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Abstract: The purpose of this 3-year prospective cohort study was to explore the relationship between
an increase in dental caries and oral microbiome among Japanese university students. We analyzed
487 students who volunteered to receive oral examinations and answer baseline (2013) and follow-up
(2016) questionnaires. Of these students, salivary samples were randomly collected from 55 students
at follow-up and analyzed using next-generation sequencing. Students were divided into two groups:
increased group (∆decayed, missing, and filled teeth (∆DMFT) score increased during the 3-year
period) and non-increased group (∆DMFT did not increase). Thirteen phyla, 21 classes, 32 orders,
48 families, 72 genera, and 156 species were identified. Microbial diversity in the increased group
(n = 14) was similar to that in the non-increased group (n = 41). Relative abundances of the family
Prevotellaceae (p = 0.007) and genera Alloprevotella (p = 0.007) and Dialister (p = 0.039) were enriched in
the increased group compared with the non-increased group. Some bacterial taxonomic clades were
differentially present between the two groups. These results may contribute to the development of new
dental caries prevention strategies, including the development of detection kits and enlightenment
activities for these bacteria.

Keywords: salivary microbiome; sequence analysis; young adult; dental caries; saliva; oral health

1. Introduction

Dental caries caused by some pathogens of the oral microbiome is a widespread disease. In the
Global Burden of Disease 2015 Study, untreated caries in permanent teeth was the most prevalent
condition, affecting 2.5 billion people worldwide [1]. The cause of dental caries is multifactorial.
In addition to major microbial species mutans streptococci (predominantly Streptococcus mutans and
S. sobrinus), physical, biological, environmental, behavioral, and lifestyle-related factors are risk factors
for dental caries [2].
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Recently, next-generation DNA sequencing (NGS) analyses have attracted attention for use in
microbiome studies, including dental caries. A pyrosequencing (NGS analysis) study revealed genera
Prevotella, Lactobacillus, and Streptococcus were increased in carious dentin compared with healthy
dentin [3]. Another study revealed that genera Alloprevotella, Atopobium, Lautropia, Megasphaera,
Selenomonas, and Veillonella were enriched in saliva from a high-risk caries group [4]. According to the
ecological hypothesis of dental caries [5], the proportion of acidogenic and aciduric taxa, such as mutans
streptococci and Lactobacillus, are increased and lead to demineralization. In addition, this hypothesis
suggests that amino acid-degrading microbial taxa, including Prevotella, and Fusobacterium species
may also cause the acidic environment required for demineralization [5,6]. These results indicate that
both mutans and non-mutans streptococci may contribute to dental caries. However, many caries
studies using sequencing analyses targeted young children with primary dentition, and few studies
have focused on young adults and older people [4,7–10]. Whether a relationship between the increase
in dental caries and oral microbiome exists in these latter populations remains unclear.

In Japan, there remains a high caries prevalence in young adults. Among young adults (20–24 years),
79.4% had caries experience [11]. Thus, it is crucial to prevent dental caries in the general population.

Therefore, we hypothesized that an increase in dental caries during university life is associated
with a unique oral microbiome. The purpose of this 3-year prospective cohort study was to explore the
relationship between an increase in caries and oral microbiome among Japanese university students.
In addition, we investigated the association between other factors and caries increment.

2. Materials and Methods

2.1. Study Population

The inclusion criteria were Japanese students who volunteered to receive oral examinations at the
Health Service Center of Okayama University both in April 2013 (baseline) and April 2016 (follow-up).
We excluded students who provided incomplete responses in their questionnaires.

2.2. Ethical Procedures and Informed Consent

All study protocols were approved by the ethics committee of Okayama University Graduate School
of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital (no. 1060). All
targeted participants gave their informed verbal consent for study participation. This study followed
the strengthening the reporting of observational Studies in Epidemiology (STROBE) guidelines.

2.3. Questionnaire

At baseline, students answered questions concerning age, sex, systemic diseases, and oral health
behaviors (daily frequency of tooth brushing, use of dental floss, and visits to dental clinics for regular
checkups) [12]. Furthermore, at follow-up, four additional questions were included about fluoride
dentifrices, knowledge of the effectiveness of fluoride, daily frequency of eating sweets, and smoking
during university life.

2.4. Oral Examination

Oral examinations were performed by five calibrated dentists (Daisuke Ekuni, Kota Kataoka,
Mayu Yamane-Takeuchi, Shinsuke Mizutani, and Tetsuji Azuma). After counting the number of teeth,
the oral hygiene state was evaluated using the Debris Index-Simplified (DI-S) score [13]. The decayed,
missing, and filled teeth (DMFT) scores was recorded according to the World Health Organization
criteria [14]. After the theoretical training, to assess intra- and inter-examiner agreement, DMFT scores
were recorded and repeated within a 2-week interval in two volunteers. Data were analyzed using a
non-parametric kappa test. The kappa values were >0.8.
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2.5. DNA Extraction and NGS Analysis

At follow-up, unstimulated saliva (>1 mL) was randomly collected into sterile ice-chilled 15 mL
tubes from students (from 09:00 to 16:00) before the dental examination and frozen at −80 ◦C until
analysis. To prevent possible protein dilution, unstimulated saliva was collected instead of stimulated
saliva [15–17]. A random number list was used for selecting participants for saliva collection. The
saliva of selected participants was not collected at baseline. Saliva DNA was collected using the
QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions
using sterile equipment and DNA removal reagents for laboratory instruments. Collected DNA
was stored at −20 ◦C for further analysis. For amplified bacterial DNA, V3 and V4 regions
of the 16S rRNA gene were amplified using primers 357F (5′-TCGTCGGCAGCGTCAGATGT
GTATAAGAGACAGCCTACGGGNGGCWGCAG-3′) and 781R (5′-GTCTCGTGGGCTCGGAGATG
TGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′) at Okayama University Hospital Biobank
(Okayama University Hospital, Okayama, Japan) according to the standard protocol using the MiSeq
platform (MiSeq Reagent V3 600 cycles, Illumina, San Diego, CA, USA). Quality of raw sequence reads
was checked using FastQC (version 0.11.3, Babraham Bioinformatics, Cambridge, UK) and analyzed
using USEARCH (version 8.0.1623, https://www.drive5.com/usearch/) at the Oral Microbiome Center
(Taniguchi Dental Clinic, Kagawa, Japan). After removing chimeric reads, duplicated reads, and short
reads <400 bp, preprocessed reads of each sample were clustered into operational taxonomic units
(OTUs) at 97% level of nucleotide similarity using UCLUST algorithm to determine the number of
OTUs. Furthermore, these reads were analyzed to identify human oral taxa using the Human Oral
Microbiome Database (version 14.5; http://www.homd.org/).

2.6. Statistical Analyses

We estimated the sample size for the saliva examination based on a previous study [4] using
G*Power (version 3.1.9.4, Düsseldorf, Germany). The difference in α diversity (Simpson index; caries
group: 0.075± 0.019, healthy group: 0.099± 0.037) was selected as the primary outcome [4]. To calculate
the effect size, mean and standard deviation of 0.024 ± 0.018 was considered to detect a difference
in α diversity between the two communities. Based on the data, the minimum sample size required
was 52 to provide a power of 91% with an alpha of 0.05 by t-test. Participants were divided into two
groups based on the change in DMFT score during the 3-year follow-up period; participants with
∆DMFT > 0 were categorized into the “increased group,” while participants with ∆DMFT = 0 were
categorized into the “non-increased group” [18]. The normality of the data was confirmed by the
histogram and quantile-quantile plot. The Mann–Whitney U test and Fisher’s exact test were used to
determine the presence of significant differences in variables of oral examination and questionnaire
between increased and non-increased groups. Associations between variables and dental caries were
examined in a series of logistic regression models, and the odds ratio (OR) and 95% confidence interval
(CI) were calculated. Logistic regression models were reviewed for goodness-of-fit and validated using
the Hosmer–Lemeshow statistic. A p-value < 0.05 was considered significant. Statistical analyses were
performed using SPSS (version 25.0; IBM, Tokyo, Japan).

Alpha diversity was determined using R (version 3.4.3; The R Project for Statistical Computing,
http://www.R-project.org). The species richness of saliva microbiota of individuals was measured
by Chao1 and the abundance-based coverage estimator (ACE) indices. The diversity of the saliva
microbiota was measured by Shannon and Simpson indices. Microbial beta diversity was visualized
by principal coordinates analysis using the Calypso software tool (http://bioinfo.qimr.edu.au/calypso/).
The Mann–Whitney U test was used to assess significant differences in the abundance of taxa between
increased and non-increased groups. Rarefaction curves were calculated using Calypso to compare
microbial richness among samples. To compare the microbial composition between increased and
non-increased groups, relative abundances (%) were calculated from the taxonomic abundance count
divided by preprocessed reads. Linear discriminant analysis (LDA) effect size (LEfSe) methods
were used to identify taxa with differentiating relative abundance using the online interface Galaxy

https://www.drive5.com/usearch/
http://www.homd.org/
http://www.R-project.org
http://bioinfo.qimr.edu.au/calypso/
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(http://huttenhower.sph.harvard.edu/lefse/). The threshold for the logarithmic LDA score for biomarker
discovery was set at 2.0 [19,20].

3. Results

3.1. Participant Characteristics

The study flowchart is shown in Figure 1; 293 students (follow-up rate: 13.4%; 149 males,
144 females; mean age and standard deviation at baseline: 18.2 ± 0.77 years) were analyzed (Table 1).
At follow-up, the DI-S score of selected students (n = 55) was significantly lower than that of all
participants (n = 293; p < 0.05, t-test). No significant differences were observed in the other parameters
evaluated between selected students and all participants (p < 0.05, Mann–Whitney U test and Fisher’s
exact test).
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Figure 1. Flowchart of study participants. This flowchart shows the process for selecting analyzed
participants. At baseline, 2187 students received the oral examination. Because follow-up oral
examination was not mandatory, only 487 students received a second oral examination. Of these
students, 55 students were randomized and consented to saliva collection.

Table 1. Oral condition and health behaviors in total and selected participants at baseline.

Variable
Total Participants Selected

Participants p-Value 3

(n = 293) (n = 55)

Baseline

Gender Male/Female 149/144 (50.9/49.1) 1 17/38 (30.9/69.1) 0.006

Age (year) 18.22 ± 0.76 2 18.24 ± 0.47 0.378

Number of teeth
present 28.49 ± 1.43 28.42 ± 1.49 0.699

DMFT score 1.00 ± 2.01 1.44 ± 2.79 0.459

DI-S 0.41 ± 0.37 0.33 ± 0.32 0.363

Daily frequency of
tooth brushing

1 55 (18.8) 9 (16.4)
0.9142 212 (72.4) 41 (74.5)

3 26 (8.9) 5 (9.1)

http://huttenhower.sph.harvard.edu/lefse/
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Table 1. Cont.

Variable
Total Participants Selected

Participants p-Value 3

(n = 293) (n = 55)

Baseline
Use of dental floss yes 20 (6.8) 5 (9.1) 0.551

Regular dental
check-ups yes 36 (12.3) 13 (23.6) 0.034

Follow-up

Number of teeth
present 29.2 ± 1.77 28.9 ± 1.78 0.353

DMFT score 1.70 ± 2.99 1.82 ± 2.97 0.477

DI-S 0.81 ± 2.49 0.31 ± 0.36 0.037

Daily frequency of
tooth brushing

1 45 (15.4) 8 (14.5)
0.3232 220 (75.1) 38 (69.1)

3 28 (9.6) 9 (16.4)

Use of dental floss yes 45 (15.4) 12 (21.8) 0.237

Regular dental
check-ups yes 41 (14.0) 11 (20.0) 0.301

Current smoker yes 9 (3.07) 2 (3.36)

Use of fluoride
containing paste yes 155 (52.9) 28 (50.9) 0.883

Knowledge of the
effectiveness of fluoride yes 250 (85.3) 46 (83.6) 0.686

Frequency of sweet
intake (daily)

0 53 (18.1) 8 (14.5)

0.295
1 163 (55.6) 37 (67.3)

2 56 (19.1) 9 (16.4)

3 21 (7.2) 1 (1.8)

DMFT, decayed, missing, and filled teeth score; DI-S, debris index-simplified index; 1 Data are expressed as n (%);
2 Data are expressed as mean ± standard deviation; 3 Fisher’s exact test or Mann–Whitney U test.

In all participants, DMFT scores, DI-S score at baseline, and the percentage of students who had
knowledge of fluoride at follow-up were significantly higher in the increased group than those in the
non-increased group (p < 0.05; Table 2). In the logistic regression analysis, increase in dental caries was
significantly related to DMFT score (OR: 1.191, 95% CI: 1.033–1.373, p = 0.016) and DI-S score (OR: 3.6,
95% CI: 1.355–6.913, p = 0.007) at baseline.

3.2. Salivary Microbiome Analysis

In our study, 3,195,127 quality-filtering reads (58,093 ± 16,532) from 55 saliva samples were used for
analysis. A total of 196 OTUs were obtained from saliva samples. Of these, 13 phyla, 21 classes, 32 orders,
48 families, 72 genera, and 156 species were identified. There were no significant differences in the
number of each taxonomic level between increased and non-increased groups (p ≥ 0.05). Furthermore,
there were no significant differences in the species richness of individuals between increased and
non-increased groups (Figure 2a; p ≥ 0.05). Moreover, no significant differences were observed in species
diversity and bacterial communities between the two groups (Figure 2b,c; p ≥ 0.05).
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Table 2. Differences in dental caries-related variables between increased and non-increased groups.

Variable
Total Participants(n = 293) Selected Participants(n = 55)

Non-Increased Increased
p-Value 3 Non-Increased Increased p-Value

(n = 220) (n = 73) (n = 41) (n = 14)

Baseline

Number of teeth present 28.37 ± 0.37 1 28.82 ± 1.65 0.017 28.27 ± 1.28 28.86 ± 1.95 0.127

DMFT score 0.78 ± 0.12 1.68 ± 2.35 <0.001 1.32 ± 2.64 1.79 ± 3.28 0.71

DI-S 0.38 ± 0.35 0.52 ± 0.42 0.008 0.33 ± 0.29 0.43 ± 0.41 0.619

Daily frequency of tooth brushing
1 38 (17.3) 2 17 (23.3)

0.452
8 (19.5) 1 (7.1)

0.5042 161 (73.2) 51 (69.9) 29 (65.9) 12 (85.7)

3 21 (9.5) 5 (6.8) 4 (9.8) 1 (7.1)

Use of dental floss yes 15 (6.8) 5 (6.8) 0.993 2 (4.9) 3 (21.4) 0.063

Regular dental check-ups yes 23 (10.5) 13 (17.8) 0.097 9 (22) 4 (28.6) 0.615

Follow-up

Number of teeth present 29.22 ± 1.77 29.36 ± 1.82 0.323 28.78 ± 1.74 29.29 ± 1.93 0.371

DMFT score 0.78 ± 0.12 4.26 ± 3.98 <0.001 1.32 ± 2.64 3.28 ± 3.49 <0.001

DI-S 0.94 ± 2.87 0.43 ± 0.42 0.932 0.33 ± 0.37 0.27 ± 0.37 0.372

Daily frequency of tooth brushing
1 12 (15.4) 34 (15.4)

0.522
7 (17.8) 1 (7.1)

0.5222 61 (78.2) 164 (73.9) 27 (65.9) 11 (78.6)

3 5 (6.4) 24 (10.8) 7 (17.1) 2 (14.3)

Use of dental floss yes 30 (13.6) 15 (20.5) 0.156 8 (19.5) 4 (28.6) 0.479

Regular dental check-ups yes 29 (13.2) 12 (16.4) 0.487 8 (19.5) 3 (21.4) 0.877

Current smoker yes 7 (3.2) 2 (2.7) 0.982 1 (2.4) 1 (7.1) 0.448

Use of fluoride containing paste yes 116 (52.7) 39 (53.4) 0.918 18 (43.9) 10 (71.4) 0.075

Knowledge of the effectiveness of fluoride yes 182 (82.7) 68 (93.2) 0.029 34 (82.9) 12 (85.7) 0.808

Frequency of sweet intake (daily)

0 41 (18.6) 12 (16.4)

0.769

7 (17.1) 1 (7.1)

0.6931 124 (56.4) 39 (53.4) 29 (63.4) 11 (78.6)

2 39 (17.7) 17 (23.3) 7 (17.1) 2 (14.3)

3 16 (7.3) 5 (6.8) 1 (2.4) 0 (0.0)

The increased group was defined as ∆DMFT > 0 during the 3-year follow-up period; The non-increased group was defined as ∆DMFT = 0 during the 3-year follow-up period; DMFT:
decayed, missing, and filled teeth; DI-S, debris index-simplified. 1 Data are expressed as mean ± standard deviation. 2 Data are expressed as n (%). 3 Fisher’s exact test or Mann–Whitney
U test.
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Figure 2. Comparison of the oral microbiome diversity between increased and non-increased groups.
(a) Saliva microbiome diversity between increased (red) and non-increased groups (blue) was compared.
Alpha diversity metrics for Simpson, Shannon, Chao1, and ACE indices were calculated and illustrated
by box plots. There were no significant differences in diversity between increased and non-increased
groups (t-test, p ≥ 0.05). (b) Rarefaction curves of increased (red) and non-increased (blue) groups
based on the observed operational taxonomic unit (OTU). There were no significant differences in
species richness between increased and non-increased groups (t-test, p ≥ 0.05). (c) Principal coordinates
analysis (PCoA) based on the Bray–Curtis index. Increased (red) and non-increased (blue) groups did
not tend to separate.

3.3. Microbial Composition

There were no significant differences in microbial composition at class and order levels between
increased and non-increased groups. At the phylum level, the increased group had a higher population
of Proteobacteria than the non-increased group (Table 3; p = 0.029). At the family level, the increased
group had a higher population of Prevotellaceae than the non-increased group (Table 3; p = 0.007). At the
genus level, the increased group had a higher population of Actinobaculum, Dialister, and Alloprevotella
than the non-increased group (Table 3; p < 0.05). At the species level, the increased group had higher
populations of Neisseria sicca, Alloprevotella sp., Dialister invisus, Cardiobacterium hominis, Acinetobacter
sp., Gracilibacteria (GN02) [G-1], Neisseria elongate, Actinomyces graevenitzii, Anaerolineae [G-1], Dialister
pneumosintes, Haemophilus haemolyticus, Actinobaculum sp., Corynebacterium matruchotii, Prevotella
pleuritidis, and Neisseria sp. than those in the non-increased group (Table 3; p < 0.05). Low percentages
of S. mutans in saliva were detected in both groups. In LEfSe analysis, Prevotellaceae and Veillonellaceae
at the family level and Alloprevotella and Dialister at the genus level were enriched in the increased
group compared with the non-increased group (Figure 3).
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Table 3. Comparison of relative abundances of bacteria between increased and non-increased groups.

Taxonomy Level Non-Increased Increased
p-Value 2

(n = 41) (n = 14)

Phylum Proteobacteria 10.5 ±7.8 1 12.2 ± 4.3 0.029
Family Prevotellaceae 1.6 ± 1.6 2.6 ± 2 0.007
Genera Alloprevotella 1.6 ± 1.6 2.6 ± 2 0.007

Dialister 0.2 ± 0.3 0.3 ± 0.5 0.039
Actinobaculum 0.1 ± 0.1 0.1 ± 0.1 0.008

Species Neisseria sicca; n. mucosa 2.3 ± 2.8 3 ± 2.5 0.042
Alloprevotella sp. 1.1 ± 1.3 1.7 ± 1.7 0.009
Dialister invisus 0.1 ± 0.3 0.3 ± 0.5 0.037
Cardiobacterium hominis 0.3 ± 0.7 0.4 ± 0.6 0.037
Acinetobacter sp. 0.3 ± 0.5 0.5 ± 0.5 0.001
GN02 [G-1] 0.1 ± 0.3 0.2 ± 0.3 0.031
Neisseria elongata 0.4 ± 0.8 0.7 ± 1 0.034
Actinomyces graevenitzii 0.1 ± 0.1 0.1 ± 0.2 0.024
Anaerolineae [G-1] 0.1 ± 0.1 0.2 ± 0.2 0.032
Dialister pneumosintes 0.1 ± 0.1 0.1 ± 0.2 0.015
Haemophilus haemolyticus 0.1 ± 0.2 0.2 ± 0.4 0.019
Actinobaculum sp. 0.1 ± 0.1 0.1 ± 0.1 0.008
Corynebacterium matruchotii 0.1 ± 0.1 0.1 ± 0.1 0.042
Prevotella pleuritidis 0.1 ± 0.1 0.1 ± 0.2 0.014
Neisseria sp. 0.1 ± 0.1 0.1 ± 0.1 0.021

1 Data are expressed as mean ± standard deviation; 2 Mann–Whitney U test.
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Table 3. Comparison of relative abundances of bacteria between increased and non-increased groups. 

Taxonomy Level 
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p-Value 2 
(n = 41) (n = 14) 

Phylum Proteobacteria 10.5 ±7.8 1 12.2 ± 4.3 0.029 
Family Prevotellaceae 1.6 ± 1.6 2.6 ± 2 0.007 
Genera Alloprevotella 1.6 ± 1.6 2.6 ± 2 0.007 

 Dialister 0.2 ± 0.3 0.3 ± 0.5 0.039 
 Actinobaculum 0.1 ± 0.1 0.1 ± 0.1 0.008 

Species Neisseria sicca; n. mucosa 2.3 ± 2.8 3 ± 2.5 0.042 
 Alloprevotella sp. 1.1 ± 1.3 1.7 ± 1.7 0.009 
 Dialister invisus 0.1 ± 0.3 0.3 ± 0.5 0.037 
 Cardiobacterium hominis 0.3 ± 0.7 0.4 ± 0.6 0.037 
 Acinetobacter sp. 0.3 ± 0.5 0.5 ± 0.5 0.001 
 GN02 [G-1] 0.1 ± 0.3 0.2 ± 0.3 0.031 
 Neisseria elongata 0.4 ± 0.8 0.7 ± 1 0.034 
 Actinomyces graevenitzii 0.1 ± 0.1 0.1 ± 0.2 0.024 
 Anaerolineae [G-1] 0.1 ± 0.1 0.2 ± 0.2 0.032 
 Dialister pneumosintes 0.1 ± 0.1 0.1 ± 0.2 0.015 
 Haemophilus haemolyticus 0.1 ± 0.2 0.2 ± 0.4 0.019 
 Actinobaculum sp. 0.1 ± 0.1 0.1 ± 0.1 0.008 
 Corynebacterium matruchotii 0.1 ± 0.1 0.1 ± 0.1 0.042 
 Prevotella pleuritidis 0.1 ± 0.1 0.1 ± 0.2 0.014 

 Neisseria sp. 0.1 ± 0.1 0.1 ± 0.1 0.021 
1 Data are expressed as mean ± standard deviation; 2 Mann–Whitney U test. 

 
Figure 3. Linear discriminant analysis effect size (LEfSe) analysis to identify unique taxa associated 
with caries. Taxa at the family level were analyzed. Red areas of the cladogram were enriched in the 
increased group compared with the non-increased group. Linear discriminant analysis (LDA) scores 
≥ 3.0 are shown. 

4. Discussion 

Figure 3. Linear discriminant analysis effect size (LEfSe) analysis to identify unique taxa associated
with caries. Taxa at the family level were analyzed. Red areas of the cladogram were enriched in the
increased group compared with the non-increased group. Linear discriminant analysis (LDA) scores
≥ 3.0 are shown.

4. Discussion

Various groups have provided information about the relationship between dental caries and the
oral microbiome [4,7–10,21–25]. However, there is less information about this relationship in young
adults or university students. In the present 3-year cohort study, the abundance of several taxa was
significantly higher in the increased group than that in the non-increased group. In addition, poor
oral hygiene and caries experience at baseline were significantly associated with an increase in dental
caries during university life.

In this study, the observed taxa number was not significantly different between increased and
non-increased groups. Moreover, the microbial structure was similar between the two groups. Jiang et al.
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reported that the microbial composition was similar between caries progression and non-progression
groups among older people [23]. The findings from our study support these results.

The percentages of several taxa were significantly higher in the increased group than those
in the non-increased group. In particular, further analysis using LEfSe methods revealed families
Prevotellaceae and Veillonellaceae and genera Alloprevotella and Dialister were significantly enriched
in the increased group compared with the non-increased group (LDA scores ≥ 3.0). Prevotellaceae
was detected in carious dentin or saliva of participants with caries progression [24,25]. Furthermore,
Eriksson et al. also reported that Veillonellaceae and Dialister were enriched in the saliva of patients
with caries progression using the LEfSe method [20]. Alloprevotella was detected in the saliva of
children with caries progression using LEfSe [4]. Using non-culture methods, non-mutans streptococci
have been detected in carious dentin or saliva [26]. Furthermore, Prevotellaceae and Veillonellaceae
species are known to produce acid [5,27]. These results indicate that several acid-producing bacteria or
non-mutans streptococci may be associated with caries progression, which suggests new targets for
preventing caries progression.

In this study, there were no significant differences in microbiome diversities between increased and
non-increased groups. Previous studies exploring the oral microbiome to elucidate potential targets for
caries prevention mainly targeted children with deciduous dental plaque or saliva. For example, a 2-year
cohort study revealed that microbial diversity in saliva did not differ between caries progression and
non-progression groups [10]. However, some cohort studies reported that salivary microbiome diversity
was significantly different between participants with increased dental caries compared with those with
non-increased dental caries [7,21,22]. According to these reports, whether salivary microbiome diversity
is associated with caries progression remains controversial. Furthermore, few studies included young
adults as subjects. A cross-sectional study exploring salivary microbiomes among families, including
young adults, reported that dental caries did not impact microbial diversity [28]. While our findings
support the results of this study, further cohort studies are required to investigate the relationship
between microbiome diversity and an increase in dental caries.

Oral condition is also associated with caries progression. In a cohort study of adult participants in
Sweden, DMFT scores of the caries progression group were higher than those in the non-progression
group at baseline [29]. In addition, a previous study reported that the increased caries group had
worse oral hygiene than that of the non-increased caries group [30]. Here, we demonstrated that DMFT
and DI-S scores were associated with an increase in dental caries in the logistic regression analysis,
supporting the results of these previous studies.

In this study, a low abundance of mutans streptococci was detected among the two groups. Mutans
streptococci are traditionally recognized as the most common cause of dental caries [31]. Several studies
also reported that there was no difference in the abundance of these species between caries-active
and caries-free groups [7–9,32]. Furthermore, Takahashi and Nyvad proposed the “Ecological Plaque
Hypothesis,” wherein acid-producing bacteria, excluding mutans streptococci, are also considered to
lead to an imbalance in mineralization [26]. However, we did not investigate the microbiome in dental
plaques of participants with caries. Further studies are therefore required.

In this study, we used saliva samples for microbiome analysis. Saliva collection is non-invasive,
simple, and effective for mass examination. Some studies reported that plaque bacteria are released
into saliva [9,33], and saliva provides a niche for both anaerobic and aerobic bacteria [34]. Furthermore,
saliva is a biomarker that reflects oral health and systemic condition [35,36]. Thus, saliva evaluation
has several advantages, especially in large-scale epidemiological studies or caries screening.

Our study has some limitations. First, there may have been selection bias, given the low follow-up
rate (13.4%). In addition, the number of participants who had regular dental checkups at baseline
and DI-S scores at follow-up differed between selected participants and total participants. However,
increased dental caries was not related to these variables in the logistic regression analysis. Therefore,
the selection bias might be small in this study. Second, all participants were recruited from among
students who attended Okayama University. Therefore, our results may not be generalizable. Third,
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we could not investigate potential confounders, such as social capital [37,38] or socioeconomic status [39].
Fourth, we did not use a specific primer and probe for detecting S. mutans. Using the Human Oral
Microbiome Database, we could detect the taxa using obtained sequencing reads. However, a previous
study mentioned that V1–V2 or V3–V4 hypervariable regions (approximately 400–460 bp) is the limit
for identifying detailed level of taxa [19]. Therefore, a wider region or specific primer is needed [19].
Fifth, we did not set a specific time for saliva collection; that is, saliva was collected from 09:00 to 16:00.
However, we randomly selected participants and collected saliva at the last step of the general health
examination. Therefore, we do not consider that eating or drinking affected salivary analysis. Finally,
we could not collect saliva at baseline; however, we checked caries increment using DMFT at baseline
and follow-up. Although Belstrøm et al. reported the stable condition of the salivary microbiome [40],
we cannot rule out the possibility of changes in the salivary microbiome during the 3-year study period.

5. Conclusions

Among Japanese university students, non-mutans streptococci bacteria in saliva were associated
with increased caries in this 3-year prospective cohort study. However, there were no significant
differences in salivary microbiome diversity between increased and non-increased groups.
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