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Abstract 5 

Background: Many histological, mechanical, and clinical studies have been performed on 6 

the medial meniscus posterior root attachment, as it often tears in patients with 7 

osteoarthritic knee. Medial meniscal root repair is recommended in clinical situations; 8 

however, to date, no studies have examined the differences between meniscus root and 9 

horn cells. The aim of this study was, therefore, to investigate the morphology, reaction to 10 

cyclic tensile strain, and gene expression levels of medial meniscal root and horn cells.  11 

Methods: Meniscus samples were obtained from the medial knee compartments of 10 12 

patients with osteoarthritis who underwent total knee arthroplasty. Root and horn cells were 13 

cultured in Dulbecco’s modified Eagle’s medium without enzymes. The morphology, 14 

distribution, and proliferation of medial meniscal root and horn cells, as well as the gene 15 

and protein expression levels of Sry-type HMG box 9 and type II collagen, were determined 16 

after cyclic tensile strain treatment. 17 

 Results: Horn cells had a triangular morphology, whereas root cells were fibroblast-like. 18 

The number of horn cells positive for Sry-type HMG box 9 and type II collagen was 19 

considerably higher than that of root cells. Although root and horn cells showed similar 20 

levels of proliferation after 48, 72, or 96 h of culture, more horn cells than root cells were 21 

lost following a 2-h treatment with 5 and 10% cyclic tensile. Sry-type HMG box 9 and 22 

α1(II) collagen mRNA expression levels were significantly enhanced in both cells after 2- 23 

and 4-h cyclic tensile strain (5%) treatment.  24 

Conclusions: Medial meniscus root and horn cells have distinct morphologies, reactions 25 

to mechanical stress, and cellular phenotypes. Our results suggest that physiological tensile 26 

strain is important to activate extracellular matrix production in horn cells. 27 

  28 
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Introduction 29 

The meniscus is a fibrocartilaginous tissue that plays an important role in controlling 30 

complex biomechanical responses of the knee to tension, compression, and shear stress [1]. 31 

In the adult human, the perimeniscal capillary plexus comprises the outer 10–25% of the 32 

meniscus, whereas the inner 75–90% meniscus is composed of avascular tissue [2]. The 33 

avascular inner meniscus has a more pronounced chondrocytic phenotype [3]. Hence, human 34 

cells derived from this inner region exhibit chondrocytic morphology and produce type II 35 

collagen (COL2), a cartilage-specific extracellular matrix (ECM) component [4–6]. 36 

Alternatively, outer meniscus cells have a fibroblastic morphology and primarily synthesize 37 

type I collagen (COL1), which resists circumferential tensile stress [4]. Further, the nuclear 38 

translocation of Sry-type HMG box (SOX) 9 is stimulated and α1(II) collagen (COL2A1) 39 

expression is enhanced by cyclic tensile strain (CTS) in inner meniscal cells [7]. Studies have 40 

also demonstrated that mechanical stimuli regulate the expression of growth factors, ECM 41 

proteins, and catabolic molecules in the menisci [3,7–10].  42 

 Many histological, mechanical, and clinical studies of meniscal attachments 43 

have been reported [11–15]. Meniscal attachments are ligamentous tissues anchoring the 44 

menisci to the underlying subchondral bone [16] that transition into the fibrocartilaginous 45 

structure of the meniscal body [13]. It has also been reported that the meniscal root might 46 

continue into the outer region of the meniscus, where it merges with the more fibrocartilage-47 

like inner region of the tissue [13]. Moreover, it was demonstrated that the medial posterior 48 

attachment has a significantly greater elastic modulus and ultimate stress compared to 49 

corresponding parameters in the other three attachments, namely the medial meniscus (MM) 50 

anterior root, and lateral meniscus anterior and posterior roots [11]. 51 

 MM root repair is recommended to prevent subsequent cartilage degeneration 52 

following MM posterior root tear (MMPRT) [12], as the loss of hoop stress secondary to 53 

meniscal insufficiency from root tears leads to medial compartment overload and 54 

osteoarthritis. Accordingly, favorable clinical outcomes have been reported after the 55 
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transtibial pullout repair of the MMPRT [17]. Although meniscal root and horn cells have 56 

not been defined previously [14,15], the meniscal root is not considered a fibrocartilaginous 57 

body but rather an insertional ligament [13], whereas the meniscal root and horn have been 58 

clearly distinguished [18]. However, currently no studies have characterized the differences 59 

between meniscus root and horn cells. We hypothesized that MM horn cells would be 60 

reduced more so than root cells after mechanical stretch and that chondrogenic gene 61 

expression is higher in horn cells than root cells. The aim of this study was therefore to 62 

investigate the morphology of medial meniscal root and horn cells, as well as gene expression 63 

levels in these cells.  64 

Materials and Methods 65 

Specimen preparation 66 

This study was approved by our Institutional Review Board, and all patients provided written 67 

informed consent. Meniscus samples were obtained from the medial knee compartments of 68 

10 patients with osteoarthritis who underwent total knee arthroplasty (Fig. 1A, B). 69 

Osteotomy of the tibial surface was performed using a System 6 sagittal saw (Stryker, 70 

Kalamazoo, MI) without damaging the supplemental fibers and tibial insertions of the MM 71 

posterior root (Fig. 1A). The meniscal root was defined as the insertional ligament-like 72 

region from the attachment to the tibial surface except for the fibrocartilaginous body (Fig. 73 

1C). Among the study participants, there were three men and seven women, with a mean age 74 

of 70.5 (range, 59–85) years. Relatively less-damaged medial menisci were included based 75 

on macroscopic observations after severely damaged tissues were excluded from the study. 76 

Cells and cell culture 77 

Meniscal samples (n = 5) derived from the root and horn were minced separately using a 78 

scalpel. Attached cells (passage 0) were cultured in Dulbecco’s modified Eagle’s medium 79 

(Wako, Osaka, Japan) supplemented with 10% fetal bovine serum (HyClone, South Logan, 80 

UT) and 1% penicillin/streptomycin (Sigma, St. Louis, MO) without enzymes. They were 81 
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then incubated at 37 °C in 95% air with 5% CO2 and subcultured at a density of 2500 82 

cells/cm2 on non-coated polystyrene tissue culture dishes (BD Biosciences, Bedford, MA) 83 

as previously described [19]. The medium was changed every 3 days. Cells at passage 1 were 84 

used for RNA extraction, whereas those at passage 2 were used for immunofluorescence 85 

staining and cell proliferation assays. Further, cells at passage 3 were used for CTS treatment. 86 

Cellular morphology and collagen synthesis 87 

Cultured cells derived from the meniscal root and horn (passage 1, day 1) were observed using a 88 

phase-contrast microscope (Olympus, Tokyo, Japan). Next, the area, perimeter, and 89 

transformation index (TI) were measured using ImageJ (version 1.47) to reveal the morphological 90 

characteristics as previously described [20]. TI was determined as described by Fujita et al. [21] 91 

using the following formula: [perimeter (µm)]2 / 4π [cell area (µm2)]. This index is suitable for 92 

comparisons of cell shape as it is dependent on cell shape yet independent of cell size. Therefore, 93 

circular cells are assigned an index of 1, whereas a cell with long processes and a small soma 94 

would have a larger index [21]. Relative values were normalized based on the values in root cells 95 

for each sample. Immunofluorescence staining was performed as previously described [7]. The 96 

cells were fixed with methanol for 10 min and with acetone for 1 min (Sigma). The slides were 97 

incubated with a rabbit anti-SOX9 polyclonal antibody (1:500 for 1 h, Abcam, Cambridge, UK) 98 

and a mouse anti-COL2 monoclonal antibody (1:100 for 1 h, Kyowa Pharma Chemical, Toyama, 99 

Japan). Bovine serum albumin solution without the primary antibody was used as a negative 100 

control. Alexa Fluor 488-conjugated anti-rabbit antibody for SOX9 and anti-mouse antibody for 101 

COL2 (1:200 for 30 min, Invitrogen, Carlsbad, CA), Alexa Fluor 568-conjugated phalloidin (1:40 102 

for 20 min, Molecular Probes, Eugene, OR), and Hoechst 33342 (1:1000 for 5 min, ICN 103 

Biomedicals, Aurora, OH) were used to detect specific markers, and the cells were examined 104 

under a fluorescence microscope (Olympus). SOX9-positive and COL2-positive cell percentages 105 

were measured as the ratios of cells positively stained with corresponding antibodies to the total 106 

cell count over an area of 670 × 670 μm. Meniscus root and horn cell cultures were analyzed five 107 
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times per replicate (total of three replicates), and the mean value was calculated.  108 

Histological analyses 109 

Five samples were fixed in a 95% ethanol solution and then decalcified in a 20% EDTA 110 

solution (Fig. 1B). Coronal sections (6-μm thickness) were sequentially assessed by safranin-111 

O staining as previously described [22] to examine the cell morphology and distribution. The 112 

meniscal root was defined as the insertional ligament region from the attachment to the tibial 113 

surface, excluding the fibrocartilaginous body (Fig. 1). 114 

Cell proliferation assay 115 

After cell count and density adjustments, root and horn cells were seeded in microplates at a 116 

density of 104 cells/well with culture medium (500 µL) and incubated for 24, 48, 72, and 96 117 

h prior to the addition of Accutase (Innovative Technologies, San Diego, CA). After 118 

collection, cell counts were performed for each treatment, and the data were used for analysis. 119 

Cell counts were performed manually with Toluidine blue using a microscope (Olympus) in 120 

a blinded manner five times per replicate (total of three replicates), and the mean value was 121 

calculated.  122 

Cyclic tensile strain  123 

Polydimethylsiloxane stretch chambers (STREX, Osaka, Japan) were coated with 100 124 

mg/mL of rat tail COL1 (BD Biosciences) as described previously [23]. Root and horn cells 125 

were seeded onto stretch chambers (culture surface of 4 cm2) at a concentration of 15,000 126 

cells/cm2. The cells were incubated on the COL1-coated chambers for 24 h under the same 127 

conditions as those mentioned in the “Cells and cell culture” subsection before the stretching 128 

experiments.  129 

Cell proliferation assay after CTS 130 

Uni-axial CTS (0.5 Hz, 5% or 10% stretch) was applied using a STB-140 system (STREX) 131 

for 2 h [22]. Root and horn cells in the stretch chambers were incubated for 24 h prior to cell 132 
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counts. Non-stretched meniscus cells cultured on stretch chambers were used as 0% stretch 133 

controls. Each experiment was performed using four chambers per replicate (total of three 134 

replicates), and the mean value was calculated. 135 

Reverse transcription-polymerase chain reaction (PCR) and quantitative real-136 

time PCR analysis after CTS 137 

RNA samples were obtained from cultured meniscus cells immediately after CTS. Uni-axial 138 

CTS (0.5 Hz, 5% stretch) was applied using a STB-140 system (STREX) for 2 or 4 h [22]. 139 

Total RNA was isolated using TRIzol reagent (Thermo Fisher Scientific, Waltham, MA). 140 

RNA samples (1,000 ng) were reverse-transcribed using the ReverTra Ace kit (Toyobo, 141 

Osaka, Japan). The obtained cDNA was then subjected to PCR amplification in the presence 142 

of specific primers using exTaq DNA polymerase (TaKaRa, Ohtsu, Japan). For all RT-PCR 143 

fragments, the reaction was allowed to proceed for 30–35 cycles. The following specific 144 

primer sets were used [24]: 5′-CTG AAC GAG AGC GAG AAG-3′, 5′-TTC TTC ACC GAC 145 

TTC CTC C-3′ for SOX9; 5′-AAT TCC TGG AGC CAA AGG AT-3′, 5′-AGG ACC AGT 146 

TGC ACC TTG AG-3′ for COL2A1; 5′-ATC CAG CTG ACC TTC CTG CG-3′, 5′- GGG 147 

AGG TCT TGG TGG TTT TG-3′ for α1(I) collagen (COL1A1); 5′-CAT CAA GAA GGT 148 

GGT GAA GCA G-3′, 5′-CGT CAA AGG TGG AGG AGT GG-3′ for glyceraldehyde-3-149 

phosphate dehydrogenase (G3PDH). Quantitative real-time PCR analyses were performed 150 

using a FastStart DNA Master SYBR Green I kit (Roche Diagnostics, Basel, Switzerland) as 151 

described previously [25]. The cycle number crossing the signal threshold was selected from 152 

the linear part of the amplification curve. G3PDH amplification data were used for 153 

normalization. 154 

 155 

Statistical analysis 156 

All experiments were repeated at least three times independently, and similar results were 157 

obtained from multiple replicates. Data are expressed as the mean ± standard deviation. 158 
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Statistical analyses were performed using EZR software (Saitama Medical Center Jichi 159 

Medical University, Tochigi, Japan), which is a graphical user interface for R (The R 160 

Foundation for Statistical Computing). Differences among groups were compared using the 161 

Mann–Whitney U test or a one-way ANOVA. Post-hoc comparisons were performed using 162 

the Tukey test. All statistical analyses were conducted with a significance level of α = 0.05 163 

(P < 0.05). 164 

Results 165 

Morphology and immunohistochemistry 166 

Distinct cell morphologies were observed based on phase-contrast microscopy analysis. 167 

Specifically, the root cells showed a spindle-shaped fibroblastic morphology, whereas the 168 

horn cells were triangular in shape (Fig. 2A, B). Furthermore, the relative area of the horn 169 

cells was significantly higher than that of the root cells, and the relative TI of root cells was 170 

significantly higher than that of the horn cells, whereas the relative perimeter of both cell 171 

types was similar (Fig. 2C–E). Immunostaining revealed SOX9 and COL2 production in 172 

both root and horn cells. Image analysis demonstrated that relative SOX9 and COL2 173 

densities were 25-fold and 5-fold higher, respectively, in horn cells than in root cells (Figs. 174 

3, 4).  175 

Response to CTS 176 

The number of both root and horn cells increased significantly (P < 0.05) by approximately 177 

2.0-fold at 96 h of culture, and the proliferation rates of both cell types were similar (Fig. 178 

5A). The density of only horn cells was significantly reduced after a 2-h CTS (10%) 179 

treatment compared to that after 0% treatment (controls) (P < 0.05). More horn cells than 180 

root cells were lost after 5 and 10% CTS (2 h; Fig. 5B).  181 
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CTS enhances SOX9 and COL2A1 mRNA expression in meniscal horn cells 182 

RT-PCR analyses revealed that the expression levels of the chondrocytic genes SOX9 and 183 

COL2A1 were barely detectable, even after CTS treatment, in root cells, whereas the mRNA 184 

levels of both markers were enhanced in horn cells after 2 and 4 h of CTS treatment (5%) 185 

(Fig. 6A). Quantitative real-time PCR analyses revealed that SOX9 and COL2A1 gene 186 

expression levels increased in both meniscal root and horn cells after CTS compared to those 187 

under CTS-free conditions (P < 0.05), and significantly higher gene expression levels were 188 

observed in horn cells than in root cells at all conditions (5% CTS; P < 0.05; Fig. 6B, C), 189 

whereas COL1A1 gene expression levels were similar in both cells under all conditions (after 190 

CTS; Fig. 6D).  191 

Discussion 192 

The most important finding of this study is that MM root and horn cells have distinct 193 

morphological characteristics and show different cellular phenotypes. Cellular responses to 194 

mechanical stress underlie many critical functions such as development, morphogenesis, and 195 

wound healing [26]. It was previously reported that inner meniscus cells maintain a more 196 

pronounced chondrogenic phenotype than outer meniscus cells [4] and exhibit chondrocytic 197 

morphology and chondrogenic gene expression after CTS [7]. In the present study, meniscal 198 

horn cells showed characteristics similar to those of inner meniscus cells. This result was 199 

consistent with a previous report demonstrating that the root might continue into the outer 200 

portion of the meniscus, where it merges with more fibrocartilage-like inner portions of the 201 

tissue [13].  202 

 In the posterior third of the medial menisci of human cadaveric knees, average 203 

compressive strains of 2.2% and 6.3% were observed in the medial-lateral and superior-204 

inferior directions, as well as an average tensile strain of 3.8% in the anterior–posterior 205 

direction, based on computed tomography imaging [27]. Studies have simulated 206 

physiological force using various mechanical stimuli. Herein, a lower number of horn cells 207 

was observed following CTS compared to that of root cells. Considering that cell stretch 208 
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would induce mechanical extension of cytoplasmic macromolecules, the activation of ion 209 

channels, and the phosphorylation of mechanotransducers [26], we postulate that horn cells 210 

might become fragile under continuous mechanical stress, as was previously demonstrated 211 

for meniscus inner cells [5]. However, since cellular behavior is dynamic under stretching 212 

conditions in vivo, further examination is required to comprehensively describe the observed 213 

weakness of horn cells. 214 

 In the present study, 5% CTS significantly enhanced the mRNA expression 215 

levels of SOX9 and COL2A1 in both meniscal root and horn cells. However, with regard to 216 

the RT-PCR results, an increase in SOX9 and COL2A1 gene expression levels might have 217 

been observed in root cells after CTS treatment because of the extremely low expression 218 

demonstrated in CTS-free conditions. Although horn cells likely have low healing potential, 219 

similar to that of the inner meniscus cells derived from the avascular region [2], physiological 220 

tensile strain might be important to activate ECM production in meniscal horn cells. This 221 

supports previous conclusions that transtibial pullout repair of the MMPRT decreases the 222 

proton density-weighted imaging signal intensity of the MM posterior segment in 223 

postoperative magnetic resonance images [28]. Accordingly, this phenomenon might 224 

indicate that MM posterior root repair induces a compositional change in the MM posterior 225 

segment. Meniscus degeneration following MMPRT might also be suppressed by pullout 226 

repair, which restores meniscal hoop tension. Furthermore, the results of the present study 227 

might be similar for healthy and injured menisci in which horn cells are more chondrogenic; 228 

however, further studies are necessary to confirm this. Therefore, meniscus repair for injury 229 

in younger patients after trauma, like anterior cruciate ligament injury, would also be 230 

recommended to recover the chondrogenic potential and prevent the degeneration of the 231 

meniscus or femorotibial cartilage. 232 

 Several limitations have been noted in this study. Migrated cells, rather than 233 

tissues, were used throughout the study, and although the gene expression level of 234 

transcription factors necessary for chondrogenesis, such as SOX9, was reported to remain 235 
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unchanged, cultured meniscus cells might undergo dedifferentiation during monolayer 236 

culture [29,30]. Changes in the intracellular signals caused by CTS treatment or the actual 237 

amount of proteins following CTS treatment were not examined. Although we observed that 238 

SOX9 and COL2A1 gene expression levels in horn cells were significantly enhanced by CTS, 239 

we did not examine the mechanisms underlying these phenomena, which should be 240 

addressed in future studies. In addition, PCR analyses were performed only at 0, 2, or 4 h 241 

after 5% or 10% uniaxial CTS. It was difficult to perform CTS treatment for a long period 242 

because most cells detach over time. More pronounced differences might have been obtained 243 

if these data were acquired 30 min, 1 h, or > 24 h after 2.5 or 7.5 % CTS treatment. 244 

Furthermore, the study samples were from older adults who were affected by osteoarthritis. 245 

Further investigations using healthy menisci or animal models will be required to understand 246 

the properties of meniscus cells at the surface of injured menisci and other differences 247 

between meniscus root and horn cells.  In conclusion, MM root and horn cells have distinct 248 

morphologies and reactions to mechanical stress and show different cellular phenotypes. Our 249 

results suggest that physiological tensile strain is important for the activation of ECM 250 

production in horn cells.  251 
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 332 

Figure legends 333 

Fig. 1. Meniscal sample. (A) Gross appearance. (B) Isolated and fixed medial meniscus (MM). 334 

(C) Safranin-O-stained MM. (D) Cells from MM posterior root (PR). (E) Cells from MM 335 

posterior horn (PH). LM: lateral meniscus. Dotted line: slice surface; yellow/red arrowheads: 336 

horn/root cells. 337 

 338 

Fig. 2. Morphology of cell types observed under a phase contrast microscope and quantification 339 

of each cell type. (A) Root cells. (B) Horn cells. (C) Relative area. (D) Relative perimeter. (E) 340 

Relative transformation index. *P < 0.01. Bar = 100 µm.  341 

 342 

Fig. 3. Immunofluorescence staining for SOX9 and F-actin. (A) Respective images. (B) Ratio of 343 

SOX9-positive cells. *P < 0.05. Bar = 100 µm. 344 

 345 

Fig. 4. Immunofluorescence staining for COL2 and Hoechst staining. (A) Respective images. (B) 346 

Ratio of COL2-positive cells. *P < 0.05. Bar = 100 µm. 347 

 348 

Fig. 5. Results of cell proliferation assay using both root and horn cells. (A) The results of simple 349 

manual cell counts. (B) The results of manual cell counts after a 2-h cyclic tensile strain (CTS) 350 

treatment. *P < 0.05. 351 

 352 
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Fig. 6. Effect of cyclic tensile strain on SOX9, COL2A1, and COL1A1 expression. (A) Results of 353 

reverse transcription PCR analyses. (B–D) Results of quantitative real-time PCR analyses. *P < 354 

0.05. 355 
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