
International Journal of Information Security
https://doi.org/10.1007/s10207-020-00514-7

REGULAR CONTRIBUT ION

Additional kernel observer: privilege escalation attack prevention
mechanism focusing on system call privilege changes

Toshihiro Yamauchi1 · Yohei Akao1,2 · Ryota Yoshitani1 · Yuichi Nakamura3 ·Masaki Hashimoto4

© The Author(s) 2020

Abstract
Cyberattacks, especially attacks that exploit operating systemvulnerabilities, have been increasing in recent years. In particular,
if administrator privileges are acquired by an attacker through a privilege escalation attack, the attacker can operate the entire
system and cause serious damage. In this paper, we propose an additional kernel observer (AKO) that prevents privilege
escalation attacks that exploit operating system vulnerabilities. We focus on the fact that a process privilege can be changed
only by specific system calls. AKO monitors privilege information changes during system call processing. If AKO detects
a privilege change after system call processing, whereby the invoked system call does not originally change the process
privilege, AKO regards the change as a privilege escalation attack and applies countermeasures against it. AKO can therefore
prevent privilege escalation attacks. Introducing the proposed method in advance can prevent this type of attack by changing
any process privilege that was not originally changed in a system call, regardless of the vulnerability type. In this paper, we
describe the design and implementation ofAKO forLinux x86 64-bit.Moreover,we show thatAKOcan be expanded to prevent
the falsification of various data in the kernel space. Then, we present an expansion example that prevents the invalidation
of Security-Enhanced Linux. Finally, our evaluation results show that AKO is effective against privilege escalation attacks,
while maintaining low overhead.

Keywords Privilege escalation attack prevention · Operating system · Linux kernel vulnerabilities · Non-control-data attack ·
System security

1 Introduction

Cyberattacks have been increasing in recent years. One tac-
tic of successful attacks is for attackers to get administrative
privilege in the target systems. Although there are various
techniques to get the privilege, privilege escalation attacks
are a commonly used attack method. A privilege escalation
attack exploits operating system (OS) andAP vulnerabilities.
ExploitingOS (kernel) vulnerabilities is an especially serious
threat to the prevention of privilege escalation attacks, and

B Toshihiro Yamauchi
yamauchi@cs.okayama-u.ac.jp

1 Graduate School of Natural Science and Technology,
Okayama University, 3-1-1 Tsushima-naka, Kita-ku,
Okayama 700-8530, Japan

2 NTT Communications Corporation, Tokyo, Japan

3 Hitachi, Ltd., Tokyo, Japan

4 Graduate School of Information Security, Institute of
Information Security, Kanagawa, Japan

attacks on OS vulnerabilities have increased [1,2]. The OS
kernel consists of a massive amount of code. For example,
the number of lines of code in Linux kernel 4.5.3 exceeds
16 million [3]. Therefore, it is difficult to eliminate all vul-
nerabilities from the OS kernel, and many OS vulnerabilities
have been reported thus far [2,4,5].

In a privilege escalation attack, an attacker can promote
the privilege of a process to a higher level by exploiting anOS
vulnerability. If such a privilege escalation attack succeeds,
the attacker can operate the system with a privilege that is
higher than the originally assigned one. For example, if an
administrator’s privilege is acquired by an attacker through
a privilege escalation attack, the attacker can avoid access
control and gain read/write capabilities for all system infor-
mation. Thus, this attack type poses a significant security
threat to the entire system and countermeasures are required
to prevent them.

Existing countermeasures include control-flow integrity
(CFI) [6–8]. CFI techniques can prevent attacks that tamper
with the control flow of a program. However, they are unable

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/328849433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-020-00514-7&domain=pdf
http://orcid.org/0000-0001-6226-5715


T. Yamauchi et al.

to prevent non-control-data attacks [9] that alter the data of
a program not directly related to its control flow. In addition,
Trusted Boot [10] and Integrity Measurement Architecture
(IMA) [11] can verify that a program has not been altered
at the program startup. However, these two countermeasures
cannot prevent attacks that exploit vulnerabilities at run-time.
OSs with enhanced security mechanisms, such as Security-
Enhanced Linux (SELinux) [12,13], TOMOYO Linux [14],
AppArmor [15,16], and Security-Enhanced Android (SEAn-
droid) [17,18], can restrict damage within the range of the
respective policies by dividing the administrative privilege,
even if it is acquired by an attacker. However, damage may
occur within the ranges of the policies. In addition, it is dif-
ficult to not only configure policies for introducing OSs with
enhanced security mechanisms, but also to operate them.

In this paper, we describe the characteristics of privilege
management in Linux according to our investigation. Privi-
lege management has the following three features.

1. The privilege of the process is stored in the kernel space.
2. To modify data in the kernel space, it is necessary to

proceed through a system call.
3. The function of each system call is subdivided. System

calls to change privilege information are limited.

Next, this paper proposes the additional kernel observer
(AKO), which prevents privilege escalation attacks that
exploit OS vulnerabilities. We designed the AKO based on
the three features of privilege management. AKO monitors
changes in process privileges in the kernel space before and
after an invoked system call service routine is processed.
It can detect an abnormal privilege change when a process
privilege is changed by a system call that does not originally
change the privilege. Then, AKO judges that a privilege esca-
lation attack has occurred and prevents it by invalidating the
changes to the privilege. AKO can also terminate or sus-
pend the running process to prevent the attack. Thus, AKO
can prevent privilege escalation attacks by changing process
privileges that are not originally changed in a system call,
regardless of the type of vulnerability.

Furthermore, AKO can be expanded to prevent the falsi-
fication of various data in the kernel space. We describe the
design and implementation of the expansion of observation
data for SELinux as an example of the prevention of kernel
data falsification.

In this paper, we describe the design and implementa-
tion of AKO for Linux x86 64-bit. Evaluation results showed
that AKO detected and prevented privilege escalation attacks
while maintaining low overhead.

In short, the main contributions of this paper are as fol-
lows:

1. We propose a method that can prevent various privilege
escalation attacks that exploit OS vulnerabilities through
the system call interface. The proposed method can pre-
vent privilege escalation attacks if the attacks are targeted
by it, even if they exploit a zero-day vulnerability.

2. The proposed method can be adopted to protect other
data in the kernel space. As an expansion of the proposed
method, a method that prevents attacks against SELinux
is proposed.

3. In addition to its effectiveness against privilege escalation
attacks, the proposedmethod is very simple and the over-
head is thus very low. Furthermore, the number of lines
of code required for the introduction of AKO is small;
hence, modifications do not affect existing functions.

2 Privilege escalation attacks exploiting OS
vulnerabilities

2.1 OS vulnerabilities

Many OS kernels are implemented using C and an assem-
bly language, which may contain bugs related to memory
management. Consequently, most reported OS kernel vul-
nerabilities are due to a lack of proper memory management
[8,19].

If a vulnerability is found in the OS kernel, a patch must
be applied to the kernel to resolve the vulnerability. How-
ever, to apply such a patch to the OS kernel, it is necessary
to restart the OS in many cases. Thus, it is difficult to apply
a kernel patch to a system that needs to operate continually.
In addition, to apply patches, it is necessary to download the
appropriate patches. Accordingly, applying them to embed-
ded devices is difficult.

For the aforementioned reasons, and based on the premise
that OSs have unknown vulnerabilities, it is desirable to
deploy in advance amechanism to prevent attacks that exploit
OS vulnerabilities.

2.2 Privilege escalation attacks

A privilege escalation attack enables an attacker to gain ille-
gally elevated access to resources by exploiting a bug, design
flaw, etc. A user or an application that obtains a higher
privilege than the authorized one can perform originally
unauthorized actions. In real attacks, many attackers intend
to acquire the authority of the administrator. By acquiring
administrative privileges, the attacker can operate the entire
system, which can result in information leakages and denial
of service.

Privilege escalation attacks are also regarded as threats
to mobile devices, such as smartphones and tablets. On the
Android, rooting is often performed to gain administrative

123



Additional kernel observer: privilege escalation attack prevention mechanism…

privileges for altering critical settings of the target device.
The Android uses the Linux kernel, and the rooting is mainly
performed by exploiting the Linux kernel vulnerabilities.
Once a device is rooted, intellectual property, such as appli-
cation programs and libraries independently developed by
device manufacturers, may be leaked.

2.3 Attacks targeted by AKO

We assume that an attacker can tamper with the data in the
kernel space by exploiting a memory corruption vulnera-
bility. In order to emphasize the importance of preventing
attacks on critical OS data such as privilege information
among memory corruption vulnerabilities, we investigated
memory corruption vulnerabilities that could allow privilege
escalation reported on the JVN iPedia Vulnerability Counter-
measure Information Database [20] in 2019. Approximately
89% of the vulnerabilities reported to be capable of privi-
lege escalation (189 out of 211) are classified as “Critical” or
“High” in the CVSSv3 score. This result shows that attacks
using vulnerabilities that allow privilege escalation have a
serious impact on security. Therefore, it is important to take
countermeasures against vulnerabilities thatmay lead to priv-
ilege escalation and focus on data that can detect and prevent
privilege escalation. The attacks targeted by AKO are those
that exploit Linux kernel vulnerabilities and tamper with the
important data in the kernel space such as the privilege data
of processes during system call processing.

In addition, since the performanceof theOSaffects all run-
ning applications, the use of an OS security mechanism with
a practical overhead is necessary. One of the features of AKO
is that it can focus on attacks with high severity and detect
them at a practical speed. On the other hand, monitoring all
kernel memory has a large overhead. Other attacks against
other kernel data due to memory corruption are outside the
scope of this research. In order to counter these attacks, it is
necessary to utilize other technologies and research results
that make the attacks difficult and study new methods.

Because the process privileges are stored in the kernel
space and cannot be referenced by user applications in the
user space, they cannot be directly tampered with by appli-
cations executed at the user level. However, attacks that issue
system calls in a sophisticated manner and exploit vulnera-
bilities in the kernel space can tamper with process privileges
stored in the kernel space. Therefore,we focus on the changes
to privilege data during system call processing to prevent
privilege escalation attacks.

As an example of this attack, we present a privilege
escalation attack that exploits CVE-2014-0038. CVE-2014-
0038 is a memory corruption vulnerability due to improper
parameter checking in the recvmmsg system call. When
CONFIG_X86_X32 is enabled, the compat_sys_recvmmsg
function in net/compat.c in Linux kernel versions preceding

3.13.2 allows local users to gain privileges via a recvmmsg
system call with a specially customized timeout pointer
parameter [21]. In a privilege escalation attack that exploits
CVE-2014-0038, a recvmmsg system call with sophisticated
specially customized parameters is called multiple times.
Then, the pointer of the kernel function called in the open
system call is changed to the pointer of a kernel function for
changing permissions. Subsequently, the exploit code issues
the open system call to the target kernel function by refer-
encing the changed pointer. It rewrites the privilege of its
process in the open system call, thereby achieving privilege
escalation. As a kernel function for rewriting the privilege of
its own process, the prepare_kernel_cred() function or com-
mit_creds() is used.

It has been reported that addr_limit, which is a kernel vari-
able indicating the boundary address between the user space
and kernel space, is falsified by calling a futex system call
with sophisticated specially customized parameters, leading
to successful privilege escalation attacks that tamper with the
privilege of a process [22]. If the privilege data of a process
stored in the kernel space are altered by a privilege escala-
tion attack, as described above, the process can operate the
system with a higher authority than the originally conferred
authority level.

In the threat model employed in this research, a non-
control-data attack was implemented against the important
data in the kernel space. The targeted kernel data in the
kernel space were privilege data as well as data that were
important for security functions.Bymakingnon-control-data
attacks difficult, it is expected attackerswill be hindered from
achieving their goals. On the other hand, we assumed attacks
involving the rewriting of arbitrary data in the kernel space to
be out of scope. However, not all exploitation of OS vulner-
abilities can rewrite arbitrary data in the kernel space. Thus,
we suppose that anAKO is effective against non-control-data
attacks that cannot be prevented by CFI techniques.

To prevent non-control-data attacks, the AKO should be
protected, which was done by assuming the CFI technology
in the kernel space and kernel address space layout ran-
domization (KASLR) to be deployed in combination with
the AKO. The details of AKO protection are described in
Sect. 6.4.

3 AKO design

3.1 Concept

The objective of the proposed method is to prevent privilege
escalation attacks that exploit OS vulnerabilities. In addi-
tion, we aim to prevent privilege escalation attacks due to
unknown OS vulnerabilities. First, we investigate privilege

123



T. Yamauchi et al.

management in Linux, and we clarify its three features as
mentioned in Sect. 1.

Based on these features, we assume that the privilege of a
process is changed only when a system call with the role of
changing a privilege is invoked. However, this will not apply
when privilege escalation attacks that exploit Linux kernel
vulnerabilities are conducted. For example, in the privilege
escalation attack described in Sect. 2.3, the privilege of a pro-
cess is changed during the processing of the open system call.
However, the open system call is not a system call that would
change the process privilege. In other words, in a privilege
escalation attack that exploits a Linux kernel vulnerability,
the process privilege is changed during the processing of a
system call that does not originally change the privilege of
the process.We assume that this privilege change during sys-
tem call processing in a privilege escalation attack occurs in
many OSs in addition to Linux.

In this paper, we proposeAKO to prevent privilege escala-
tion attacks by focusing on privilege changes during system
call processing. AKO detects privilege escalation attacks by
checking the changeof the privilege after systemcall process-
ing is completed, whereby the invoked system call does not
change the privilege of processes. At the time of detection,
AKO issues a warning to the administrator. Subsequently,
the process can be terminated or the change of the privilege
data can be invalidated by overwriting the original privilege
data. Consequently, AKO can prevent the damage caused by
the attack.

Because the kernel overhead affects all applications, heavy
processing involving kernel overhead cannot be implemented
to prevent attacks. Therefore, the present objective is to
design a method that makes the success of privilege esca-
lation attacks significantly difficult with small overhead and
minimal side effects.

Next, we describe the AKO design by considering Linux
4.4 (x86 64-bit) as an example. Note that AKO does not
depend on a specific version of the Linux kernel; it can be
applied to other versions.

3.2 Privileges for observation

This section describes the process privileges monitored by
AKO before and after system call processing. Table 1 lists
the privileges (privilege information)monitored byAKO.All
privilege information in Table 1 is stored in the kernel space.

The uid group (uid, euid, fsuid, and suid) and the gid group
(gid, egid, fsgid, and sgid) store the user identifier and the
group identifier, respectively. Such privilege information is
used for checking access rights to files and directories, and
for verifying whether privileged operations are allowed.

The capabilities field (cap_inheritable, cap_permitted,
cap_effective, and cap_ambient) stores flags that indicate
whether a process for performing a specific action is per-

Table 1 Privileges monitored by AKO

Monitored data Contents

uid User ID

euid Effective user ID

fsuid File system user ID

suid Saved user ID

gid Group ID

egid Effective group ID

fsgid File system group ID

sgid Saved group ID

cap_inheritable Inheritable capabilities

cap_permitted Permitted capabilities

cap_effective Actually used capabilities

cap_ambient Ambient capability set

addr_limit Highest legal virtual address of user space

mitted [23]. Such capabilities include “performing various
network-related operations” and “allowing execution of a
chroot system call.”

In addr_limit, the boundary address between the user
space and kernel space is stored. In the normal state, the
uid group, gid group, and capabilities are stored in the ker-
nel space, and they cannot be freely rewritten from the user
space. When the value of addr_limit is altered by an attacker,
the area where the uid group, gid group, and capabilities are
stored can be recognized as the user space, not the kernel
space. Consequently, the state can be freely rewritten from
the user space. It has been reported that addr_limit is falsi-
fied by calling a futex system callwith sophisticated specially
customized parameters, leading to successful privilege esca-
lation attacks that tamper with the privilege of a process [22].
Therefore, the value of addr_limit is alsomonitored byAKO.

3.3 AKO process flow

The AKO process flow is shown in Fig. 1 and is described
below.

First, a process invokes a system call in user mode, and the
processing mode is then changed to kernel mode (1). Next,
AKO hooks the transition to a system call service routine
and moves to the processing of AKO (2). AKO then stores
the current privilege information to a reserved saving area
before the processing of a system call (3). Next, the invoked
system call service routine is executed (4). AKO then hooks
the processing immediately after the execution of the system
call service routine, and the processing moves to the pro-
cessing of AKO (5). To check for any changes in privilege
information in the system call processing, AKO compares it
with the stored privilege information for before the system
call processing of Step 3 (6). If AKO detects a change in the

123



Additional kernel observer: privilege escalation attack prevention mechanism…

Fig. 1 Process flow of AKO

privilege information, it then checks whether the change is
normal (7). If the change in the privilege information is nor-
mal, the processing then returns to the original flow and the
system call processing terminates because AKO judges that
a privilege escalation attack has not been performed (7-a). If
the change in the privilege information is not normal, AKO
outputs a log indicating that a privilege escalation attack
has been detected, and countermeasures against the privi-
lege escalation attack are carried out because AKO judges
that a privilege escalation attack has been performed (7-b).
Details of the countermeasures are provided in Sect. 3.4.

The abnormal change in privilege information in Step 7
implies that the privilege information, which does not change
in each system call process, has been changed. Table 2 lists
the system calls that can change the privilege information.
From our investigation, among the 313 system calls in Linux
4.4 (x86 64-bit), the 13 system calls listed in Table 2 were
found to be capable of changing the privilege information.

AKO determines that an unauthorized change of privilege
information occurswhen any privilege information of a target
process that is not included in Table 2 is changed. For exam-
ple, because the capset system call is a system call that can
change cap_inheritable, cap_permitted, cap_effective, and
cap_ambient, when privilege information other than these
privileges has been changed before and after the capset sys-
tem call, AKO judges that the privilege information has been
illegally changed.

3.4 Operation after privilege escalation attack
detection

We describe countermeasures that are adopted against privi-
lege escalation attacks when AKO detects such attacks. First,
AKO uses the Linux auditing system to save an event log
when an attack is detected. AKO uses the Linux Auditing
System for saving AKO event logs. AKO event logs include
the system call number as well as the privilege information
before and after the invoked system call. We can track the
security events detected by AKO. If the auditing system is
not enabled, AKO can save event logs in the kernel log by
using the printk() function.

In addition, when a privilege escalation attack is detected,
the following countermeasures can be selected and executed
to mitigate the effect of the attack.

Invalidation of privilege escalation attacks The purpose
of AKO is to protect the target system. In particular, it is
important to prevent an attacker from acquiring administra-
tive privileges. Therefore, we believe that invalidating the
privilege escalation after AKO detects the attack is very
effective in protecting the target system.AKO stores the orig-
inal privilege information before the system call processing
starts. Furthermore, AKO overwrites the privilege informa-
tion using the stored privilege information when it detects a
privilege escalation attack.

Termination of a running process An attacker’s process
often executes a shell or other malicious program with
the root privilege; then, the executed program achieves the
attacker’s purpose, such as information theft. Terminating a
process detected by AKO is effective because doing so can
prevent a shell or other malicious program from succeeding
in the attack. Invalidating the attack does not terminate the
detected process; thus, attackers may continue to attack. On
the other hand, process termination can definitely end the
attack. However, it is necessary to consider safe termination
of the process without harming the system. To prevent kernel
processing from being affected, we consider process termi-
nation using the SIGKILL signal.

Suspend a running process for analysis In addition to
attack prevention, the demand exists for analyzingwhether an
attack has occurred, or for analyzing the contents of attacks.
Thus, AKO can suspend a process that detects a privilege
escalation attack in an inexecutable state to analyze the pro-
cess. Then, the program andmemory images can be analyzed
to understand the privilege escalation method.

When a privilege escalation attack is detected, AKO inval-
idates the change performed by the privilege escalation
attack. It can then terminate or suspend a running process as
an additional countermeasure. These countermeasures must
be selected with consideration of the trade-off between secu-
rity and availability.

123



T. Yamauchi et al.

Table 2 System calls that may
change privileges

System call name System call number Privilege can be changed

execve 59 uid, euid, fsuid, suid, gid, egid, fsgid, sgid,
cap_inheritable, cap_permitted, cap_effective,
cap_ambient, addr_limit

setuid 105 uid, euid, fsuid, suid, cap_inheritable,
cap_permitted, cap_effective, cap_ambient

setgid 106 gid, egid, fsgid, sgid

setreuid 113 uid, euid, fsuid, suid, cap_inheritable,
cap_permitted, cap_effective, cap_ambient

setregid 114 gid, egid, fsgid, sgid

setresuid 117 uid, euid, fsuid, suid, cap_inheritable,
cap_permitted, cap_effective, cap_ambient

setresgid 119 gid, egid, fsgid, sgid

setfsuid 122 fsuid, cap_inheritable, cap_permitted,
cap_effective, cap_ambient

setfsgid 123 fsgid

capset 126 cap_inheritable, cap_permitted, cap_effective,
cap_ambient

prctl 157 cap_inheritable, cap_permitted, cap_effective,
cap_ambient

unshare 272 cap_inheritable, cap_permitted, cap_effective,
cap_ambient

setns 308 cap_inheritable, cap_permitted, cap_effective,
cap_ambient

4 Expansion of observed data

4.1 Overview

AKO monitors changes in the privilege information shown
in Table 2. We assume that the concept of monitoring the
change in the data contents in the kernel space before and
after a system call processing is effective for kernel space
data other than the privilege information.

4.2 Attack prevention against SELinux

As an example of expansion of observed data, we explain
the design of attack prevention against SELinux. SELinux
enhances system security by introducing a fine-grained
access controlmodel called Type Enforcement into the Linux
kernel. However, some kernel exploit code disables SELinux
by overwriting its data structure [24,25].

To prevent such attacks, AKO monitors SELinux-related
data (Table 3). For a running process, sid represents SELinux
credential information. In widely used SELinux configu-
rations, some sids can access practically all processes; by
overwriting sid or exec_sid, attackers can obtain these
sids. This scenario is almost the same as disabling SELinux.
If selinux_enforcing is overwritten, SELinux access
control is completely disabled. A write or an execve sys-
tem call may change the data in Table 3. AKO judges that

Table 3 Data monitored by AKO to prevent attacks against SELinux

Monitored data Contents

sid Credential information of SELinux for a
running process

exec_sid sid value is set after execve() system call
finishes

selinux_enforcing identifier indicates SELinux is enable or not

SELinux was attacked if any system calls, excepting write or
execve system calls, change the data in Table 3. Table 4 lists
system calls that may change the data in Table 3. If system
calls not included in Table 4 change the data in Table 3, AKO
judges that SELinux was attacked.

5 AKO implementation

We implemented an extension to Linux kernel 4.4 to pre-
vent privilege escalation attacks as well as attacks against
SELinux, as mentioned in Sect. 4. The implementation was
carefully performed to disallow bypassing by exploit code.
There are two ways to bypass AKO. The first is skipping
the check function shown in Step 6 of Fig. 1. The second is
overwriting the privilege information saved in Step 3 of Fig.
1. AKO is implemented to prevent such bypass operations
throughout the process.

123



Additional kernel observer: privilege escalation attack prevention mechanism…

Table 4 System calls that may
change the data in Table 3

System call name System call number Privilege can be changed

write 1 sid, exec_sid, selinux_enforcing

execve 59 sid, exec_sid, selinux_enforcing

In the system call handler that is executed immediately
after a system call is issued, hooks that call AKO are inserted
before and after the system call service routine is called. The
before and after hooks are shown in Steps 2 and 5 of Fig.
1. An existing hook framework, such as the Linux Security
Modules (LSM) framework [26], is not used; the hooks are
embedded directly into the system call handler because the
hook framework is easily bypassed by overwriting the func-
tion pointer of the hooks.

In the before hook, privilege information is saved in the
kernel stack, not in the Linux task structure. In terms of the
implementation, it is easier to save privilege information in
the task structure; however, the address of the task structure
is easily obtained and overwritten by accessing the current
variable of theLinux kernel. Therefore, privilege information
is saved in the stack area. Judgment as to whether or not a
system call can change the privilege information of a process
can be implemented by acquiring the system call number
stored in the rax register immediately after the system call
has been issued and then comparing it with the contents of
Tables 2 and 4.

We implemented the observation method. AKO without
SELinux expansion contains 232 lines of code. We imple-
mented AKO in the source code file of the system call
handling routine. The range of the source code in which
AKO is implemented is very limited, affecting only a small
number of lines of code. We suppose that AKO has negli-
gible side effects other than system call processing. This is
because AKO is executed only before and after an invoked
system call service routine. Therefore, the modifications do
not affect existing functions.

In addition, we implemented the attack prevention against
SELinux. The implementation for this expansion checks
three data items listed in Table 3. 31 additional lines of code
are used for the expansion for SELinux in x86 64-bit, which
is a very small addition. Therefore, this result indicates that
the amount of code modification required to extend data to
be monitored in AKO is small.

6 Evaluation

6.1 Evaluation environment

The evaluation items and evaluation purpose are described
below.

Detection of privilege escalation attacks: In the environ-
ment in which AKO is applied, we performed multiple types
of privilege escalation attacks and evaluated whether AKO
could detect them.

Performancemeasurement: It is anticipated that the imple-
mentation of AKO will influence the system performance.
Therefore, by comparing the performance before and after
AKO implementation, we could benchmark the overhead.

6.2 Prevention experiments for privilege escalation
attacks

In the Linux environment (x86 64-bit) used to implement
AKO,weperformed a privilege escalation attack that exploits
a Linux kernel vulnerability, and we evaluated whether AKO
could detect the attack. We used five types of exploit codes
[21,27–30] for the attack. The potential vulnerabilities varied
with the versionof theLinuxkernel. Each typeof exploit code
targeted a different vulnerability and thus a different version
of the Linux kernel. Then, we conducted an experiment, in
which we implemented and tested our detection method for
the five versions of the Linux kernel targeted by a different
type of each exploit code.

The Common Vulnerabilities and Exposures (CVE) num-
ber of the vulnerability exploited by the exploit code used in
our detection experiment, as well as the vulnerability outline
and results of the detection experiment, are summarized in
Table 5. It is evident that AKO could detect privilege esca-
lation attacks exploiting five different vulnerabilities of the
Linux kernel.

• In particular, it detected that the uid, gid, and capability
groups were changed before and after the sendto system
call routine in CVE-2013-1763.

• In CVE-2014-0038, AKO detected that the uid, gid, and
capability groups were changed before and after the open
system call service routine.

• In CVE-2014-3153, AKO detected that the addr_limit
was changed before and after the futex systemcall service
routine.

• InCVE-2016-0728, it detected that the uid, gid, and capa-
bility groups were changed before and after the system
call service routine of keyctl.

• In CVE-2017-6074, it detected that the uid, euid, fsuid,
and suid were changed before and after the system call
service routine of recvfrom.

123



T. Yamauchi et al.

Table 5 Results of the detection experiment of privilege escalation attacks

CVE number Overview of vulnerability Kernel version Detection

CVE-2013-1763 Array index error due to inadequate parameter check in socket() Linux 3.5.0 �
CVE-2014-0038 Memory destruction due to inadequate parameter check in recvmmsg() Linux 3.8.0 �
CVE-2014-3153 Inadequate address check for re-queuing operation in futex() Linux 3.10.0 �
CVE-2016-0728 Use of integer overflow and freed memory in keyctl() Linux 3.19.0 �
CVE-2017-6074 Mishandles DCCP_PKT_REQUEST packet data in dccp_rcv_state_process() Linux 4.4.0 �

Attacks other than those by the exploit codes used in this
detection experiment can also be detected by AKO if they
illegally change authority via a system call. As noted above,
AKO can prevent privilege escalation attacks before damage
occurs to the system by adopting the countermeasures.

6.3 Evaluation of performance overhead

6.3.1 Experimental results of system call overhead

We measured the system call overhead by implementing
AKO using the lat_syscall of LMbench 3.0 [31], which is
the micro-benchmark suite of the OS. We used a computer
with Core i5-3470 3.2 GHz (four cores) and 4.0-GB main
memory for the evaluation. The OS’s and versions used in
the evaluations were Linux 3.10.0 (x86 64-bit).

Table 6 lists the measured results. For the result of open()
+ close(), the overhead divided by two is written as over-
head per the system call. Table 6 shows that the overhead per
system call is 0.008–0.036 µs, which is small.

The processing added by the implementation of AKO is
limited to a hook of the system call, acquisition of privilege
information, and checking whether the privilege information
has changed. This is because the fixed overhead occurs per a
system call issue. The real overhead in application processing
depends on the number of systemcall issues. For example, for

applications that issue 1000 system calls in Linux x86 64-bit,
the total overhead is around tens of milliseconds. Processing
with a high processing load is not added; hence, we infer that
this result is reasonable.

6.3.2 Impact on app performance by introducing AKO

Toverify the impact on the application performance,wemea-
sured the performance of the web server before and after
the implementation of AKO and compared their values. The
web server used for the evaluation was Apache 2.4.6. In the
evaluation, by usingApacheBench 2.3, wemeasured the pro-
cessing time per request when files with sizes of 1 kB, 10 kB,
and 100 kB were accessed 10,000 times on a 1 Gbps com-
munication channel. The environment on the server side is
the same as the previous evaluations (x86 64-bit). For the
client-side environment, the CPU was an Intel Pentium 4
(3.60 GHz) processor with 1 GB RAM; the kernel version
was Linux 2.6.32. The number of parallel connections when
sending a request was one. The results are listed in Table 7.
It is evident that the overhead per request after implementing
AKO is approximately 0.002ms. Moreover, the ratio of the
overhead to the processing time before implementing AKO
is 0.4% or less.

We also measured and compared the build time of the ker-
nel (Linux 3.10.0) before and after using AKO. The results

Table 6 System call overhead
(µs)

System call Before introduction After introduction Overhead

stat() 0.368 0.383 0.015

fstat() 0.099 0.111 0.012

write() 0.105 0.141 0.036

read() 0.078 0.110 0.032

getppid() 0.040 0.048 0.008

open()+close() 1.130 1.190 0.030

Table 7 Processing time per
request in Apache web server
(ms)

File size (kB) Before introduction After introduction Overhead

1 0.465 0.467 0.002

10 0.638 0.640 0.002

100 1.523 1.525 0.002

123



Additional kernel observer: privilege escalation attack prevention mechanism…

Table 8 Processing time in building the kernel (s)

Before introduction After introduction Overhead

2669.0 2675.0 6.0 (0.2%)

are listed in Table 8. It is shown that the overhead of the
kernel build time after implementing AKO is 6.0 s. In addi-
tion, the ratio of the overhead to the processing time before
implementing AKO is 0.2%.

The results indicate that AKO does not significantly
impact the performance time in a real application.

6.4 Security analysis

AKO stores current privilege information in the kernel stack
prior to calling a system call service routine and holds that
data in the kernel stack during the system call processing.
Thus, tomitigateAKO, an attackermust tamperwith both the
privilege information of the running process and the stored
privilege information. In addition, the attacker must tamper
with it during one system call processing. Either altering
the privilege information of the process table or altering the
stored privilege information would result in the detection of
AKO.

To make attacks more difficult, the address for storing
privilege information can be randomized. The address can
be randomly determined at compile time. In another method,
the address can be randomized by using the randomized bits
of the kernel address space layout randomization (KASLR).
KASLR randomizes the address space layout at each boot.
This method extracts the randomized bits in a randomized
address, and it randomizes the address for storing privilege
information using the extracted bits. After the randomiza-
tion, attackers must guess the address of the stored privilege
information for each targeted kernel. This reduces the pos-
sibility of successful attacks against AKO. Thus, we assume
that the possibility that AKO would detect the attempts of
attacks would increase before the attacks succeed. In addi-
tion, KASLR can randomize the address of the text area,
which increases the difficulty experienced by an attacker in
trying to bypass AKO.

According to our investigation, only a small number of
privilege escalation attacks exploiting OS vulnerabilities can
execute arbitrary code in kernel mode. In addition, if the
arbitrary code can be executed in kernel mode, generating an
arbitrary code to mitigate both the randomized address for
storing privilege information and KASLR is difficult. There-
fore, the number of OS vulnerabilities that can bypass AKO
is small.

Combining AKO with CFI techniques is effective for
further increasing the difficulty of bypassing AKO. In partic-
ular, we suppose that kernel control-flow integrity technique

(KCoFI) [8] is effective in preventing the bypass of AKO.
Furthermore, methods [32,33] that check the processing flow
of system call processing are effective for AKO protection.
These methods focus on the flow of system call process-
ing, and can detect abnormal process flow during system call
processing. This method detect abnormal process flow by
focusing on the flow during system call processing using the
last branch record [34]. The method in [32] checks whether
the system call service routine was called and executed nor-
mally by checking the kernel stack. The method in [33]
checkswhether the systemcall service routinewas callednor-
mally using last branch record [34]. These methods impose
low additional overhead because they focus on only system
call processing. By expanding these twomethods for the call-
ing of AKO functions, it is possible to prevent the bypassing
of AKO.

7 Discussion

7.1 Limitations

Theproposedmethod can prevent privilege escalation attacks
that tamper with privilege information during system call
processing. However, there are privilege escalation attacks
that do not tamper with privilege information during sys-
tem call processing, and these attacks cannot be prevented
by AKO. For example, attacks that exploit the vulnerabil-
ity (CVE-2016-5159), called Dirty COW [35] (reported in
October 2016), cannot be prevented by AKO. Dirty COW
is a vulnerability in which a race condition occurs during a
copy-on-write process, and an unprivileged user can write to
a region of read-onlymemory by exploiting it. Consequently,
privilege escalation is achieved, such as by tampering with
the contents of /etc/passwd. Attacks that exploit the Dirty
COWvulnerabilitymust be addressedbyothermethods, such
as mandatory access control (MAC) systems and Tripwire
[36].

7.2 False positives and false negatives

Theproposedmethod prevents privilege escalation attacks by
detecting changes in privileges that would not occur under
normal conditions while permitting all authority changes
that may occur in normal states. Thus, false positives do
not occur. However, of the data items (Tables 1 and 3)
used by AKO to monitor changes, false positives may occur
when monitoring changes in a global variable. For exam-
ple, because selinux_enforcing is a global variable,
rather than a variable prepared for each process, the value
of selinux_enforcing may be changed by other pro-
cesses in a multi-core environment. However, false positives
occurring in the aforementioned case would be very rare, and

123



T. Yamauchi et al.

Table 9 Types of attacks that
can be prevented by CFI and
AKO

Tampering with control flow Non-control-data attack

CFI Preventable Unpreventable

AKO Only attacks in which privilege
information tampered with
can be prevented.

Attacks targeting privilege
information and other observed
kernel data can be prevented

we have not observed a false positive in our environment in
such a case thus far.

False negatives occur when an attack that tampers with the
authoritywithin the range canoccur under normal conditions.
For instance, in our method, changes in cap_inheritable,
cap_permitted, cap_effective, and cap_ambient are permit-
ted by using the capset system call. Therefore, an attack
cannot be prevented if the capset system call is vulnera-
ble; an attacker could exploit the vulnerability and tam-
per with cap_inheritable, cap_permitted, cap_effective, or
cap_ambient using the capset system call. However, because
the range of possible attacks is limited, such attacks have
become very difficult to execute. For instance, consider an
attacker attempting to tamper with uid. In AKO, four system
calls, namely execve, setuid, setreuid, and setresuid, are per-
mitted to change uid (see Table 2). Hence, attackers must be
able to exploit a vulnerability in one of the four system calls
to alter uid. The number of system calls that can be exploited
to allow tampering with uid is limited to 1.3% by implement-
ing AKO because there are 313 system calls in Linux kernel
4.4 (x86 64-bit). Hence, it will be more difficult to conduct
an attack.

7.3 Application to other OSs

If an OS satisfies the three features mentioned in Section 1,
AKO can be applied to the OS.Most monolithic OSs provide
their functions through the system call interface and manage
privilege information in the kernel space. Therefore, we sup-
pose that AKO can be applied to most monolithic OSs. Even
in micro-kernel OSs, if they satisfy the features mentioned
in Section 1, AKO can be applied, and privilege escalation
attacks can be prevented. We leave application to OSs other
than Linux as future work.

8 Related work

8.1 Prevention of privilege escalation attacks

Privilege escalation attacks are performed by an attacker
to acquire administrator privilege on a system. Because the
goal of these attacks is to gain administrator privilege, coun-
termeasures for these attacks have been studied [37,38]. In
[37], the design of privilege separation is proposed. In privi-

lege separation, parts of an application execute with different
privileges. This approach is very effective for system services
that require privilege.

Privilege escalation attacks can be successful by exploit-
ing OS vulnerabilities. In [38], PrivWatcher is proposed and
is a framework for monitoring and protecting the integrity
of process credentials and their usage contexts against
memory corruption attacks. PrivWatcher also guarantees
the “time of check to time of use” (TOCTTOU) consis-
tency. PrivWatcher stores process credentials in a safe region
and mediates changes to process credentials. However,
PrivWatcher assumes some conditions, such as an isolated
domain, kernel protection of MMU operations, and kernel
protection against code modification. Thus, a PrivWatcher
prototype is implemented in QEMU/KVM. The protection
mechanism for process credentialing of PrivWatcher requires
a protectedmemory region and a kernel access control policy.
On the other hand, AKO does not need an isolated domain,
and we obtain it in the kernel implementation with small
overhead and minimal side effects from kernel processing.
In addition, AKO can significantly reduce the attack surface
for exploiting OS vulnerabilities.

Li et al. [39] verified that the OS kernel paths accessed
by popular applications in everyday use contain significantly
fewer security bugs than less frequently used paths. Those
authors proposed a prototype system that locks an application
into using only popular OS kernel paths. The system can
prevent the triggering of zero-day kernel bugs. This approach
was applied to a virtual machine, and they showed that the
prototype was effective in preventing zero-day Linux kernel
bugs in a test against an OS-level virtual machine.

8.2 CFI

CFI is a security mechanism that prevents attacks that tam-
per with a program’s control flow [6,7]. By applying CFI,
we can prevent the following: execution of code in the stack
area, alteration of the return address, and execution of the
user space code by the kernel privilege (return-to-user attack
[8]). Most CFI techniques target the user space, whereas
CFI of the kernel space can be realized through KCoFI [8].
However, recent studies have shown that attacks may be suc-
cessful against fine-grained CFI. Therefore, applying CFI
alone is insufficient for realizing a secure system [40,41].
A non-control-data attack [9] is an attack that CFI can-

123



Additional kernel observer: privilege escalation attack prevention mechanism…

not prevent. Such an attack alters data that are indirectly
related to the control flow, such as user input, user identi-
fiers, and flags (variables such as is_admin). Table 9 lists
the types of attacks that CFI and AKO can prevent. Com-
pared to CFI, AKOhas the advantage of being able to prevent
non-control-data attacks targeting privilege information and
other observed kernel data. However, among attacks that
alter control flow, AKO can only prevent attacks that change
the privilege information. Therefore, system security can be
enhanced by combining CFI and AKO.

8.3 Supervisor mode execution protection

Supervisormode execution protection (SMEP) [42] is a secu-
rity mechanism provided by Intel CPUs as of the Ivy Bridge
architecture. Enabling SMEP prohibits the execution of code
stored in the user spacememory from entering the supervisor
mode. A similar mechanism is available in ARM archi-
tecture and is known as Privileged Execute-Never (PXN)
[43]. Owing to SMEP and PXN, it is possible to prevent
attacks (such as ret2user [1]) that execute the user space
code prepared by an attacker from the kernel space. However,
attacks that exploit vulnerabilities in the kernel and alter data
stored in the kernel space cannot be prevented using these
mechanisms. Furthermore, thesemechanisms cannot prevent
attacks that intentionally execute altered code or data stored
in the kernel space. For example, it is impossible to prevent
an attack that executes code that manipulates the parameters
of a system call and alters the kernel function pointer to point
to a different function residing in the kernel space [21].

SMEPandPXNcan be considered as types ofCFI because
they prevent illegal control flow from the kernel space to the
user space. We believe that the security of the system can be
enhanced by combining AKO with SMEP and PXN.

8.4 MAC system, Linux security module

A MAC system is a security mechanism that realizes MAC
and the principle of least privilege. Typical MAC systems
include SELinux [12,13], TOMOYOLinux [14], andAppAr-
mor [15,16]. SEAndroid [17,18], which is an extension of
SELinux for the Android, has been included since Android
4.3. By applying theMAC systemwith an appropriate policy,
even if administrative privileges are acquired by an attacker,
the damage can be limited within the range permitted by
the policy. MAC systems are realized using LSM [26]. LSM
hooks processing before a system call starts its processing
and transfers it to the hook function in the kernel space.MAC
systems perform access control within the hook function of
LSM.

Themajor difference between AKO and LSM is that LSM
hooks only before system call processing, whereas AKO
hooks before and after system call processing. With only

hooks before system call processing, the processing contents
of the system call cannot be monitored, and access control
can only be performed based on the execution state before
system call processing. Therefore, after the processing of
the LSM hook function, vulnerabilities can be exploited dur-
ing system call processing, and even if an illegal processing
is executed, it cannot be detected. In [44], recent attacks
whereby an attacker exploits a vulnerability of the kernel
and invalidates LSM have been identified. By contrast, AKO
can check for changes in privilege information during sys-
tem call processing by hooking before and after the system
call processing, preventing privilege escalation attacks that
exploit vulnerabilities.

While AKO is realized by rewriting the kernel, LSM is
advantageous in that the hook function group can be intro-
duced as a kernel module. In the future, we may be able to
implement the hook function in AKO as a kernel module.

8.5 Kernel integrity protection

TrustedBoot [10] and IMA [11] check at program startup that
the program has not been altered. Thus, the integrity of the
kernel at system startup can be protected. However, attacks
that exploit vulnerabilities at run-time cannot be prevented
with these architectures.

The kernel integrity protection method at run-time [45–
47] prevents code injection into the kernel space by checking
that illegal code is not inserted into the kernel space during
programexecution. These techniques can protect data that are
not changed during system execution, such as the code area
of the kernel space.However, it is not possible to prevent tam-
peringof data that canbe changeddependingon the execution
state, such as privilege information. For example, the privi-
lege information constitutes data that can be changed even in
a normal state. Even if the information is changed, we can-
not simply judge that it is illegal. To detect an unauthorized
change of data that can be changed during system execution,
it is necessary to consider the execution state. Therefore,
AKO focuses on the fact that the privilege information can
be changed only by specific system call processes.Moreover,
by considering the type of system call executed, AKO deter-
mines changes of privilege information as being authorized
or unauthorized. Thus, AKO prevents privilege escalation
attacks by detecting unauthorized changes in privilege infor-
mation during process execution.

9 Conclusion

In this paper, we proposed AKO, a method that prevents
privilege escalation attacks from exploiting Linux kernel vul-
nerabilities. We described its implementation and presented
evaluation results.

123



T. Yamauchi et al.

AKO is based on the following features of privilege data
management and system calls. First, the privilege of the
process is stored in the kernel space. Second, to modify
data in the kernel space, it is necessary to proceed through
a system call. Third, the function of each system call is
subdivided.

By applying AKO, we can prevent a privilege escalation
attack that changes privilege information that should not be
changed in the original system call processing, regardless of
the content of the vulnerabilities. In addition, by the introduc-
tion of AKO to a system in advance, it is possible to prevent
privilege escalation attacks without applying a security patch
to the kernel for resolving a vulnerability.

Furthermore, by examining data structures in the kernel
space and system call processing, the data to be monitored
by AKO can be expanded for preventing unwanted kernel
data falsification. In this paper, as an extension of AKO, a
mechanism for preventing attacks that disable SELinux was
proposed.

We implementedAKOandperformedexperiments involv-
ing privilege escalation attacks using exploit codes available
on the web. The evaluation results showed that AKO could
detect multiple types of privilege escalation attacks. Thus,
AKO can adopt countermeasures against privilege escalation
attacks before damage to the system occurs.

The performance evaluation results of LMbench showed
that the overhead per system call was 0.008–0.036µs, which
is small. The ratio of the overhead to the processing time in
the web server before implementing AKO was 0.4% or less.
In addition, the ratio of the overhead to the processing time in
the kernel build before implementing AKO was 0.2%. From
these results, we can conclude that AKO is effective while
having a negligible impact on performance.

In the future, we will consider countermeasures against
attacks with memory corruption vulnerabilities that were not
considered in this research.

Acknowledgements This work was partially supported by JSPS KAK-
ENHI Grant Number JP19H04109.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the

permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Kemerlis, V. P., Portokalidis, G. and Keromytis, A.D.: kGuard:
lightweight kernel protection against return-to-user attacks. In: Pro-
ceedings of USENIX Security ’12, pp. 459–474 (2012)

2. Kemerlis, V.P., Polychronakis, M., Keromytis, A.D.: ret2dir:
rethinking Kernel isolation. In: Proceedings of USENIX Security
’14, pp. 957–972 (2014)

3. Linux Counter. https://www.linuxcounter.net/statistics/kernel
4. Niu, S., Mo, J., Zhang, Z., et al.: Overview of linux vulnerabilities.

In: Proceedings of SCICT 2014, pp. 225–228 (2014)
5. Chen, H., Mao, Y., Wang, X., et al.: Linux kernel vulnerabilities:

state-of-the-art defenses and open problems. In: Proceedings of
APSys ’11, No. 5 (2011)

6. Abadi, M., Budiu, M., Erlingsson, U., et al.: Control-flow integrity.
In: Proceedings of CCS ’05, pp. 340–353 (2005)

7. Petroni, Jr., N.L., Hicks, M.: Automated detection of persistent
kernel control-flow attacks. In: Proceedings of CCS ’07, pp. 103–
115 (2007)

8. Criswell, J., Dautenhahn, N., Adve, V.: KCoFI: complete control-
flow integrity for commodity operating system kernels. In: Pro-
ceedings of IEEE S&P ’14, pp. 292–307 (2014)

9. Chen, S., Xu, J., Sezer, E.C., et al.: Non-control-data attacks are
realistic threats. In: Proceedings of USENIXSecurity ’05, pp. 177–
192 (2005)

10. Trusted Computing Group: Trusted Boot. http://www.
trustedcomputinggroup.org/trusted-boot/

11. Integrity Measurement Architecture (IMA). https://sourceforge.
net/projects/linux-ima/

12. Loscocco, P., Smalley, S.: Integrating flexible support for security
policies into the linux operating system. In: Proceedings of the
FREENIX Track: USENIX ATC 2001, pp. 29–42 (2001)

13. NSA/CSS: Security-Enhanced Linux. https://www.nsa.gov/what-
we-do/research/selinux/

14. TOMOYO Linux. https://tomoyo.osdn.jp/index.html
15. Cowan, C., Beattie, S., Kroah-Hartman, G., et al.: SubDomain:

parsimonious server security. In: Proceedings of LISA ’00, pp.
355–368 (2000)

16. AppArmor security project wiki. http://wiki.apparmor.net/index.
php/Main_Page

17. Smalley, S., Craig, R.: Security enhanced (SE) Android: bringing
flexible MAC to Android. In: NDSS 2013 (2013)

18. Security Enhancements (SE) for Android. http://seandroid.
bitbucket.org/

19. Szekeres, L., Payer,M.,Wei, T., et al.: SoK: eternal war inmemory.
In: Proceedings of IEEE S&P ’13, pp. 48–62 (2013)

20. JVN iPedia. https://jvndb.jvn.jp/en/
21. Exploit Database, LinuxKernel 3.4< 3.13.2 (Ubuntu 13.04/13.10)

- ’CONFIG_X86_X32=y’ Local Root Exploit (3). https://www.
exploit-db.com/exploits/31347/

22. Exploiting the Futex Bug and uncovering Towelroot. http://
tinyhack.com/2014/07/07/exploiting-the-futex-bug-and-
uncovering-towelroot/

23. Hallyn, S.E., Morgan A.G.: Linux capabilities: making themwork.
In: Proceedings of Linux Symposium, pp. 163–172 (2008)

24. Exploit Database, Nexus 5 Android 5.0—Privilege Escalation.
https://www.exploit-db.com/exploits/35711/

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.linuxcounter.net/statistics/kernel
http://www.trustedcomputinggroup.org/trusted-boot/
http://www.trustedcomputinggroup.org/trusted-boot/
https://sourceforge.net/projects/linux-ima/
https://sourceforge.net/projects/linux-ima/
https://www.nsa.gov/what-we-do/research/selinux/
https://www.nsa.gov/what-we-do/research/selinux/
https://tomoyo.osdn.jp/index.html
http://wiki.apparmor.net/index.php/Main_Page
http://wiki.apparmor.net/index.php/Main_Page
http://seandroid.bitbucket.org/
http://seandroid.bitbucket.org/
https://jvndb.jvn.jp/en/
https://www.exploit-db.com/exploits/31347/
https://www.exploit-db.com/exploits/31347/
http://tinyhack.com/2014/07/07/exploiting-the-futex-bug-and-uncovering-towelroot/
http://tinyhack.com/2014/07/07/exploiting-the-futex-bug-and-uncovering-towelroot/
http://tinyhack.com/2014/07/07/exploiting-the-futex-bug-and-uncovering-towelroot/
https://www.exploit-db.com/exploits/35711/


Additional kernel observer: privilege escalation attack prevention mechanism…

25. grsecurity: super fun 2.6.30+/RHEL5 2.6.18 local kernel exploit.
https://grsecurity.net/~spender/exploits/exploit2.txt

26. Wright, C., Cowan, C., Smalley, S., et al.: Linux security modules:
general security support for the linux kernel. In: Proceedings of
USENIX Security ’02, pp. 17–31 (2002)

27. Exploit Database, Linux Kernel 3.7.10 (Ubuntu 12.10 x64) -
’sock_diag_handlers’ Local Root Exploit (2). https://www.exploit-
db.com/exploits/24746/

28. Exploit Database, Linux Kernel 3.14.5 (RHEL / CentOS 7) - ’lib-
futex’ Local Root Exploit, https://www.exploit-db.com/exploits/
35370/

29. Exploit Database, Linux Kernel 4.4.1—REFCOUNT
Overflow/Use-After-Free in Keyrings Privilege Escalation
(1)C https://www.exploit-db.com/exploits/39277/

30. kernel-exploits/poc.c. https://github.com/xairy/kernel-exploits/
blob/master/CVE-2017-6074/poc.c

31. LMbench—Tools for PerformanceAnalysis. http://www.bitmover.
com/lmbench/

32. Ikegami, Y., Yamauchi, T.: Proposal of kernel rootkits detection
method by comparing kernel stack. IPSJ J. 55(9), 2047–2060
(2014). (in Japanese)

33. Yamauchi, T., Akao, Y.: Kernel rootkits detection method by mon-
itoring branches using hardware features. IEICE Trans. Inf. Syst.
E100–D(10), 2377–2381 (2017)

34. Intel, Intel 64 and IA-32 Architectures Software Developer’s Man-
ual Volume 3B

35. DIRTY COW. https://dirtycow.ninja/
36. Tripwire Inc.: Tripwire. https://www.tripwire.org/
37. Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escala-

tion. In: Proceedings of USENIX Security ’03 (2003)
38. Chen, Q., Azab, A. M., Ganesh, G., et al.: PrivWatcher: non-

bypassable monitoring and protection of process credentials from
memory corruption attacks. In: Proceedings of ASIA CCS ’17, pp.
167–178 (2017)

39. Li, Y., Dolan-Gavitt, B., Weber, S., et al.: Lock-in-pop: securing
privileged operating system kernels by keeping on the beaten path.
In: Proceedings of USENIX ATC ’17, pp. 1–13 (2017)

40. Carlini, N., Barresi, A., Payer, M., et al.: Control-flow bending:
on the effectiveness of control-flow integrity. In: Proceedings of
USENIX Security ’15, pp. 161–176 (2015)

41. Evans, J., Long, F., Otgonbaatar, U., et al.: Control Jujutsu: on the
weaknesses of fine-grained control flow integrity. In: Proceedings
of CCS ’15, pp. 901–913 (2015)

42. Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 3A: System Programming Guide, Part 1, http://www.intel.
com/content/dam/www/public/us/en/documents/manuals/64-ia-
32-architectures-software-developer-vol-3a-part-1-manual.pdf

43. ARM Cortex-A Series Programmer’s Guide for ARMv8-
A. http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/
DEN0024A_v8_architecture_PG.pdf

44. Looking at the local Linux kernel privilege escalation. http://blog.
siphos.be/2013/05/looking-at-the-local-linux-kernel-privilege-
escalation/

45. Azab, A. M., Ning, P., Shah, J., et al.: Hypervision across worlds:
real-time kernel protection from the ARMTrustZone secure world.
In: Proceedings of CCS ’14, pp. 90–102 (2014)

46. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel
rootkits with VMM-based memory shadowing. In: Proceedings of
RAID ’08, pp. 1–20 (2008)

47. Seshadri, A., Juk, M., Qu, N., et al.: SecVisor: a tiny hypervisor
to provide lifetime kernel code integrity for commodity OSes. In:
Proceedings of SOSP ’07, pp. 335–350 (2007)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://grsecurity.net/~spender/exploits/exploit2.txt
https://www.exploit-db.com/exploits/24746/
https://www.exploit-db.com/exploits/24746/
https://www.exploit-db.com/exploits/35370/
https://www.exploit-db.com/exploits/35370/
https://www.exploit-db.com/exploits/39277/
https://github.com/xairy/kernel-exploits/blob/master/CVE-2017-6074/poc.c
https://github.com/xairy/kernel-exploits/blob/master/CVE-2017-6074/poc.c
http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/
https://dirtycow.ninja/
https://www.tripwire.org/
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf
http://blog.siphos.be/2013/05/looking-at-the-local-linux-kernel-privilege-escalation/
http://blog.siphos.be/2013/05/looking-at-the-local-linux-kernel-privilege-escalation/
http://blog.siphos.be/2013/05/looking-at-the-local-linux-kernel-privilege-escalation/

	Additional kernel observer: privilege escalation attack prevention mechanism focusing on system call privilege changes
	Abstract
	1 Introduction
	2 Privilege escalation attacks exploiting OS vulnerabilities
	2.1 OS vulnerabilities
	2.2 Privilege escalation attacks
	2.3 Attacks targeted by AKO

	3 AKO design
	3.1 Concept
	3.2 Privileges for observation
	3.3 AKO process flow
	3.4 Operation after privilege escalation attack detection

	4 Expansion of observed data
	4.1 Overview
	4.2 Attack prevention against SELinux

	5 AKO implementation
	6 Evaluation
	6.1 Evaluation environment
	6.2 Prevention experiments for privilege escalation attacks
	6.3 Evaluation of performance overhead
	6.3.1 Experimental results of system call overhead
	6.3.2 Impact on app performance by introducing AKO

	6.4 Security analysis

	7 Discussion
	7.1 Limitations
	7.2 False positives and false negatives
	7.3 Application to other OSs

	8 Related work
	8.1 Prevention of privilege escalation attacks
	8.2 CFI
	8.3 Supervisor mode execution protection
	8.4 MAC system, Linux security module
	8.5 Kernel integrity protection

	9 Conclusion
	Acknowledgements
	References




