, while contrasting
the extremities, we use the terms “engaged” and “disengaged” for
the sake of brevity.

9. The last 35 clips coded by the teachers are found to have unreli-
able labels most probably due to a confusion of one of the coders;
and one clip is found to involve no learning task and, thus, is
discarded.

10. Taking a closer look at the most popular landmark estimation
methods, one may notice that it is quite common to use templates
involving around 60 points.

11. In other words, we exclude any reflex or voluntary blinks. The
reason for this exclusion is two-fold. First of all, since tactile stimuli
(to the face or other body parts) are not present in our experiments,
and the degree of optical or auditory stimuli is not to a significant
degree or subject to large variations, we assume no reflex blinks take
place. In addition, since the participants are not aware that we study
their blinking patterns and are neither instructed to blink intention-
ally, they are assumed not to perform any voluntary blinks.

12. In our specific set, since frame rate is 30 fps and clip duration is
10 sec, Nf ¼ 300.

13. Obviously, one may as well opt for replacing the blink onset with
blink offset. Since the duration of the clips (i.e. 10 sec) is considered
to assure a uniform level of engagement over this course, even
though the value associated with a particular clip may change (i.e.
increase or decrease by 1), the distribution of number of blinks
relating a particular level of engagement is expected not to be affected
by this choice. In addition, the integration of fb with the other
features is regarded to improve resiliency and stability of estimation.

14. The biocular breadth, i.e. the distance between the two landmarks
representing the lateral canthi, can also be used to replace dio.

15. For optimization, a general-purpose method based on Nelder-
Mead algorithm is used (Nelder & Mead, 1965). In implementa-
tion, we used rpy2 package, which is a back-end for
R programming language to Python (Gautier, 2008).

16. Since the matrices in Table 2 are symmetric, only the upper
triangular part is presented.

17. There is no guideline to assess independence based on relative
entropy distance but various studies consider values over 0.90 to
indicate independence to a sufficient degree (Zanlungo et al., 2017).
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