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Abstract 

Recent money laundering scandals, like the Danske Bank and Swedbank’s failure 

to mitigate money laundering risks (Kim, 2019), have made “anti money laundering” 

(AML) a much discussed topic. Governments are making AML regulations tougher and 

financial institutions are struggling to comply, one of the requirements is to actively 

monitor financial transactions to detect suspicious ones. 

Most of the financial industry applies simple rule-based methods for monitoring. 

This thesis provides a practical model to detect suspicious transactions using the hidden 

Markov model (HMM). The use of HMM is justified, because the criminal nature of  a 

transaction is hidden to the financial institution, only transaction parameters can be 

observed. By using past data, a model is built to detect if current transaction is suspicious 

or not. The model is assessed with artificial and real transactions data. It was concluded 

that this model performs better than a classical k-means clustering algorithm. 

Keywords: money laundering, hidden Markov model, transaction monitoring, k-

means clustering. 
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1 Introduction 
The problem of money laundering has become more and more crucial in the last 

years. Big scandals like in the Danske Bank (RiskScreen, 2019) and the Wachovia Bank 

(Wyler, 2011) money laundering cases increased interest in this topic. Money laundering 

is a process that takes illegally obtained finances and puts it through a cycle of 

transactions and various accounts in a bank (or between banks) in order for it to appear 

to be from a legitimate source. The general idea is to hide traces of the illegal money so 

that it would not lead back to its source. Hiding legitimately acquired money to avoid 

taxation also qualifies as money laundering. 

According to the Financial Action Task Force, large sums of money are laundered 

every year, posing a threat to the global economy and its security (FATF, 2020). There 

are various ways to launder money, for example, usage of shell companies for fictitious 

business activity; usage of fraudulent record keeping; and the purchase of real estate using 

cash. Such activities can occur globally. The sophistication of money laundering activities 

depends on the transactions’ sequence that is used to hide the relationship between dirty 

money and its origin. 

To deal with this problem, anti-money laundering (AML) detection procedures and 

requirements are forced upon financial institutions by different governmental institutions. 

For example, in Estonia gathering information about suspicions of money laundering or 

terrorist financing is the aim of the Financial Intelligence Unit (FIU), an independent 

structural unit of the Estonian Police and Border Guard Board (Estonian Police and 

Border Guard Board, 2020). The Prosecutor's Office, Security Police, Tax and Customs 

Board and courts in Estonia take over from FIU to identify the criminal activities and 

enforce Estonian AML laws. The laws and regulations are overseen by the Ministry of 

Finance in (Estonian Ministry of Finance, 2019). Many governments abide by 

recommendations or directives issued by international organisations. Examples of such 

sources of AML regulations are The Financial Action Task Force’s Recommendations 

(FATF, 2020) and European Union’s Fourth and Fifth Anti-Money Laundering 

Directives (European Commission, 2019).  
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It can be said that two parties are involved in AML process:  

Government  

• implement measures to prevent or 

mitigate money laundering;  

• implement laws and regulations;  

• criminalize money laundering;  

• confiscate funds;  

• coordinate internationally.  

Financial institutions  

• implement measures to prevent or 

mitigate money laundering;  

• implement policies;  

• record keeping;  

• report suspicious activity;  

• coordinate with law enforcement.  

 

In order to be compliant with regulations, financial institutions have to implement 

measures to prevent or mitigate money laundering, this includes risk assessment, 

customer due diligence and actively try to detect money laundering. One of the practical 

implications of these efforts is transaction monitoring, where a set of financial institutions' 

customers' transactions are evaluated by different rules and labelled as suspicious or 

normal. Many financial institutions apply rule-based monitoring systems - if a set of fine-

tuned thresholds are exceeded or certain parameters are triggered, then a transaction is 

investigated further. There are some examples of state-of-the-art methods being used, like 

machine learning methods and artificial intelligence (Comply Advantage, 2019; 

TransferWise, 2019). Current thesis proposes a novel approach for detecting suspicious 

transactions.  

The problem with rule-based approach is that it might create a lot of false alerts, 

which will take AML specialists a lot of time to resolve. Sometimes really suspicious 

cases are even missed. So, the improvement of a model for detecting money laundering 

is crucial in the modern world.  

In this thesis, the hidden Markov model (HMM) was considered to detect 

transactions, which could be connected to money laundering. This method is suitable by 

the very definition of the method. The type of transaction (suspicious or not) was assumed 

as a hidden (unobservable) random variable, that is dependent only on the previous value 

(Markov property). Different transactions’ characteristics (e.g. time of transaction, 

currency, directions, amount, number of transactions in the last 7 days and so on) were 
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used to define an observable variable. Based on the observable variable HMM predicts 

the hidden state using defined probabilities between them.  

One difference between HMM and rule-based algorithms is that in HMM, state of 

current transaction depends on the state of previous transaction, but in rule-based system 

states of transactions are independent. Moreover, in HMM we can use the same rules, but 

as a combination of them, not separately as in rule-based systems. The other difference is 

that HMM provides a probabilistic approach. Besides, HMM is more personalized than 

usual rule-based system.  

In short, the goal of this thesis is to introduce HMM, build a model to detect 

suspicious transactions and test this model on artificial and real data. To check if this 

novel model provides better results, the performance of HMM is compared to classical k-

means clustering. Clustering is a basic algorithm for anomaly detection and k-means 

clustering method is the most widely used one.  

The thesis is organized as follows: Section 2 reviews general methods for anomaly 

detection, methods to detect money laundering in a form of suspicious events and 

different applications of the hidden Markov model. Section 3 focuses on methodological 

issues – introduces HMM and algorithms that are needed for practical application, and k-

means clustering. In Section 4 describes the empirical study and Section 5 discusses the 

results followed by conclusions. The empirical study was carried out in R software (R 

Core Team, 2018) with packages data.table, HMM.  
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2 Literature review  
 

2.1 Introduction to money laundering 

According to Madigner (2011) money laundering is a process of making dirty 

money appear to be clean, but laundered funds are never totally clean. Cox (2012) noted 

that money laundering refers both to the use of a cash business such as a launderette to 

facilitate the mingling of legal and illegal funds, and also to the generic process of 

disguising the original proceeds of the funds - a process more normally referred to as 

layering. 

Usually, the process of money laundering is divided into three stages:  

- placement: money is transferred into the system without banks or authorities 

recognizing it; 

- layering: money is concealed within multiple layers of transactions; 

- integration: seemingly clean money is steered into the economy. 

Cox (2012, p. 15) described such stages as: “The initial proceeds enter the banking 

system at a perceived point of weakness (the placement phase) and then the funds are 

moved around such that the initial source of the funds is disguised (the layering phase). 

The funds are eventually reintegrated into the mainstream banking system as clean funds 

(the integration phase).” 

According to the Financial Action Task Force (FATF, 2020), there are three 

primary methods of laundering money: 

1. Via financial institutions and nonbank financial institutions. This includes the 

placement and structuring of deposits of tainted money into banks, wiring or layering the 

dirty money to multiple accounts in multiple banks in multiple jurisdictions to confuse 

the paper trail, and then using the laundered money by integrating it into the economy by 

way of purchasing high-value properties and goods. 

2. Bulk cash smuggling is the physical smuggling of illicit cash from one 

jurisdiction to another where it will be more readily accepted for deposit. 

3. Trade-based money laundering. This also includes underground financial 

systems, because historically and culturally most are settled on the misuse of international 

trade, including customs fraud. 
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Here we focus on the first point – anti-money laundering (AML) detection 

procedures and solutions for suspicious transactions in financial institutions, e.g. retail or 

commercial banks. AML refers to a set of laws, regulations, and procedures intended to 

prevent criminals from disguising illegally obtained funds as legitimate income. Financial 

institutions are required to monitor customers' transactions and report on anything 

suspicious. AML solutions, being part of the overall fraud control, automate and help to 

reduce the manual work of a screening/checking process.  

Usually, banks are controlled by different AML compliance organizations. The 

most important AML regulations are established in a such sources: 

• The Financial Action Task Force’s (FATF) Recommendations; 

• The United States’ Bank Secrecy Act (BSA); 

• European Union’s Fourth and Fifth Anti-Money Laundering Directives; 

• Hong Kong Monetary Authority’s Guideline on Anti-Money Laundering  

• Counter-Financing of Terrorism and Monetary Authority of Singapore’s Notices 

on the Prevention of Money Laundering and Countering the Financing of Terrorism.  

The main rule of all these documents, is that banks and other financial institutions 

are obligated to establish AML compliance programs with internal controls. For example, 

the FATF recommendations require carrying out due diligence procedures when 

transaction amount exceeds 15000 USD/EUR or international transactions exceeding 

1000 USD/EUR, while BSA requires financial institutions to report every transaction in 

the sum of 10000 USD or more to the US authorities.  

The topic of AML is important and actual as recent media coverage has shown (e.g. 

the Danske Bank money laundering scandal (RiskScreen, 2019), Swedbank’s failure on 

AML controls (Kim, 2019)). Because of this, there is ample literature that provide 

analysis on the topic and many different software solutions have been developed in recent 

years (Ayasdi AML (Ayasdi.com 2020), Guardian analytics (GuardianAnalytics.com 

2020), SAS Anti-Money Laundering (SAS.com 2020), Comply Advantage (Comply 

Advantage, 2019) etc).  

2.2 Overview of general methods for anomaly detection 

One of the practical implications of money laundering is transaction monitoring, 

where a set of financial institution’s customer transactions are evaluated by different rules 

and labelled as suspicious or normal. For example, a person could be labelled as 
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suspicious if he has more than 10 transactions to different persons with the amount of 

every transaction bigger than 1000 EUR. Then suspicious transactions can be suspended 

and are investigated in more detail, e.g. financial institutions may ask the customer to 

confirm the legality of income. Suspicious transactions are grouped in a suspicious 

activity report which financial institutions should send to a committee or governmental 

organisation (e.g. in Estonia to the Financial Intelligence Unit). 

In general, the methods to detect money laundering are part of a family of methods 

to detect anomalies — seeking out patterns in data which are not expected according to 

previous behaviour.  

A big comparative analysis of different methods for anomaly detection in various 

areas was done by Chandola et al. (2009). Their analysis includes neural networks-based 

methods, Bayesian networks, support vector machines-based methods, rule-based 

methods, nearest neighbour analysis, clustering, statistical anomaly detection techniques, 

information theoretic techniques and spectral analysis. For each category of anomaly 

detection techniques a unique assumption was identified, regarding the notion of normal 

and suspicious data.  

Another overview of network anomaly detection techniques was provided by 

Ahmed et al. (2016). They described such techniques as clustering, classification, 

information theory and statistics. Authors concluded that clustering and information 

theory-based techniques are better than others. Clustering techniques are computationally 

efficient and have specific targets for denial of service (DoS) attack detection, while the 

information theory-based techniques have no specific attack target. 

One of the closest areas to money laundering detection is detecting credit-card 

fraud. Credit-card fraud occurs when criminals steal credit cards or use a lost one for 

online or offline payments. The main idea behind these related methods is that there is a 

sharp change of activity from normal to suspicious. Such methods could be found in Maes 

et al. (2002), Perols (2011), Sahin et al. (2013), and Awoyemi et al. (2017). 

Maes et al. (2002) used artificial neural networks and Bayesian belief networks to 

detect credit-card fraud. As a result, they found that Bayesian belief networks give better 

accuracy and results in much smaller learning and executing time compared to artificial 

neural networks. 
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Perols (2011) analysed the quality of logistic regression and support vector machine 

methods compared to artificial neural network and stacking, and found the first ones are 

also good. 

In the study of Sahin et al. (2013), a new cost-sensitive decision tree approach was 

developed. The performance of cost-sensitive decision tree approach was compared with 

more commonly used classification models on a real data set of credit card transactions. 

As a conclusion, such cost-sensitive decision tree algorithms perform better than the other 

existing methods for detecting credit card fraud.  

Awoyemi et al. (2017) investigated the performance of naive Bayes, k-nearest 

neighbour and logistic regression on highly skewed credit card fraud data. The 

comparative results show that k-nearest neighbour method performs better than naive 

Bayes and logistic regression techniques. 

 

2.3 Methods to detect money laundering in a form of suspicious events  

The literature in money laundering detection research can be divided into two parts: 

theoretical evaluation of different methods and practical implications, mostly on artificial 

data. It is also worth mentioning that it is impossible to detect money laundering directly, 

only some suspicious activities, which could be a part of the money laundering process. 

Moreover, only law enforcement organisations have the rights to conduct a full 

investigation and make a case if money laundering actually happened. 

Chen et al. (2018) provided an overview of different machine learning techniques 

for anti-money laundering including supervised and unsupervised techniques. They 

evaluated fuzzy rules, frequent pattern algorithm, support vector machine, radial basis 

function, some clustering and hybrid approaches, few methods of link analysis and 

behavioural modelling. Moreover, risk scoring methods and anomaly detection 

algorithms also were presented in that paper. Based on the findings from existing 

literature reviews, they found that most methods use similar attributes such as the amount 

received, the amount withdrawn, and the debit/credit transaction frequency within certain 

time windows, e.g. daily, weekly, and monthly. However, some authors used additional 

attributes such as risk value, the individuals’ salary information, and the senders/receivers 

individual account history as part of their methods. 
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Chen et al. (2018) mentioned that it is also crucial to remember, that there are such 

problems as real data insufficiency to test the effectiveness of methods and the detection 

of suspicious transactions only relies on discovered transaction. The effectiveness of a 

machine learning algorithm is largely influenced by the unique characteristics of financial 

money laundering data. It is, therefore, crucial to understand the strengths and the 

limitations of each algorithm when applied to money laundering problems. 

Different authors provide various classifications on AML methods. For example, 

Rohit and Patel (2015) divided AML methods into such groups: rule-based approach, 

clustering-based approach, classification-based approach and model-based approach. 

According to their analyses, it can be concluded that: 1) An artificial intelligence 

approach for AML starting to replace rule-based AML systems; 2) Unsupervised learning 

with a small set of training data is suitable enough for building data mining based 

solutions for AML. 

Cao and Do (2012) combined data mining techniques and human’s analyst ability 

to create an effective method to detect money laundering in Vietnam. They used the 

clustering algorithm CLOPE invented by Yiling Yang, Xudong Guan and Jinyuan You 

(2002). The main idea of the algorithm is based on the realistic situation from real-life 

data in string data type. They concluded that CLOPE is a suitable algorithm for money 

laundering detection. But the system cannot run standalone absolutely, it must be based 

on the ability of analysts in analysing data and providing a set of rules (criteria set) to 

validate clusters after clustering. 

Umadevi and Divya (2012) proposed Transaction Flow Analysis (TFA) System to 

detect money laundering, which includes clustering and frequent pattern mining. There 

are few main parts of this TFA system such as: bank transaction importer; application of 

detecting money laundering algorithms (frequent pattern and transaction mining 

algorithms), which executes distributive box and collective box; transaction clustering 

and detecting suspicious clusters using laundering methods and roles of the offender. 

Finally received frequent patterns and clusters can be visualized in schema and timeline 

diagrams. It helps AML specialists to find suspicious transactions. But this system was 

tested only with a small generated amount of data - 100 accounts. 
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Finally, it could be concluded that there is no one specific method which will solve 

the problem of money laundering in all cases, so it is crucial to continue investigation of 

other algorithms. 

 

2.4 Hidden Markov model and its application 

Despite the extensive list of methods, there are other ways to determine money-

laundering, which are not so widely used, but still can provide good results. For future 

analysis hidden Markov model was chosen. 

Markov chain is a type of random process, where the probability of being in some 

state depends only on the previous state, and not on what happened before. Hidden 

Markov models are a class of probabilistic models that allow us to predict a sequence of 

unknown (hidden) variables from a set of observed variables. So, it is a statistical model 

in which the modelled system is expected to be like a Markov process with some 

unobserved states. In general, the HMM is defined by 5 different components: states, state 

probabilities, initial probabilities, transition probabilities and emission probabilities. 

HMM can be summarized as a double stochastic process with the two following 

aspects: 

1. The first process is a finite set of states, where each of them is generally 

associated with multidimensional probability distribution. The transition between the 

different states is statistically organized by a set of probabilities called transition 

probabilities. 

2. In the second process, in any state, an event can be observed. That means we 

observe and analyse the event without knowing which state generated it. So, the states 

are called “hidden” as they are hidden to the observer. 

HMM is mostly used in such problems as recognition of speech (Varga and Moore, 

1990, Schuller et al., 2003), handwriting (Chen et al., 1994), gesture recognition (Yang 

and Xu, 1994), part-of-speech tagging, musical score following (Raphael, 1999), partial 

discharges and bioinformatics, but this method is also used for detecting credit card fraud 

(e.g. Li et al., 2009, Mhamane and Lobo, 2012, Singh and Pandit, 2015) . In the case of 

money laundering, the unobserved state is a type of transaction (suspicious or normal). 

By Stamp (2004) hidden Markov model can be defined as a general version of the 

mixed model with the hidden variables, which control the mixture element to be selected 
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for each observation. Moreover, these hidden (latent) variables are related through a 

Markov process, which means that they depend on one previous value. 

Jadhav and Bhandari (2013) pointed that they received a comparatively small 

number of False Positives (transactions classified as suspicious, but they are not) from 

their HMM based fraud detection system. This was especially noticeable in case of real 

life transactions.  

Li et al. (2009) used HMM and genetic algorithms to detect hidden group members 

in financial transaction networks. Hidden group detection problem was solved by 

maximum likelihood approach which consisted of the finding the hidden group with the 

maximal likelihood of transactions, which were observed. In order to do a simulation 

experiment, the group structure of the synthetic financial network was generated. 

Different relations put various effects on the group structure, so the authors consider two 

classes of relations: field relation and transaction relation. As a result, it was concluded 

that the genetic algorithm is efficient for this specific optimization problem. But this paper 

tests their model only on a small amount of artificial data and the effectiveness of the 

proposed method decreases with bigger network size. 

Mhamane and Lobo (2012) explained how Internet banking fraud could be detected 

using HMM. By their definition, a fraudulent user is the unauthorized user who does not 

a legal Internet banking account in a bank; who makes use of authorized users’ Internet 

banking accounts to do transaction. He obtains the password of a customer by conducting 

a cyber-attack. Authors considered the unobserved state as a kind of purchase (travel 

ticket, movie ticket or book purchase). They proposed a model which firstly should be 

trained and then it will be in the detection and prevention phase, where the system looks 

for the deviation in the expected and actual outcome and fraud is recognized. To calculate 

HMM parameters (state and transition probabilities) authors used Baum-Welch 

algorithm. The paper is mostly theoretical, with no empirical simulation or application. 

Singh and Pandit (2015) provided a system, which firstly creates the behavioural 

pattern of all user using HMM. Afterwards, if the transaction is not accepted by the given 

model then they consider it as a security threat or fraud and send an alert to the user to 

verify.  
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3 Methodology 
In this part, an overview of theoretical methods is provided. Firstly, the basis of 

hidden Markov model (HMM) is introduced - Markov chains. Secondly, HMM is 

explained using equations, an example, and charts. As an integral part of applying HMM 

in practice, Viterbi algorithm and Baum-Welch algorithm are presented. Thirdly, a 

benchmark method – the k-means clustering is explained. Finally, evaluation methods are 

given in order to compare HMM and k-means clustering results. 

 

3.1 Hidden Markov model 

To give a full overview of HMM, few topics should be mentioned: Markov chain, 

Viterbi algorithm and Baum-Welch algorithm. This section relies heavily on HMM 

theory given in Rabiner (1989). 

 

3.1.1 Markov chain 

The base of the HMM is formed by Markov chains. A Markov chain is a type of 

random process, where the probability of being in some state depends only on the 

previous state, and not on what happened before that. Let us assume here that time is 

discrete, meaning that measurements are done at certain time points. Then, formally a 

discrete Markov chain has the following components and properties.  

Let 𝑺 = {𝑆!, 𝑆", … , 𝑆#} be a set of 𝑁 possible hidden states in the model. The 

process starts from a random state, the distribution of the initial states is given by 

𝜋 = {𝜋!, 𝜋", … , 𝜋#}, where 𝜋$ is the probability that the Markov chain will start in state 

𝑆$. If state 𝑆% has 𝜋% = 0, then that means state 𝑆% cannot be an initial state of the random 

process. Since 𝜋 is a distribution, then always ∑ 𝜋$&
$'! = 1. 

The Markov chain is initiated and starts to “wander”. We denote the time instants 

associated with state changes as 𝑡 = 1, 2, 3, …, and denote the actual realised state at time 

𝑡 as 𝑞(. The Markov property, that the actual state 𝑞(, at time 𝑡, is only dependent on the 

previous state 𝑞()!, is expressed as  

𝑃2𝑞( = 𝑆%3𝑞()! = 𝑆$ , 𝑞()" = 𝑆* , … , 𝑞! = 𝑆+4 = 𝑃2𝑞( = 𝑆%3𝑞()! = 𝑆$4 (1) 

Probabilities of moving from one state to the other are given by transition 

probability matrix 𝐴:  
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𝐴 = 	 7𝑎$%9 = :

𝑎!! 𝑎!" ⋯ 𝑎!#
𝑎"! 𝑎"" ⋯ 𝑎"#
⋮ ⋮ ⋱ ⋮
𝑎#! 𝑎#" ⋯ 𝑎##

>,		 	 	 (2)	

where 𝑎$% = 𝑃2𝑞( = 𝑆%3𝑞()! = 𝑆$4 is a probability of moving from state 𝑖 to state 

𝑗. Probabilities 𝑎$% have the properties: 𝑎$% ≥ 0; and ∑ 𝑎$%#
%'! = 1, ∀𝑖, meaning that row-

probabilities sum up to 1. 

Here it is assumed, that the random process produces observable states 𝑞( at each 

instant of time 𝑡, but what if the true state is hidden and only some indications of the 

hidden state are revealed? For example, the fact if a financial transaction is of illicit 

nature, is hidden for the financial institution. Only the customer, receiver and 

transactional data – parameters of the transaction – are observable. 

 

3.1.2 Definition of hidden Markov model 

A hidden Markov model unites both observed events (parameters of transaction) 

and hidden events (type of transactions – suspicious or normal) that we think of as causal 

factors in our probabilistic model. Let us denote the set of 𝑀 possible observed events as 

𝑉 = {𝑣!, 𝑣", … , 𝑣,} that hidden states 𝑆 produce, often 𝑉 is refered to as alphabet. The 

HMM starts to “wander”, the hidden sequence of 𝑄 = 𝑞!, 𝑞", … , 𝑞- emits a sequence of 

𝑇 observations 𝑂 = 𝑂!, 𝑂", . . , 𝑂-. Moreover, we need likelihoods (emission 

probabilities) that the hidden state at time 𝑡, 𝑞( = 𝑆$, produced an observed event 

 𝑂( = 𝑣*, i.e. 

𝐵 = {𝑏$(𝑣*)} = :

𝑏!(𝑣!) 𝑏!(𝑣") ⋯ 𝑏!(𝑣,)
𝑏"(𝑣!) 𝑏"(𝑣") ⋯ 𝑏"(𝑣,)
⋮ ⋮ ⋱ ⋮

𝑏#(𝑣!) 𝑏#(𝑣") ⋯ 𝑏#(𝑣,)

>,    (3)	

where	𝑏$(𝑣*) = 𝑃(𝑂( = 𝑣*|𝑞( = 𝑆$). Matrix 𝐵 is called an emission probability 

matrix and specifies the observation event probability distribution. Note tha 

∑ 𝑏$(𝑣*),
*'! = 1, ∀𝑖, meaning that row probabilities sum up to 1. 

Besides the Markov property, HMM has another assumption: the probability of an 

output observation 𝑂$ is defined only by the state that produced the observation 𝑞$ and 

not by any other states or any other observations (so called output independence 

property):  

𝑃(𝑂$|𝑄, O) = 𝑃(𝑂$|𝑞$).     (4) 



 16 

Generally, three main problems of hidden Markov model are defined according to 

Rabiner (1989): 

- Likelihood: Using such parameters of HMM as 𝜆 = (	𝐴, 𝐵) and given 

observation sequence 𝑂, determine the likelihood 𝑃(𝑂|𝜆). 

- Decoding: Using such parameters of HMM as 𝜆 = (	𝐴, 𝐵) and given 

observation sequence 𝑂, find the best sequence of hidden states 𝑄. 

- Learning: Using given observation sequence 𝑂 and the set of states in the HMM, 

learn the HMM parameters 𝐴 and 𝐵. 

In this work we are interested in decoding for evaluating this method in general, but 

first an example of a HMM is provided. 

So the general idea is that we don’t know (cannot observe) state 𝑞( for time 𝑡,	but 

we can observe some other variable 𝑂(	that	takes	some	value	𝑣* 	based	on	the	state	𝑞( .	

A set of parameters 𝜆 = (𝜋, 𝐴, 𝐵) completely specifies a HMM, where 𝐴 and 𝐵 are defi-

ned by (2) and (3), correspondingly. A graphic depiction of a HMM is given in Figure 1. 

 
Figure 1. General view of HMM, where 𝑆! and 𝑆" are hidden states, 𝑣!, 𝑣", 𝑣. are 

observable states, {𝑎$%} are transition probabilities, 𝑏$(𝑣*) are emission probabilites. 

(Source: author's depiction)  

 

The HMM in Figure 1 generates a sequence of hidden states 𝑄 = 𝑞!, 𝑞", … , 𝑞- and 

for each a corresponding observations, i.e. 𝑂 = 𝑂!, 𝑂", . . , 𝑂-, where each observation 𝑂$ 

is one element from 𝑉. 
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3.1.3 Example of a HMM  

A simple example of a HMM is a situation between two friends, Alice and Bob, 

who live in different cities, but talk every evening and Bob always says what he did this 

day – stay at home or have a walk. The choice of this activity is fully determined by 

weather on a given day, which could be sunny or rainy. Alice does not know weather for 

sure, but she knows general trends in Bob’s behaviour. Every day Alice tries to guess 

what the weather was, based on what Bob tells her he did each day. 

Alice cannot observe weather, so it is a hidden variable for her. Instead she knows 

Bob’s activity every day, which is the observed variable for Alice. In our terms 

	𝑆 = {𝑆! = "𝑟𝑎𝑖𝑛𝑦"; 𝑆" = "𝑠𝑢𝑛𝑛𝑦"} and possible values for 𝑉 = {"𝑠𝑡𝑎𝑦", "𝑤𝑎𝑙𝑘"}	. The 

girl also knows some probabilities. First of all, she assumes that on the very first day the 

probability of rain is 0.6 and the probability of sun is 0.4. These are initial probabilities: 

𝜋 = {𝜋! = 0.6; 𝜋" = 0.4}. 

The weather of every next day depends only on the weather of one previous day, 

which is a property of the Markov chain. Alice knows these probabilities between two 

weather states: if today is rainy, then tomorrow will be rainy with the probability 0.7 and 

sunny with the probability 0.3; if today is sunny, then tomorrow will be rainy with the 

probability 0.4 and sunny with the probability 0.6. These probabilities are our transition 

probabilities: 

𝐴 = m0.7 0.3
0.4 0.6o. 

Alice knows Bob’s behaviour: if it is rainy, he will stay home with the probability 

0.8 and go for a walk with the probability 0.2. If the day is sunny, then Bob will stay 

home with the probability 0.4 and go for a walk with the probability 0.6. Formally, these 

are our emission probabilities: 

𝐵 = p𝑏!
(𝑠𝑡𝑎𝑦) 𝑏!(𝑤𝑎𝑙𝑘)

𝑏"(𝑠𝑡𝑎𝑦) 𝑏"(𝑤𝑎𝑙𝑘)
q = m0.8 0.2

0.4 0.6o. 

So knowing all these probabilities, the weather yesterday and Bob’s activity today, 

Alice will predict what the weather was today using the model on Figure 2. 

For initializing HMM in the empirical study, R function initHMM from package 

HMM was used (see Appendix D). 
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Figure 2. Example of a HMM. 

(Source: author's depiction)  
 

3.1.4 Viterbi algorithm 

For any model, including HMM, which have hidden variables, decoding task is the 

process of determining which sequence of variables is the underlying source of some 

sequence of decoding observations. The definition of decoding in the context of HMM 

is: given input 𝜆 = (𝐴, 𝐵) and a sequence of observations 𝑂 = 𝑂!, 𝑂", . . , 𝑂-, find the 

most probable sequence of states 𝑄 = 𝑞!, 𝑞", … , 𝑞-. 

The most widely used decoding algorithm for HMM is the Viterbi algorithm 

(Jurafsky and James 2014). This algorithm is a kind of dynamic programming. The 

algorithm first fills in the values in 𝜆 = (𝜋, 𝐴, 𝐵) using the recursive definition. It then 

uses the identity described before to calculate the highest probability for any sequence. 

So, this algorithm takes the most likely path. 

A more detailed explanation of the Viterbi algorithm can be found in Appendix A.  

The application of Viterbi algorithm in the empirical part was done in functions 

makeViterbimat and get_states (see Appendix D). 
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3.1.5 Baum-Welch algorithm 

If transition and emission probabilities (matrices 𝐴 and 𝐵) for a HMM are not 

known, then these have to be trained using the observation sequence 𝑂 and the set of 

possible states 𝑆 in the model, i.e. the learning problem mentioned in the section 3.1.2. 

Baum-Welch algorithm (Baum, 1972) – the same as forward-backward algorithm 

is the most widely used algorithm for HMM training. This algorithm is a variation of the 

Expectation-Maximization (EM) algorithm (Dempster et al., 1977). The main point of 

the algorithm is the opportunity to estimate (improve the emission probabilities 𝐵 and the 

transition probabilities 𝐴 of the HMM.  

If we know the state occupation probability (the state distribution at time 𝑡), we can 

derive the emission probability and the transition probability. If we know these two 

probabilities, we can derive the state distribution at time 𝑡. EM is an iterative algorithm, 

in which firstly initial estimate for the probabilities are computed and secondly these 

estimates are used for defining a better estimate of probabilities, and so on, iteratively 

improving the probabilities that it learns. 

Baum-Welch algorithm starts with an estimate for the transition and observation 

probabilities and then uses these previously estimated probabilities to improve such 

probabilities. It is done by calculating the forward probability for an observation and after 

it such probability mass should be divided among all the possible paths that facilitate to 

this forward probability. 

Detailed formulas of Baum-Welch algorithm can be found in Appendix B. 

In the empirical part, Baum-Welch algorithm was applied by function baumWelch 

from package HMM. 

 

3.2 k-means clustering algorithm 

To conclude if the results of HMM are good enough, another basic model for 

comparison is needed. Based on the goal of the analysis clustering algorithm was chosen. 

Clustering algorithms are procedures for partitioning data into groups or clusters such 

that the clusters are distinct, and members of each cluster belong together. In our case the 

aim of the clustering algorithm is to divide transactions into 2 groups – normal and 

suspicious.  
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The k-means clustering algorithm is one of the most widely used clustering 

algorithms, so it was chosen. According to Hartigan and Wong (1979), the aim of the k-

means algorithm is to divide M points in N dimensions into K clusters so that the within-

cluster sum of squares is minimized.  

The way k-means algorithm works is as follows: 

1. Specify number of clusters K. 

2. Initialize centroids (the most representative point within the group) by first 

shuffling the dataset and then randomly selecting K data points for the centroids without 

replacement. 

3. Keep iterating until there is no change to the centroids. i.e assignment of data 

points to clusters is not changing. 

4. Compute the sum of the squared distance between data points and all centroids. 

5. Assign each data point to the closest cluster (centroid). 

6. Compute the centroids for the clusters by taking the average of the all data 

points that belong to each cluster. 

The approach k-means follows to solve the problem is called Expectation-

Maximization, which was mentioned before as a generalisation of the Baum-Welch 

algorithm. The E-step is assigning the data points to the closest cluster. The M-step is 

computing the centroid of each cluster. In a more formal way it is presented below.  

The objective function is: 

𝐽 = ∑ ∑ 𝑤$*‖𝑥$ − 𝜇*‖"/
*'!

0
$'!      (5) 

where 𝑤$* = 1 for data point 𝑥$ if it belongs to cluster 𝑘; otherwise, 𝑤$* = 0, ‖…‖ 

is distance. Also, 𝜇* is the centroid of 𝑥$’s cluster. 

It’s a minimization problem of two parts. We first minimize 𝐽 w.r.t. 𝑤$* and treat 

𝜇* as fixed. Then we minimize 𝐽 w.r.t. 𝜇* and treat 𝑤$* as fixed. Technically speaking, 

we differentiate 𝐽 w.r.t. 𝑤$*first and update cluster assignments (E-step). Then we 

differentiate 𝐽 w.r.t. 𝜇* and recompute the centroids after the cluster assignments from 

the previous step (M-step). Therefore, E-step is: 

12
13!"

= ∑ ∑ ‖𝑥$ − 𝜇*‖"/
*'!

0
$'! 	⟹ 𝑤$* = y1 if	𝑘 = argmin%}𝑥$ − 𝜇%}

"

0 otherwise
 (6) 

In other words, assign the data point 𝑥$ to the closest cluster judged by its sum of 

squared distance from the cluster's centroid. 
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And M-step is: 
12
14"

= 2∑ 𝑤$*(𝑥$ − 𝜇*)0
$'! = 0	 ⟹ 𝜇* =

∑ 3!"6!
#
!$%
∑ 3!"#
!$%

   (7) 

Which translates to recomputing the centroid of each cluster to reflect the new 

assignments. 

To apply this algorithm in R, function kmeans from package stats was used, which 

is based on Hartigan and Wong (1979) version of specification.  

 

3.3 Quality assessment metrics  

To compare the results of two models, quality assessment metrics are needed. To 

compare HMM and k-means clustering algorithms we use Precision, Sensitivity, and F-

Score.  

Definitions of precision and sensitivity require a confusion matrix – a 2x2 table that 

cross-checks predictions with actual values. It is often used to describe the performance 

of a classification model (or "classifier") on a set of test data for which the true values are 

known. A 2x2 confusion matrix has 2 states for actual values – e.g. positive (True) and 

negative (False) – and 2 states for predicted values. The result is a table with 4 different 

combinations of predicted and actual values: 

- true positives (TP): These are cases in which we predicted positive and it is true;  

- true negatives (TN): We predicted negative and it’s true;  

- false positives (FP): We predicted positive and it’s false (also known as "Type I 

error"); 

- false negatives (FN): We predicted negative and it is false (also known as "Type 

II error"). 

General form of confusion matrix is presented in Figure 3. 

Precision (Positive predictive value) shows out of all the positive classes we have 

predicted correctly, how many are actually positive: 

Precision = -7
-7897

	     (8)	

Sensitivity (Recall, True positive rate) shows out of all the positive classes, how 

much we predicted correctly: 

Sensitivity	 = -7
-789#

	     (9)	
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Figure 3. Confusion matrix 

 

It is difficult to compare two models with low precision and high recall or vice 

versa. So, to make them comparable, we use F-Score. F-score helps to measure Sensitivity 

and Precision at the same time. It uses harmonic mean in place of arithmetic mean by 

punishing the extreme values more: 

F-Score =
2 ∗ Sensitivity ∗ Precision
Sensitivity + Precision

. (10) 
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4 Empirical study 
This section consists of two parts. Firstly, the general description of data is 

provided, and three study cases are introduced with different data setups. Secondly, the 

description of the practical application of HMM and k-means clustering for every study 

is given.  

 

4.1 Data 

Two different databases were used to test HMM approach to detect suspicious 

financial transactions:  

- artificial data - a database produced by Salv Technologies; 

- real (anonymized) transaction data from a Baltic financial institution. 

The artificially generated database contains randomly generated users, transactions, 

user action logs and meta info. One of the main features of this database is that some 

transactions are assumed to be suspicious, added to usual data at random time moments. 

That is why we used this database to build and test HMM. The second database with real 

data also had transactions which were found suspicious by AML specialists, so the 

available data gave rise to the following setup: 

- Study 1. Firstly, the model was built based on ‘training’ data from the artificial 

database: 5568 transactions of 15 persons spread over 6 years, where 229 (4,1%) of them 

were assumed to be suspicious. 

- Study 2. Secondly, the previously built model was tested on a higher amount of 

artificial data (‘test’ data): 252330 transactions of 16705 persons spread over 6 years, 

where 91 (0.04%) transactions by 30 persons were suspicious.  

- Study 3. The model was updated and tested on the database with real data, where 

0.36% persons were marked as suspicious by AML over a period of 5 months. Those 

persons made 0.01% out of all transactions. Overall, 103342 transactions of 1368 users 

were used. 

Study 1 simulates a situation where we would have a small portion of initial data 

that is used to train the classifying models. The extracted dataset contains only users that 

have proven suspicious activity (for example, labelled by AML specialists). The data is 

used to catch the underlying signals of a suspicious transaction. Later it would be applied 

to future incoming transaction data, simulated in Study 2.  
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With artificial data you know what you are trying to catch, so Study 3 aims to apply 

the considered classification methods on real data. 

Next transaction characteristics were used in the model: 

- date of the transaction; 

- direction of transaction (incoming and outgoing); 

- amount in EUR; 

- currency of the transaction; 

- counterparty’s country. 

An example of the dataset of Study 1 can be found in Table 1. 

 

Table 1. Data sample for Study 1 
Transaction 

id 
User 

id 
Datetime of 
transaction 

Incoming/ 
outgoing Currency Amount 

in EUR 
Counterparty 

country 

4768048 11097 2014-10-14 
09:13:03 

O EUR 730.91 EE 

6051363 41676 2016-01-20 
03:22:21 

I EUR 7895.88 EE 

19339305 40791 2020-03-15 
21:19:40 

I CHF 234.54 EE 

 

4.2 Study setup 

The idea is that the hidden state in the model is the type of transaction: 𝑛𝑜𝑟𝑚𝑎𝑙 or 

𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠. An observable variable was taken to have 2 values: 𝑙𝑜𝑤_𝑟𝑖𝑠𝑘 and 

ℎ𝑖𝑔ℎ_𝑟𝑖𝑠𝑘, which are defined using the auxiliary variable ‘score’.  

Variable ‘score’ is a numerical variable, which is based on combining different 

characteristics of transaction, for example, one such characteristic is checking if the 

counterparty country of transaction in a high-risk country. The list of high-risk countries 

(see Appendix C) includes high-risk and other monitored jurisdictions from FATF 

(FATF, 2020) and list of offshore countries created by the International Monetary Fund 

(International Monetary Fund, 2019) and European Commission (European Commission, 

2019). The higher the value of variable ‘score’, the riskier transaction. The components 

of ‘score’ are taken by rules, which are usually used in rule-based method to detect money 

laundering and were built using domain knowledge (FATF, 2020).   
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Study 1 and 2  

The best score composition was manually founded by the highest value of F-score 

for artificial training data of Study 1, reported in Table 2. The same score composition 

was also used for Study 2. 

Table 2. Composition of ‘score’ for Study 1 and 2 

Characteristics of transaction Score increase 

Time of transaction earlier than 7 AM 15 

Time of transaction later than 9 PM 15 

amount_in_eur>=1000 and amount_in_eur<5000 5 

amount_in_eur>=5000 and amount_in_eur<10000 10 

amount_in_eur>=10000 and amount_in_eur<20000 15 

amount_in_eur>=20000 20 

Counterparty country is high-risk country 5 

In last 3 days for incoming transactions: 
sum(amount_in_eur)>=5000 and 
sum(amount_in_eur)<10000 

5 

In last 3 days for incoming transactions: 
sum(amount_in_eur)>=10000 and 
sum(amount_in_eur)<20000 

10 

In last 3 days for incoming transactions: 
sum(amount_in_eur)>20000  

15 

In last 3 days for outgoing transactions: 
sum(amount_in_eur)>=5000 and 
sum(amount_in_eur)<10000 

5 

In last 3 days for outgoing transactions: 
sum(amount_in_eur)>=10000 and 
sum(amount_in_eur)<20000 

10 

In last 3 days for outgoing transactions: 
sum(amount_in_eur)>20000  

15 

Number of transactions is last 7 days >=3 and <5 5 

Number of transactions is last 7 days >=5 and <10 10 

Number of transactions is last 7 days >=10  15 
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After calculating score for every transaction, observable variable was defined by 

the following rules and max(score) is the maximum score for each person: 

- if score < max(score) ∙ 	"
.
, then observable variable for this transaction is 

𝑙𝑜𝑤_𝑟𝑖𝑠𝑘; 

- if score >= max(score)		∙ 	"
.
, then observable variable for this transaction is 

ℎ𝑖𝑔ℎ_𝑟𝑖𝑠𝑘; 

- if max(score) = 0, then all transactions for this person get observable variable 

as 𝑙𝑜𝑤_𝑟𝑖𝑠𝑘.  

 

Table 3 gives an example of a few transactions with auxiliary variables and 

calculated variable ‘score’.  

 

Table 3. Example of calculations for Study 1 

Id User 
id Datetime Direc-

tion Currency Amount 
in EUR 

Counterparty 
country Susp 

Incoming 
sum in 3 

days 

Outgoing 
sum in 3 

days 

Transactions 
in last 7 days Score Observation 

15370819 48645 2020-01-19 
19:02:55 I JMD 13243.00 JM 1 13243.00 0.00 1 25 high_risk 

15272885 48645 2020-01-20 
23:13:32 O EUR 59.19 EE 0 13243.00 59.19 2 25 high_risk 

15370820 48645 2020-01-21 
12:34:59 I COP 212303.00 CO 1 225546.00 59.19 3 35 high_risk 

14548136 48645 2020-01-09 
15:31:10 O EUR 85.69 EE 0 0.00 85.69 1 0 low_risk 

14567528 48645 2020-01-09 
19:49:09 O EUR 5.37 EE 0 0.00 91.06 2 0 low_risk 

 

HMM was used for every person separately, but the probabilities are the same for 

every person. The model was initialised with the following setup:  

- hidden states: 𝑆 = {𝑆! = "𝑛𝑜𝑟𝑚𝑎𝑙"	, 𝑆" = "𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠"}; 

- possible observable values: {"𝑙𝑜𝑤_𝑟𝑖𝑠𝑘"	, "ℎ𝑖𝑔ℎ_𝑟𝑖𝑠𝑘"}; 

- initial probabilities: 𝜋 = {𝜋! = 0.9; 𝜋" = 0.1}; 

- transition probabilities: 𝐴 = {𝑎!! = 0.9; 𝑎!" = 0.1;	𝑎"! = 0.1; 𝑎"" = 0.9}; 

- emission probabilities: 

𝐵 = {𝑏!(𝑙𝑜𝑤_𝑟𝑖𝑠𝑘) = 0.8; 	𝑏!(ℎ𝑖𝑔ℎ_𝑟𝑖𝑠𝑘) = 0.2;	𝑏"(𝑙𝑜𝑤_𝑟𝑖𝑠𝑘) =

0.1; 	𝑏"(ℎ𝑖𝑔ℎ_𝑟𝑖𝑠𝑘) = 0.9}. 
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Study 3 

Based on real historical data in Study 3, the composition of score was updated and 

can be found in Table 4.  

 

Table 4. Composition of ‘score’ for Study 3 

Characteristics of transaction Score increase 

Time of transaction earlier than 7 AM 15 

Time of transaction later than 9 PM 15 

Counterparty country is high-risk country  10 

Currency of transaction is not EUR or USD 10 

In last 3 days for incoming transactions: 
sum(amount_in_eur)>=5000 and 
sum(amount_in_eur)<10000 

5 

In last 3 days for incoming transactions: 
sum(amount_in_eur)>=10000 and 
sum(amount_in_eur)<20000 

10 

In last 3 days for incoming transactions: 
sum(amount_in_eur)>20000  

15 

In last 3 days for outgoing transactions: 
sum(amount_in_eur)>=5000 and 
sum(amount_in_eur)<10000 

5 

In last 3 days for outgoing transactions: 
sum(amount_in_eur)>=10000 and 
sum(amount_in_eur)<20000 

10 

In last 3 days for outgoing transactions: 
sum(amount_in_eur)>20000  

15 

Number of incoming transactions is last 7 days >=3 and 
<5 

5 

Number of incoming transactions is last 7 days >=5 and 
<10 

10 

Number of incoming transactions is last 7 days >=10  15 

In last 3 days: sum of outgoing transactions >= 90% of 
sum of incoming transaction 

15 
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A new rule compared with Table 3 was added: current transactions is more 

suspicious if sum of outgoing transactions in last 3 days is higher than at least 90% of 

sum of incoming transaction in last 3 days. This rule was added to improve the 

performance of the model.  

Next changes in defining observable variable and probabilities are based on the 

higher F-score for data we have.   

The logic for defining observable variable was changed: 

- if score <= max(score) - 5, then observable variable for this transaction is 

𝑙𝑜𝑤_𝑟𝑖𝑠𝑘; 

- if score > max(score) - 5, then observable variable for this transaction is 

ℎ𝑖𝑔ℎ_𝑟𝑖𝑠𝑘; 

- if max(score)=0, then all transactions for this person get observable 

variable as 𝑙𝑜𝑤_𝑟𝑖𝑠𝑘.  

Some updates in probabilities:  

- transition probabilities: 

𝐴 = {𝑎!! = 0.8; 𝑎!" = 0.2;	𝑎"! = 0.1; 𝑎"" = 0.9}; 

- emission probabilities: 

𝐵 = {𝑏!(𝑙𝑜𝑤_𝑟𝑖𝑠𝑘) = 0.9; 	𝑏!(ℎ𝑖𝑔ℎ_𝑟𝑖𝑠𝑘) = 0.1;	𝑏"(𝑙𝑜𝑤_𝑟𝑖𝑠𝑘)

= 0.01; 	𝑏"(ℎ𝑖𝑔ℎ_𝑟𝑖𝑠𝑘) = 0.99}. 

 

After defining scores and observation variable for all Studies, HMM was initiated 

for every person with the specific values for every Study given above. Then the Baum-

Welch algorithm was used to find better transition and emission probabilities and finally, 

the Viterbi algorithm was used to predict the state for every transaction.  

Later k-means clustering algorithm was used for the same dataset and based on 

variable ‘score’ transactions of every person were grouped in 2 clusters - normal and 

suspicious. 

The results of the proposed HMM model was compared to k-means clustering 

algorithm for Studies 1-3. Quality assessment metrics – Precision, Sensitivity and F-score 

were used for the comparison. 
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5 Results 
For every Study case, both HMM and k-means clustering algorithms were used for 

every person. For Study 1 and 2 the composition of ‘score’ variable is described in Table 

2, for Study 3 - in Table 4.  

Then for every person Precision and Sensitivity were calculated and as a general 

evaluation of both models an average of these indexes was taken. Based on them F-score 

was calculated for both methods and for every Study case. The results for all Studies can 

be found in Table 5. 

 In all Studies Sensitivity is higher than Precision for both models, but for k-means 

clustering the difference between these two factors is bigger. So, for k-means method 

compared to HMM Precision is always much lower and Sensitivity slightly bigger. 

Comparing Study 1 and Study 2 it should be mentioned, that for higher amount of data 

(Study 2) for HMM Precision decreased, and Sensitivity increased. Because of this, F-

score of HMM for Study 2 smaller compared to Study 1, but still better than that of k-

mean clustering. Study 3 shows better results compared to Study 1 and 2, because model 

fits suspicious data closer and as a consequence of this Sensitivity is 100%. Still, Precision 

is higher for HMM, than for k-means. Based on the F-score it can be concluded that HMM 

performs better than k-means clustering algorithm for detecting suspicious transactions 

in all Studies.  

Table 5. Comparison of models for all Studies 

 Study 1  Study 2  Study 3 

 HMM k-means  HMM k-means  HMM k-means 

Precision 52% 22%  40% 24%  67% 47% 

Sensitivity 61% 87%  70% 77%  100% 100% 

F-score  0.56 0.35  0.53 0.36  0.81 0.64 

 

For Study 2, 86% of all persons were defined as normal by HMM and they are 

really not suspicious. We also got 8.1% of all transactions as suspicious by model, but 

marked normal within the dataset. These transactions should be investigated by an AML 

specialist, to be sure they are really not suspicious. For Study 3, among persons which 

have only normal transactions, 6.4% of transactions were marked as suspicious by the 

HMM so they should also be checked by an AML specialist.   
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6 Conclusions 
The goal of the thesis was to introduce, build and test HMM for detecting suspicious 

transactions. For testing, artificial and real data was acquired, and as a benchmark, k-

means clustering was chosen. All of the thesis goals were achieved. 

The thesis provides an overview of machine learning methods for detecting money 

laundering among transactions and gives a detailed summary of hidden Markov model. 

Based on this method the practical model was built in R software. The model was 

calibrated and tested using more than 250 thousand transactions of artificial data and more 

than 100 thousand transactions of real data. To conclude about the quality of the model, 

it was compared with k-means clustering using Precision, Sensitivity and F-score. 

Finally, it was shown that HMM provides better results for detecting suspicious 

transactions compared with k-means clustering in a sense of higher F-score. 

Based on such results the model was proposed to a Estonian anti-money laundering 

company, which offers an AML platform (incl. transaction monitoring). HMM could 

replace or enhance its current method for detecting suspicious transactions – a rule-based 

approach. It is also possible to add current existing rules into the composition of the 

‘score’ variable. 

One of the limitations of HMM is the variable ‘score’, which is based on the general 

understanding of money laundering logic. Moreover, this variable is not dynamic and 

should be review every year or few years. To improve HMM, it could be useful to increase 

the number of observed variable levels and add rules from rule-based approach into the 

composition of variable ‘score’.  

 

 

 

 

  



 31 

Appendices 

Appendix A. Viterbi algorithm 

Jurafsky and James in 2014 explain that idea of the Viterbi algorithm is going 

through the observation sequence from left to right with the aim to fill out a lattice. The 

lattice consists of cells, which are called 𝑟((𝑗) and implicate the probability that the HMM 

currently is in state 𝑗 after reviewing the first 𝑡 observations with the route through the 

sequence of the most probable states 𝑞!. . 𝑞()!, given the automaton 𝜆. Cells 𝑟((𝑗) are 

defined by recursively taking the most probable path that could bring into this cell. In a 

formal way, each cell presents the probability 𝑟((𝑗) = 𝑃(𝑞!. . 𝑞()!, 𝑂!, 𝑂". . 𝑂( , 𝑞( = 𝑗|𝜆	)	. 

It should be noted that to represent the most probable path we use the maximum 

value over all possible previous state sequences 𝑚𝑎𝑥
:%,..,:&'%

. Using the general logic of 

dynamic programming algorithms, Viterbi algorithm fills each cell recursively. Firstly, 

the probability of being in every state at time 𝑡 − 1 is calculated, and then, using this 

information, the Viterbi probability is calculated by choosing the most probable of the 

extensions of the paths that brings us to the current cell. With a given state 𝑞% at time 𝑡, 

the value 𝑟((𝑗) is computed as  

𝑟((𝑗) = 𝑟()!(𝑖)𝑎$%𝑏%(𝑂(),    (A.1) 

where 𝑟()!(𝑖) is the previous Viterbi path probability from the previous time step; 

𝑎$% is the transition probability from previous state 𝑞$ to current state 𝑞% and 𝑏%(𝑂() is the 

state observation likelihood of the observation symbol 𝑂( given the current state 𝑗. 

So, the formal definition of the Viterbi recursion could be given in the next way: 

1. Initialization: 

𝑟!(𝑗) = 𝜋%𝑏%(𝑂!)			1 ≤ 𝑗 ≤ 𝑁	    (A.2)	

𝑟𝑡!(𝑗) = 0			1 ≤ 𝑗 ≤ 𝑁	    (A.3)	

2. Recursion 

𝑟((𝑗) = 𝑟()!(𝑖)𝑎$%𝑏%(𝑂()	; 	1 ≤ 𝑗 ≤ 𝑁, 1 < 𝑡 ≤ 𝑇	 (A.4)	

𝑏𝑡((𝑗) = arg max
$'!,…,#

	𝑟()!(𝑖)𝑎$%𝑏%(𝑂()	; 	1 ≤ 𝑗 ≤ 𝑁, 1 < 𝑡 ≤ 𝑇	 (A.5)	

3. Termination:  

The best score: 𝑃∗ = 𝑟-(𝑖);  

The start of back trace: 𝑞-∗ = arg max
$'!,…,#

	𝑟-(𝑖)	  
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Appendix B. Baum-Welch algorithm 

As Jurafsky and James in 2014 mentioned, firstly, backward probability should be 

defined. The backward probability 𝛽 is the probability of seeing the observations from 

time 𝑡 + 1 to the end, given that we are in state 𝑖 at time 𝑡 (and given the automaton 𝜆): 

𝛽((𝑖) = 𝑃(𝑂(8!, 𝑂(8". . 𝑂-|𝑞( = 𝑖, 𝜆) (B. 1) 

For calculation of these probabilities, the induction algorithm is used: 

1. Initialization: 

𝛽-(𝑖) = 1, 1 ≤ 𝑖 ≤ 𝑁 (B. 2) 

2. Recursion 

𝛽((𝑖) =�𝑎$%𝑏%(𝑂(8!)𝛽(8!(𝑗)
#

%'!

, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑡 < 𝑇 (B. 3) 

3. Termination: 

𝑃(𝑂|𝜆	) =�𝜋%𝑏%(𝑂!)𝛽!(𝑗)
#

%'!

(B. 4) 

Below it is mentioned how the transition probability 𝑎$% and observation probability 

𝑏$(𝑂() from an observation sequence can be calculated using the forward and backward 

probabilities, even though the real path taken by the model is not observed (hidden).  

Firstly, 𝑎�$% should be estimated as a kind of simple maximum likelihood estimation: 

𝑎�$% =
expected	number	of	transitions	from	state	𝑖	to	state	𝑗	

expected	number	of	transitions	from	state	𝑖
(B. 5) 

To compute the numerator, next intuition should be used: assume that some 

estimate of the probability that a given transition 𝑖 → 𝑗 was taken at a particular point in 

time 𝑡 in the given observation sequence. If this probability for each particular time point  

𝑡 is known, then the sum over all time up to time point 𝑡 will be the estimate for the total 

count of 𝑖 → 𝑗 transitions. 

In a formal way, the probability 𝜉( could be defined as the probability of being in 

state 𝑖 at time 𝑡 and state 𝑗 at time 𝑡 + 1, given the observation sequence and the model: 

𝜉((𝑖, 𝑗) = 𝑃(𝑞( = 𝑖, 𝑞(8! = 𝑗|𝑂, 𝜆	) (𝐵. 6) 

To compute 𝜉(, firstly it should be computed a probability which is similar to 𝜉(, 

but differs in including the probability of the observation; note the different conditioning 

of 𝑂 from (B.6): 
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not-quite-𝜉((𝑖, 𝑗) = 𝑃(𝑞( = 𝑖, 𝑞(8! = 𝑗, 𝑂|𝜆	) (B. 7) 

There are different probabilities that are used to calculate not-quite-𝜉(: the transition 

probability for the arc in question, the 𝛼 probability before the arc, the 𝛽 probability after 

the arc, and the observation probability for the symbol just after the arc, where arc is used 

in a sense of curve between two points (cells).  These four probabilities are multiplied 

together to produce not-quite-𝜉( in the following way: 

not-quite-𝜉((𝑖, 𝑗) = 𝛼((𝑖)𝑎$%𝑏%(𝑂(8!)𝛽(8!(𝑗) (B. 8) 

To compute 𝜉( from not-quite-𝜉(, the laws of probability and dividing by 𝑃(𝑂|𝜆	) 

should be used, since: 

𝑃(𝑋|𝑌, 𝑍) =
𝑃(𝑋, 𝑌|𝑍	)
𝑃(𝑌|𝑍)

(B. 9) 

The probability of the observation given the model is simply the forward probability 

of the whole statement (or alternatively, the backward probability of the whole statement): 

𝑃(𝑂|𝜆	) = �𝛼((𝑗)
#

%'!

𝛽((𝑗) (B. 10) 

So, the final equation for 𝜉( is 

𝜉((𝑖, 𝑗) =
𝛼((𝑖)𝑎$%𝑏%(𝑂(8!)𝛽(8!(𝑗)

∑ 𝛼((𝑗)#
%'! 𝛽((𝑗)

(B. 11) 

The expected number of transitions from state 𝑖 to state 𝑗 is then the sum over all 𝑡 

of 𝜉 . For the estimate of 𝑎$% in (B.5), one more thing is needed: the total expected number 

of transitions from state 𝑖. It can be calculated by summing over all transitions out of state 

𝑖. So, the final formula for 𝑎�$% will be such: 

𝑎�$% =
∑ 𝜉((𝑖, 𝑗)-)!
('!

∑ ∑ 𝜉((𝑖, 𝑘)#
*'!

-)!
('!

(B. 12) 

Moreover, a formula for recomputing the observation probability also needed. This 

is the probability of a given symbol 𝜈* from the observation vocabulary 𝑉, given a state 

𝑗: 𝑏 %(𝜈*). Next formula should be used: 

𝑏 %(𝜈*) =
expected	number	of	times	in	state	𝑗	and	observing	symbol	𝜈* 	

expected	number	of	times	in	state	𝑗
(B. 13) 

 

For this, 𝛾((𝑗) - the probability of being in state 𝑗 at time 𝑡, is needed:  
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𝛾((𝑗) = 𝑃(𝑞( = 𝑗|𝑂, 𝜆)     (B.14) 

Once again, it could be computed by including the observation sequence in the 

probability: 

𝛾((𝑗) =
𝑃(𝑞( = 𝑗, 𝑂|𝜆)

𝑃(𝑂|𝜆)
(B. 15) 

The numerator of (B.15) is the product of the backward probability and the forward 

probability: 

𝛾((𝑗) =
𝛼((𝑗)𝛽((𝑗)
𝑃(𝑂|𝜆)

(B. 16) 

Next step is computing 𝑏. To get the numerator, the sum 𝛾((𝑗) for all time steps 𝑡 

in which the observation 𝑂( is the symbol 𝜈* should be used. To calculate the 

denominator, the sum 𝛾((𝑗) over all time steps 𝑡 should be found. Finally, it will be the 

percentage of the times that it was in state 𝑗 and has symbol 𝜈* (the notation 

∑ 	-
('!	@.(.A&'B" means “sum over all 𝑡 for which the observation at time 𝑡 was 𝜈*”): 

𝑏 %(𝜈*) =
∑ 𝛾((𝑗)-
('!	@.(.A&'B"
∑ 𝛾((𝑗)-
('!

(B. 17) 

So now formulas from (B.12) and (B.17) should be used for re-estimation the 

transition probabilities 𝐴 and observation probabilities 𝐵 from an observation sequence 

𝑂, assuming that we already have a previous estimate of 𝐴 and 𝐵. 

These re-estimations create a basis of the iterative forward-backward algorithm. 

This algorithm starts with an initial estimate of the HMM parameters 𝜆 = (𝐴, 𝐵). Like 

other cases of the EM (expectation-maximization) algorithm, the forward-backward 

algorithm has two iterative steps: the expectation step, or E-step, and the maximization 

step, or M-step. 

In the E-step, 2 variables should be computed: the expected state occupancy count 

𝛾 and the expected state transition count 𝜉 from the earlier 𝐴 and 𝐵 probabilities. In the 

M-step, 𝛾 and 𝜉 are used to recompute new 𝐴 and 𝐵 probabilities. 
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Appendix C. List of high-risk countries 

Country 
code Full name 

AF Afghanistan 
AI Anguilla 
AG Antigua and Barbuda 
AW Aruba 
PT-20 Azores 
BS Bahamas 
BH Bahrain 
BB Barbados 
BY Belarus 
BZ Belize 
BM Bermuda 
BA Bosnia and Herzegovina 
BN Brunei Darussalam 
BF Burkina Faso 
KH Cambodia 
KY Cayman Islands 
CF Central African Republic 
CG Congo 
CK Cook Islands 
CI Cote d'Ivoire 
CU Cuba 
CW Curacao 

KP 
Democratic People's Republic of 
Korea (DPRK) 

DJ Djibouti Republic 
DM Dominica 
DO Dominican Republic 
EC Ecuador 
ER Eritrea 
ET Ethiopia 
GH Ghana 
GI Gibraltar 
WG Grenada 
GT Guatemala 
GG Guernsey 
DW Guinea Bissau 
GY Guyana 
HK Hong Kong 
IR Iran 
IQ Iraq 
IM Isle of Man 
JA Jamaica 
JE Jersey 
KE Kenya 

LA 
Lao People's Democratic 
Republic 

LB Lebanon 
LR Liberia 
LY Libya 
MO Macao 
PT-30 Madeira 

Country 
code Full name 

MV Maldives 
MH Marshall Islands 
MU Mauritius 
MS Montserrat 
MZ Mozambique 
MM Myanmar (Burma) 
NA Namibia 
NR Nauru 
NC New Caledonia 
NU Niue 
PK Pakistan 
PW Palau 
PS Palestine State of 
PA Panama 
RU Russian Federation 

SH 
Saint Helena, Ascension and 
Tristan da Cunha 

KN Saint Kitts and Nevis 
PM Saint Pierre and Miquelon 
VC Saint Vincent and the Grenadines 
WS Samoa 
RS Serbia 
SC Seychelles 
SX Sint Maarten 
SO Somalia 
SS South Sudan 
LK Sri Lanka 
SD Sudan 
SZ Swaziland (Eswatini) 
SY Syria 
PF Tahiti (French Polynesia) 
TL Timor-Leste 
TO Tonga 
TT Trinidad and Tobago 
TN Tunisia 
TC Turks and Caicos Islands 
UG Uganda 
UY Uruguay 
VU Vanuatu 
VE Venezuela 
VG Virgin Islands, British 
VI Virgin Islands, U.S. 
YE Yemen 
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Appendix D. R code 

library(HMM) 

library(data.table) 

#defining functions for Viterbi algorithm	

makeViterbimat <- function(sequence, transitionmatrix, emissionmatrix) 

{ 

 sequence <- toupper(sequence) 

 numstates <- dim(transitionmatrix)[1] 

 v <- matrix(NA, nrow = length(sequence), ncol = 

dim(transitionmatrix)[1]) 

 v[1, ] <- 0 

 v[1,1] <- 1 

 for (i in 2:length(sequence))  

 { 

 for (l in 1:numstates)  

 { 

  statelprobnucleotidei <- emissionmatrix[l,sequence[i]] 

  v[i,l] <- statelprobnucleotidei * max(v[(i-1),] * 

transitionmatrix[,l]) 

 } 

 } 

 return(v) 

} 

 

get_states <- function(sequence, transitionmatrix, emissionmatrix) 

{ 

 states <- rownames(theemissionmatrix) 

 v <- makeViterbimat(sequence, transitionmatrix, emissionmatrix) 

 mostprobablestatepath <- apply(v, 1, function(x) which.max(x)) 

 return(mostprobablestatepath) 

} 

 

View(all_dd) #our dataset 

all_dd=data.table(all_dd) 

users=unique(all_dd$user_id) 

 

all_dd[,score:=0] #creating empty score column 

all_dd[as.ITime(date_created)<=as.ITime('07:00:00'),score:=score+15 ] 

all_dd[as.ITime(date_created)>=as.ITime('21:00:00'),score:=score+15] 
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all_dd[amount_in_eur>=1000 & amount_in_eur<5000, score:=score+5] 

all_dd[amount_in_eur>=5000 & amount_in_eur<10000, score:=score+10] 

all_dd[amount_in_eur>=10000 & amount_in_eur<20000, score:=score+15] 

all_dd[amount_in_eur>=20000, score:=score+20] 

 

all_dd[counterparty_country %in% c('AF','AI','AG','AW','PT-

20','BS','BH','BB','BY','BZ','BM','BA','BN','BF','KH','KY','CF','CG','

CK','CI','CU','CW','KP','DJ','DM', 

'DO','EC','ER','ET','GH','GI','WG','GT','GG','DW','GY','HK','IR', 

'IQ','IM','JA','JE','KE','LA','LB','LR','LY','MO','PT-30','MV','MH', 

'MU','MS','MZ','MM','NA','NR','NC','NU','PK','PW','PS','PA','SC','RU', 

'WS','RS','SX','SO','SS','LK','SH','KN','PM','VC','SD','SZ','SY','PF',

'TL','TO','TT','TN','TC','UG','UY','VU','VE','VG','VI','YE'), 

score:=score+5] 

all_dd[currency!='EUR'& currency!='USD', score:=score+10] 

 

#creating table where we will put summary of the model for every 

person 

results=data.table(users) 

results[,det_sups:=-1] 

results[,det_sups_really_susp:=-1] 

results[,really_susp:=-1] 

results[,all_transactions:=-1] 

 

 

#building HMM for every person 

for (j in users) { 

 dd=all_dd[user_id==j] 

 #calculatig additional transaction characteristics 

 dd[,sum_3in:=0] # sum of amount in eur in last 3 days for incoming 

transactions 

 dd[,sum_3out:=0] # sum of amount in eur in last 3 days for outgoing 

transactions 

 dd[,count_7:=0] # count of transaction in last 7 days 

 for (i in 1:nrow(dd)) { 

 dd$sum_3in[i]=sum(dd[difftime(dd$date_created[i], date_created, 

units='days')<=3 & (date_created<=dd$date_created[i]) & type=='I', 

amount_in_eur ]) 
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 dd$sum_3out[i]=sum(dd[difftime(dd$date_created[i], date_created, 

units='days')<=3 & (date_created<=dd$date_created[i])& type=='O', 

amount_in_eur ]) 

 dd$count_7[i]=length(dd[difftime(dd$date_created[i], date_created, 

units='days')<=7 & (date_created<=dd$date_created[i]), amount_in_eur 

]) 

 } 

  

 dd[sum_3in>=5000 & sum_3in<10000, score:=score+5] 

 dd[sum_3in>=10000 & sum_3in<20000, score:=score+10] 

 dd[sum_3in>=20000 , score:=score+15] 

  

 dd[sum_3out>=5000 & sum_3out<10000, score:=score+5] 

 dd[sum_3out>=10000 & sum_3out<20000, score:=score+10] 

 dd[sum_3out>=20000 , score:=score+15] 

  

 dd[count_7>=3 & count_7<5, score:=score+5] 

 dd[count_7>=5 & count_7<10, score:=score+10] 

 dd[count_7>=10 , score:=score+15] 

  

 mgr=dd[,max(score)] # maximum score for person 

  

 #creating observable variable  

 dd[score<mgr*2/3 | mgr==0, observation:='low_risk'] 

 dd[score>=mgr*2/3 & mgr>0, observation:='high_risk'] 

  

 #defining parameters for HHM 

 states    <- c("normal", "susp") # define the names of the states 

 normprobs   <- c(0.9, 0.1)    # set the probabilities of switching 

states, where the previous state was "normal" 

 suspprobs   <- c(0.1, 0.9)    # set the probabilities of switching 

states, where the previous state was "susp" 

 thetransitionmatrix <- matrix(c(normprobs, suspprobs), 2, 2, byrow = 

TRUE) # create a 2 x 2 matrix 

 rownames(thetransitionmatrix) <- states 

 colnames(thetransitionmatrix) <- states 

 observations   <- c("low_risk", "high_risk") # define the alphabet of 

observations 
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 normstateprobs <- c(0.8, 0.2) # set the values of the probabilities, 

for the normal state 

 suspstateprobs <- c(0.1, 0.9) # set the values of the probabilities, 

for the susp state 

 theemissionmatrix <- matrix(c(normstateprobs, suspstateprobs), 2, 2, 

byrow = TRUE) # Create a 2 x 2 matrix 

 rownames(theemissionmatrix) <- states 

 colnames(theemissionmatrix) <- observations 

 myseq<- dd$observation # create a vector of obervable variable 

  

 #initialization HMM 

 hmm = initHMM(c("normal","susp"),observations, 

    transProbs=thetransitionmatrix, 

    emissionProbs=theemissionmatrix) 

 # Baum-Welch algorithm for updating transition and emission 

probabilities 

 bw = baumWelch(hmm,myseq,5) 

 thetransitionmatrix<-bw$hmm$transProbs 

 theemissionmatrix<-bw$hmm$emissionProbs 

 # using Viterbi algorithm to predict state for every transaction 

 res=get_states(myseq, thetransitionmatrix, theemissionmatrix) 

  

 def_susp=c(which(res %in% c(2)))  

 dd_s=dd[def_susp] # taking transactions which defined as suspisious  

 results[users==j,det_sups:= sum(res!=1)] # number of transactions 

which defined as suspisious  

 results[users==j,det_sups_really_susp:= nrow(dd_s[susp>0])] # number 

of really suspisious transaction among defined as suspisious  

 results[users==j,really_susp:= nrow(dd[susp>0])] # number of really 

suspisious transaction 

 results[users==j,all_transactions:= nrow(dd)] # number of all 

transactions 

} 

 

results[,pres:=det_sups_really_susp/det_sups] # precision for every 

person  

results[,sens:=det_sups_really_susp/really_susp] # sensitivity for 

every person  

results[ mean(pres)] # average precision among all persons 
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results[ mean(sens)] # average sensitivity among all persons 

 

#using k-means clustering for every person 

for (j in users) { 

 dd=all_dd[user_id==j] 

 #calculatig additional transaction characteristics 

 dd[,sum_3in:=0] # sum of amount in eur in last 3 days for incoming 

transactions 

 dd[,sum_3out:=0] # sum of amount in eur in last 3 days for outgoing 

transactions 

 dd[,count_7:=0] # count of transaction in last 7 days 

 for (i in 1:nrow(dd)) { 

 dd$sum_3in[i]=sum(dd[difftime(dd$date_created[i], date_created, 

units='days')<=3 & (date_created<=dd$date_created[i]) & type=='I', 

amount_in_eur ]) 

 dd$sum_3out[i]=sum(dd[difftime(dd$date_created[i], date_created, 

units='days')<=3 & (date_created<=dd$date_created[i])& type=='O', 

amount_in_eur ]) 

 dd$count_7[i]=length(dd[difftime(dd$date_created[i], date_created, 

units='days')<=7 & (date_created<=dd$date_created[i]), amount_in_eur]) 

 } 

  

 dd[sum_3in>=5000 & sum_3in<10000, score:=score+5] 

 dd[sum_3in>=10000 & sum_3in<20000, score:=score+10] 

 dd[sum_3in>=20000 , score:=score+15] 

  

 dd[sum_3out>=5000 & sum_3out<10000, score:=score+5] 

 dd[sum_3out>=10000 & sum_3out<20000, score:=score+10] 

 dd[sum_3out>=20000 , score:=score+15] 

  

 dd[count_7>=3 & count_7<5, score:=score+5] 

 dd[count_7>=5 & count_7<10, score:=score+10] 

 dd[count_7>=10 , score:=score+15] 

  

 print(unique(dd$user_id)) 

 Cluster <- kmeans(dd$score, 2) 

 print(table(Cluster$cluster, dd$susp)) #susp as row (0, 1), clusters 

as columns (1,2) 

} 	  
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