
1
Tartu 2020

ISSN 1024-4212
ISBN 978-9949-03-402-4

DISSERTATIONES 
MATHEMATICAE 

UNIVERSITATIS 
TARTUENSIS

131

SU
M

A
IR

A
 R

EH
M

A
N

 
Fast and quasi-fast solvers for w

eakly singular Fredholm
 integral equations of the second kind

SUMAIRA REHMAN

Fast and quasi-fast solvers for weakly
singular Fredholm integral equations
of the second kind

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/328848472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS 

131 



DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS 

131 

 

 

 

 

SUMAIRA REHMAN 
 

Fast and quasi-fast solvers for weakly  
singular Fredholm integral equations  

of the second kind  



Institute of Mathematics and Statistics, Faculty of Science and Technology,
University of Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doc-
tor of Philosophy (PhD) in mathematics on June 19, 2020 by the Council
of the Institute of Mathematics and Statistics, Faculty of Science and Tech-
nology, University of Tartu.

Supervisors:

Prof., Cand. Sc. Arvet Pedas
Institute of Mathematics and Statistics
University of Tartu, Estonia

Acad., Prof. Emer., D. Sc. Gennadi Vainikko
Institute of Mathematics and Statistics
University of Tartu, Estonia

Opponents:

Prof., Dr. Sergei V. Pereverzyev
Johan Radon Institute
for Computational and Applied
Mathematics (RICAM)
Austrian Academy of Sciences

Prof. Emer., Dr. Hab. Math. Harijs Kalis
and Dr. Hab. Phys. Institute of Mathematics

and Computer Sciences
University of Latvia

The public defense will take place on August 27, 2020 at 13:30 in Narva
18-1020.

Publication of this dissertation has been granted by the Institute of Math-
ematics and Statistics of the University of Tartu.

Copyright © 2020 by Sumaira Rehman

University of Tartu Press
http://www.tyk.ee/

ISSN -
ISBN 978-9949-03-402-4 (print)
ISBN - -0 - - (PDF)

1024 4212

978 9949 3 403 1

 
 

http://www.tyk.ee/


Contents

1 Introduction 7

2 Preliminary Results 15

2.1 Some basic notations and results . . . . . . . . . . . . . . . 15

2.2 Linear operators and Fredholm alternative . . . . . . . . . . 19

2.3 Weighted space Cm,ν(0, 1) . . . . . . . . . . . . . . . . . . . 21

2.4 Smoothing transformation . . . . . . . . . . . . . . . . . . . 23

2.5 Interpolation by polynomials . . . . . . . . . . . . . . . . . 25

2.6 Trigonometric interpolation . . . . . . . . . . . . . . . . . . 26

2.6.1 Fourier series . . . . . . . . . . . . . . . . . . . . . . 26

2.6.2 Representation forms of trigonometric polynomials . 27

2.6.3 Trigonometric orthogonal and interpolation projections 28

3 Fast and Quasi-Fast Solvers 31

3.1 Basic class of problems . . . . . . . . . . . . . . . . . . . . . 31

3.2 Notions of fast and quasi-fast solvers . . . . . . . . . . . . . 35

3.3 Periodization of the integral equation . . . . . . . . . . . . . 38

3.4 An approximate method for the periodized problem . . . . 46

3.5 Extracting periodic and polynomial parts of a function . . . 54

3.6 An approximate method for equation (3.3.9) . . . . . . . . . 56

3.7 Fast and quasi-fast solvers for equation (3.1.1) . . . . . . . 65

4 Modified Fast and Quasi-Fast Solvers 69

4.1 A modified approach . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Error estimates for the modified approximations . . . . . . 71

4.3 Modified fast and quasi-fast solvers . . . . . . . . . . . . . . 76

Bibliography 81

5



Summary in Estonian 89

Acknowledgments 92

Curriculum Vitae 93

Elulookirjeldus (Curriculum Vitae in Estonian) 96

List of Publications 99

6



Chapter 1

Introduction

In the present thesis we discuss the bounds of fast solving Fredholm inte-

gral equations of the second kind with weakly singular kernels when the

information about the smooth coefficient functions in the kernel and about

the free term is restricted to a given number of their sample values. We

shall consider linear integral equations, that is, equations involving an un-

known function which appears under one or more integral signs and where

the dependence on this function is linear.

The early history of integral equations goes back to the special integral

equations studied by a number of scientists of eighteenth and nineteenth

centuries [12]. At the end of the nineteenth century the interest in in-

tegral equations increased, mainly because of their intimate relationship

with differential equations: initial and boundary value problems for differ-

ential equations can often be converted into integral equations and there

are usually significant advantages to be gained from making use of this

conversation.

Systematic study of integral equations started from the works of Ital-

ian mathematician Vito Volterra (1860–1940) and Swedish mathematician

Ivar Igor Fredholm (1866–1927) at the late 19th and early 20th century,

see the relevant references to their works in the monographs [3, 10–12]. In

particular, in the early 1900s, Fredholm gave necessary and sufficient con-

ditions for the solvability of a large class of integral equations. Especially,

the Fredholm theory applies to the equations of the form

u(x) =

∫ 1

0
K(x, y)u(y)dy + f(x), 0 ≤ x ≤ 1, (1.0.1)
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which are nowadays usually referred to as linear Fredholm integral equa-

tions of the second kind. Here K and f are given functions and u is un-

known function which we have to find. Function K is called the kernel of the

equation (1.0.1) and the function f is referred to as free term, or as forcing

function of (1.0.1). A condition such as 0 ≤ x ≤ 1 following an equation in

(1.0.1) indicates that this equation must hold for all values of the interval

[0, 1]. The word “kind” in the terminology “second kind integral equation”

refers to the location of the unknown function: first kind equations have

the unknown function presented under the integral sign only, second kind

equations also have the unknown function outside the integral. Although

the first kind integral equation∫ 1

0
K(x, y)u(y)dy = f(x), 0 ≤ x ≤ 1,

would seem to be of the same general type as the second kind integral

equation (1.0.1), it occurs that these two equations are in fact fundamen-

tally different in character. Integral equations of the first kind are usually

classified as ill-conditioned, because their solutions u are sensitive to small

changes in data functions K and f [3]. Loosely speaking, an ill-conditioned

problem is one in which small changes in the data can lead to very large

changes in the solution and therefore special methods for solving such prob-

lems are needed. For introduction to this topic, see [25, 26, 40, 68]. First

kind integral equations are not studied in the present thesis.

Integral equations arise naturally in many mathematical models of var-

ious “real-world” phenomena. Other problems whose natural formulation

are in terms of differential equations also provide a plentiful supply of inte-

gral equations. In particular, integral equations occur in areas such as study

of epidemics [88], financial mathematics [42], viscoelasticity [16, 32], poten-

tial problems [33, 43], nuclear physics [7], atmosphere physics [5, 29, 73, 74]

and in radiative heat exchange [90]. These equations also arise naturally

in the theory of signal processing [65] and inverse problems [28, 30, 31].

If K(x, y) = 0 for 0 ≤ x ≤ y ≤ 1, then Fredholm integral equation

(1.0.1) takes the form

u(x) =

∫ x

0
K(x, y)u(y)dy + f(x), 0 ≤ x ≤ 1, (1.0.2)
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which is usually referred to as linear Volterra integral equation of the sec-

ond kind. The classical Fredholm theory therefore also applies to Volterra

equations, but, as pointed out in [41], it loses much of its power: the re-

lationship between the two varieties of equations (1.0.1) and (1.0.2) is a

useful one, but it is wrong to infer that the differences between them are

minimal. Frequently a direct study of Volterra integral equations yields

many results which cannot be obtained for Fredholm equations, see, for

example, [80, 81]. A reader interested in studies on Volterra integral equa-

tions may consult the monographs [10–12, 41] which give a good picture of

these developments and contain an extensive bibliography.

The main objects of study in the present thesis are fast methods for

the numerical solution of Fredholm integral equations (1.0.1) with kernels

of the form

K(x, y) = a(x, y)| x− y |−ν + b(x, y), (1.0.3)

where a(x, y) and b(x, y) are some continuous functions for (x, y) ∈ [0, 1]×
[0, 1] and ν ∈ (0, 1) is a fixed parameter. It is easy to see that a kernel

K(x, y) of the from (1.0.3) is weakly singular [40, 63], that is, K(x, y) is

continuous for y 6= x and may have at most a weak singularity as y → x :

| K(x, y) |≤ c| x− y |−ν , x, y ∈ [0, 1], y 6= x, (1.0.4)

where c > 0 and ν ∈ (0, 1) are some constants. It must be remarked

that the class of continuous kernels on [0, 1] × [0, 1] make up a subclass of

weakly singular kernels (1.0.3): if in (1.0.3) the coefficient a(x, y) = 0 for

all (x, y) ∈ [0, 1]× [0, 1], then the kernel K = b is a continuous function on

the square [0, 1] × [0, 1]. Note also that the condition ν < 1 in (1.0.3) and

(1.0.4) is substantial since in this case the kernel K(x, y) is integrable as a

function of y and the following estimate holds:

sup
0≤x≤1

∫ 1

0
| K(x, y) | dy <∞.

This is no longer true for kernelsK(x, y) which are strongly singular (Cauchy

singular) for y = x. These are often typified by

K(x, y) =
a(x, y)

x− y
,
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where a(x, y) is a bounded function for (x, y) ∈ [0, 1]×[0, 1]. In this case the

integral in (1.0.1) is divergent and therefore another concept of an integral

is needed, see [23, 44, 46, 59, 60]. The integral equations with strongly

singular kernels will not be considered in this thesis.

When working with integral equations that are modeling some problems

from real world applications, it is only rarely possible to find the solution

of a given integral equation on closed form. Therefore, in general, numeri-

cal methods are required for solving integral equations. As a consequence,

various methods for the numerical solution of integral equations have been

developed by many researchers in the past. In particular, among the mono-

graphs discussing the numerical solution of Fredholm integral equations of

the second kind are the ones by Atkinson [3], Chen, Micchelli and Xu [14],

Hackbusch [27], Krasnoselskii, Vainikko et al [39], Kress [40], Mikhlin [43],

Saranen and Vainikko [63], Vainikko [74], Vainikko, Pedas and Uba [84],

see also the survey papers [2, 9, 87].

When analyzing the convergence of a numerical method for a given in-

tegral equation one needs information about the smoothness of its exact

solution on the domain on which the equation is to be solved. For Fred-

holm integral equations (1.0.1) with bounded kernels, the smoothness of

the kernel K and the forcing function f determines the smoothness of the

exact solution u (if it exist) on the closed interval of integration [0, 1]. A

typical result here is formulated as follows. Let m ∈ N0 := {0, 1, . . . , } be a

fixed integer and let K ∈ Cm([0, 1]× [0, 1]), f ∈ Cm[0, 1], that is, K and f

are some m times continuously differentiable functions on [0, 1]× [0, 1] and

[0, 1], respectively. Finally suppose that equation (1.0.1) has a solution u.

Then u ∈ Cm[0, 1].

However, if we admit weakly singular kernels (1.0.3), this result is no

longer true: for a, b ∈ Cm([0, 1] × [0, 1]), f ∈ Cm[0, 1], the solution u of

equation (1.0.1) in general belongs only to C[0, 1]\C1[0, 1], regardless of the

value m ≥ 1. This will be made precise by Theorem 3.1.3 in Chapter 3, see

also [24, 51, 53, 64, 74, 83, 84]. Thus the solutions u(x) of Fredholm integral

equations (1.0.1) with weakly singular kernels (1.0.3) are typically non-

smooth at the endpoints x = 0 and x = 1 of the interval [0, 1] (where, their

derivatives become unbounded). This means that if a numerical method

is possess a high order of convergence one has to take into account, in

some way, the singular behavior of the exact solution near the boundary

of [0, 1]. In piecewise polynomial projection methods this behavior can be
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reflected in the construction of special graded grids where the grid points

are more densely clustered near the boundary of the interval [0, 1], see

[3, 27, 36, 50, 66, 67, 74, 84, 85]. However, using strongly graded non-

uniform grids may create significant round-off errors in the calculations and

lead to implementation difficulties. Thus, if one wants to retain uniform

grids, then one will have to abandon polynomial spline spaces in favor of

certain non-polynomial spline spaces whose dimension will be considerably

larger [12]. Another way to avoid graded grids is to proceed as follows: first

we regularize the exact solution of the underlying weakly singular integral

equation by a suitable smoothing transformation and after that we apply a

numerical method to the transformed integral equation on a uniform grid,

cf., [19, 45, 48, 49, 72].

In the present thesis we use a smoothing transformation to regularize

the exact solution of the underlying problem together with periodization

techniques in order to construct fast solvers for Fredholm integral equations

(1.0.1) with weakly singular kernels (1.0.3).

In a fast solver, the conditions of optimal accuracy and minimal arith-

metical operations (complexity of the solver) are met. We mean the order

optimality and order minimal work on a class of problems. In our case the

class of problems is defined by the smoothness conditions which we will set

on the free term f(x) and the kernel K(x, y) = a(x, y)| x− y |−ν + b(x, y)

of equation (1.0.1). We introduce the notions of fast and quasifast solvers

more exactly (see Definitions 3.2.1 and 3.2.2) in Chapter 3.

In particular, we consider a class of equations (1.0.1) where the free

term f of (1.0.1) belongs to Cm,ν(0, 1), m ∈ N = {1, 2, . . . , }, ν ∈ (0, 1), the

kernel K is determined by the formula (1.0.3), with a, b ∈ C2m([0, 1]×[0, 1]),

and equation (1.0.1) is assumed to possess a unique solution u ∈ C =

C[0, 1]. By Cm,ν = Cm,ν(0, 1) we denote the Banach space of functions f

which are continuous on the closed interval [0, 1] and m times continuously

differentiable on the open interval (0, 1) and such that

‖ f ‖Cm,ν := max
0≤x≤1

| f(x) | +
m∑
k=1

sup
0<x<1

[x(1− x)]k−1+ν | f (k)(x) |<∞.

Thus, if f ∈ Cm,ν(0, 1), then f ∈ C[0, 1], but the derivatives of f may be

unbounded near the boundary of [0, 1] :

| f (k)(x) |≤ c[x(1− x)]1−ν−k, k = 1, . . . ,m,
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where c = c(f) is a positive constant not depending on x ∈ (0, 1).

Our aim is to produce approximate solutions un (n ∈ N) to equations

u(x) =

∫ 1

0
[a(x, y)| x− y |−ν + b(x, y)]u(y) + f(x), 0 ≤ x ≤ 1, (1.0.5)

such that

1) given the values of f, a, b at O(n?) suitable chosen points (where

n? = n?(n)→∞ asn→∞) the parameters of un are available at the cost

of O(n?) flops, and the accuracy

sup
0≤x≤1

| u(x)− un(x) |≤ cmn?−m‖ f ‖Cm,ν (1.0.6)

is achieved, where u is the exact solution of equation (1.0.5) and cm is a

positive constant that is independent of n and f ;

2) having determined the parameters of un, the value of un(x) at any

particular point x ∈ [0, 1] is available at the cost of O(1) flops.

We call such methods fast (C,Cm,ν) solvers of equation (1.0.5). Thus, a

fast (C,Cm,ν) solver is a method of optimal accuracy order to solve (1.0.5);

the convergence order (1.0.6) is the best that one can achieve for f ∈
Cm,ν(0, 1) and a, b ∈ C2m([0, 1] × [0, 1]) by a method of O(n?) flops. It is

optimal also in the sense of information: to obtain the convergence order

(1.0.6) for all f ∈ Cm,ν(0, 1), ‖ f ‖Cm,ν ≤ 1, at least O(n?) values of f, a, b

must be involved.

Further, we speak about a (Lp, Cm,ν)-fast solver (1 ≤ p <∞) if we have

instead of (1.0.6) that

‖ u− un ‖p ≤ cmn?
−m‖ f ‖Cm,ν ,

where ‖ u ‖p = (
∫ 1

0 | u(x) |pdx)1/p is the norm of u in Lp(0, 1); similarly, a

solver is (C,Cm) fast if in (1.0.5) the norm ‖ f ‖Cm,ν is replaced by ‖ f ‖Cm ,
where ‖ f ‖Cm is the standard norm of f in Cm[0, 1], see Section 2.1.

We speak about a (C,Cm,ν) quasi-fast solver of (1.0.5) if the accuracy

requirement (1.0.6) is replaced by

sup
0≤x≤1

| u(x)− un(x) |≤ cmn?−m(log n)‖ f ‖Cm,ν ,
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that is, if in the right hand side of (1.0.6) a supplementary factor log n is

allowed.

An intensive investigation of optimal algorithms and complexity for var-

ious problems was started in [22, 69, 70]. In these works the fundamentals

of general theory of optimal algorithms were introduced. In [54–56, 89] the

complexity of the approximate solutions of Fredholm integral equations of

the second kind with smooth kernels has been studied. Actually, also in

[77, 78, 82, 86] fast or quasi-fast solvers are constructed, but only for in-

tegral equations without singularities; for (1.0.5) this corresponds to the

case a(x, y) ≡ 0. The fast or quasi-fast solving of periodic weakly singular

integral equations of the second kind has been undertaken in [52], see also

[17, 21, 57, 63]

The construction of fast and quasi-fast (C,Cm,ν) solvers for non-periodic

integral equations of the second kind with weakly singular kernels was an

open problem for a long time. Only in the papers [61] and [62] this question

has been discussed and a fast (or, at least, quasi-fast) solver for (1.0.5) has

been constructed. In Chapter 3 and 4 of this thesis we follow the ideas of

[61] and [62], respectively.

The thesis consists of four chapters.

Chapter 1 and 2 have an introductory character. In Chapter 2 we introduce

some basic notions and results which we need in this thesis.

In Chapter 3 we first give the definitions of fast and quasi-fast meth-

ods for solving (1.0.5). After that we reduce the problem (1.0.5) into a

periodic problem and construct an approximate method for the periodized

problem. In the course of Sections 3.3–3.7 we obtain a solver which under

the conditions introduced above is (C,Cm,ν) quasi-fast and (Lp, Cm,ν) fast

for 1 ≤ p <∞. Moreover, we show that this solver is (C,Cm,ν) fast under

some strengthened conditions on the functions a and b in (1.0.5).

In Chapter 4 we modify the approach used in Chapter 3. In Chapter

3 a solver is presented and justified which is of optional order in the sense

of accuracy and minimal amount of arithmetical work to realize it numer-

ically. This solver remains to be of optimal order also for the solutions of

problems (1.0.5) with a, b ∈ C2m([0, 1]× [0, 1]) and f ∈ Cm+1[0, 1], but the

restriction f ∈ Cm+1[0, 1] allows to modify the solver so that its numerical

realization is essentially easier than the realization of the previously con-

structed solver. This is achieved by the approximation of f in (1.0.5) by

13



trigonometric interpolation projection Qnf instead of orthogonal projec-

tion Pnf (their definitions are given in Subsection 2.6.3) and Chapter 4 is

devoted to the justification of this idea. We emphasize that the complex-

ity order of the problem (1.0.5) with f ∈ Cm+1[0, 1] remains the same as

that one with f from the more general class Cm,ν(0, 1) in Chapter 3. So

our main result in Chapter 4 concerns not the improvement of the error

estimates in the definitions of fast and quasi-fast solvers, but the simplifi-

cation of the numerical algorithm of a fast or quasi-fast solver in the case

f ∈ Cm+1[0, 1].

Thus, in Chapter 4 we construct a quasi-fast (C,Cm+1) solver for the

problem (1.0.5) which is (Lp, Cm+1) fast, 1 ≤ p < ∞. This new solver has

an advantage compared with the method considered in Chapter 3, since

the grid values of the free term in the matrix form of this new method are

easily available from the values of f, which is not the case in Chapter 3.

14



Chapter 2

Preliminary Results

In this chapter we collect some notions and basic known results which we

need later.

2.1 Some basic notations and results

.

Throughout this work c, c′, c0, c1, . . . denote positive constants which

may have different values in different occurrences. By N = {1, 2, . . . } we

denote the set of all positive integers, by N0 = {0} ∪ N the set of non-

negative integers, by Z = {. . . ,−1, 0, 1, 2, . . . } the set of integers, by R =

(∞,+∞) the set of real numbers and by C set of complex numbers.

Let m ∈ N0 be a given integer. We will use the following notations for

spaces and norms in them.

By C[0, 1] we denote the Banach space of continuous functions u on

[0, 1] with the norm

‖ u ‖C[0,1]=‖ u ‖∞= max
0≤x≤1

| u(x) |;

Cm = Cm[0, 1] is the Banach space of m times (m ≥ 1) continuously

differentiable functions u on [0, 1],

‖ u ‖Cm[0,1]=

m∑
k=0

‖ u(k) ‖∞=

m∑
k=0

max
0≤x≤1

| u(k)(x) |;
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C̃m = C̃m(R) is the space of 1-periodic functions ũ on R with the same

norm ‖ ũ ‖Cm ; C = C[0, 1] = C0[0, 1], C̃ = C̃(R) = C̃0(R); recall that a

function ũ = ũ(x) is 1-periodic on R if ũ(x+ 1) = ũ(x) for all x ∈ R.
By Lp(0, 1) (1 ≤ p < ∞) we denote the Banach space of measurable

functions u on [0, 1] such that

‖ u ‖p=‖ u ‖Lp(0,1)=

(∫ 1

0
| u(x) |pdx

)1/p

<∞;

L̃p = L̃p(R), 1 ≤ p < ∞, is the space of 1-periodic functions ũ on R

with the same norm: ‖ ũ ‖p=
(∫ 1

0 | ũ(x) |p dx)
)1/p

, 1 ≤ p <∞.
By L∞(0, 1) we denote the Banach space of measurable functions u on

[0, 1] such that

inf
Ω⊂[0,1];µ(Ω)=0

sup
x∈[0,1]�Ω

| u(x) |<∞,

where µ(Ω) is the Lebesgue measure of set Ω; the norm of this space is

defined as

‖ u ‖L∞(0,1)=‖ u ‖∞= inf
Ω⊂[0,1];µ(Ω)=0

sup
x∈[0,1]�Ω

| u(x) |;

L̃∞ = L̃∞(R) is the space of 1-periodic function ũ on R with the same

norm:

‖ ũ ‖L∞(R)=‖ ũ ‖∞= inf
Ω⊂[0,1];µ(Ω)=0

sup
x∈[0,1]�Ω

| ũ(x) | .

By Wm,p(0, 1), 1 ≤ p ≤ ∞, m ∈ N is denoted the Sobolev space of

functions u on (0, 1) equipped with the norm

‖ u ‖Wm,p=

(
m∑
k=0

‖ u(k) ‖pp

)1/p

, 1 ≤ p <∞; ‖ u ‖Wm,∞=
m∑
k=0

‖ u(k) ‖∞;

W̃m,p = W̃m,p(R), 1 ≤ p ≤ ∞, is the Sobolev space of 1-periodic

functions ũ with the same norm ‖ ũ ‖Wm,p .

By Hm,λ = Hm,λ[0, 1], 0 < λ ≤ 1, is denoted the Hölder space of

functions u ∈ Cm[0, 1] with u(m) satisfying the Hölder condition with the

exponent λ,

‖ u ‖Hm,λ=‖ u ‖Cm + sup

{
| u(m)(x)− u(m)(y) |

| x− y |λ
: x, y ∈ [0, 1], x 6= y

}
;
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H̃m,λ(R), 0 < λ ≤ 1, is the Hölder space of 1-periodic functions ũ with

the same norm ‖ ũ ‖Hm,λ .

Definition 2.1.1. Let X be a Banach space. A subset X1 ⊂ X is called

relatively compact in X if any sequence (xn) ⊂ X1 contains a subsequence

converging in X.

A helpful result in connection with such sets in C[0, 1] is the following

theorem; its proof can be found in many textbooks e.g. in [40].

Theorem 2.1.1. (Arzela–Ascoli) A set S ⊂ C[0, 1] is relatively compact

in C[0, 1] if and only if the following two conditions are fulfilled:

(i) the functions u ∈ S are uniformly bounded, i.e., there is a constant c

such that |u(x)|≤ c for all x ∈ [0, 1], u ∈ S;

(ii) the functions u are equicontinuous, i.e., for every ε > 0 there exists a

δ > 0 such that x1, x2 ∈ [0, 1], |x1 − x2| ≤ δ implies |u(x1)− u(x2)| ≤ ε for

all u ∈ S.

An important rule for differentiating composite functions is the chain

rule: if u and ϕ are two differentiable functions, then

d

dx
u(ϕ(x)) = u′(ϕ(x))ϕ′(x).

This rule can be generalized to the case of mth derivatives with arbitrary

m ∈ N. The result is known as Faà di Bruno’s formula. It can be formulated

as follows, see [35, 38].

Theorem 2.1.2. (Faà di Bruno) Let m ∈ N and u be an m times contin-

uously differentiable function on an interval which contains the values of

ϕ ∈ Cm[0, 1]. Then the composite function u(ϕ(x)) is m times continuously

differentiable for x ∈ [0, 1] and the derivatives of the composition function

at any point x ∈ [0, 1] can be expressed by Faà di Bruno’s differentiation

formula (
d

dx

)j
u(ϕ(x))

=
∑

k1+2k2+···+jkj=j

j!

k1! . . . kj !
u(k)(ϕ(x))

(
ϕ′(x)

1!

)k1
. . .

(
ϕ(j)(x)

j!

)kj
,

(2.1.1)
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where x ∈ [0, 1], k = k1+· · ·+kj , and the sum is taken over all non-negative

integers k1, . . . , kj , such that k1 + 2k2 + · · ·+ jkj = j, j = 1, . . . ,m.

Next we recall the definitions and some properties of Euler’s gamma

and beta functions, see, for example, [1, 58].

The gamma function Γ(x) is defined by the formula

Γ(x) =

∫ ∞
0

e−ssx−1ds, 0 < x <∞. (2.1.2)

Elementary considerations from the theory of improper integrals reveal that

the integral in (2.1.2) exists for any x > 0. Moreover, setting x = 1, we

easily see that

Γ(1) =

∫ ∞
0

e−sds = lim
z→∞

∫ z

0
e−sds = lim

z→∞
(1− e−z) = 1. (2.1.3)

Additionally we may, for arbitrary x > 0, manipulate the integral in the

definition of Γ(x) by mean of a partial integration. This yields

Γ(x+ 1) =

∫ ∞
0

e−ssxds = lim
z→∞, y→0

∫ z

y
e−ssxds

= x

∫ ∞
0

e−ssx−1ds = xΓ(x), x > 0.

We have thus shown that

Γ(x+ 1) = xΓ(x), x > 0, (2.1.4)

which together with (2.1.3) yields

Γ(n+ 1) = n! , n ∈ N. (2.1.5)

One important result that we shall need later is the integral identity∫ 1

0
sx−1(1− s)y−1ds =

Γ(x)Γ(y)

Γ(x+ y)
, (2.1.6)

where x > 0 and y > 0 are given. The integral in the left side of (2.1.6) is

known as Euler’s integral of the first kind or Euler’s beta function B(x, y) :

B(x, y) =

∫ 1

0
sx−1(1− s)y−1ds, x, y ∈ (0,∞). (2.1.7)
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It follows from (2.1.6) and (2.1.7) that gamma and beta functions are re-

lated by the equality

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, x, y ∈ (0,∞). (2.1.8)

In particular, with the help of (2.1.3), (2.1.4) and (2.1.8) we get

B(n, n) =
[(n− 1)! ]2

(2n− 1)!
, n ∈ N. (2.1.9)

2.2 Linear operators and Fredholm alternative

In this section we will introduce some results from the theory of linear

operators, see [4, 40].

Let X and Y be Banach spaces. A linear operator A : X → Y is called

bounded if there exists a positive constant c such that

‖ Ax ‖Y ≤ c‖ x ‖X ∀x ∈ X.

An operator A : X → Y is said to be continuous if

‖ xn − x ‖X → 0, n→∞

implies

‖ Axn −Ax ‖Y → 0, n→∞.

A linear operator A : X → Y is continuous if and only if it is bounded.

One says that a linear operator A : X → Y has the inverse A−1 : Y → X

if A−1A = IX and AA−1 = IY where IX and IY are the identity mappings

in X and Y, respectively.

For a linear operator A : X → Y we denote by

N(A) = {x ∈ X : Ax = 0}

the null space of A, and by

R(A) = {y ∈ Y : y = Ax}

the range of A. By L(X,Y ) we denote the Banach space of linear bounded
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operators A : X → Y with the norm

‖ A ‖L(X,Y ) = {sup ‖ Ax ‖Y : x ∈ X, ‖ x ‖X ≤ 1}.

Later instead of ‖ A ‖L(X,Y ) we will also use the notation ‖ A ‖X→Y .
Clearly, N(A) ⊂ X and R(A) ⊂ Y are subspaces; if A ∈ L(X,Y ), then

N(A) is closed.

Theorem 2.2.1. (Banach) Let X and Y be Banach spaces and A ∈
L(X,Y ). If N(A) = 0 and R(A) = Y then A has the inverse A−1 ∈ L(Y,X).

Theorem 2.2.2. (Banach–Steinhaus) Let A : X → Y be a linear bounded

operator and let (An), n ∈ N, be a sequence of linear bounded operators

An : X → Y from a Banach space X into a Banach space Y . For pointwise

convergence

Anx→ Ax, n→∞ for all x ∈ X,

it is necessary and sufficient that

‖ An ‖L(X,Y ) ≤ c for all n ∈ N

with some constant c and that

Anx→ Ax, n→∞ for all x ∈ V,

where V is some dense subset of X.

Theorem 2.2.3. Let X be a Banach space, and let A ∈ L(X,X) be a

bounded linear operator from X into X with ‖ A ‖L(X,X) < 1. Then there

exists (I −A)−1 ∈ L(X,X), and

‖ (I −A)−1 ‖L(X,X) ≤
1

1− ‖ A ‖L(X,X)

,

where I is the identity mapping in X.

Theorem 2.2.4. Let X and Y be Banach spaces. If the operators A,B ∈
L(X,Y ) are such that A has a bounded inverse A−1 ∈ L(Y,X) and

‖ B ‖L(X,Y )‖ A
−1 ‖L(Y,X) < 1,
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then A+B has a bounded inverse (A+B)−1 ∈ L(Y,X) and

‖ (A+B)−1 ‖L(Y,X) ≤
‖ A−1 ‖L(Y,X)

1− ‖ B ‖L(X,Y )‖ A−1 ‖L(Y,X)

.

Definition 2.2.1. Let X and Y be Banach spaces. A linear operator

A : X → Y is called compact if A transforms every bounded set of X into

a relatively compact set of Y .

Equivalently, A : X → Y is compact if for every bounded sequence

(un) ⊂ X, the sequence (Aun) contains a sub-sequence that converges in Y.

A linear compact operator A : X → Y from a Banach space X into a

Banach space Y is bounded and thus continuous.

Theorem 2.2.5. Let An : X → Y, n = 1, 2, . . . , be linear compact oper-

ators, A : X → Y a linear bounded operator, and let ‖ An −A ‖L(X,Y ) →
0 as n→∞. Then A : X → Y is compact.

Theorem 2.2.6. (Fredholm alternative) Let X be a Banach space, and let

A ∈ L(X,X) be a compact operator. Then the equation x = Ax + f with

f ∈ X has a unique solution x ∈ X if and only if the homogeneous equation

x = Ax has only the trivial solution x = 0. In such a case, the operator

I −A has a bounded inverse (I −A)−1 ∈ L(X,X).

2.3 Weighted space Cm,ν(0, 1)

Let m ∈ N and ν ∈ (0, 1) be given. In order to describe the smoothness

properties of a solution of a weakly singular integral equation we introduce

a weighted space Cm,ν(0, 1) of smooth functions on (0, 1). As a matter of

fact, Cm,ν(0, 1) is an adaptation of a class of functions that were introduced

by Vainikko in [74] for describing the possible singular behavior of solutions

of multidimensional weakly singular integral equations, see also [13, 51, 53].

For given m ∈ N and ν ∈ (0, 1) by Cm,ν = Cm,ν(0, 1) we denote the set

of continuous functions f on [0, 1] which are m times continuously differ-

entiable in (0, 1) and such that

| f (j)(x) |≤ c[x(1− x)]1−ν−j , 0 < x < 1, j = 1, . . . ,m, (2.3.1)

where c = c(f) > 0 is a constant not depending on x. In other words,
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f ∈ Cm,ν(0, 1) if f ∈ C[0, 1] ∩ Cm(0, 1) and

m∑
j=1

sup
0<x<1

[x(1− x)]j+ν−1 | f (j)(x) |<∞.

Equipped with the norm

‖ f ‖Cm,ν = max
0≤x≤1

| f(x) |

+

m∑
j=1

sup
0<x<1

[x(1− x)]j+ν−1 | f (j)(x) |, f ∈ Cm,ν(0, 1),

(2.3.2)

the set Cm,ν(0, 1) becomes a Banach space.

Note that Cm[0, 1] (m ∈ N) belongs to Cm,ν(0, 1) for arbitrary ν, 0 <

ν < 1. Some other examples are given by

f1(x) = [x(1− x)]1/2,

f2(x) = x1/10

and

f3(x) = (1− x)3/4,

where 0 ≤ x ≤ 1. Clearly,

f1 ∈ Cm,1/2(0, 1), f2 ∈ Cm,9/10(0, 1), f3 ∈ Cm,1/4(0, 1),

with arbitrary m ∈ N. Further, it is easy to see that, for q, m ∈ N

Cq[0, 1] ⊂ Cq,ν(0, 1) ⊂ Cm,µ(0, 1) ⊂ C[0, 1], q ≥ m ≥ 1, 0 < ν ≤ µ < 1.

(2.3.3)

Observe that as ν increases so does the singularity order of the derivatives

of the functions in Cm,ν(0, 1).

It follows from [51] the following result, see also [74].

Theorem 2.3.1. Let m ∈ N and ν ∈ (0, 1) be given. Define an integral
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operator T by the formula

(Tu)(x) =

∫ 1

0

[
a(x, y)| x− y |−ν + b(x, y)

]
u(y)dy, x ∈ [0, 1],

where a, b ∈ Cm([0, 1]× [0, 1]). Then T maps Cm,ν(0, 1) into itself and T is

compact as an operator from Cm,ν(0, 1) into Cm,ν(0, 1).

2.4 Smoothing transformation

Let ϕ : [0, 1]→ [0, 1] be defined by the formula

ϕ(t) =
1

B(r, r)

∫ t

0
σr−1(1− σ)r−1dσ, t ∈ [0, 1], r ∈ N, (2.4.1)

where

B(r, r) =

∫ 1

0
σr−1(1− σ)r−1dσ

is the Euler’s beta function (2.1.7), with a = b = r, see Section 2.1.

In the case r = 1 it follows from (2.4.1) that ϕ(t) = t. We are interested

in transformations (2.4.1) with r ≥ 2, since such transformations then will

possess a smoothing property for a function f ∈ Cm,ν(0, 1), see Theorem

2.4.1 below. The smoothing parameter r ≥ 1 could also be a real number,

but for simplicity of the following presentation we restrict ourselves to r ∈
N. Note also that it follows from the formula (2.1.9) that the coefficient

before the integral in (2.4.1) can be calculated as follows:

1

B(r, r)
=

(2r − 1)!

[(r − 1)! ]2
.

From the definition (2.4.1) we get

ϕ(0) = 0, ϕ(1) = 1, ϕ′(t) = tr−1(1− t)r−1 > 0 for 0 < t < 1,

that is, ϕ is a strictly increasing function on [0, 1]. Thus, there exists a

continuous inverse ϕ−1 : [0, 1] → [0, 1], with ϕ−1(0) = 0 and ϕ−1(1) = 1.

Moreover, for a given r ∈ N it follows from (2.4.1) that ϕ ∈ Cr[0, 1] and, if
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r ≥ 2, then

ϕ(j)(0) = ϕ(j)(1) = 0, j = 1, . . . , r − 1; ϕ(r)(0) 6= 0, ϕ(r)(1) 6= 0.

(2.4.2)

Theorem 2.4.1. Suppose that f ∈ Cm,ν(0, 1), with m ∈ N and ν ∈ (0, 1).

Denote h(t) = f(ϕ(t)), where 0 ≤ t ≤ 1 and ϕ is defined by the formula

(2.4.1). Let r ∈ N be such that

r >
m

1− ν
. (2.4.3)

Then h ∈ Cm[0, 1] and

h(j)(0) = h(j)(1) = 0, j = 1, . . . ,m. (2.4.4)

Proof. Clearly, h ∈ C[0, 1] ∩ Cm(0, 1). This yields that we have to study

only the boundary behavior of the derivatives of the function h. Actually,

we need to show that

h(j)(0) := lim
t→0

h(j)(t) = 0, j = 1, . . . ,m, (2.4.5)

and

h(j)(1) := lim
t→1

h(j)(t) = 0, j = 1, . . . ,m. (2.4.6)

We establish the relation (2.4.5); for (2.4.6) the argument is similar.

Let 0 < t ≤ 1/2. Then

ϕ(j)(t) ≤ cjtr−j , j = 0, 1, . . . , r, (2.4.7)

where c0, . . . , cr are some positive constants which are independent of t.

Since f ∈ Cm,ν(0, 1), it follows from (2.3.1) and (2.4.7) by the formula of
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Faà di Bruno (2.1.1) (see Theorem 2.1.2) that

| h(j)(t) |=

∣∣∣∣∣
(
d
dt

)j
f(ϕ(t))

∣∣∣∣∣
≤

∑
k1,...,kj∈N0:

k1+2k2+···+jkj=j

j!
k1!...kj !

f (k1+···+kj)(ϕ(t))

(
ϕ′(t)

1!

)k1
. . .

(
ϕ(j)(t)
j!

)kj
≤ c

∑
k1,...,kj∈N0:

k1+2k2+···+jkj=j

tr(1−ν−k1−···−kj)t(r−1)k1 . . . t(r−j)kj

≤ c1t
r(1−ν)−j ,

where j = 1, . . . ,m. This together with (2.4.3) yields (2.4.5).

2.5 Interpolation by polynomials

For n, m ∈ N denote h = 1/n and Zm = {k ∈ Z : −m
2 < k ≤ m

2 }.

To u ∈ C̃(R), assign the piecewise polynomial interpolant Πh,mu ∈ C̃(R)

which is defined on every subinterval [ih, (i + 1)h] independently of other

subintervals as an algebraic polynomial ui of degree m − 1 (of order m)

such that ui(jh) = u(jh) for j − i ∈ Zm. Well known error estimates for a

polynomial interpolant (cf. [4, 48]) yield the following results.

Theorem 2.5.1. (i) For u ∈ C̃m(R) (m ∈ N), it holds

‖ u−Πh,mu ‖∞≤ cn−m ‖ u(m) ‖∞,

max
x∈R
|u(k)(x)− (Πh,mu)(k)(x)|≤ cn−(m−k) ‖ u(m) ‖∞, k = 0, . . . ,m− 1;

at x = ih, i ∈ Z, this holds for both one side limits of (Πh,mu)(k)(x).

(ii) For u ∈ H̃m,λ(R), m ∈ {0} ∪ N, 0 < λ < 1, it holds

‖ u−Πh,m+1u ‖∞≤ cn−m−λ ‖ u(m) ‖Hm,λ .
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2.6 Trigonometric interpolation

In this section we present shortly some known results about trigonometric

interpolation which will be used later. For a more detailed discussion see

[40, 63, 75, 91]. We start from the standard results on Fourier series in one

variable.

2.6.1 Fourier series

For a function v ∈ L2(0, 1) the series

∞∑
n=−∞

v̂(n)ein2πt, (2.6.1.1)

where i =
√
−1 and

v̂(n) =

∫ 1

0
v(t)e−in2πtdt (n ∈ Z),

is called the Fourier series of v, its coefficients v̂(n) are called the Fourier

coefficients of v. On L2(0, 1), as usual, the mean square norm ‖ v ‖L2(0,1) =

(v, v)1/2 of an element v ∈ L2(0, 1) is introduced by the scalar product

(v, w) =

∫ 1

0
v(t)w(t) dt; v, w ∈ L2(0, 1).

Let us denote by hn trigonometric monomials

hn(t) = ein2πt

for t ∈ R and n ∈ Z. Then the set {hn : n ∈ Z} is an orthogonal system. By

the Weirstrass approximation theorem (see [18]), the set of trigonometric

polynomials { ∑
k∈Z:−n

2
<k≤n

2

eik2πt, ck ∈ C, t ∈ R
}

is dense with respect to the maximum norm in the space of 1-periodic

continuous functions C̃(R), and C[0, 1] is dense in L2(0, 1) in the mean

square norm. Therefore (see [40]), the orthogonal system {hn} is complete

and the Fourier series (2.6.1.1) converges in the mean square norm to v.
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Thus, every function v ∈ L2(0, 1) can be represented by its Fourier series

v(t) =
∑
n∈Z

v̂(n)ein2πt

which converges in L2(0, 1).

2.6.2 Representation forms of trigonometric polynomials

For n ∈ N, we denote

Zn = {k ∈ Z : −n
2
< k ≤ n

2
}, Tn = span{eik2πt : k ∈ Zn}.

Thus Tn consists of trigonometric polynomials, dimTn = n.

There are two possible representations of vn ∈ Tn – through its Fourier

coefficients v̂n(k),

v̂n(k) =

∫ 1

0
vn(t)e−ik2πtdt, k ∈ Zn,

and through its nodal values vn(jn−1), j = 0, . . . , n− 1 :

vn(t) =
∑
k∈Zn

v̂n(k)eik2πt; (2.6.2.2)

vn(t) =

n−1∑
j=0

vn(jn−1)φn,j(t), φn,j(t) =
1

n

∑
k∈Zn

eik2π(t−jn−1).

The functions φn,j ∈ Tn, j = 0, 1, . . . , n − 1, called fundamental trigono-

metric polynomials, satisfy

φn,j(ln
−1) = δj,l, j, l = 0, . . . , n− 1, (2.6.2.3)

where δj,l is the Kronecker symbol:

δi,j =

{
1, for i = j,

0, for i 6= j.

Having the nodal values of vn ∈ Tn in hand, its Fourier coefficients are
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given by

v̂n(k) =

∫ 1

0
vn(t)e−ik2πtdt =

1

n

n−1∑
j=0

vn(jn−1)e−ik2πjn−1
, k ∈ Zn,

or

v̂n = Fnvn,

where v̂n is the vector with components v̂n(k), k ∈ Zn, vn is the vector

with components vn(jn−1), j = 0, . . . , n− 1, and Fn is the discrete Fourier

transform.

Conversely, having the Fourier coefficients in hand, the nodal values of

vn ∈ Tn are given by the inverse discrete Fourier transform following from

(2.6.2.2) :

vn(jn−1) =
∑
k∈Zn

v̂n(k)eik2πjn−1
, j = 0, . . . , n− 1,

or

vn = F−1
n v̂n.

So we can change the form of representation of a trigonometric polynomial

where needed. In usual matrix calculus, an application of Fn or F−1
n costs

n2 flops. Using fast Fourier transform (FFT) techniques, both transforms

can be implemented in O(n log n) flops. For FFT, see [15]. See also [6, 8].

2.6.3 Trigonometric orthogonal and interpolation projec-

tions

For v ∈ L̃1(0, 1) and n ∈ N the Fourier projection Pnv is defined by

(Pnv)(t) =
∑
k∈Zn

v̂(k)eik2πt, t ∈ R,

v̂(k) =

∫ 1

0
v(t)e−ik2πtdt, k ∈ Z.

For v ∈ L̃2(0, 1), Pnv is the orthogonal projection of v onto Tn.

Observe that (Pnv)(m) = Pnv
(m) for v ∈ C̃m(R), m ∈ R.
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Indeed, we have for any t ∈ R that

(Pnv)(t) =
∑
k∈Zn

(∫ 1

0
v(s)e−ik2πsds

)
eik2πt

and

(Pnv)(m)(t) =
∑
k∈Zn

(∫ 1

0
v(s)e−ik2πsds

)
(ik2π)meik2πt.

On the other hand,

(Pnv
(m))(t) =

∑
k∈Zn

(∫ 1

0
v(m)(s)e−ik2πsds

)
eik2πt.

Integrating
∫ 1

0 v
(m)(s)e−ik2πsds by parts we obtain∫ 1

0
v(m)(s)e−ik2πsds = e−ik2πsv(m−1)(s)

∣∣∣s=1

s=0
+ ik2π

∫ 1

0
v(m−1)(s)e−ik2πsds

= ik2π

∫ 1

0
v(m−1)(s)e−ik2πsds

Proceeding in this way gives

(Pnv
(m))(t) = (ik2π)m

∑
k∈Zn

(∫ 1

0
v(s)e−ik2πsds

)
eik2πt, t ∈ R. �

For v ∈ C̃(R), the interpolation projection Qnv is defined by the re-

quirements

Qnv ∈ Tn, (Qnv)(jn−1) = v(jn−1), j = 0, . . . , n− 1.

Due to (2.6.2.3),

(Qnv)(t) =

n−1∑
j=0

v(jn−1)φn,j(t),

hence the Fourier coefficients (Q̂nv)(k), k ∈ Zn, of Qnv can be computed

from the sample values v(jn−1), j = 0, . . . , n − 1, by FFT in O(n log n)

flops.

It is known (see, for example, [91]) that

||Pn||C̃(R)→C̃(R)
≤ c log n, ||Pn||Lp(0,1)→Lp(0,1)≤ cp, 1 < p <∞,(2.6.3.4)
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||Qn||C̃(R)→C̃(R)
≤ c log n, ||Qn||C̃(R)→Lp(0,1)

≤ cp, 1 ≤ p <∞.(2.6.3.5)

Here the constants c and cp are independent of n; we always assume that

n ≥ 2 in order to simplify the citing of estimates containing the factor log n.

The following estimates are direct consequences of (2.6.3.4) and (2.6.3.5):

‖ v − Pnv ‖∞≤ cmn−m(log n) ‖ v(m) ‖∞, v ∈ C̃m(R), m ∈ N,(2.6.3.6)

‖ v − Pnv ‖p≤ cm,pn−m ‖ v(m) ‖p, v ∈ W̃m,p(R), m ∈ N, 1 < p <∞,

(2.6.3.7)

‖ v −Qnv ‖∞≤ cmn−m(log n) ‖ v(m) ‖∞, v ∈ C̃m(R), m ∈ N,

(2.6.3.8)

‖ v −Qnv ‖∞≤ cm,λn−m−λ(log n) ‖ v(m) ‖Hm,λ , v ∈ H̃m,λ, m ≥ 0,

(2.6.3.9)

‖ v −Qnv ‖p≤ cm,pn−m ‖ v(m) ‖∞, v ∈ C̃m(R), m ∈ N, 1 ≤ p <∞.

(2.6.3.10)

The constants in the estimates (2.6.3.6)-(2.6.3.10) are independent of n and

v.
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Chapter 3

Fast and Quasi-Fast Solvers

In this chapter we shall propose and justify a possibility to construct fast

and quasi-fast solvers for Fredholm integral equations of the second kind

with weakly singular kernels. This chapter is the core of the thesis and is

based on the paper [61].

3.1 Basic class of problems

Consider the weakly singular Fredholm integral equation of the second kind

u(x) =

∫ 1

0

(
a(x, y)|x− y|−ν+b(x, y)

)
u(y)dy + f(x), 0 ≤ x ≤ 1, (3.1.1)

where 0 < ν < 1.

In the final results of this chapter for given m ∈ N and ν ∈ (0, 1), we

assume that

(A1) f ∈ Cm,ν(0, 1);

(A2) a, b ∈ C2m([0, 1]× [0, 1]);

(A3) the homogeneous equation

u(x) =

∫ 1

0

(
a(x, y)|x− y|−ν+b(x, y)

)
u(y)dy,

corresponding to (3.1.1) has in C[0, 1] only the trivial solution u = 0.

Recall that Cm,ν = Cm,ν(0, 1) consists of functions f ∈ C[0, 1]∩Cm,ν(0, 1)

satisfying the conditions (2.3.1); it is a Banach space with respect to the

31



norm (2.3.2).

By C l([0, 1] × [0, 1]) (l ∈ N0) we denote the Banach space of func-

tions v = v(x, y) that have continuous partial derivatives ( ∂
∂x)j( ∂∂y )kv(x, y)

(j, k = 0, 1, . . . , l) on the square [0, 1]× [0, 1],

‖v‖Cl([0,1]×[0,1])=
l∑

j=0

l∑
k=0

max
(x,y)∈[0,1]×[0,1]

∣∣∣∣∣
(
∂

∂x

)j ( ∂

∂y

)k
v(x, y)

∣∣∣∣∣ .
Introduce also the following strengthened smoothness condition for func-

tions a and b:

(A2′) a, b ∈ H2m,µ([0, 1]× [0, 1]) with a µ ∈ (0, 1].

The Hölder space H2m,µ([0, 1]× [0, 1]) consists of functions v ∈ C2m([0, 1]×
[0, 1]) with ( ∂

∂x)i( ∂∂y )jv(x, y), i + j = 2m, satisfying the Hölder condition

with the exponent µ ∈ (0, 1] :

| v |2m,µ := sup
x1,x2,y1,y2∈[0,1],

i+j=2m
(x1,y1) 6=(x2,y2)

∣∣∣( ∂
∂x)i( ∂∂y )jv(x1, y1)− ( ∂

∂x)i( ∂∂y )jv(x2, y2)
∣∣∣

(|x2 − x1|+|y2 − y1|)µ
<∞;

H2m,µ([0, 1]× [0, 1]) is a Banach space with the norm

‖ v ‖H2m,µ([0,1]×[0,1]) = ‖ v ‖C2m([0,1]×[0,1]) + | v |2m,µ.

Denote by

T = A+B (3.1.2)

the integral operator of equation (3.1.1) with operators A and B defined

by

(Au)(x) =

∫ 1

0
a(x, y)|x− y|−νu(y)dy, (Bu)(x) =

∫ 1

0
b(x, y)u(y)dy,

(3.1.3)

where 0 < ν < 1. We have the following result (see, for example, [40]).

Theorem 3.1.1. Assume that a, b ∈ C[0, 1]. Then T defined by {(3.1.2), (3.1.3)}
maps L∞(0, 1) into C[0, 1] and is compact as an operator from L∞(0, 1) into

C[0, 1], hence also as an operator from C[0, 1] into C[0, 1].
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Due to {(3.1.2), (3.1.3)} equation (3.1.1) can be rewritten in the form

u = Tu+ f, (3.1.4)

where a, b ∈ C([0, 1]× [0, 1]) and f ∈ C[0, 1].

The existence, uniqueness and regularity of the solution to equation

(3.1.4) (equation (3.1.1)) can be characterized by the following two theo-

rems.

Theorem 3.1.2. Assume that a, b ∈ C([0, 1] × [0, 1]) and f ∈ C[0, 1].

Moreover, assume that (A3) holds, that is, the homogeneous equation u =

Tu possesses in C[0, 1] only the trivial solution u = 0. Then equation (3.1.4)

(equation (3.1.1)) is uniquely solvable and its solution u belongs to C[0, 1].

Proof. This result is a consequence of Theorems 2.2.6 and 3.1.1.

Theorem 3.1.3. Assume that a, b ∈ Cm([0, 1] × [0, 1]), f ∈ Cm,ν(0, 1),

m ∈ N, ν ∈ (0, 1). Moreover, assume that (A3) holds. Then equation

(3.1.4) (equation (3.1.1)) has a solution u ∈ Cm,ν(0, 1) which is unique in

C[0, 1]. If a ≡ 0 and f ∈ Cm[0, 1], then u ∈ Cm[0, 1].

Proof. This result is a consequence of Theorems 2.2.6 , 2.3.1 and 3.1.2.

Corollary 3.1.1. Let ν ∈ (0, 1) and m ∈ N be given. Let the assumptions

(A1) − (A3) be fulfilled. Then equation (3.1.1) has a unique solution u in

C[0, 1] and it belongs to Cm,ν(0, 1).

The results of Theorem 3.1.3 and Corollary 3.1.1 are of fundamental

importance in the subsequent analysis of Chapters 3 and 4. In particular,

it follows from Theorem 3.1.3 that, in general, we cannot expect that u,

the solution to equation (3.1.1), belongs to C1[0, 1], even when we have

a, b ∈ Cm([0, 1] × [0, 1]) and f ∈ Cm([0, 1] for some m ∈ N. We may only

say that u ∈ Cm,ν(0, 1), that is, solution u can, in general, exhibit singular

behavior near the boundary of the interval [0, 1], where its derivatives may

become unbounded:

| u(j)(x) |≤ c[x(1− x)]1−ν−j , 0 < x < 1, j = 1, . . . ,m.

In order to make clear that boundary singularities of the derivatives of

a solution to a second kind weakly singular integral equation are typical for
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such equations, let us consider an integral equation of the form

u(x) =

∫ 1

0
K(x, y)u(y)dy + f(x), 0 ≤ x ≤ 1, (3.1.5)

where f ∈ Cm[0, 1] (m ∈ N) and

K(x, y) = | x− y |−ν , x, y ∈ [0, 1], x 6= y, 0 < ν < 1.

Let us assume, that equation (3.1.5) has a solution u ∈ C[0, 1]. Then, in

general, u /∈ C1[0, 1].

Indeed, assuming that u ∈ C1[0, 1], we can rewrite (3.1.5) in the form

u(x) =

∫ x

0
(x− y)−νu(y)dy +

∫ 1

x
(y − x)−νu(y)dy + f(x),

or

u(x) =

∫ x

0
τ−νu(x− τ)dτ +

∫ 1−x

0
τ−νu(x+ τ)dτ + f(x), 0 < x < 1,

(3.1.6)

from which it follows that we can differentiate (3.1.6) with respect to x.

After differentiating we obtain an equation of the form

u′(x) = x−νu(0) +

∫ x

0
τ−νu′(x− τ)dτ

− (1− x)−νu(1) +

∫ 1−x

0
τ−νu′(x+ τ)dτ + f ′(x),

or, after some reorganizing,

u′(x) =

∫ 1

0
| x− y |−νu′(y)dy + f ′(x) + u(0)x−ν − u(1)(1− x)−ν ,(3.1.7)

where 0 < x < 1. We see that on the l.h.s of this equation is u′(x) which is a

continuous function for all x ∈ C[0, 1], but its r.h.s is typically unbounded

near the boundary of [0, 1]. Indeed, since u′ ∈ C[0, 1], the integral term∫ 1

0
| x− y |−νu′(y)dy

in (3.1.7) is a continuous function for x ∈ [0, 1], see, for example, [40].
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Thus, the first two terms on the r.h.s. of (3.1.7) are bounded continuous

functions on [0, 1]. However, this is not the case for the last two terms on the

r.h.s. of (3.1.7): the term u(0)x−ν has the singularity at x = 0 provided

that u(0) 6= 0 and the term u(1)(1 − x)−ν has the singularity at x = 1

if u(1) 6= 0. Thus, the assumption u ∈ C1[0, 1] leads to a contradiction

if u(0) 6= 0 and/or u(1) 6= 0; these inequalities take place for most of

f ∈ Cm[0, 1].

Thus, when constructing high order numerical methods for weakly sin-

gular integral equations, one should take into account the possible non-

smooth behavior of the derivatives of an exact solution. This becomes even

more significant since our aim is to work out algorithms with the optimal

order of their convergence. For us information about the regularity of the

solution of (3.1.1) given by Theorem 3.1.3 and Corollary 3.1.1 is extremely

important since our approach below (see Section 3.3) is based on an idea

of killing the singularities of the derivatives of the exact solution to the

underlying problem by a suitable smoothing transformation.

The main purpose of the present thesis is to construct fast and quasi-

fast solvers for equation (3.1.1). In a fast solver, the conditions of optimal

accuracy and minimal arithmetical operation are met. We mean the order

optimality and order minimal work on a class of problems. In our case

the class of problems is defined by the smoothness conditions which we set

above on the free term f(x) and the kernel K(x, y) = a(x, y)| x− y |−ν +

b(x, y) of equation (3.1.1), see (A1), (A2) or (A1), (A2′).

3.2 Notions of fast and quasi-fast solvers

We will use the following notions of fast and quasi-fast solvers.

Definition 3.2.1. By a (C,Cm,ν) fast solver of equation (3.1.1) we mean a

solver which produces approximate solutions un ∈ C[0, 1], n ∈ N, such that

� given the values of a, b and f, each at not more than n? points

(depending on the solver, with n? → ∞ as n → ∞ ), the parameters of

un can be determined at the cost of γmn? arithmetical operations and an

accuracy

‖u− un‖∞= max
0≤x≤1

|u(x)− un(x)|≤ cmn−m? ‖f‖Cm,ν (3.2.1)

is achieved where u is the solution of (3.1.1);
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� having the parameters of un in hand, the value of un at any point

x ∈ [0, 1] is available at the cost of γ′m arithmetical operations.

Here the constants cm, γm, γ′m are independent of f and n.

Note that estimate (3.2.1) is information optimal even in the case where

a(x, y) = 0 for (x, y) ∈ [0, 1]× [0, 1] (in this case the solution of (3.1.1) can

be presented in the form u = (I −B)−1f, where I is the identity mapping

and (I − B)−1 is the inverse of the operator I − B). Namely (see original

work [89] or lecture notes [79]), for any m, m′ ∈ N, β > 0, β̄ > 1 and

any solver of (3.1.1) with a(x, y) ≡ 0 depending on n? evaluation points for

f ∈ Cm = Cm[0, 1] and b ∈ Cm′([0, 1] × [0, 1]), there is a “bad” pair f , b

satisfying

‖f‖Cm= 1, ‖b‖Cm′ ([0,1]×[0,1])≤ β, ‖(I −B)−1‖C→C≤ β̄,

and such that, disregarding the amount of arithmetical work, the lower

error bound

‖u− un‖∞≥ con−min{m,m′/2}
?

holds where c0 is a positive constant depending only on m,m′, β and β̄.

Thus, under traditional assumptions f ∈ Cm[0, 1], b ∈ Cm([0, 1] × [0, 1]),

i.e. for m′ = m, only the accuracy order

‖u− un‖∞≤ cn−m/2? ‖f‖Cm

can be achieved by any solver (this partial result has been established al-

ready in [20]). A further consequence of the lower error bound is that

accuracy (3.2.1) is possible only if m′ ≥ 2m, and this explains the constel-

lation of our assumption (A2) with m′ = 2m.

We speak about a (Lp, Cm,ν) fast solver (1 ≤ p < ∞) if the accuracy

requirement (3.2.1) in Definition 3.2.1 is replaced by

‖u− un‖p≤ cmn−m? ‖f‖Cm,ν ,

where ‖u‖p is the norm of u in Lp(0, 1). Similarly, we obtain a (C,Cm) fast

solver if in the accuracy requirement (3.2.1) the norm ‖f‖Cm,ν is replaced

by ‖f‖Cm .
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Definition 3.2.2. In a (C,Cm,ν) quasi-fast solver, the accuracy require-

ment (3.2.1) is replaced by

‖u− un‖∞≤ cmn−m? (log n?)‖f‖Cm,ν (3.2.2)

maintaining other requirements of Definition 3.2.1.

Remark 3.2.1. The estimate (3.2.1) can be rewritten with respect to the

complexity

n?? := γmn?

of the solver in the equivalent form

‖u− un‖∞≤ c̄mn−m?? ‖f‖Cm,ν , c̄m = γmmcm.

This form of the estimate enables a comparison of (C,Cm,ν) fast solvers

with different complexity parameters γm : to smaller c̄m there corresponds

more effective solver.

Remark 3.2.2. Consider also an alternative definition of a (C,Cm,ν) quasi-

fast solver requiring accuracy (3.2.1) but allowing γ̄mn? log n? arithmetical

operations. Then with respect to the complexity

n?? = γ̄mn? log n?

estimate (3.2.1) takes the form

‖u− un‖∞ ≤ cm(ω−1(n??/γ̄m))−m‖f‖Cm,ν

∼ cmγ̄
m
mn
−m
?? (log(n??/γ̄m))m‖f‖Cm,ν

where

ω(x) = x log x, ω−1(x) ∼ x/log x as x −→∞,

i.e,

(ω−1(x) log x)/x −→ 1 as x→∞.

We see that for m ≥ 2 Definition 3.2.2 is more restrictive (leads to a more

high accuracy) than the alternative definition.

Below we will construct the solvers which under the conditions (A1)−
(A3) are (C,Cm,ν) quasi-fast and (Lp, Cm,ν) fast, 1 ≤ p < ∞. Moreover,
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these solvers are (C,Cm) fast under the conditions (A1), (A2′), (A3). Since

we must discretize functions a and b of two variables, we use in our con-

structions n? = O(n2) that is more convenient rather than n? = n. Since

the obtained result will characterize the smallest possible complexity of

discretization methods for weakly singular integral equations of the sec-

ond kind, we obtain a possibility to estimate how “good” an arbitrary

discretization method is from the point of view of complexity.

3.3 Periodization of the integral equation

It follows from Section 3.1 that the derivatives of a solution to a weakly

singular integral equation such as (3.1.1), in general , have certain boundary

singularities. With the help of a suitable change of variables in the equation,

these boundary singularities can be suppressed, see Theorem 2.4.1, see also

[19, 37, 45, 48, 51, 72]. Below we use a change integration variables and a

change of the unknown functions using function ϕ defined by the formula

(2.4.1) in order to transform (3.1.1) into a 1-periodic problem.

To reduce (3.1.1) to a periodic problem with a smooth exact solution

we need a smooth function g(t), 0 < t < 1. Actually, for given ν ∈ (0, 1)

and m ∈ N, we introduce the function g = g(t), as follows:

g(t) =


t−ν , 0 < t ≤ 1/3,

(1− t)−ν , 2/3 ≤ t < 1,

γ(t), 1/3 < t < 2/3,

(3.3.1)

where γ(t) is a polynomial of degree 4m+ 1 determined by the conditions

γ(t)(j)(1/3) =

(
d

dt

)j
t−ν
∣∣∣
t=1/3

, γ(t)(j)(2/3) =

(
d

dt

)j
(1− t)−ν

∣∣∣
t=2/3

,

with j = 0, 1, . . . , 2m. For example, in the case ν = 1/2 and m = 2 we have

g(t) =


t−1/2, 0 < t ≤ 1/3,

(1− t)−1/2, 2/3 ≤ t < 1,

γ(t), 1/3 < t < 2/3,

(3.3.2)

with

γ(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + a7t

7 + a8t
8 + a9t

9
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where

a0 = −25.33, a1 = 537.81, a2 = 422.4,

a3 = 20.08, a4 = 5.47, a5 = 95.53,

a6 = 210.00, a7 = 58.59, a8 = 4.65,

a9 = 0.00000055.

For the behavior of the graph of the function (3.3.2) see Figure 3.0.1.
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g(t) function

 0 ≤  t ≤ 1

 

 

t−1/2

(1−t)−1/2

γ(t)

Figure 3.0.1: Graph of the function (3.3.2) for t ∈ [0.1, 0.9].

Next we extend g from (0, 1) into a 1−periodic function g̃ ∈ C2m(R\Z) :

g̃(t) = g(t− j), t ∈ (j, j + 1), j ∈ Z.

For the graph of the function g̃ see Figure 3.0.2. Note that

|g̃(j)(t)|≤ c|t|−ν−j for 0 < |t|≤ 1/2, j = 0, 1, . . . , 2m, (3.3.3)

g̃(t)− |t|−ν= 0 for |t|≤ 1/3. (3.3.4)
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Figure 3.0.2: Graph of the periodic function g̃ for
t ∈ (−1, 0) ∪ (0, 1) ∪ (1, 2) ∪ (2, 3) ∪ (3, 4).

Next we perform in equation (3.1.1) the change the variables

x = ϕ(t), 0 ≤ t ≤ 1; y = ϕ(s), 0 ≤ s ≤ 1, (3.3.5)

where ϕ : [0, 1] −→ [0, 1] is given by the formula (2.4.1):

ϕ(t) =
1

cr

∫ t

0
σr−1(1−σ)r−1dσ, cr =

∫ 1

0
σr−1(1−σ)r−1dσ =

((r − 1)! )2

(2r − 1)!
;

(3.3.6)

condition on the smoothing parameter r ∈ N will be set later.

We have (
ϕ(t)− ϕ(s)

)
/(t− s) > 0 for t, s ∈ [0, 1], t 6= s.

Taking x = ϕ(t) and y = ϕ(s), we get dy = ϕ′(s)ds and therefore∫ 1

0
a(x, y)| x− y |−νu(y)dy

=

∫ 1

0
a(ϕ(t), ϕ(s))

∣∣∣∣ϕ(t)− ϕ(s)

t− s

∣∣∣∣−ν | t− s |−νu(ϕ(s))ϕ′(s)ds

=

∫ 1

0
a(ϕ(t), ϕ(s))

(
ϕ(t)− ϕ(s)

t− s

)−ν
| t− s |−νu(ϕ(s))ϕ′(s)ds.

Thus, on the basis of the (3.3.5) change of variables equation (3.1.1) takes
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the form

u(ϕ(t)) =

∫ 1

0

[
a
(
ϕ(t), ϕ(s)

)(ϕ(t)− ϕ(s)

t− s

)−ν
|t− s|−ν

+ b
(
ϕ(t), ϕ(s)

)]
u(ϕ(s))ϕ′(s)ds+ f(ϕ(t)), t ∈ [0, 1].

(3.3.7)

For (t, s) ∈ [0, 1]× [0, 1] denote

Φ(t, s) =


(
ϕ(t)− ϕ(s)

)
/(t− s), t 6= s,

ϕ′(t), t = s.

(3.3.8)

Using g̃ and Φ we rewrite (3.3.7) in the form

u(ϕ(t)) =

∫ 1

0

[
a
(
ϕ(t), ϕ(s)

)
Φ(t, s)−ν

(
|t− s|−ν−g̃(t− s) + g̃(t− s)

)
+ b

(
ϕ(t), ϕ(s)

)]
u(ϕ(s))ϕ′(s)ds+ f(ϕ(t)),

or, after some reorganizing,

u(ϕ(t)) =

∫ 1

0

[
a
(
ϕ(t), ϕ(s)

)
Φ(t, s)−ν g̃(t− s)ϕ′(s) +

{
b
(
ϕ(t), ϕ(s)

)
+ a

(
ϕ(t), ϕ(s)

)
Φ(t, s)−ν

(
|t− s|−ν−g̃(t− s)

)}
ϕ′(s)

]
u(ϕ(s))ds

+ f(ϕ(t)),

that is, in the form

ū(t) =

∫ 1

0

(
ā(t, s)g̃(t− s) + b̄(t, s)

)
ū(s)ds+ f̄(t), 0 ≤ t ≤ 1, (3.3.9)

where

ū(t) = u(ϕ(t)), f̄(t) = f(ϕ(t)), t ∈ [0, 1], (3.3.10)

ā(t, s) = a
(
ϕ(t), ϕ(s)

)
Φ(t, s)−νϕ′(s), (t, s) ∈ [0, 1]× [0, 1],
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b̄(t, s) =
[
b
(
ϕ(t), ϕ(s)

)
+ a

(
ϕ(t), ϕ(s)

)
Φ(t, s)−ν

(
|t− s|−ν−g̃(t− s)

)]
ϕ′(s),

where t ∈ [0, 1]× [0, 1].

Next we introduce in equation (3.3.10) a change of the unknown function

ū. With respect to

ũ(t) := ϕ′(t)(1−ν)/2ū(t) = ϕ′(t)(1−ν)/2u(ϕ(t))

equation (3.3.9) reads as

ũ(t) =

∫ 1

0

(
ã(t, s)g̃(t− s) + b̃(t, s)

)
ũ(s)ds+ f̃(t), 0 ≤ t ≤ 1, (3.3.11)

or

ũ = T̃ ũ+ f̃ , (3.3.12)

where

f̃(t) = ϕ′(t)(1−ν)/2f(ϕ(t)) (0 ≤ t ≤ 1) (3.3.13)

and

T̃ = Ã+ B̃, (3.3.14)

with Ã and B̃ defined by

(Ãu)(t) =

∫ 1

0
ã(t, s)g̃(t− s)u(s)ds, (B̃u)(t) =

∫ 1

0
b̃(t, s)u(s)ds. (3.3.15)

Here t, s ∈ [0, 1],

ã(t, s) = ϕ′(t)(1−ν)/2ā(t, s)ϕ′(s)−(1−ν)/2

= ϕ′(t)(1−ν)/2a
(
ϕ(t), ϕ(s)

)
ϕ′(s)(1+ν)/2Φ(t, s)−ν

and

b̃(t, s) = ϕ′(t)(1−ν)/2b̄(t, s)ϕ′(s)−(1−ν)/2

= ϕ′(t)(1−ν)/2

[
b
(
ϕ(t), ϕ(s)

)
+ a

(
ϕ(t), ϕ(s)

)
Φ(t, s)−ν

(
|t− s|−ν−g̃(t− s)

)]
ϕ′(s)(1+ν)/2.
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Besides the equality

ũ(t) = ϕ′(t)(1−ν)/2ū(t),

the solutions of equations (3.3.9) and (3.3.11) satisfy the integral relation

ū(t) =

∫ 1

0

(
a?(t, s)g̃(t− s) + b?(t, s)

)
ũ(s)ds+ f̄(t), 0 ≤ t ≤ 1, (3.3.16)

where

a?(t, s) = a
(
ϕ(t), ϕ(s)

)
Φ(t, s)−νϕ′(s)(1+ν)/2, (t, s) ∈ [0, 1]× [0, 1],

(3.3.17)

b?(t, s) =

[
b
(
ϕ(t), ϕ(s)

)
+ a
(
ϕ(t), ϕ(s)

)
Φ(t, s)−ν

(
|t− s|−ν

− g̃(t− s)
)]
ϕ′(s)(1+ν)/2, (t, s) ∈ [0, 1]× [0, 1]. (3.3.18)

It is easy to see that ϕ(t) is a polynomial of degree 2r − 1:

ϕ(t) =
1

c∗

r−1∑
j=0

(−1)j
(
r − 1

j

)
1

r + j
tr+j .

This together with (3.3.8) yields that Φ(t, s) is a polynomial of degree 2r−2.

The values of polynomials ϕ(t) and Φ(t, s) at one point can be computed

in O(1) arithmetical operations, see [72] for the corresponding procedures.

Hence the values of ā(t, s), ã(t, s), a?(t, s), b̄(t, s), b̃(t, s), b?(t, s) at one

point can be computed at the cost of O(1) arithmetical operations provided

that the values a(ϕ(t), ϕ(s)) and b(ϕ(t), ϕ(s)) are given. Using a uniform

grid for t and s, a(x, y) and b(x, y) must be given or evaluated on a non-

uniform grid with respect to x and y.

Due to (3.3.4),

|t− s|−ν−g̃(t− s) = 0

in the vicinity of the diagonal t = s. Thus b̄(t, s), b̃(t, s) and b?(t, s) are

regular on the diagonal t = s of the square [0, 1] × [0, 1], but there appear

point singularities at (t, s) = (0, 1) and (t, s) = (1, 0) of the term g̃(t− s).
Further, it follows from [72] that Φ(t, s) vanishes at (t, s) = (0, 0) and

(t, s) = (1, 1) causing there point singularities of Φ(t, s)−ν of the order
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(t+ s)−(r−1)ν and
(

(1− t) + (1− s)
)−(r−1)ν

, respectively:

∣∣∣ ( ∂

∂s

)j (
Φ(t, s)

)−ν∣∣∣ ≤ c(t+ s)−ν(r−1)−j
(

(1− t) + (1− s)
)−ν(r−1)−j

,

(3.3.19)

where j = 0, 1 . . . , 2m; for r > 2 these singularities are more strong than the

singularities of g̃(j)(t−s) at (t, s) = (0, 0) and (t, s) = (1, 1), see (3.3.3). All

these four point singularities can be suppressed by the factors ϕ′(t)(1−ν)/2

and ϕ′(s)(1+ν)/2 in the expressions for ã, b̃ and by the factor ϕ′(s)(1+ν)/2 in

the expressions for a?, b?.

Actually, an analysis shows that the functions ã, b̃, a? and b? can be

extended so that these extensions (which we denote again by ã, b̃, a?, b?)

belong to the space C2m([0, 1]× [0, 1]) provided that the smoothing param-

eter r in the definition (3.3.6) is sufficiently large: the condition

r − 1 > 4m/(1− ν) (3.3.20)

is sufficient.

Namely, under condition (3.3.20) it holds that

∣∣∣ ( ∂

∂s

)j (
Φ(t, s)−ν

)∣∣∣∣∣∣( d

ds

)2m−j(
ϕ′(s)(1+ν)/2

)∣∣∣→ 0 as s→ 0, (3.3.21)

for any t ∈ [0, 1] and j = 0, 1, . . . , 2m.

Indeed, let t ∈ [0, 1] , 0 < s ≤ 1/2 and j = 0, 1, . . . , 2m. Then we obtain

from (3.3.19) the estimate

∣∣∣ ( ∂

∂s

)j (
Φ(t, s)−ν

)∣∣∣ ≤ cs−ν(r−1)−j ,

and from (3.3.6) that(
d

ds

)2m−j(
ϕ′(s)(1+ν)/2

)
=

(
d

ds

)2m−j[(
sr−1(1− s)r−1

)
/c∗

](1+ν)/2

≤ c1s
(r−1)((1+ν)/2)−(2m−j).
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Therefore,

∣∣∣ ( ∂

∂s

)j (
Φ(t, s)−ν

)∣∣∣∣∣∣( d

ds

)2m−j(
ϕ′(s)(1+ν)/2

)∣∣∣ ≤ c2s
(r−1)((1−ν)/2)−2m,

(3.3.22)

with a constant c2 > 0 which is independent of s ∈ (0, 1
2 ]. If r − 1 >

4m/(1− ν), then

(r − 1)((1− ν)/2)− 2m > 0

and (3.3.21) follows from (3.3.22).

Similarly, by symmetry,

∣∣∣ ( ∂

∂s

)j (
Φ(t, s)−ν

)∣∣∣∣∣∣( d

ds

)2m−j(
ϕ′(s)(1+ν)/2)

)∣∣∣→ 0 as s→ 1,

for any t ∈ [0, 1] and j = 0, 1, . . . , 2m. Thus, the derivatives(
∂

∂s

)j (
Φ(t, s)−ν

)( d

ds

)2m−j(
ϕ′(s)(1+ν)/2)

)
(j = 0, 1, . . . , 2m)

have under the condition (3.3.20) no singularities at the points (t, s) = (0, 0)

and (t, s) = (1, 1) which, in turn yields that ã, b̃, a?, b? ∈ C2m([0, 1]× [0, 1]).

Moreover, under the condition (3.3.20),(
∂

∂t

)j ( ∂

∂s

)k
ã(t, s)

∣∣∣
(t,s)∈Γ

= 0,

(
∂

∂t

)j ( ∂

∂s

)k
b̃(t, s)

∣∣∣
(t,s)∈Γ

= 0,

(3.3.23)

with 0 ≤ j + k ≤ 2m, and(
∂

∂s

)k
a?(t, s)

∣∣∣
s=0

=

(
∂

∂s

)k
a?(t, s)

∣∣∣
s=1

= 0,

(3.3.24)(
∂

∂s

)k
b?(t, s)

∣∣∣
s=0

=

(
∂

∂s

)k
b?(t, s)

∣∣∣
s=1

= 0, k = 0, 1, . . . , 2m,

where Γ is the boundary of the square [0, 1]× [0, 1].

Relations (3.3.23) allow to treat ã and b̃ as C2m(R × R)-smooth 1-

biperiodic functions, i.e., ã, b̃ ∈ C̃2m(R× R). According to (3.3.24) a?(t, s)

and b?(t, s) can be treated as C2m([0, 1] × R)-smooth functions which are

45



1-periodic with respect to s.

Further, (3.3.20) and f ∈ Cm,ν(0, 1) together with (3.3.10), (3.3.13) and

Theorem 2.4.1 imply that f̄ , f̃ ∈ Cm[0, 1],

f̄ (j)(0) = f̄ (j)(1) = 0, j = 1, . . . ,m,

f̃ (j)(0) = f̃ (j)(1) = 0, j = 0, . . . ,m,

‖f̃‖Cm≤ c‖f̄‖Cm≤ c′‖f‖Cm,ν , (3.3.25)

where the constants c and c′ are independent of f ; in particular, we can

treat f̃ as a Cm(R)-smooth 1-periodic function, i.e., f̃ ∈ C̃m(R).

3.4 An approximate method for the periodized

problem

In Section 3.3 we obtained an 1-periodic problem (3.3.11) with m ∈ N, f̃ ∈
C̃m(R), ã, b̃ ∈ C̃2m(R× R), and g̃ ∈ C̃2m(R \ Z) satisfying (3.3.3) and

(3.3.4). Following [61], in the present section we introduce an approxima-

tion method for the numerical solution of the periodized problem (3.3.11).

For n ∈ N, let n′ ∈ N be such that

n′ ≥ 2n, n′ ∼ nτ , 2m/(m+ 1− ν) < τ < 2. (3.4.1)

where n′ ∼ nτ means that n′/nτ → 1 as n→∞.
We approximate equation (3.3.12) (equation (3.3.11)) by the equation

ũn,n′ = T̃n,n′ ũn,n′ + Pn′ f̃ , (3.4.2)

where Pn′ f̃ is an approximation for the free term f̃ in equation (3.3.12)

(see (3.3.13)) and

T̃n,n′ = Q2n(Ã2n + B̃2n)Pn +Qn′Ã
(m)
n (I − Pn) (3.4.3)

is an approximation for the integral operator T̃ = Ã+B̃ of equation (3.3.11)

(see (3.3.14) and (3.3.15)). Here Pn and Qn are respectively the orthogonal
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and interpolation projection operators introduced in Section 2.6.3,

(Ãnv)(t) =

∫ 1

0
g̃(t− s)Qn;s

(
ã(t, s)v(s)

)
ds,

(B̃nv)(t) =

∫ 1

0
Qn;s

(
b̃(t, s)v(s)

)
ds

(s in the index of Qn;s refers that Qn is applied w.r.t. the argument s),

Ã(m)
n =

m−1∑
j=0

Mαj ,nGj ,

(Gjv)(t) =

∫ 1

0
g̃j(t− s)v(s)ds, g̃j(t) = (e−i2πt − 1)j g̃(t),

(Mαj ,nv)(t) = αj,n(t)v(t), αj,n(i/n) =
1

j!
Lj,nã(i/n, s) |s=i/n,

where i = 0, . . . , n and Lj,n (j ≥ 1) is some difference approximation on the

grid i/n (i ∈ Z) of the differential operator

Lj =

j−1∏
l=0

((2πi)−1 ∂

∂s
− lI)

of the accuracy

| (Ljv)(s)− (Lj,nv)(s) |≤ cn−2m+j ‖ v(2m) ‖∞, s ∈ R;

for j = 0 we put L0 = L0,n = I.

The matrix form of Ã
(m)
n needs also the values αj,n(j/n′), j = 0, . . . , n′−

1, which we approximate via interpolation of αj,n(i/n), i = 0, . . . , n, by

splines of degree 2m. See [52, 63, 75] for more detailed comments on the

listed operators.

Lemma 3.4.1. Assume (A2) (which implies that ã, b̃ ∈ C̃2m(R× R)). Let

n, n′ ∈ N, and let n′ ∼ nτ , τ > 1. Then for 1/(1− ν) < p <∞,

‖ T̃ (I − Pn′) ‖L̃p→C̃≤ cpn
−τ(1−ν−1/p); (3.4.4)

for 1/(1− ν) < p ≤ ∞, 0 < λ < 1− ν − p−1,

‖ T̃ − T̃n,n′ ‖L̃p→C̃≤ cp,λ(n−m + n−τλ) log n; (3.4.5)
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for 1/(1− ν) < p <∞, 0 < λ < 1− ν − p−1, v ∈ W̃m,p(R),

‖ T̃ v − T̃n,n′v ‖p≤ cp,λ(n−2m + n−τ(m+λ)(log n)) ‖ v ‖Wm,p , (3.4.6)

‖ T̃ v − T̃n,n′v ‖∞≤ cp,λ(n−2m + n−τ(m+λ))(log n) ‖ v ‖Wm,p , (3.4.7)

and, strengthening (A2) to the assumption (A2′),

‖ T̃ v− T̃n,n′v ‖∞≤ cp,λ(n−2m−min{µ, 1−ν−1/p}+n−τ(m+λ))(log n) ‖ v ‖Wm,p .

(3.4.8)

Proof. Let 1/(1− ν) < p <∞. Since I − Pn as an orthogonal projector in

L2(0, 1) is self-adjoint, it holds for t ∈ [0, 1] that

(Ã(I − Pn)v)(t) =

∫ 1

0
ã(t, s)g̃(t− s)((I − Pn)v)(s)ds

=

∫ 1

0
(I − Pn;s)

(
ã(t, s)g̃(t− s)

)
v(s)ds,

| (Ã(I − Pn)v)(t) | ≤ ‖ (I − Pn)
(
ã(t, ·)g̃(t− ·)

)
‖q ‖ v ‖p, p−1 + q−1 = 1.

Using (3.3.3) for j = 0 and j = 1, it is easy to check that for | σ |≤ δ

(∫ 1

0
| ã(t, s+ σ)g̃(t− s− σ)− ã(t, s)g̃(t− s) |q ds

)1/q

≤ c | σ |1−ν−1/p .

(3.4.9)

By Nikolski’s inequality (formulated in [52] as Lemma 2.2), estimate (3.4.9)

implies that

‖ (I − Pn)
(
ã(t, ·)g̃(t− ·)

)
‖q≤ cn−(1−ν−1/p), t ∈ [0, 1],

‖ T̃ (I − Pn) ‖
L̃p→C̃≤ cpn

−(1−ν−1/p),

which for n′ ∼ nτ yields (3.4.4). Estimates (3.4.5)–(3.4.8) are established

in Lemma 3.5 of [52]; in the estimate (3.4.5) we corrected a misprint of

[52].
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Theorem 3.4.1. Assume (A1)− (A3). Moreover, assume that the smooth-

ing parameter r in (3.3.6) satisfies (3.3.20) and the dimension parameter

n′ satisfies (3.4.1).

Then equations (3.1.1) and (3.3.11) have unique solutions u ∈ Cm,ν(0, 1)

and ũ ∈ C̃m(R), respectively. These solutions are connected by the relation

ũ(t) = ϕ′(t)(1−ν)/2u(ϕ(t)); for sufficiently large n, say n ≥ n0, equation

(3.4.2) has a unique solution ũn,n′ ∈ Tn′, and

‖ ũ− ũn,n′ ‖∞≤ cn−τm(log n) ‖ f̃ ‖Cm , (3.4.10)

‖ ũ− ũn,n′ ‖p≤ c′n−τm ‖ f̃ ‖Wm,p , 1/(1− ν) < p <∞, (3.4.11)

with some positive constants c and c′ which are independent of n and f̃ .

Proof. With the help of Theorem 2.1.1 we get that, for 1/(1− ν) < p ≤ ∞,

the operator T̃ : L̃p → C̃(R) is compact, and since by the assumption (A3),

the nullspace of I−T is trivial in C[0, 1] implying that the null space of I−T̃
is trivial in C̃(R), the bounded inverse (I − T̃ )−1 : L̃p → L̃p exists. Hence

equation (3.3.11) and with it also (3.1.1) are uniquely solvable. Further,

due to (3.4.5),

‖ T̃ − T̃n,n′ ‖L̃p→L̃p→ 0 as n→∞ for 1/(1− ν) < p ≤ ∞,

hence, due to Theorem 2.2.4, for sufficiently large n, say n ≥ n0, also

(I − T̃n,n′)−1 : L̃p → L̃p exists and is uniformly bounded in n:

‖ (I − T̃n,n′)−1 ‖
L̃p→L̃p≤ cp, n ≥ n0, 1/(1− ν) < p ≤ ∞. (3.4.12)

Thus equation (3.4.2) is uniquely solvable for n ≥ n0.

Clearly,

(I − T̃n,n′)(ũ− ũn,n′) = f̃ − Pn′ f̃ + (T̃ − T̃n,n′)ũ.

Therefore,

ũ− ũn,n′ = (I − T̃n,n′)−1
(
f̃ − Pn′ f̃ + (T̃ − T̃n,n′)ũ)

)
, n ≥ n0. (3.4.13)
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Due to (3.4.12),

‖ ũ− ũn,n′ ‖p≤ cp
(
‖ f̃ − Pn′ f̃ ‖p + ‖ (T̃ − T̃n,n′)ũ ‖p

)
with n ≥ n0, 1/(1−ν) < p ≤ ∞. Since f̃ ∈ Cm(R), it follows from (2.6.3.6)

and (2.6.3.7) that

‖ f̃ − Pnf̃ ‖∞≤ cn−m(log n) ‖ f̃ (m) ‖∞,

‖ f̃ − Pnf̃ ‖p≤ cpn−m ‖ f̃ (m) ‖p, 1 < p <∞.

This in view of (3.4.1) yields

‖ f̃ − Pn′ f̃ ‖∞≤ cn−τm(log n) ‖ f̃ ‖Cm ,

‖ f̃ − Pn′ f̃ ‖p≤ cpn−τm ‖ f̃ ‖Wm,p . (3.4.14)

Applying also (3.4.7) and (3.4.6) with any λ ∈ (0, 1− ν − p−1) we arrive at

the estimates (3.4.10) and (3.4.11).

Following the notation of [61], the matrix form of equation (3.4.2) reads

as

un′ = Tn′un′ + F−1
n′
̂̃
fn′ , (3.4.15)

where

un′ =


ũn,n′(0)

ũn,n′(1/n
′)

...
ũn,n′(n

′ − 1)/n′


is the vector of values of ũn,n′ at the points 0, 1

n′ , . . . ,
n′−1
n′ ,

̂̃
fn′ is the vector

of the Fourier coefficients
̂̃
f(k) =

∫ 1
0 f̃(t)e−ik2πtdt (k ∈ Zn′) of the function

f̃ , and

Tn′ = F−1
n′ En′,2nF2n(A2n + B2n)F−1

2n E2n,nPn,n′Fn′ +
m−1∑
j=0

Mn′,jF
−1
n′ Gn′,jFn′

(3.4.16)

is an n′ × n′ matrix. Here Fn′ ,F
−1
n′ and F2n,F

−1
2n are the Fourier transform

matrices of dimensions n′ × n′ and 2n × 2n, respectively, changing the

representation form of trigonometric polynomials (see Section 2.6.2); the
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projection-convolution

Gj(I − Pn) : Tn′ → Tn′ (j = 0, . . . ,m− 1)

is realized by the diagonal n′ × n′ matrix Gn′,j with the diagonal elements

Gn′,j(k, k) = 0 for k ∈ Zn, Gn′,j(k, k) = ̂̃gj(k) for k ∈ Zn′�Zn;

the multiplication operator Mαj ,n (j = 0, . . . ,m − 1) is realized by the

diagonal n′ × n′ matrix Mn′,j with the diagonal elements

Mn′,j(k, k) = αj,n

(
k

n′

)
, k = 0, 1, . . . , n′ − 1;

the projection Pn : Tn′ → Tn is realized by n × n′ matrix Pn,n′ consisting

of the n × n identity matrix completed from left and right by n × n′−n
2

zero matrix; the embedding Tn ⊂ T2n is realized by the 2n × n matrix

E2n,n consisting of the n× n identity matrix complemented by n
2 × n zero

matrix from above and below (for simplicity we assume that n and n′ are

even); the embedding T2n ⊂ Tn′ is realized by the n′ × 2n matrix En′,2n

consisting of the 2n × 2n identity matrix completed by n′−2n
2 × 2n zero

matrix from above and below; finally, A2n = (aj,j′) and B2n = (bj,j′) are

2n× 2n matrices with entries defined by the formulas

aj,j′ =
1

2n
ã

(
j

2n
,
j′

2n

)
σj−j′ , bj,j′ =

1

2n
b̃

(
j

2n
,
j′

2n

)
, j, j′ = 0, . . . , 2n− 1,

σl =
∑
k∈Z2n

eik2πl/(2n)̂̃g(k), l = −2n+ 1, . . . , 2n− 1.

In (3.4.15) and (3.4.16) only the 2n×2n matrix A2n+B2n and the diagonal

n′ × n′ matrices Mn′,j and Gn′,j , j = 0, . . . ,m − 1, and vector
̂̃
fn′ depend

on the data of problem (3.1.1), namely on O(n2) values

ã

(
j

2n
,
j′

2n

)
, b̃

(
j

2n
,
j′

2n

)
, j, j′ = 0, . . . , 2n− 1,

and on the Fourier coefficients ̂̃g(k) (k ∈ Zn′+m−1) of the function g̃ ∈
C̃2m(R \ Z) defined due to (3.3.1), which can be computed in O(n2) arith-

metical operations with a very high accuracy O(n−4m) from the values on
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a suitable graded grid consisting of n2 points; see [52] for details. The ap-

plication of A2n + B2n to an 2n-vector costs 4n2, the application of FFT

transformation matrices Fn′ and F−1
n′ of dimension n′ × n′ to an n′-vector

costs O(n′ log n), and the application of other matrices in Tn′ is cheaper.

Thus the application of Tn′ to a n′-vector costs 4n2 +O(n′ log n) arithmeti-

cal operations. This enables to solve system (3.4.15) in O(n2) arithmetical

operations by the two grid iteration method combined with the GMRES

[47, 63, 71, 76] on the coarse level.

It remains to comment on the computation of the Fourier coefficientŝ̃
f(k), k ∈ Zn′ . In [52], a more complicated approximation of the free term

is used that restricts the computation of Fourier coefficients to k ∈ Zn; this

approximation is not suitable for goals of the present paper. Nevertheless,

the idea of [52] can be used to compute also the Fourier coefficients
̂̃
f(k),

k ∈ Zn′ : in a special way described below, we approximate f̃ by a function

f̃n,n′′ depending on the parameters n and n′′ ∼ nσ, τ < σ < 2 (with τ

from (3.4.1)) so that the Fourier coefficients
̂̃
fn,n′′ of f̃n,n′′ are for k ∈ Zn′

(exactly) computable in O(n2) arithmetical operations and, with a p ∈
(1/(1− ν),∞),

‖ Pn′(f̃ − f̃n,n′′) ‖p≤ cn−2m ‖ f̃ ‖Cm . (3.4.17)

The following remark reveals that this accuracy occurs to be sufficient for

our purposes.

Remark 3.4.1. Let ũn,n′ be the solution of equation (3.4.2), and let ũn,n′,n′′

be the solution of the perturbed equation ũn,n′,n′′ = T̃n,n′ ũn,n′,n′′+Pn′ f̃n,n′′

where f̃n,n′′ satisfies (3.4.17) with a p ∈ (1/(1−ν),∞). Then, for sufficiently

large n,

‖ ũn,n′ − ũn,n′,n′′ ‖p≤ cn−2m ‖ f̃ ‖Cm , (3.4.18)

where the constant c > 0 is independent of n? and f̃ .

Indeed, the estimate (3.4.18) immediately follows from the equality

ũn,n′ − ũn,n′,n′′ = (I − T̃n,n′)−1Pn′(f̃ − f̃n,n′′)

and (3.4.12).

Let us describe how a suitable f̃n,n′′ can be constructed. Using (smooth)

splines of degree m with knots i/n2, i ∈ Z, we construct in O(n2) arithmeti-
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cal operations the interpolant or quasi-interpolant f̃n of f̃ which satisfies

(cf. [72]) with a p ∈ (1/(1− ν),∞) the following inequalities:

‖ Pn′(f̃ − f̃n) ‖p≤ c ‖ f̃ − f̃n ‖∞≤ c′n−2m ‖ f̃ (m) ‖∞,

‖ f̃ (m)
n ‖∞≤ c ‖ f̃ ‖Cm .

Take a number n′′ ∼ nσ , τ < σ < 2 with τ from condition (3.4.1). Starting

from f̃
(0)
n = f̃n, compute the 1-periodic antiderivatives

f̃ (−j)
n (t) =

∫ t

0

(
f̃ (−j+1)
n (s)−

∫ 1

0
f̃ (−j+1)
n (s)ds

)
ds, j = 1, . . . , l,

where l ≥ 2m+ 1
2
τ

σ−τ , and put

f̃n,n′′ =

∫ 1

0
f̃n(z)dz +

(
Qn′′ f̃

(−l)
n

)(l)
.

The values

f̃ (−l)
n (i/n′′), i = 0, . . . , n′′ − 1,

determining the interpolant Qn′′ f̃
(−l)
n , are available at the cost of O(n2)

arithmetical operations. By FFT we can compute the Fourier coefficients

(
̂

Qn′′ f̃
(−l)
n )(k), k ∈ Zn′′ ,

at the cost of O(n′′logn) arithmetical operations. The Fourier coefficients

of Pn′ f̃n,n′′ can be picked from the equality

(Pn′ f̃n,n′′)(x) =

∫ 1

0
f̃n(z)dz +

∑
06=k∈Zn′

(
̂

Qn′′ f̃
(−l)
n )(k)(ik2π)leik2πx.

Repeating the argument of [52] we get the estimate

‖ Pn′(f̃n − f̃n,n′′) ‖∞≤ πl(n′)l+
1
2 ‖ f̃ (−l)

n −Qn′′ f̃ (−l)
n ‖2 .

Since

‖ f̃ (−l)
n −Qn′′ f̃ (−l)

n ‖2≤ c(n′′)−(m+l) ‖ f̃n ‖Wm,2≤ c′n−2m ‖ f̃ ‖Cm
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the estimate (3.4.17) follows:

‖ Pn′(f̃ − f̃n,n′′) ‖p ≤ ‖ Pn′(f̃ − f̃n) ‖p + ‖ Pn′(f̃n − f̃n,n′′) ‖p

≤ cn−2m ‖ f̃ ‖Cm .

Our next step is to compute the approximate solution of equation

(3.3.9) using integral relation (3.3.16) in which we replace ũ, the solution

of (3.3.11), by ũn,n′ , the solution of (3.4.2). Recall that the kernel of inte-

gral operator in (3.3.16) is periodic only w.r.t. argument s, so we cannot

immediately use the techniques of the present section. To make this possi-

ble, we first decompose the kernel extracting from it a periodic part and a

polynomial part. This is done in Section 3.6 after some preliminaries given

in Section 3.5 .

3.5 Extracting periodic and polynomial parts of

a function

Denote by Pi the space of polynomials z of degree not exceeding i+ 1 and

satisfying ∫ 1

0
z(t)dt = 0.

There exist unique polynomials zi ∈ Pi , i = 0, 1, . . . , such that

z
(k)
i (1)− z(k)

i (0) = δi,k (Kronecker symbol), k = 0, 1, 2, . . . (3.5.1)

Indeed, fixing i, (3.5.1) is trivially fulfilled for k ≥ i+ 1, so we have to

determine the coefficients cij , j = 0, . . . , i+ 1, of

zi(t) =
i+1∑
j=0

cijt
j

so that (3.5.1) holds for k = 0, . . . , i and
∫ 1

0 zi(t)dt = 0. These conditions

yield an i + 2 dimensional triangular system of algebraic equations with

respect to the coefficients cij , j = 0, 1, . . . , i + 1, with nonzeroes on the

main diagonal uniquely determining cij , j = 0, . . . , i+ 1.
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Namely, the requirement
∫ 1

0 zi(t)dt = 0 yields that

ci0 +
1

2
ci1 +

1

3
ci2 + · · ·+ 1

i+ 2
ci,i+1 = 0,

and the conditions (3.5.1) for k = 0, . . . , i are equivalent to the equations

ci1 + ci2 + · · ·+ ci,i+1 = 0,

2ci2 + · · ·+ (i+ 1)ci,i+1 = 0,

...
. . .

...

(i+ 1)! ci,i+1 = 1.

In particular, for i = 0 we have c00 + 1
2c01 = 0, c01 = 1, implying c01 = 1

and c00 = −1
2 and hence z0(t) = t− 1

2 .

Note also that having zi in hand and knowing that zi+1 exists and is

unique, it is easy to check that

zi+1(t) =

∫ t

0
zi(s)ds+

∫ 1

0
szi(s)ds, i = 0, 1, . . .

Thus, the first three polynomials zi ∈ Pi (i = 0, 1, 2) satisfying
∫ 1

0 zi(t) =

0 and (3.5.1) are as follows:

z0(t) = t− 1

2
,

z1(t) =
1

2
t2 − 1

2
t+

1

12
,

z2(t) =
1

6
t3 − 1

4
t2 +

1

12
t.

Further, denote by C̃m[0, 1] the subspace of functions w̃ ∈ Cm[0, 1]

satisfying the periodic boundary conditions

w̃(i)(1)− w̃(i)(0) = 0, i = 0, . . . ,m.

This yields that every function w ∈ Cm[0, 1] has the representation

w = w̃ + wm, (3.5.2)
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with

wm =

m∑
i=0

[w(i)(1)− w(i)(0)]zi ∈ Pm, w̃ = w − wm ∈ C̃m[0, 1].

Since an 1-periodic extension of a function w̃ ∈ C̃m[0, 1] is Cm(R)-smooth,

we can identify C̃m[0, 1] with C̃m(R).

3.6 An approximate method for equation (3.3.9)

Using polynomials zi ∈ Pi of degree not exceeding i + 1 and satisfying

(3.5.1) and
∫ 1

0 zi(t)dt = 0, we apply decomposition (3.5.2) for a?(t, s) and

b?(t, s) (see (3.3.17) and (3.3.18)) as functions of t:

a?(t, s) = ã?(t, s) +

2m∑
i=0

zi(t)ãi(s), (3.6.1)

where

ãi(s) =

(
∂

∂t

)i
a?(t, s)

∣∣∣
t=1
−
(
∂

∂t

)i
a?(t, s)

∣∣∣
t=0

and

b?(t, s) = b̃?(t, s) +

2m∑
i=0

zi(t)̃bi(s), (3.6.2)

where

b̃i(s) =

(
∂

∂t

)i
b?(t, s)

∣∣∣
t=1
−
(
∂

∂t

)i
b?(t, s)

∣∣∣
t=0

.

In accordance to (3.5.2), the functions ã?(t, s) and b̃?(t, s) are 1-periodic in

t. Using (3.3.17) we get

ãi(s) =
[
a(1, ϕ(s))

(
∂

∂t

)i
Φ(t, s)−ν

∣∣∣
t=1

− a(0, ϕ(s))

(
∂

∂t

)i
Φ(t, s)−ν

∣∣∣
t=0

]
ϕ′(s)(1+ν)/2, i = 0, . . . , 2m.
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Due to (3.3.20) it holds ϕ(j)(0) = ϕ(j)(1) = 0 for j = 1, . . . , 2m+1 implying

ã
(j)
i (0) = ã

(j)
i (1) = 0 for j = 0, . . . , 2m.

After 1-periodic extension, we have ãi ∈ C̃2m(R), i = 0, . . . , 2m. In a similar

way we obtain that b̃i ∈ C̃2m(R), i = 0, . . . , 2m. Hence ã?, b̃? ∈ C̃2m(R× R)

(remember that a?(t, s) and b?(t, s) are 1-periodic in s).

Denoting by

T? = A? +B?

the integral operator in (3.3.16), with A? and B? determined by

(A?v)(t) =

∫ 1

0
a?(t, s)g̃(t− s)v(s)ds, (B?v)(t) =

∫ 1

0
b?(t, s)v(s)ds,

we obtain the decomposition

T? = Ã? + B̃? +

2m∑
i=0

Mzi(Ãi + B̃i) (3.6.3)

where

(Ã?v)(t) =

∫ 1

0
ã?(t, s)g̃(t− s)v(s)ds, (B̃?v)(t) =

∫ 1

0
b̃?(t, s)v(s)ds,

(Ãiv)(t) =

∫ 1

0
g̃(t− s)ãi(s)v(s)ds, (B̃iv)(t) =

∫ 1

0
b̃i(s)v(s)ds. (3.6.4)

Clearly, Ã?, B̃?, Ãi, B̃i (i = 0, . . . , 2m) are periodic integral operators with

biperiodic kernels, and the only nonperiodic operators in the decomposition

(3.6.3) are Mzi :

(Mziv)(t) = zi(t)v(t), i = 0, . . . , 2m,

realizing the multiplication with the polynomials zi. We approximate the

periodic integral operator

Ã? + B̃?

in (3.6.3) in analogy to (3.4.3) by the operator

Q2n(Ã?,2n + B̃?,2n)Pn +Qn′Ã
(m)
?,n (I − Pn).
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Also Ãi + B̃i in (3.6.3) could be approximated similarly as in (3.4.3) but

since the coefficient functions ãi(s) and b̃i(s) in (3.6.4) are independent of

t, more simple approximations are available: we introduce for

Ãi + B̃i (i = 0, . . . , 2m)

the approximation

(Ãi,n′ + B̃i,n′)P[n′/2]

where [n′/2] is the integer part of n′/2 and

(Ãi,n′v)(t) =

∫ 1

0
g̃(t− s)Qn′

(
ãi(s)v(s)

)
ds, B̃i,n′v =

∫ 1

0
Qn′

(
b̃i(s)v(s)

)
ds

Thus we approximate T? (see (3.6.3)) by

T?,n,n′ = Q2n(Ã?,2n + B̃?,2n)Pn + Qn′Ã
(m)
?,n (I − Pn)

+
2m∑
i=0

Mzi(Ãi,n′ + B̃i,n′)P[n′/2].

(3.6.5)

Given the sample values v(i/n′), i = 0, . . . , n′ − 1, of a function v ∈ Tn′ ,

the computation of

(T?,n,n′v)(i/n′), i = 0, . . . , n′ − 1,

costs O(n2) arithmetical operations (including the assembling of the matrix

form of the operator), cf. Section 3.4 .

The following lemma reveals that for the operators T? and T?,n,n′ , sim-

ilar estimates as in Lemma 3.4.1 hold true.

Lemma 3.6.1. Assume (A2), and let n′ ∼ nτ , τ > 1. Then for 1/(1−ν) <

p <∞,

‖ T?(I − Pn′) ‖L̃p→C≤ cn
−τ(1−ν−1/p); (3.6.6)

for 1/(1− ν) < p ≤ ∞, 0 < λ < 1− ν − p−1,

‖ T? − T?,n.n′ ‖L̃p→C≤ cp,λ(n−m + n−τλ) log n; (3.6.7)
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for 1/(1− ν) < p <∞, 0 < λ < 1− ν − p−1, v ∈ W̃m,p(R),

‖ T?v − T?,n.n′v ‖p≤ cp,λ(n−2m + n−τ(m+λ)(log n)) ‖ v ‖Wm,p , (3.6.8)

‖ T?v − T?,n.n′v ‖∞≤ cp,λ(n−2m + n−τ(m+λ))(log n) ‖ v ‖Wm,p , (3.6.9)

and, strengthening (A2) to the assumption (A2′),

‖ T?v − T?,n.n′v ‖∞ ≤ cp,λ(n−2m−min{µ, 1−ν−1/p}

+ n−τ(m+λ))(log n) ‖ v ‖Wm,p . (3.6.10)

Proof. By Lemma 3.4.1 the counterparts of the estimates (3.6.6)–(3.6.10)

hold for A? +B? and its approximation

Q2n(Ã?,2n + B̃?,2n)Pn +Qn′Ã
(m)
?,n (I − Pn),

and the counterpart of (3.6.6) holds also for Ãi + B̃i. So we only have to

check that the counterparts of estimates (3.6.7)–(3.6.10) hold for Ãi + B̃i

and their approximation

(Ãi,n′ + B̃i,n′)P[n′/2] , i = 0, . . . , 2m.

Split

Ãi − Ãi,n′P[n′/2] = Ãi(I − P[n′/2]) + (Ãi − Ãi,n′)P[n′/2]. (3.6.11)

Consider the first addend in the r.h.s. of (3.6.11). Let p and λ satisfy

the conditions

1/(1− ν) < p <∞, 0 < λ < 1− ν − p−1.

By (3.4.4), we obtain in support of (3.6.7)

‖ Ãi(I − P[n′/2]) ‖L̃p→C≤ cn
−τ(1−ν−1/p),

that is we can write

‖ Ãi(I − P[n′/2]) ‖L̃p→C= o(n−τλ);
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for p =∞, according to [52] we again obtain

‖ Ãi(I − P[n′/2]) ‖L̃∞→C≤ cn
−τ(1−ν) log n

allowing to write

‖ Ãi(I − P[n′/2]) ‖L̃∞→C= o(n−τλ).

For v ∈ W̃m,p(R), due to (3.4.14) we obtain in support of (3.6.8)–

(3.6.10)

‖ Ãi(I − P[n′/2])v ‖∞≤ c ‖ Ãi(I − P[n′/2]) ‖L̃p→C‖ (I − P[n′/2])v ‖p

≤ c′n−τ(1−ν−1/p)n−τm ‖ v ‖Wm,p ,

and thus,

‖ Ãi(I − P[n′/2])v ‖∞= o(n−τ(m+λ) ‖ v ‖Wm,p , i = 0, . . . , 2m.

Consider the second addend in the r.h.s of (3.6.11). We have with any

w ∈ T[n′/2] and t ∈ [0, 1] that

((Ãi−Ãi,n′)P[n′/2]v)(t) =

∫ 1

0
g̃(t−s)(I−Qn′)

(
(ãi(s)−w(s))(P[n′/2]v)(s)

)
ds,

which together with 1
p + 1

q = 1 yields

‖ (Ãi − Ãi,n′)P[n′/2]v ‖∞ ≤ ‖ g̃ ‖q‖ (I −Qn′)(ãi − w)P[n′/2]v ‖p
≤ c ‖ ãi − w ‖∞‖ P[n′/2]v ‖∞, (3.6.12)

where i = 0, . . . , 2m. This supports estimates (3.6.6)–(3.6.10) since

‖ P[n′/2]v ‖∞≤ n ‖ v ‖1, ‖ P[n′/2]v ‖∞≤ cp ‖ v ‖Wm,p ,

and for ãi ∈ C̃2m(R), there exists a w ∈ T[n′/2] such that

‖ ãi − w ‖∞≤ cn−2τm, i = 0, . . . , 2m.
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In the equality ū = T?ũ + f̄ which is a short writing of the integral

relation (3.3.16), we approximate the solution ũ of (3.3.11) by the solution

ũn,n′ of (3.4.2), and we approximate the integral operator (3.6.3) by (3.6.5),

obtaining

ūn,n′ := T?,n.n′ ũn,n′ + f̄ (3.6.13)

which we treat as an approximate solution of equation (3.3.9). The approx-

imation ūn,n′ is not discrete. Its discrete counterpart will be introduced and

discussed in Section 7.

Theorem 3.6.1. Assume the conditions of Theorem 3.4.1. Then

‖ ū− ūn,n′ ‖∞≤ cn−2m(log n) ‖ f̃ ‖Cm , (3.6.14)

‖ ū− ūn,n′ ‖p≤ cpn−2m ‖ f̃ ‖Cm , 1 ≤ p <∞, (3.6.15)

where ū(t) = u(ϕ(t)) is the solution of equation (3.3.9), u is the solution

of equation (3.1.1), and ūn,n′ is defined by (3.6.13) in which ũn,n′ is the

solution of equation (3.4.2). If a and b satisfy (A2′) then

‖ ū− ūn,n′ ‖∞= o(n−2m) ‖ f̃ ‖Cm , (3.6.16)

i.e. ‖ ū− ūn,n′ ‖∞ n2m → 0 as n→∞.

Proof. Since

ū− ūn,n′ = T?ũ− T?,n.n′ ũn,n′

= T?(ũ− ũn,n′) + (T?,n.n′ − T?)(ũ− ũn,n′) + (T?ũ− T?,n.n′ ũ),

we have

‖ ū− ūn,n′ ‖∞≤‖ T?(ũ− ũn,n′) ‖∞ + ‖ T? − T?,n.n′ ‖L̃p→C‖ ũ− ũn,n′ ‖p
+ ‖ T?ũ− T?,n.n′ ũ ‖∞ . (3.6.17)

Due to (3.4.1), (1 + τ)m > 2m; taking p < ∞ sufficiently large and λ > 0

sufficiently close to 1− ν− p−1, we have τ(m+λ) > 2m, and the estimates

(3.6.7), (3.4.11) imply for 1/(1− ν) < p <∞ that

‖ T? − T?,n.n′ ‖L̃p→C‖ ũ− ũn,n′ ‖p

≤ c(n−m + n−τλ)n−τm(log n)2 ‖ f̃ ‖Wm,p ,
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which allows to write

‖ T? − T?,n.n′ ‖L̃p→C‖ ũ− ũn,n′ ‖p= o(n−2m) ‖ f̃ ‖Wm,p , (3.6.18)

whereas (3.6.8)–(3.6.10) yield

‖ T?ũ− T?,n.n′ ũ ‖p≤ cpn−2m ‖ f̃ ‖Wm,p , 1/(1− ν) < p <∞, (3.6.19)

‖ T?ũ− T?,n.n′ ũ ‖∞≤ cn−2m(log n) ‖ f̃ ‖Wm,p ,

and in the case of (A2′),

‖ T?ũ− T?,n.n′ ũ ‖∞= o(n−2m) ‖ f̃ ‖Wm,p . (3.6.20)

Below we show that

‖ T?(ũ− ũn,n′) ‖∞≤ cn−2m ‖ f̃ ‖Cm if a, b ∈ C2m([0, 1]× [0, 1]),

(3.6.21)

‖ T?(ũ− ũn,n′) ‖∞= o(n−2m) ‖ f̃ ‖Cm if a, b ∈ H2m,µ([0, 1]× [0, 1]).

(3.6.22)

Now the estimates (3.6.14)–(3.6.16) immediately follow from (3.6.17)–(3.6.21);

actually, we obtain (3.6.15) only for 1/(1− ν) < p <∞; to obtain (3.6.15)

for smaller p ∈ [1, 1/(1− ν)] we exploit the monotonicity in p of the norm

‖ · ‖p .

It remains to prove (3.6.21) and (3.6.22). Applying to both sides of

equality (3.4.13) the operator T? and using the equality

(I − T̃n,n′)−1 = I + (I − T̃n,n′)−1T̃n,n′ ,

we obtain

T?(ũ− ũn,n′) = T?(f̃ − Pn′ f̃) + T?(T̃ − T̃n,n′)ũ

+ T?(I − T̃n,n′)−1
(
T̃n,n′(f̃ − Pn′ f̃) + T̃n,n′(T̃ − T̃n,n′)ũ

)
(3.6.23)
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and

‖ T?(ũ− ũn,n′) ‖∞≤‖ T?(f̃ − Pn′ f̃) ‖∞ + c1 ‖ T̃n,n′(f̃ − Pn′ f̃) ‖∞
+ c2 ‖ (T̃ − T̃n,n′)ũ ‖p,

(3.6.24)

where we took into account (3.4.12), the boundedness of T? : L̃p → C, and

the uniform boundedness of operators T̃n,n′ : L̃p → C̃, n ∈ N (see (3.4.5)).

Using the equality I−Pn′ = (I−Pn′)2, (3.6.6) and (3.4.14) , we estimate

‖ T?(f̃ − Pn′ f̃) ‖∞ ≤ ‖ T?(I − Pn′) ‖L̃p→C‖ f̃ − Pn′ f̃) ‖p
≤ cn−τ(1−ν−1/p) · n−τm ‖ f̃ ‖Wm,p , (3.6.25)

that is,

‖ T?(f̃ − Pn′ f̃) ‖∞≤ cn−τ(m+1−ν−1/p) ‖ f̃ ‖Wm,p . (3.6.26)

According to (3.4.1),

τ(m+ 1− ν) > 2m.

Then for sufficiently large p also

τ(m+ 1− ν − 1/p) > 2m.

This together with (3.6.26) yields

‖ T?(f̃ − Pn′ f̃) ‖∞= o(n−2m) ‖ f̃ ‖Cm . (3.6.27)

With the help of (3.6.7) and (3.4.14) we get similarly as in (3.6.18), (3.6.27)

that

‖ T̃n,n′(f̃ − Pn′ f̃) ‖∞
= ‖ T̃n,n′ f̃ − T̃n,n′Pn′ f̃ + T̃ f̃ − T̃ f̃ − T̃Pn′ f̃ + T̃Pn′ f̃ ‖∞
≤‖ T̃n,n′ − T̃ ‖L̃p→C‖ f̃ − Pn′ f̃ ‖p + ‖ T̃ (f̃ − Pn′ f̃) ‖∞,

and thus

‖ T̃n,n′(f̃ − Pn′ f̃) ‖∞= o(n−2m) ‖ f̃ ‖Cm . (3.6.28)
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Similarly to (3.6.19), (3.6.20) we have

‖ T̃ ũ− T̃n.n′ ũ ‖p≤ cpn−2m ‖ f̃ ‖Wm,p , 1/(1− ν) < p <∞,

‖ T̃ ũ− T̃n.n′ ũ ‖∞= o(n−2m) ‖ f̃ ‖Cm if a, b ∈ H2m,µ([0, 1]× [0, 1]).

(3.6.29)

Plugging (3.6.27)–(3.6.29) into (3.6.24) we obtain (3.6.21) and (3.6.22).

Remark 3.6.1. Consider the case where we use some approximation f̃n,n′′

of f̃ to compute the Fourier coefficients of f̃ as in Remark 3.4.1 so that

(3.4.17) and hence also (3.4.18) hold true. Then instead of (3.6.13) we

obtain the approximation

ūn,n′,n′′ = T?,n.n′ ũn,n′,n′′ + f̄ .

Following the proof scheme of Theorem 3.6.1 we can see that, under

conditions of Theorem 3.4.1.

‖ ūn,n′ − ūn,n′,n′′ ‖∞≤ cn−2m ‖ f̃ ‖Cm

and

‖ ūn,n′ − ūn,n′,n′′ ‖∞≤ cn−2m ‖ f̃ ‖Cm if a, b satisty (A2′).

Hence estimates (3.6.14)–(3.6.16) remain to be valid also for ūn,n′,n′′ .

Remark 3.6.2. The operator T̃ has the property (compare (3.2) in [52])

that for 1
1−ν < p ≤ ∞, 0 < λ < 1− ν − 1

p ,

T̃ : W̃m,p(R)→ H̃m,λ(R) is bounded;

moreover, for those p and λ, it can be proved by the techniques of [52] that

in a qualified manner

‖ T̃ − T̃n,n′ ‖W̃m,p(R)→H̃m,λ(R)
→ 0 as n→∞.

The definitions (3.6.3) and (3.6.5) of T? and T?,n,n′ enable to extend

these relations: for 1
1−ν < p ≤ ∞, 0 < λ < 1− ν − 1

p ,

T? : W̃m,p(R)→ Hm,λ[0, 1] is bounded,
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‖ T? − T?,n,n′ ‖W̃m,p(R)→Hm,λ→ 0 as n→∞.

From here we conclude for the solution ũn,n′ of equation (3.4.2) that

‖ ũn,n′ ‖Wm,p≤ cp ‖ Pnf̃ ‖Wm,p≤ c′p ‖ f̃ ‖Wm,p ,
1

1− ν
< p <∞, (3.6.30)

‖ T?,n,n′ ũn,n′ ‖Hm,λ≤ cp,λ ‖ f̃ ‖Wm,p ,
1

1− ν
< p <∞, 0 < λ < 1− ν − 1

p
.

(3.6.31)

Deriving (3.6.30) we exploited the fact that ‖ Pn ‖W̃m,p(R)→W̃m,p(R)
≤ cp for

n ∈ N, 1 < p <∞.

Inequality (3.6.31) will be helpful in Section 3.7. It is valid also if we

replace ũn,n′ by ũn,n′,n′′ assuming the conditions of Remark 3.4.1.

3.7 Fast and quasi-fast solvers for equation (3.1.1)

According to Section 3.4, the sample values ũn,n′(i/n
′), i = 0, . . . , n′ − 1,

of the solution ũn,n′ ∈ Tn′ to (3.4.2) are available at the cost of O(n2)

arithmetical operations. After that also the values (T?,n,n′ ũn,n′)(i/n
′), i =

0, . . . , n′, of T?,n,n′ ũn,n′ can be computed in O(n2) arithmetical operations,

and we can use the local (algebraic) polynomial interpolation to approx-

imate T?,n,n′ ũn,n′ between the grid points i/n′, i = 0, . . . , n′. Define the

polynomially interpolated version v̄n,n′(t) of ūn,n′ = T?,n,n′ ũn,n′ + f̄ (see

(3.6.13) and Section 2.5) as

v̄n,n′ = Πn′,m+1T?,n,n′ ũn,n′ + Πn2,mf̄ (3.7.1)

where Πn′,m+1 is an operator of local interpolation of functions given on the

grid {i/n′ : i = 0, . . . , n′} by polynomials of degree m (or of order m + 1)

and Πn2,m is an operator of local interpolation by polynomials of degree

m − 1 from the grid values on the net
{
i/n2 : i = 0, . . . , n2

}
. Thus, the

unknown parameters (T?,n,n′ ũn,n′)(i/n
′), i = 0, . . . , n′, of v̄n,n′ are available

at the cost of O(n2) arithmetical operations, and having them in hand,

the value of v̄n,n′ at any point t ∈ [0, 1] is available at the cost of O(1)

arithmetical operations.
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We could define the approximate solution of equation (3.1.1) by the

formula

vn,n′(x) = v̄n,n′(ϕ
−1(x)), 0 ≤ x ≤ 1, (3.7.2)

with ϕ−1, the inverse of ϕ (see (2.4.1)), but since we cannot present a closed

formula for ϕ−1(x) we first approximate it by a suitable local interpolation.

Let us precompute xi,n = ϕ(i/n) for i = 0, . . . , n (this costs altogether only

O(n) arithmetical operations) and use them to approximate t = ϕ−1(x)

for any given x ∈ [0, 1] via a local interpolation by polynomials of degree

2m−1. Note that ϕ−1 ∈ C2m,1/r(0, 1) where r is the (smoothing) parameter

in the definition of ϕ (actually ϕ−1 ∈ C l,1/r(0, 1) for any l ∈ N), and

{xi,n : i = 0, . . . , n} is a suitable graded grid for the interpolation of such

functions – denoting by ψn the interpolation approximation of ψ = ϕ−1 ,

we have

|ϕ−1(x)− ψn(x)|≤ cn−2m ‖ ϕ−1 ‖C2m,1/r , 0 ≤ x ≤ 1, (3.7.3)

see, e.g., [74]. Instead of (3.7.2), we define the final approximation to the

solution of equation (3.1.1) via the formula

un,n′(x) = v̄n,n′(ψn(x)), 0 ≤ x ≤ 1. (3.7.4)

The grid values

(T?,n,n′ ũn,n′)(i/n
′) (i = 0, . . . , n′)

and

f̄(i/n2) = f(ϕ(i/n2)) (i = 0, . . . , n2)

can be considered as the parameters of the approximate solution (3.7.4).

The grid values of f belong to a given information whereas the grid values

of T?,n,n′ ũn,n′ are available at the cost of O(n2) arithmetical operations

using n? = O(n2) sample values of a and b and the n2 + 1 sample values

of f just listed. To see that with (3.7.4) we have designed a fast/quasi-fast

solver of equation (3.1.1), it remains to establish for un,n′ the estimates of

type (3.2.1)/(3.2.2). Estimates (3.7.5)–(3.7.7) (see Theorem 3.7.1 below)

mean that under condition a, b ∈ C2m([0, 1]× [0, 1]) approximation (3.7.4)

defines a (C,Cm,ν) quasi-fast solver of equation (3.1.1) which is (Lp, Cm,ν)

fast for 1 ≤ p < ∞ and, moreover, this solver is even (C,Cm,ν) fast if the

mth derivatives of a, b are Hoelder continuous.
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Theorem 3.7.1. Assume (A1)− (A3). Moreover, assume that the smooth-

ing parameter r in (3.3.6) satisfies (3.3.20) and the dimension parameter

n′ satisfies (3.4.1).

Then we have for all sufficiently large n ∈ N that

‖ u− un,n′ ‖∞≤ cn−2m(log n) ‖ f ‖Cm,ν , (3.7.5)

‖ u− un,n′ ‖p≤ cpn−2m ‖ f ‖Cm,ν , 1 ≤ p <∞, (3.7.6)

where u is the solution of (3.1.1) and un,n′ is defined by {(3.7.1), (3.7.4)}
with the solution ũn,n′ of equation (3.4.2). The full computation cost of

un,n′ is O(n2) flops. So we have constructed a (C,Cm,ν) quasi-fast solver

of equation (3.1.1); this solver is (Lp, Cm,ν) fast for 1 ≤ p <∞. Moreover

under the condition (A2′) this solver is (C,Cm,ν) fast:

‖ u− un,n′ ‖∞≤ cn−2m ‖ f ‖Cm,ν . (3.7.7)

Proof. Let the conditions of Theorem 3.7.1 be fulfilled. With x = ϕ(t),

0 ≤ t ≤ 1, we have for u, the solution of equation (3.1.1), and for its

approximation un,n′ , defined by (3.7.1) and (3.7.4), that

u(x)− un,n′(x) = u(ϕ(t))− v̄n,n′(ψn(x)) =

=
[
ū(t)− ūn,n′(t)

]
+
[
ūn,n′(t)− v̄n,n′(t)

]
+
[
v̄n,n′(ϕ

−1(x))− v̄n,n′(ψn(x))
]
.

We obtain the claims (3.7.5)–(3.7.7) estimating ū−ūn,n′ by (3.6.14)–(3.6.16),

respectively, and noticing that in accordance to (3.7.1), (3.7.3) and (3.6.31)

max
0≤x≤1

| v̄n,n′(ϕ−1(x))− v̄n,n′(ψn(x)) |≤ sup
0≤t≤1

| v̄′n,n′(t) |‖ ϕ−1 − ψn ‖∞

≤ c(‖ T?,n,n′ ũn,n′ ‖C1 + ‖ f̄ ‖C1)n−2m ≤ c′n−2m ‖ f ‖Cm,ν ,

and that in accordance to (3.3.25), (3.6.13), (3.6.31), (3.7.1) and Theorem

2.5.1, with sufficiently large p <∞ and λ close to 1− ν,

‖ ūn,n′ − v̄n,n′ ‖∞ ≤ ‖ (I −Πn2,m)f̄ ‖∞ + ‖ (I −Πn′,m+1)T?,n,n′ ũn,n′ ‖∞
≤ c(n2)−m ‖ f̄ (m) ‖∞ +c(n′)−(m+λ) ‖ T?,n,n′ ũn,n′ ‖Hm,λ

≤ c′n−2m ‖ f ‖Cm,ν .
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Introducing a more dense basic interpolation set rather than

{xi,n : i = 0, . . . , n}

exploited above we obtain more accurate approximation of ϕ−1 rather than

(3.7.3). For instance, the node set
{
xi,n = ϕ(i/n2) : i = 0, . . . , n2

}
is still

computable in O(n2) arithmetical operations and leads to the estimate (cf.

(3.7.3))

‖ ϕ−1 − ψn ‖∞≤ cn−4m ‖ ϕ−1 ‖C2m,1/r .

In the following remark we assume quite moderate strengthening of

(3.7.3).

Remark 3.7.1. Assume (A2′) and let ‖ ϕ−1−ψn ‖∞= o(n−2m). Then (cf.

(3.7.7))

‖ u− un,n′ ‖∞≤ c ‖ (I −Πn2,m)f̄ ‖∞ +o(n−2m) ‖ f ‖Cm,ν .

Thus, the main part of the error u− un,n′ is caused by the interpolation of

f̄ .
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Chapter 4

Modified Fast and

Quasi-Fast Solvers

In this chapter we slightly change the approach used in Chapter 3. Here

we will follow the paper [62].

4.1 A modified approach

In Chapter 3 we saw how to construct fast or at least quasi-fast solvers

for a class of Fredholm integral equations of the second kind with weakly

singular kernels. As a matter of fact, our approached was based on the idea

to reduce equation (3.1.1), that is the equation

u(x) =

∫ 1

0

[
a(x, y)|x− y|−ν+b(x, y)

]
u(y)dy + f(x), x ∈ [0, 1], ν ∈ (0, 1),

(4.1.1)

or, in short,

u = Tu+ f,

to a periodic integral equation (3.3.11), or, in short, to equation

ũ = T̃ ũ+ f̃ , (4.1.2)

with a smooth 1-periodic solution ũ ∈ C̃m(R), and to approximate ũ by an

1-periodic trigonometric polynomial ũn,n′ ∈ Tn′ , the solution of equation
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(see (3.4.2))

ũn,n′ = T̃n,n′ ũn,n′ + Pn′ f̃ . (4.1.3)

Here n ∈ N, and the dimension parameter n′ ∈ N satisfies (3.4.1), that is,

n′ ≥ 2n, n′ ∼ nτ , 2m/(m+ 1− ν) < τ < 2, (4.1.4)

the term Pn′ f̃ is an approximation for the free term f̃ in equation (4.1.2),

the operator T̃n,n′ , defined by the formula (see (3.4.3))

T̃n,n′ = Q2n(Ã2n + B̃2n)Pn +Qn′Ã
(m)
n (I − Pn), (4.1.5)

is an approximation for the integral operator T̃ = Ã+B̃ of equation (4.1.2),

and Pn and Qn are respectively the trigonometric orthogonal and interpo-

lation projection operators introduced in Section 2.6.3.

In the present chapter we shall study a simple modification of this ap-

proach introducing in (4.1.3) instead of the orthogonal projection Pn′ f̃ the

interpolation projection Qn′ f̃ . More precisely, now we shall approximate

the solution ũ of equation (4.1.2) by ũ
(Q)
n,n′ , the solution of equation

ũ
(Q)
n,n′ = T̃n,n′ ũ

(Q)
n,n′ +Qn′ f̃ , (4.1.6)

where T̃n,n′ is the same operator (4.1.5) as in equation (4.1.3). It turns

out that the modified method (4.1.6) has an advantage compared with the

method (4.1.3), since in the present case it will be much easier to compute

the values of the free term in the matrix form of (4.1.6).

Let T be an integral operator of the equation (4.1.1), that is, T is defined

by the formula

(Tu)(x) =

∫ 1

0
[a(x, y)| x− y |−ν + b(x, y)]u(y)dy, 0 ≤ x ≤ 1, 0 < ν < 1.

(4.1.7)

Let

N(I − T ) = {u ∈ C[0, 1] : u = Tu}

be the null-space of the operator I − T. Observe that the assumption (A3)

from Section 3.1 is equivalent to the condition N(I − T ) = {0}.
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4.2 Error estimates for the modified approxima-

tions

Theorem 4.2.1. Assume that f ∈ Cm,ν(0, 1), a, b ∈ C2m([0, 1]×[0, 1]), m ∈
N, ν ∈ (0, 1) and N(I − T ) = {0}. Further, assume that the smoothing pa-

rameter r in the definition of the transformation ϕ (see (3.3.6)) satisfies

(3.3.20), that is,

r − 1 > 4m/(1− ν), (4.2.1)

and the dimension parameter n′ satisfies (4.1.4).

Then equations (4.1.1) and (4.1.2) (equation (3.3.11)) have unique so-

lutions u ∈ Cm,ν(0, 1) and ũ ∈ C̃m(R), respectively. They are connected by

the relation

ũ(t) = ϕ′(t)(1−ν)/2u(ϕ(t)).

For sufficiently large n, say n ≥ n1 ≥ 2, equation (4.1.6) has a unique

solution ũ
(Q)
n,n′ ∈ Tn′, and

‖ ũ− ũ(Q)
n,n′ ‖∞≤ cn

−τm(log n) ‖ f̃ ‖Cm , (4.2.2)

‖ ũ− ũ(Q)
n,n′ ‖p≤ cpn

−τm ‖ f̃ ‖Wm,p , 1/(1− ν) < p <∞, (4.2.3)

with some positive constants c and cp which are independent of n and f̃ .

Proof. From the proof of Theorem 3.4.1 we know that equations (4.1.1)

and (4.1.2) are uniquely solvable. Further, let 1/(1 − ν) < p ≤ ∞. Then

for sufficiently large n, say n ≥ n1, we get that an inverse (I − T̃n,n′)−1 :

L̃p → L̃p exists and is uniformly bounded in n:

‖ (I − T̃n,n′)−1 ‖
L̃p→L̃p≤ cp, n ≥ n1, 1/(1− ν) < p ≤ ∞. (4.2.4)

Thus equation (4.1.6) is uniquely solvable for n ≥ n1. We have for ũ, the

solution of (4.1.2), and ũ
(Q)
n,n′ , the solution of (4.1.6), that

ũ− ũ(Q)
n,n′ = (I − T̃n,n′)−1

(
f̃ −Qn′ f̃ + (T̃ − T̃n,n′)ũ)

)
, n ≥ n1. (4.2.5)

This together with (2.6.3.8), (2.6.3.10), (4.2.4) and Lemma 3.4.1 yields

(4.2.2) and (4.2.3).
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Following Section 3.4, the matrix form of equation (4.1.6) reads as

u
(Q)
n′ = Tn′u

(Q)
n′ +Q

n′
f̃ (4.2.6)

where

u
(Q)
n′ =


ũ

(Q)
n,n′(0)

ũ
(Q)
n,n′(1/n

′)
...

ũ
(Q)
n,n′((n

′ − 1)/n′)


is the vector of the sample values ũ

(Q)
n,n′(j/n

′), j = 0, . . . , n′,

Q
n′
f̃ =


f̃(0)

f̃(1/n′)
...

f̃((n′ − 1)/n′)

 (4.2.7)

is the vector of the sample values f̃(j/n′), j = 0, . . . , n′ − 1 and Tn′ is an

n′ × n′ matrix given by the formula (3.4.16). For more details see Section

3.4.

Remark 4.2.1. The matrix form of equation (4.1.3) is given by the formula

(3.4.15), with the free term F−1
n′
̂̃
fn′ , where

̂̃
fn′ is the vector of Fourier

coefficients ̂̃
f(k) =

∫ 1

0
f̃(t)e−ik2πtdt (k ∈ Zn′)

of the function f̃ . However, it is not easy to see that the Fourier coefficientŝ̃
f(k) (k ∈ Zn′) are computable in O(n2) arithmetical operations. For their

calculation in Section 3.4 a special way is proposed (see the discussion before

and after Remark 3.4.1). This is a serious computational work which is not

needed for Q
n′
f̃ in (4.2.6). Since the values of Q

n′
f̃ are given by the grid

values of f̃ (see (4.2.7)) which are easily available by the sample values of f

(see (3.3.13)), the realization of the method (4.1.6) is essential easier than

the realization of the method (4.1.3).

Remark 4.2.2. We see that the error estimates (4.2.2) and (4.2.3) in

Theorem 4.2.1 hold on the same assumptions as those imposed for the

method (4.1.3) in Theorem 3.4.1 of Chapter 3. It turns out that we can

obtain similar results as those in Theorems 3.6.1 and 3.7.1 also for the

72



method (4.1.6) if we impose a stronger smoothness condition on f. Actually,

below we shall assume that f ∈ Cm+1[0, 1] (instead of f ∈ Cm,ν(0, 1)).

Let us consider the equality

ū = T?ũ+ f̄ , (4.2.8)

which is a short writing of the integral relation (3.3.16), with ũ, the solution

of equation (4.1.2), and T?, given by the formula (3.6.3). Following the

discussion before Theorem 3.6.1 in Chapter 3, we approximate ũ in (4.2.8)

by the solution ũ
(Q)
n,n′ of (4.1.6) and the integral operator T? by the operator

T?,n,n′ , given by (3.6.5), obtaining (compare with (3.6.13))

ū
(Q)
n,n′ = T?,n,n′ ũ

(Q)
n,n′ + f̄ , (4.2.9)

which we treat as an approximate solution of equation (3.3.9).

Theorem 4.2.2. Assume that f ∈ Cm+1[0, 1], a, b ∈ C2m([0, 1]×[0, 1]), m ∈
N and N(I − T ) = {0}, where T be defined by formula (4.1.7). Further,

assume that the smoothing parameter r in the definition of the transforma-

tion ϕ (see (3.3.6)) satisfies (4.2.1) and the dimension parameter n′ satisfies

(4.1.4).

Then, for sufficiently large n (n ≥ n1 ≥ 2, with n1 from Theorem 4.2.1),

‖ ū− ū(Q)
n,n′ ‖∞ ≤ cn

−2m(log n) ‖ f̃ ‖Cm+1 , (4.2.10)

‖ ū− ū(Q)
n,n′ ‖p ≤ cpn

−2m ‖ f̃ ‖Cm+1 , 1 ≤ p <∞, (4.2.11)

where ū(t) = u(ϕ(t)) is the solution of equation (3.3.9), u is the solution of

equation (4.1.1), ū
(Q)
n,n′ is defined by (4.2.9) in which T?,n,n′ is determined

by the formula (3.6.5), ũ
(Q)
n,n′ is the solution of equation (4.1.6) and f̄(t) =

f(ϕ(t)), 0 ≤ t ≤ 1.

Proof. Since ū = T?ũ+ f̄ and ū
(Q)
n,n′ is given by the formula (4.2.9), we have

ū− ū(Q)
n,n′ = T?ũ− T?,n.n′ ũ

(Q)
n,n′ . (4.2.12)

Adding and subtracting T?ũ
(Q)
n,n′ , T?,n.n′ ũ and T?ũ to the r.h.s of (4.2.12),

we get
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ū− ū(Q)
n,n′ = T?(ũ− ũ(Q)

n,n′) + (T? − T?,n.n′)(ũ− ũ
(Q)
n,n′) + T?ũ− T?,n.n′ ũ.

It follows from this that

‖ ū− ū(Q)
n,n′ ‖∞≤‖ T?(ũ− ũ

(Q)
n,n′) ‖∞ + ‖ T? − T?,n.n′ ‖L̃p→C‖ ũ− ũ

(Q)
n,n′ ‖p

+ ‖ T?ũ− T?,n.n′ ũ ‖∞ . (4.2.13)

For the third term in the r.h.s of (4.2.13) it follows from the proof of

Theorem 3.6.1 in Chapter 3 for 1
1−ν < p <∞ that

‖ T?ũ− T?,n.n′ ũ ‖p ≤ cpn−2m ‖ f̃ ‖Wm,p , (4.2.14)

‖ T?ũ− T?,n.n′ ũ ‖∞ ≤ cn−2m(log n) ‖ f̃ ‖Wm,p . (4.2.15)

In a similar way we obtain for 1
1−ν < p <∞ that

‖ T? − T?,n.n′ ‖L̃p→C‖ ũ− ũ
(Q)
n,n′ ‖p= o(n−2m) ‖ f̃ ‖Wm,p . (4.2.16)

Below we show that, for n ≥ n1,

‖ T?(ũ− ũ(Q)
n,n′) ‖∞ ≤ cn

−2m ‖ f̃ ‖Cm+1 , 1/(1− ν) < p <∞. (4.2.17)

Now the estimates (4.2.10)–(4.2.11) immediately follow from the estimates

(4.2.13)–(4.2.17); actually, we obtain (4.2.11) only for 1/(1− ν) < p < ∞;

to obtain (4.2.11) for smaller p ∈ [1, 1/(1− ν)] we exploit the monotonicity

in p of the norm ‖ · ‖p .

It remains to prove (4.2.17). We have for ũ− ũ(Q)
n,n′ the following expan-

sion (see (4.2.5)):

ũ− ũ(Q)
n,n′ = (I − T̃n,n′)−1

(
f̃ −Qn′ f̃ + (T̃ − T̃n,n′)ũ

)
, n ≥ n1.

Since

(I − T̃n,n′)−1 = I + (I − T̃n,n′)−1T̃n,n′ ,

we obtain

ũ− ũ(Q)
n,n′ =

[
I + (I − T̃n,n′)−1T̃n,n′

][
f̃ −Qn′ f̃ + (T̃ − T̃n,n′)ũ

]
,
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and after applying an operator T?,

T?(ũ− ũ(Q)
n,n′) = T?(f̃ −Qn′ f̃) + T?(T̃ − T̃n,n′)ũ

+ T?(I − T̃n,n′)−1
(
T̃n,n′(f̃ −Qn′ f̃) + T̃n,n′(T̃ − T̃n,n′)ũ

)
,

where n ≥ n1. Thus, for n ≥ n1,

‖ T?(ũ− ũ(Q)
n,n′) ‖∞≤‖ T?(f̃ −Qn′ f̃) ‖∞ + c1 ‖ T̃n,n′(f̃ −Qn′ f̃) ‖∞

+ c2 ‖ (T̃ − T̃n,n′)ũ ‖p,(4.2.18)

where we took into account the estimate (4.2.4), the boundedness of T? :

L̃p → C and the uniform boundedness of operators T̃n,n′ : L̃p → C̃, n ∈ N
(see (3.4.6) and (3.4.7)).

According to (4.1.4), τ(m+1−ν) > 2m. Therefore we have τ(m+1) >

2m. Since T? : C̃ → C, is bounded, we obtain with the help of (2.6.3.8) for

n ≥ n1 that

‖ T?(f̃ −Qn′ f̃) ‖∞ ≤ ‖ T? ‖C̃→C‖ f̃ −Qn′ f̃ ‖∞
≤ cn−τ(m+1) (log nτ ) ‖ f̃ (m+1) ‖∞
≤ c1n

−2m n2m−τ(m+1) (log n) ‖ f̃ (m+1) ‖∞ .

Thus, we have

‖ T?(f̃ −Qn′ f̃) ‖∞= o(n−2m) ‖ f̃ (m+1) ‖∞ . (4.2.19)

In a similar way we obtain that

‖ T̃n,n′(f̃ −Qn′ f̃) ‖∞= o(n−2m) ‖ f̃ (m+1) ‖∞ . (4.2.20)

Indeed, due to the uniform boundedness of operators T̃n,n′ : L̃p → C̃ in

n ∈ N (see (3.4.7)) and (2.6.3.10) we have

‖ T̃n,n′(f̃ −Qn′ f̃) ‖∞ ≤ ‖ T̃n,n′ ‖L̃p→C‖ f̃ −Qn′ f̃) ‖p
≤ cn−τ(m+1) log nτ ‖ f̃ (m+1) ‖∞ .

This together with τ(m+ 1) > 2m yields (4.2.20).

Finally, it follows from the proof of Theorem 3.6.1 (see (3.6.29)) that,
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for n ≥ n1,

‖ T̃ ũ− T̃n.n′ ũ ‖p≤ cpn−2m ‖ f̃ ‖Wm,p , 1/(1− ν) < p <∞. (4.2.21)

Plugging (4.2.19)–(4.2.21) into (4.2.18) we obtain (4.2.17).

Remark 4.2.3. Although our overall proof scheme in the proof of The-

orem 4.2.2 is very similar to the one of Theorem 3.6.1 in Chapter 3, the

replacment Pn′ f̃ by Qn′ f̃ in (4.1.3) causes essential differences in the proof

argument, and thus the argument that has been used in the proof of Theo-

rem 3.6.1 does not apply. In particular, a part of the proof of Theorem 3.6.1

is based on the estimates (3.4.4) and (3.6.6) for the norms of the operators

T̃ (I−Pn′) and T?(I−Pn′), respectively. However, similar estimates do not

hold for the operators T̃ (I −Qn′) and T?(I −Qn′) since I −Qn′ is not an

orthogonal projection operator in L2(0, 1).

4.3 Modified fast and quasi-fast solvers

According to the discussion in Section 3.4, the sample values

ũ
(Q)
n,n′(0), ũ

(Q)
n,n′

( 1

n′

)
, . . . , ũ

(Q)
n,n′

(n′ − 1

n′

)
of the solution ũ

(Q)
n,n′ ∈ Tn′ of equation (4.1.6) are available at the cost of

O(n2) arithmetical operations. After that also the values

(
T?,n,n′ ũ

(Q)
n,n′

)
(0),

(
T?,n,n′ ũ

(Q)
n,n′

)( 1

n′

)
, . . . ,

(
T?,n,n′ ũ

(Q)
n,n′

)(n′ − 1

n′

)
(4.3.1)

of T?,n,n′ ũ
(Q)
n,n′ can be computed in O(n2) arithmetical operations, and we

can use the local (algebraic) polynomial interpolation to approximate the

T?,n,n′ ũ
(Q)
n,n′ between the grid points i

n′ , i = 0, . . . , n′.

Following ideas and notations used in Section 3.7, we define the polyno-

mially interpolated version v̄
(Q)
n,n′ = v̄

(Q)
n,n′(t) with t ∈ [0, 1] of ū

(Q)
n,n′ determined

by (4.2.9) as

v̄
(Q)
n,n′ = Πn′,m+1T?,n,n′ ũ

(Q)
n,n′ + Πn2,mf̄ (4.3.2)

where Πn′,m+1 is an operator of local interpolation of functions given on

the grid {
i

n′
: i = 0, . . . , n′

}
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by polynomials of degree m (see Section 2.5) and Πn2,m is an operator of

local interpolation by polynomials of degree m− 1 from the grid values on

the grid {
i

n2
: i = 0, . . . , n2

}
.

Thus, the unknown parameters (4.3.1) of v̄
(Q)
n,n′ in (4.3.2) are available at the

cost of O(n2) arithmetical operations, and having them in hand, the value

of v̄
(Q)
n,n′(t) at any point t ∈ [0, 1] is available at the cost of O(1) arithmetical

operations.

We know from our earlier examination of ϕ that ϕ has a continuous

inverse ϕ−1, see Section 2.4. However, we cannot present a closed form for

it, and a definition for an approximate solution of equation (4.1.1) in the

form

v̄
(Q)
n,n′(ϕ

−1(x)), 0 ≤ x ≤ 1, (4.3.3)

with (4.3.2) and ϕ−1, the inverse of ϕ, is not acceptable. Therefore, follow-

ing the same approach as in Section 3.7, we first approximate ϕ−1(x) by a

suitable interpolation.

Let us precompute xi,n = ϕ( in) for i = 0, . . . , n (this costs altogether

onlyO(n) arithmetical operations) and use them to approximate t = ϕ−1(x)

for any given x ∈ [0, 1] via an interpolation by polynomials of degree 2m−1.

Note that ϕ−1 ∈ C2m,1/r(0, 1) where r is the (smoothing) parameter in the

definition of ϕ and {xi,n : i = 0, . . . , n} is a suitable graded grid for the

interpolation of such functions. Let ψn be the corresponding interpolation

approximation of ϕ−1. As pointed out in Section 3.7, then

|ϕ−1(x)− ψn(x)|≤ cn−2m ‖ ϕ−1 ‖C2m,1/r , 0 ≤ x ≤ 1. (4.3.4)

Thus, instead of (4.3.3), we can define the final approximation to the solu-

tion of equation (4.1.1) via the formula

u
(Q)
n,n′(x) = v̄

(Q)
n,n′(ψn(x)), 0 ≤ x ≤ 1. (4.3.5)

The grid values (4.3.1) and

f̄
( i

n2

)
= f

(
ϕ
( i

n2

))
(i = 0, . . . , n2)

can be considered as the parameters of the approximate solution (4.3.5).
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The grid values of f belong to a given information whereas the grid values

of T?,n,n′ ũ
(Q)
n,n′ are available at the cost of O(n2) arithmetical operations us-

ing n? = O(n2) sample values of a and b and the n2 + 1 sample values of f

just listed.

The following theorem below shows that with the definition (4.3.5) we

have designed a (C,Cm+1) quasi-fast solver for equation (4.1.1) which is

(Lp, Cm+1) fast for 1 ≤ p <∞.

Theorem 4.3.1. Assume that f ∈ Cm+1[0, 1], a, b ∈ C2m([0, 1]×[0, 1]), m ∈
N and N(I − T ) = {0}, where T be defined by formula (4.1.7). Further,

assume that the smoothing parameter r in the definition of the transforma-

tion ϕ (see (3.3.6)) satisfies (4.2.1) and the dimension parameter n′ satisfies

(4.1.4).

Then we have for all sufficiently large n ∈ N that

‖ u− u(Q)
n,n′ ‖∞≤ cn

−2m(log n) ‖ f ‖Cm+1 , (4.3.6)

‖ u− u(Q)
n,n′ ‖p≤ cpn

−2m ‖ f ‖Cm+1 , 1 ≤ p <∞, (4.3.7)

where u is the solution of (4.1.1) and u
(Q)
n,n′ is defined by (4.3.5) with the

help of (4.3.2), where T?,n,n′ is determined by the formula (3.6.5), ũ
(Q)
n,n′

is the solution of equation (4.1.6) and f̄(t) = f(ϕ(t)), 0 ≤ t ≤ 1. The

full computation cost of u
(Q)
n,n′ is O(n2) flops. So we obtain a (C,Cm+1)

quasi-fast solver for equation (4.1.1) which is (Lp, Cm+1) fast, 1 ≤ p <∞.

Proof. We have for u, the solution of equation (4.1.1), and for its approxi-

mation u
(Q)
n,n′ , defined by (4.3.5) and (4.2.9), that

u(x)− u(Q)
n,n′(x) = u(ϕ(t))− v̄(Q)

n,n′(ψn(x))

= ū(t)− ū(Q)
n,n′(t) + ū

(Q)
n,n′(t)− v̄

(Q)
n,n′(t) + v̄

(Q)
n,n′(ϕ

−1(x))− v̄(Q)
n,n′(ψn(x)),

with

x = ϕ(t), t ∈ [0, 1]; t = ϕ−1(x), x ∈ [0, 1].
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It follows from Theorem 4.2.2

‖ ū− ū(Q)
n,n′ ‖∞ ≤ cn

−2m(log n) ‖ f̃ ‖Cm+1 (4.3.8)

and

‖ ū− ū(Q)
n,n′ ‖p ≤ cpn

−2m ‖ f̃ ‖Cm+1 , 1 ≤ p <∞. (4.3.9)

In accordance to (4.3.2), (4.3.4) and (3.6.31) we obtain

max
0≤x≤1

| v̄(Q)
n,n′(ϕ

−1(x)) − v̄
(Q)
n,n′(ψn(x)) |≤ sup

0≤t≤1
| v̄′n,n′(t) |‖ ϕ−1 − ψn ‖∞

≤ c(‖ T?,n,n′ ũ
(Q)
n,n′ ‖C1 + ‖ f̄ ‖C1)n−2m

≤ c′n−2m ‖ f ‖Cm+1 . (4.3.10)

In accordance to (4.2.9), (4.3.2), (3.6.31) and Theorem 2.5.1, with suf-

ficiently large p <∞ and λ close to 1− ν,

‖ ū(Q)
n,n′ − v̄

(Q)
n,n′ ‖∞≤‖ (I −Πn2,m)f̄ ‖∞ + ‖ (I −Πn′,m+1)T?,n,n′ ũ

(Q)
n,n′ ‖∞

≤ c(n2)−m ‖ f̄ (m) ‖∞ +c(n′)−(m+λ) ‖ T?,n,n′ ũ
(Q)
n,n′ ‖Hm,λ

≤ c′n−2m ‖ f ‖Cm+1 . (4.3.11)

The estimates (4.3.6)–(4.3.7) follows from (4.3.8)–(4.3.11).

Thus, we have constructed a (C,Cm+1) quasi-fast solver for equation

(4.1.1) which is (Lp, Cm+1) fast, 1 ≤ p < ∞. This new solver has an

advantage compared with the method considered in Chapter 3, since the

grid values of the free term in the matrix form (4.2.6) of the present method

are easily available from the values of f , which is not the case in the matrix

form (3.4.15) for method (4.1.3).
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Summary

Kiired ja kvaasikiired lahendusmeetodid nõrgalt

singulaarsete Fredholmi teist liiki integraalvõrrandite jaoks

Paljud matemaatika, füüsika, mehaanika, bioloogia ja teiste teadusalade

probleemid on formuleeritavad integraalvõrrandite kujul. Käesolevas dok-

toritöös vaadeldakse lineaarset Fredholmi teist liiki integraalvõrrandit

u(x) =

∫ 1

0
K(x, y)u(y)dy + f(x), 0 ≤ x ≤ 1, (1)

kus tuum K ja vabaliige f on antud funktsioonid ning otsitavaks on funk-

tsioon u. Nimetus “Fredholmi teist liiki võrrand” tuleneb asjaolust, et

otsitav funktsioon u asub nii integraali märgi all kui ka väljaspool inte-

graali märki võrrandi (1) vasakul poolel ning lõplike rajadaga teist liiki li

neaarsete integraalvõrrandite süstemaatilisele käsitlusele pani aluse Rootsi

matemaatik Ivar Igor Fredholm (1866 - 1927) oma töödega eelmise sajandi

algusaastatel.

Sileda tuumaga võrrandi (1) korral tagab tuuma K ja vabaliikme f

siledus lahendi u sileduse kogu integreerimislõigul [0, 1] : kui K ja f on

m korda (m ≥ 0) pidevalt diferentseeruvad funktsioonid vastavalt ruudul

[0, 1] × [0, 1] ja lõigul [0, 1], ning kui eeldada, et võrrandil (1) on olemas

lahend u, siis u on m korda pidevalt diferentseeruv lõigul [0, 1]. Kahjuks ei

ole see üldiselt enam nii praktikas sageli esinevate võrrandite puhul, mille

tuum K(x, y) omab kuju

K(x, y) = a(x, y)| x− y |−ν + b(x, y), 0 < ν < 1, (2)

kus a ja b on mingid pidevad funktsioonid ruudul [0, 1] × [0, 1]. Sel korral

K(x, y) võib tõkestamatult kasvada, kui y → x; eelduse ν < 1 tõttu on
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siiski tagatud, et K(x, y) singulaarsus y = x korral on integreeruv:

sup
0≤x≤1

∫ 1

0
| K(x, y) | dy <∞.

Tuuma K(x, y) iseärasus y = x korral toob reeglina kaasa võrrandi (1)

lahendi u iseärase käitumise integreerimislõigu [0, 1] rajapunktide lähedal:

tuuma (2) puhul võivad võrrandi (1) lahendi tuletised puntide 0 ja 1 lähedal

tõkestamatult kasvada isegi siis, kui võrrandi vabaliige f on lõpmata arv

kordi pidevalt diferentseeruv lõigul [0, 1]. Seetõttu vabaliikme f kohta on

käesolevas doktoritöös seatud tingimused, mis on täidetud kõigi lõigul [0, 1]

m korda pidevalt diferentseeruvate funktsioonide korral ning võimaldavad

vaadelda ka selliseid funktsioone, mille tuletised mingist järgust alates võivad

olla tõkestamata lõigu [0, 1] rajapunktide 0 ja 1 lähedal.

Täpsemalt, töös eeldatakse, et on täidetud järgmised tingimused (A1)−
(A3) :

(A1) f ∈ Cm,ν(0, 1),m ∈ N = {1, 2, . . . }, ν ∈ (0, 1), see tähendab, et f(x)

on pidev, kui x ∈ [0, 1] ja m korda pidevalt diferentseeruv, kui x ∈
(0, 1) ning selline, et

m∑
k=1

sup
0<x<1

[x(1− x)]k−1+ν | f (k)(x) |<∞;

(A2) tuum K avaldub kujul (2) ning funktsioonid a ja b avaldises (2) on

2m korda pidevalt diferentseeruvad ruudul [0, 1]× [0, 1];

(A3) võrrandile (1) vastaval homogeensel integraalvõrrandil

u(x) =

∫ 1

0
K(x, y)u(y)dy (0 ≤ x ≤ 1)

on lõigul [0, 1] pidevate funksioonide klassis olemas vaid triviaalne

lahend u = 0.

Doktoritöös on tingimustega (A1) − (A2) määratud ülesannete klassi kor-

ral välja töötatud kiired ja kvaasikiired lahendusmeetodid võrrandi (1)

ligikaudeks lahendamiseks.

Siin “kiire meetod” (inglise keeles “fast solver”) tähendab meetodit,

mis antud ülesannete klassi korral annab lähislahenditele optimaalset järku

täpsuse ning mille realisatsioon on “odavaim” võrreldes teiste meetoditega
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(kiire meetodi puhul on meetodi rakendamiseks vajaminevate aritmeetiliste

tehete arv minimaalne võrreldes kõigi teiste sama informatsiooni ja võrgu

punktide arvu kasutatavate meetoditega).

Kiirete ja kvaasikiirete meetodite täpsed definitsioonid on esitatud dok-

toritöö kolmanda peatüki alapunktis 3.2. Seejärel on kolmandas peatükis

välja töötatud metoodika, mis annab võimaluse kiirete ja kvaasikiirete mee-

todite konstrueerimiseks võrrandi (1) jaoks eeldustel (A1) − (A2). Sama

metoodikat on kasutatud ka peatükis 4 modifitseeritud kiirete ja kvaasi-

kiirete meetodite konstrueerimisel.

Doktoritöös saadud põhitulemusi kajastavad teoreemid 3.4.1, 3.6.1, 3.7.1,

4.2.1, 4.2.2 ja 4.3.1. Töös saadud tulemused tuginevad artiklitele [61], [62].
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