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Chapter 1

Introduction

1.1 Background
In [Dau63], I. K. Daugavet discovered that all compact operators T on C[0, 1]
satisfy the following norm identity

‖ Id +T‖ = 1 + ‖T‖,

now known as the Daugavet equation. Not long after, other examples of Ba-
nach spaces on which all compact operators satisfy the Daugavet equation
followed, e.g. L1[0, 1] (see [Loz66]). A Banach space on which every com-
pact operator satisfies the Daugavet equation is said to have the Daugavet
property.

It is known that a Banach space with the Daugavet property satisfies
that all convex combinations of slices of the unit ball have diameter 2 (see
[Shv00]). A Banach space with such a property is said to have the strong
diameter two property (SD2P). From Bourgain’s Lemma (see Lemma 1.4.10
below) a Banach space with the SD2P satisfies that all relatively weakly open
subsets of the unit ball, in particular all slices of the unit ball, have diameter
two. Banach spaces with such properties are respectively said to have the
diameter two property (D2P) and the local diameter two property (LD2P).

One of the first papers that studies the D2P is [NW01]. A few years
later a more systematic study of all the diameter two properties mentioned
above, started to develop (see [ABL15], [ALN13], [BLR15], etc.). From the
discussion above we have

Daugavet property⇒ SD2P⇒ D2P⇒ LD2P,

however, none of the reverse implications hold. That LD2P 6⇒ D2P was
proved in [BLR15] and that D2P 6⇒ SD2P was proved in [ABL15] and [HL14]
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10 CHAPTER 1. INTRODUCTION

independently. For SD2P 6⇒ Daugavet property one can take, e.g. c0 or `∞
(see [ALN13]).

In [IK04], Y. Ivakhno and V. Kadets introduced the notion of a space with
bad projections (SBP). This notion is a natural weakening of the Daugavet
property in that compact operators are replaced by rank-1 projections in the
Daugavet equation. They obtained the following geometrical characterisation
of an SBP space.

Theorem 1.1.1 (see [IK04, Theorem 1.4]). A Banach space X is SBP if
and only if for every slice S of BX , every unit sphere element x ∈ S, and
every ε > 0, there exists y ∈ S such that ‖x− y‖ ≥ 2− ε.

It is clear that an SBP space has the LD2P in a strong sense since for any
slice S of the unit ball and any unit sphere element x in S there exists a point
y in S almost diametral to x. Inspired by this the authors of [BLR18] called
the equivalent formulation of an SBP space appearing in Theorem 1.1.1 the
diametral local diameter two property (DLD2P). In the same paper also the
diametral analogous of the D2P and the SD2P, were introduced and system-
atically studied: a Banach space X is said to have the diametral diameter
two property (DD2P) if for every non-empty relatively weakly open subset U
of BX , every unit sphere element x ∈ U , and every ε > 0 there exists y ∈ U
such that ‖x− y‖ ≥ 2− ε, and it is said to have the diametral strong diam-
eter two property (DSD2P) if for every n ∈ N, non-empty relatively weakly
open subsets U1, . . . , Un of BX , λ1, . . . , λn ∈ [0, 1] such that ∑n

i=1 λi = 1,
every x ∈ ∑n

i=1 λiUi, and every ε > 0 there exists y ∈ ∑n
i=1 λiUi satisfying

‖x− y‖ ≥ 1 + ‖x‖ − ε.
In [BLR18], among others the following implications were proved to hold

Daugavet property⇒ DSD2P⇒ DD2P⇒ DLD2P.

An example of a Banach space with the DD2P and failing the DSD2P was also
given (see [BLR18, Example 2.2]), but the questions whether the converse
of the other two implications in the above diagram hold, were left open (see
[BLR18, Question 4.1]). In fact, these questions are still open.

There are many results regarding the diametral diameter two properties.
In [IK04, Theorem 3.2], it was established that the DLD2P is stable under
unconditional sums of Banach spaces. This investigation was continued in
[BLR18] with the properties DD2P and DSD2P. It was shown that the DD2P
is stable under all `p-sums for 1 ≤ p ≤ ∞, (see [BLR18, Theorem 2.12 and
Proposition 2.13]). This result was extended to absolute sums in [Pir16].
For the DSD2P it was proved in [BLR18, Proposition 3.6 and Theorem 3.7]
that the property is stable under `∞-sums and, in [BLR18, Proposition 3.6]
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for the case of an `1-sum, that there is stability in the direction from the
sum to the summands. The other direction, from the summands to the `1-
sum, was proved in [HPP16]. It is known that no other `p-sum, and even
no other absolute sum, can provide positive stability results (see [HLN18,
Corollary 3.8]). This means that in the setting of sums of Banach spaces, the
DSD2P behaves the same way as the Daugavet property, which is also stable
only under `1-sums and `∞-sums (see [BKSW05, Theorem 5.1 and Corollary
5.4]). Despite these and other known results, it is, as mentioned above, still
unknown whether the Daugavet property and the DSD2P differ from each
other.

Given a unit sphere element x in a Banach space X and an ε > 0 we
define

∆ε(x) = {y ∈ BX : ‖x− y‖ ≥ 2− ε}.
In [Wer01], the following geometrical characterisations of the Daugavet prop-
erty appeared.

Proposition 1.1.2. Let X be a Banach space. The following assertions are
equivalent:

(i) X has the Daugavet property;

(ii) for every slice S of BX , every unit sphere element x and every ε > 0,
there exists y ∈ S such that ‖x− y‖ ≥ 2− ε;

(iii) for every unit sphere element x we have BX = conv ∆ε(x) for every
ε > 0.

From [IK04, Theorem 1.4] and [Wer01, Problem (7)] we have a similar
characterisation of the DLD2P.

Proposition 1.1.3. Let X be a Banach space. The following assertions are
equivalent:

(i) X has the DLD2P;

(ii) for every unit sphere element x we have x ∈ conv ∆ε(x) for every ε > 0.

From the Hahn–Banach Separation Theorem it is straightforward that
pointwise versions of the equivalence (ii) ⇔ (iii) in Proposition 1.1.2 and
the equivalence (i) ⇔ (ii) in Proposition 1.1.3, hold. A point satisfying the
statement in Proposition 1.1.2 part (iii) (respectively, satisfying the state-
ment in Proposition 1.1.3 part (ii)) is naturally called a Daugavet-point (re-
spectively, ∆-point). In a Banach space with the Daugavet property (respec-
tively, DLD2P) every unit sphere element is a Daugavet-point (respectively,
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∆-point). If the set ∆ of all ∆-points on sphere of Banach space X is such
that BX can be realised as the closed convex hull of ∆ (which trivially is
the case if X has the DLD2P), then it follows again from Hahn–Banach
Separation Theorem that X has the LD2P and actually more. Indeed, one
can observe that c has this property, but that c0 fails it (see Corollary 2.4.4
and Example 2.4.5). Since c does not have the DLD2P (see Example 2.1.4),
this gives rise to a new diameter two property, naturally named the convex
diametral local diameter two property (convex DLD2P) strictly between the
DLD2P and the LD2P. This observation was the starting point for [AHLP20]
and [HPV] on which this thesis is partly based.

1.2 Summary of the thesis
The main aim of this thesis is to investigate the diametral diameter two
properties in Banach spaces and the related Banach space notions Daugavet-
point and ∆-point. Stability results for the diametral diameter two properties
by taking absolute sums will be presented. These results resemble those for
the diameter two properties. Stability results for Daugavet- and ∆-points are
also obtained. A consequence of these results is that the notions Daugavet-
point and ∆-point in general are different. It turns out, however, that in
some well-known classes of spaces these notions are equivalent. We will show
that this is the case for C(K) spaces for infinite compact Hausdorff space
K, L1(µ) spaces and their preduals, and for some specific Müntz spaces.
Moreover, simple and easy to check characterisations of Daugavet-points are
obtained for these classes of spaces. We will also show that C(K) spaces, K
infinite compact Hausdorff space, as well as Müntz spaces, have a diameter
two property called the convex diametral local diameter two property.

The thesis consists of three chapters and one appendix. The content of
the thesis is organised as follows.

In Chapter 1, we start by briefly introducing the historical background of
the topics addressed in this thesis. Subsequently the summary of the thesis is
presented and then the notation used throughout the thesis is clarified. The
chapter ends with a section containing basic definitions and results about the
Daugavet property and the diameter two properties that are needed through-
out the thesis.

Chapter 2 is based on [HPP16] and [AHLP20]. It focuses on the diametral
diameter two properties. We start with an overview of the three diametral
diameter two properties and their relations to other well-known Banach space
properties. A section is dedicated to the stability results of these properties
under absolute sums. It is proved that the DLD2P is stable under all absolute
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sums and that the DSD2P is stable only under `1-sums and `∞-sums. We also
present some results about subspaces with these properties and a few, yet
unpublished, results showing that the DLD2P and the DD2P are inherited by
M -ideals. Finally, in Chapter 2, a new diametral diameter two property, the
convex diametral local diameter two property, is introduced. We show that
this new property falls strictly between the DLD2P and the LD2P. We show
that C(K) spaces for infinite compact Hausdorff space K, have the convex
diametral local diameter two property. Also it is shown that the convex
diametral local diameter two property is stable under absolute sums for all
absolute normalised norms. The chapter ends with some open questions.

Chapter 3 is based on [AHLP20] and [HPV]. We start with the definitions
of Daugavet- and ∆-points and some useful general characterisations of these
notions. We then obtain characterisations of these notions in L1(µ) spaces,
C(K) spaces, for infinite compact Hausdorff space K, and a wide class of
Müntz spaces. It is proved that in all the aforementioned classes of Banach
spaces, as well as in the preduals of L1(µ), the notions Daugavet-point and
∆-point coincide. The last two sections of this chapter are dedicated to sta-
bility results of Daugavet- and ∆-points under absolute sums. It is shown
that absolute sums can be divided into two classes: absolute sums equipped
with so-called A-octahedral norms and absolute sums equipped with norms
with property (α); the former absolute sums provide positive stability re-
sults whereas the latter absolute sums can have no Daugavet-points. The
behaviour of ∆-points is in general easier to describe. In any absolute sum
where the norm is normalised, and different from the `∞-norm, the absolute
sum has ∆-points if and only if the summands do. In the case of `∞-sums,
however, the absolute sum can have ∆-points even if the summands fail to
have any. The chapter ends with a short section of open problems.

In Appendix, we capture all diameter two properties in a diagram along
with explanatory comments. We also recapitulate the stability results for the
diameter two properties and for Daugavet- and ∆-points in three tables.

1.3 Notation
We use standard notation. In this thesis we consider only nontrivial Banach
spaces over the field of real numbers. In general, we assume that the Banach
spaces we deal with are infinite-dimensional.

In a Banach space X we denote the unit sphere by SX and the closed
unit ball by BX . The dual space of a Banach space X is denoted by X∗.
For a subset A of X, its diameter is denoted by diamA, its linear span by
spanA, and its convex hull by convA. The closed convex hull and the closed
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linear span are denoted by convA and spanA, respectively. The cardinality
of the set A is denoted by |A| and the complement of the set A by AC . The
quotient space of a Banach space X with respect to a subspace Y ⊂ X is
denoted by X/Y. The characteristic function of the subset A is denoted by
χA.

For Banach spaces X and Y we denote all bounded linear maps from X
to Y by L(X, Y ). By an operator we always mean a bounded linear map.
For an operator T ∈ L(X, Y ) we denote its kernel by kerT and its range by
ranT . An operator P : X → X is considered as a linear projection, provided
P 2 = P. For a functional f , we use the notation supp f , to mark the support
of f .

It is expected that the reader is familiar with the well-known basic notions
and results in the theory of Banach spaces and topological vector spaces. Re-
sults as the Hahn–Banach Separation Theorem, the Krein–Milman Theorem,
Choquet’s Lemma, the Principle of Local Reflexivity, Urysohn’s Lemma, will
not be presented in the thesis, and some of these basic results are sometimes
used without proper references.

1.4 Preliminaries
The aim of this section is to introduce basic concepts and results used
throughout the thesis. Our goal is to get the reader familiar with some funda-
mental results about the Daugavet property and the diameter two properties.
At the end of the section we explain the concept of an absolute sum which
is one of the key concepts in this thesis. We will also briefly discuss the
behaviour of the Daugavet property as well as the behaviour of the diameter
two properties when taking absolute sums.

Let us begin with some basic definitions and results.

Definition 1.4.1. Let X be a Banach space and B a non-empty bounded
subset of X. A slice of B is the set of the following form

S(B, x∗, α) = {x ∈ B : x∗(x) > sup
y∈B

x∗(y)− α},

where x∗ ∈ X∗ and α > 0.

In this thesis we consider almost always the case where x∗ ∈ SX∗ and
where the bounded set B is the unit ball BX .

If X is a dual space, we can similarly define w∗-slices, with the defining
functional coming from the predual of X.



1.4. PRELIMINARIES 15

A slice S(B, x∗, α) is a relatively weakly open subset of B because it is an
intersection of a weakly open half-space and the set B. Analogically, w∗-slices
are always relatively w∗-open subsets.

We will later make use of the following lemma which tells us that, for a
given slice of the unit ball and a prescribed unit sphere element in that slice,
there exists a subslice of the given slice containing the prescribed unit sphere
element.

Lemma 1.4.2 (see [IK04, Lemma 2.1]). Let X be a Banach space and
S(BX , x

∗, α) a slice of the unit ball BX . Then for every x ∈ SX∩S(BX , x
∗, α)

and every β ∈ (0, α) there exists y∗ ∈ SX∗ such that

x ∈ S(BX , y
∗, β) ⊂ S(BX , x

∗, α).

In order to define the strong diameter two property and the diametral
strong diameter two property, as well as the convex diametral local diameter
two property later on, we need the concept of convex combinations of sets.
(In this thesis the sets will typically be slices and relatively weakly open
subsets of the unit ball.)

Definition 1.4.3. Let X be a Banach space, n ∈ N, A1, . . . , An subsets of
X, and λ1, . . . , λn ∈ [0, 1] such that ∑n

i=1 λi = 1. The set of the form

n∑
i=1

λiAi

is called a convex combination of the sets A1, . . . , An.
If we substitute the subsets A1, . . . , An with elements x1, . . . , xn of X

then the element of the form ∑n
i=1 λixi is called a convex combination of the

elements x1, . . . , xn.

It is useful to notice that every convex combination of elements in a
normed vector space can be approximated in norm with an average of the
same set of elements if repetitions of the elements are allowed. This assertion
is an immediate consequence of the following elementary lemma.

Lemma 1.4.4. Let m ∈ N. Then for every ε > 0 and every λi > 0 with∑m
i=1 λi = 1, there exist n ∈ N, k1, . . . , km ∈ N such that

m∑
i=1

∣∣∣∣∣λi − ki
n

∣∣∣∣∣ < ε and
m∑
i=1

ki = n.
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Proof. By Dirichlet’s Approximation Theorem, given N ∈ N there exist in-
tegers k1, . . . , km and 1 ≤ n ≤ N such that∣∣∣∣∣λi − ki

n

∣∣∣∣∣ ≤ 1
nN1/m .

Then ∣∣∣∣∣n−
m∑
i=1

ki

∣∣∣∣∣ = n

∣∣∣∣∣
m∑
i=1

λi −
m∑
i=1

ki
n

∣∣∣∣∣ ≤ n
m∑
i=1

1
nN1/m = m

N1/m .

By just choosing N so large that N−1/m < ε and mN−1/m < 1, we get the
desired conclusion. By choosing ε > 0 smaller if necessary, we can make sure
that ki ≥ 0 for i = 1, . . . ,m.

Now, if x = ∑m
i=1 λixi is a convex combination of elements x1, . . . , xn

of a normed vector space X, and we choose k1, . . . , km and n to be as in
Lemma 1.4.4, then ∑m

i=1(ki/n)xi is an average of the elements

x1, . . . , x1︸ ︷︷ ︸
k1 times

, . . . , xm, . . . , xm︸ ︷︷ ︸
km times

that approximates x. Furthermore, given two different convex combinations,
we can approximate them both by averages of the same number of elements.
This observation will be used repeatedly throughout the thesis without ref-
erence.

Now we are ready to introduce the Daugavet property, which is a well-
known and extensively researched property of Banach spaces. The follow-
ing characterisation of the Daugavet property will be of great importance
throughout the thesis.

Proposition 1.4.5 (see [KSSW00, Lemma 2.2], [Shv00, Lemma 3] and
[Wer01, Lemma 2.2, Corollary 2.3, and Theorem 2.7]). Let X be a Banach
space. The following assertions are equivalent:

(i) X has the Daugavet property, i.e.

‖ Id−T‖ = 1 + ‖T‖

for every compact operator T : X → X;

(i′)
‖ Id−T‖ = 1 + ‖T‖

for every rank-1, norm-1 operator T : X → X;
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(ii) for every slice S of BX , every x ∈ SX , and every ε > 0 there exists
y ∈ S such that ‖x− y‖ ≥ 2− ε;

(iii) BX = conv ∆ε(x) for every x ∈ SX and every ε > 0, where
∆ε(x) = {y ∈ BX : ‖x− y‖ ≥ 2− ε};

(iv) for every convex combination C of relatively weakly open subsets of
BX , every x ∈ SX , and every ε > 0 there exists y ∈ C such that
‖x− y‖ ≥ 2− ε.

Because of the central importance of the descriptions (ii) and (iii) in
the previous result, we will also provide a proof for their equivalence to the
Daugavet property. This, however, calls for some preliminary work.

It is useful to note that in the definition of the Daugavet property, i.e.
Proposition 1.4.5 part (i), the operators may, indeed, be assumed to be of
norm 1. In order to prove that, we need the following basic, yet helpful fact.
Lemma 1.4.6. Let X be a normed space and x, y ∈ X such that ‖x+ y‖ =
‖x‖+ ‖y‖. Then for every r, s > 0 we have

‖rx+ sy‖ = r‖x‖+ s‖y‖.
Proof. On the one hand, we have trivially that ‖rx+ sy‖ ≤ r‖x‖+ s‖y‖. We
complete the proof by showing the other inequality. We may assume without
loss of generality that r ≥ s. Therefore,

‖rx+ sy‖ = ‖r(x+ y) + (s− r)y‖
≥ ‖r(x+ y)‖ − ‖(s− r)y‖
= r‖x+ y‖+ (s− r)‖y‖
= r‖x‖+ r‖y‖+ s‖y‖ − r‖y‖
= r‖x‖+ s‖y‖.

Corollary 1.4.7. In the definition of the Daugavet property, it is enough to
consider the case ‖T‖ = 1.
Proof. Assume that the Daugavet equation holds for all compact norm-1
operators. Let T be an arbitrary compact operator. Then by Lemma 1.4.6,
we get

‖ Id−T‖ =
∥∥∥∥ Id−‖T‖ T

‖T‖

∥∥∥∥
= ‖ Id ‖+

∥∥∥∥ T

‖T‖

∥∥∥∥‖T‖
= 1 + ‖T‖.
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Now we are ready to present the proof of the equivalence of the different
characterisations of the Daugavet property.

Proof of Proposition 1.4.5. (i)⇒ (i′). This is trivial as rank-1 operators are
compact.

(i′) ⇒ (ii). Let x∗ ∈ SX∗ and consider a slice S(BX , x
∗, α) of BX , an

x ∈ SX , and an ε > 0. Assume α ≤ ε. Define a rank-1 operator T : X → X
by Ty = x∗(y)x. Since ‖ Id−T‖ = 2, there exists y ∈ BX such that

‖y − x∗(y)x‖ ≥ 2− α/2.

Thus x∗(y) ≥ 1− α/2, and this in turn gives

‖x− y‖ ≥ ‖y − x∗(y)x‖ − ‖x∗(y)x− x‖ ≥ 2− ε .

(ii)⇒ (i). Let T : X → X be a compact operator. From Corollary 1.4.7
we can assume that ‖T‖ = 1. Since T is compact, the restriction of the
adjoint T ∗ to the dual unit ball is w∗ − ‖ · ‖ continuous. By the Krein–
Milman Theorem, there exists an extreme point p∗ of BX∗ such that ‖T ∗p∗‖ =
‖T ∗‖ = 1. From Choquet’s Lemma (see [FHHMZ11, Lemma 3.69]) we get
that p∗ has a neighbourhood base for the w∗-topology of BX∗ consisting of
w∗-closed slices Sα. By the assumptions every slice Sα contains some x∗α such
that ‖x∗α − T ∗p∗‖ ≥ 2 − εα where (εα) is a net of reals converging to 0. As
x∗α converges to p∗ in the w∗-topology, we get that Tx∗α converges to T ∗p∗ in
norm. Hence ‖x∗α − T ∗x∗α‖ converges to 2 in norm, and thus ‖ Id−T‖ = 2.

(ii) ⇒ (iii). Assume by contradiction that (ii) holds but (iii) does not
hold. Now, let x ∈ SX and ε > 0 be such that BX 6= conv ∆ε(x). Therefore,
SX 6⊂ conv ∆ε(x). Let y ∈ SX\ conv ∆ε(x). It is evident that conv ∆ε(x)
and {y} are closed convex disjoint sets and the singleton {y} is compact. By
Hahn–Banach Separation Theorem there exist x∗ ∈ SX∗ and α > 0 such that
for every z ∈ conv ∆ε(x) we have that

x∗(z) < α < x∗(y) ≤ 1.

It easily follows that z /∈ S(BX , x
∗, 1 − α) for every z ∈ conv ∆ε(x). This

however means that there exists a slice which does not intersect the set
conv ∆ε(x), hence we have a contradiction with (ii).

(iii) ⇒ (ii). Assume by contradiction that (iii) holds but (ii) does not
hold. Now, let S(BX , x

∗, α), x ∈ SX , and ε > 0 be such that

S(BX , x
∗, α) ∩∆ε(x) = ∅.
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Find y ∈ S(BX , x
∗, α) and δ > 0 such that x∗(y) > 1 − α + δ. Since (iii)

holds, we get that y ∈ S(BX , x
∗, α) ⊂ conv ∆ε(x). Therefore, there exist

y1, . . . , yn ∈ ∆ε(x) such that ∥∥∥∥y − n∑
i=1

1
n
yi

∥∥∥∥ < δ.

Then
x∗(y)−

n∑
i=1

1
n
x∗(yi) = x∗

(
y −

n∑
i=1

1
n
yi

)
< δ.

Since yi ∈ ∆ε(x), we have that yi cannot be in the slice S(BX , x
∗, α) for

i ∈ {1, . . . , n}. Therefore,

1− α < x∗(y)− δ <
n∑
i=1

1
n
x∗(yi) <

n∑
i=1

1
n

(1− α) = 1− α,

which gives us a contradiction.
For the proof of (i)⇔ (iv) see [Shv00].

Definition 1.4.8 (see [ALN13]). Let X be a Banach space. We say that X
has the

(a) local diameter two property (LD2P) if every slice of BX has diameter
2;

(b) diameter two property (D2P) if every non-empty relatively weakly open
subset of BX has diameter 2;

(c) strong diameter two property (SD2P) if every convex combination of
slices of BX has diameter 2.

Remark 1.4.9. Provided X is a dual Banach space the w∗-versions of these
properties are also of interest. To get the respective properties w∗-LD2P,
w∗-D2P, and w∗-SD2P, we consider w∗-slices in Definition 1.4.8 parts (a)
and (c) and relatively w∗-open subsets in part (b), respectively.

It is clear from Proposition 1.4.5 that we have the following chain of
implications

Daugavet property⇒ SD2P⇒ D2P⇒ LD2P.

The first implication follows from Proposition 1.4.5 (i) ⇒ (iv). The second
implication is due to the following lemma of Bourgain (see, e.g. [GGMS87,
Lemma II.1]).
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Lemma 1.4.10 (Bourgain’s Lemma). Let X be a Banach space and U a
non-empty relatively weakly open subset in BX . There exist n ∈ N, slices
S1, . . . , Sn of the unit ball, and scalars λ1, . . . , λn ∈ [0, 1] with ∑n

i=1 λi = 1
such that

n∑
i=1

λiSi ⊂ U.

The third implication is trivial since every slice is a relatively weakly open
subset of the unit ball. None of the reverse implications in the diagram above
hold, in particular all three diameter two properties from Definition 1.4.8 are
different. Indeed, it was shown in [BLR15] that c0 can be renormed in such
a way that it has the LD2P, but not the D2P. In particular LD2P 6⇒ D2P. In
[ABL15] and [HL14], it was independently proved that `p-sums fail to have
the SD2P for all 1 < p <∞, so the D2P 6⇒ SD2P since such sums preserve
the D2P (see [ALN13]). Also c0 is an example of a space with the SD2P which
fails the Daugavet property (see [ALN13]), so SD2P 6⇒ Daugavet property.

It is known that a Banach space X has the LD2P (respectively, D2P,
SD2P) if and only if X∗∗ has the w∗-LD2P (respectively, w∗-D2P, w∗-SD2P)
(see [HLP15]). Additionally, it follows from Definition 1.4.8 and Remark
1.4.9 that if a dual space has any of the diameter two properties, then it also
has the corresponding w∗-version. Thus, if the second dual X∗∗ of a Banach
space X has the LD2P (respectively, D2P, SD2P), then X has the LD2P
(respectively, D2P, SD2P). The converse of this is not true for any diameter
two property as can be seen from the following example.

Example 1.4.11 (see [Lan15, Example 2.16]). The Banach space L[0, 1] has
the SD2P, but its second dual contains slices of arbitrarily small diameter,
hence fails the LD2P.

The phenomenon that all slices of the unit ball of a Banach space have di-
ameter two cannot be observed among the finite-dimensional ones. In finite-
dimensional spaces there always exist slices of the unit ball with arbitrarily
small diameter. This is even true for the class of Banach spaces with the
well-known Radon–Nikodým property which contains the reflexive spaces, in
particular the finite-dimensional spaces. The Radon–Nikodým property has
many equivalent formulations. We will use the one with slices.

Definition 1.4.12 (see, e.g. [FHHMZ11, Theorem 11.15]). Let X be a
Banach space. We say that X has the Radon–Nikodým property if every
non-empty bounded subset of X has slices of arbitrarily small diameter, that
is, for every bounded subset B of X and for every ε > 0, there is a slice S of
B such that

diamS < ε.
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Throughout the thesis one of the main methods we use to explore the
properties that we study, is to see to what extent they are affected by taking
direct sums equipped with absolute normalised norms. We recall that a norm
N on R2 is called absolute if

N(a, b) = N(|a|, |b|) for all (a, b) ∈ R2

and normalised if
N(1, 0) = N(0, 1) = 1

(see [GGMS87]).
For example, the `p-norm ‖ · ‖p on R2 is absolute and normalised for

every p ∈ [1,∞]. If N is an absolute normalised norm on R2 (see [GGMS87,
Lemmata 21.1 and 21.2]), then

(a) ‖(a, b)‖∞ ≤ N(a, b) ≤ ‖(a, b)‖1 for all (a, b) ∈ R2;

(b) if (a, b), (c, d) ∈ R2 with |a| ≤ |c| and |b| ≤ |d|, then

N(a, b) ≤ N(c, d);

(c) the dual norm N∗ on R2 defined by

N∗(c, d) = max
N(a,b)≤1

(|ac|+ |bd|) for all (c, d) ∈ R2

is also absolute and normalised. Note that (N∗)∗ = N .

If X and Y are Banach spaces and N is an absolute normalised norm on
R2, then we denote by X ⊕N Y the product space X ×Y with respect to the
norm

‖(x, y)‖N = N(‖x‖, ‖y‖) for all x ∈ X and y ∈ Y ,
and we call this Banach space the absolute sum of X and Y . In the special
case where N is the `p-norm, we write X ⊕p Y . Note that (X ⊕N Y )∗ =
X∗ ⊕N∗ Y ∗. The following example shows that there are plenty of absolute
normalised norms that are not `p-norms.

Example 1.4.13 (see Figure 1.1). Let X and Y be Banach spaces and λ ∈
(1

2 , 1). Let the product space X × Y be equipped with the following norm

~(x, y)~ = max
{
‖(x, y)‖∞, λ‖(x, y)‖1

}
.

The norm ~ · ~ is an absolute normalised norm which differs from the `p-
norms (see Figure 1.1). Note that if λ = 1, then this norm coincides with
the `1-norm and if λ = 1

2 , then this norm coincides with the `∞-norm.
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Figure 1.1: First quadrant of the unit sphere of R2 with the norm from
Example 1.4.13 for different values of λ.

In Chapter 3, we make use of the following property of an absolute nor-
malised norm on R2.

Lemma 1.4.14. Let N be an absolute normalised norm on R2. For every
ε > 0 there exists δ ∈ (0, ε) such that for every p, q, r ≥ 0, if

2− δ ≤ N(p, q) ≤ N(r, q) ≤ 2 and q < 2− δ,

then |p− r| < ε.

Proof. Fix ε ∈ (0, 2) and set c = maxN(p,1)=1 p. To every q ∈ [0, 2) there
corresponds a unique pq ≥ 0 such that N(pq, q) = 2. Choose s ∈ (2 − ε, 2)
such that ps− cs < ε. It is easy to see that δ = 2− s satisfies the conditions
of the lemma, since the function [0, s] → R, q 7→ pq − rq, where rq ≥ 0 and
N(rq, q) = s, is non-decreasing and ps − rs < ε (see Figure 1.2).

Investigating properties of absolute sums of Banach spaces can often lead
to fruitful discoveries. For example, the first Banach space discovered with
the D2P, but without the SD2P, was an `p-sum, 1 < p < ∞, as mentioned
above. We will see in Chapter 3 that absolute sums can also be used to prove
that the notions Daugavet-point and ∆-point are different.

Among all absolute sums the Daugavet property is stable only by taking
`1-sums and `∞-sums.

Theorem 1.4.15 (see [BKSW05, Theorem 5.1 and Corollary 5.4]). Let X
and Y be Banach spaces.
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(a) If N is either `1- or `∞-norm, then X ⊕N Y has the Daugavet property
if and only if X and Y have the Daugavet property.

(b) If N is any other absolute norm, then X ⊕N Y does not have the Dau-
gavet property.

{(p, q) ∈ R2 : 2− δ ≤ N(p, q) ≤ 2}

cs psc 21

2

1

0

s = 2− δ •

•

•

•
< ε

Figure 1.2: The proof of Lemma 1.4.14.

In [ALN13] and [ABL15], it was proved that both the LD2P and the D2P
are stable by taking `p-sums for every 1 ≤ p ≤ ∞. This is far from being
true for the SD2P which behaves more like the Daugavet property in this
setting.

Theorem 1.4.16 (see [ABL15, Proposition 3.1], [ALN13, Theorem 2.7 (iii)
and Proposition 4.6], and [BL06, Lemma 2.1]). Let X and Y be Banach
spaces.

(a) The absolute sum X ⊕1 Y has the SD2P if and only if X and Y have
the SD2P.

(b) If X has the SD2P, then X ⊕∞ Y has the SD2P.

Theorem 1.4.17 (see, e.g. [ABL15, Theorem 3.2] or [HL14, Theorem 1]).
Let X and Y be Banach spaces and let p be such that 1 < p < ∞. Then
X ⊕p Y does not have the SD2P.





Chapter 2

Diametral diameter two
properties

The first systematic treatment of the diametral diameter two properties was
given in [BLR18]. Some preliminary work was done in [IK04], [AHNTT16],
and [ALNT16]. We give a brief overview of the latest research and study
stability properties of different types of diametral diameter two properties.
These results were obtained in [AHLP20] and [HPP16], except the results
regarding M -ideals that are new.

2.1 Definitions and examples
In this section we introduce the notions of the diametral diameter two prop-
erties which were considered in [BLR18].

Definition 2.1.1 (see [BLR18]). Let X be a Banach space. We say that X
has the

(a) diametral local diameter two property (DLD2P) if for every slice S of
BX , every x ∈ SX ∩ S, and every ε > 0 there exists y ∈ S such that
‖x− y‖ ≥ 2− ε;

(b) diametral diameter two property (DD2P) if for every non-empty rela-
tively weakly open subset U of BX , every x ∈ SX ∩U , and every ε > 0
there exists y ∈ U such that ‖x− y‖ ≥ 2− ε;

(c) diametral strong diameter two property (DSD2P) if for every n ∈ N,
non-empty relatively weakly open subsets U1, . . . , Un ofBX , λ1, . . . , λn ∈
[0, 1] such that ∑n

i=1 λi = 1, every x ∈ ∑n
i=1 λiUi, and every ε > 0 there

exists y ∈ ∑n
i=1 λiUi satisfying ‖x− y‖ ≥ 1 + ‖x‖ − ε.

25
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Remark 2.1.2. The DLD2P was originally introduced in [IK04] under the
name space with bad projections, and was also studied in [ALNT16] and
[AHNTT16] under the name the local diameter two property +. It is known
that the DLD2P is different from the Daugavet property (see [IK04]). The
formal difference between the DLD2P and the Daugavet property appears
by comparing Definition 2.1.1 part (a) and Proposition 1.4.5 part (ii), an
equivalent condition to the Daugavet property. Note that in the first case
the x ∈ SX is taken from the slice S of BX , whereas in the other case it is
arbitrary.
Remark 2.1.3. For dual Banach spaces one defines w∗-versions of the di-
ametral diameter two properties (w∗-DLD2P, w∗-DD2P, and w∗-DSD2P),
similarly to w∗-versions of the regular diameter two properties.

It is clear from the definitions that the DSD2P implies the DD2P, and
the DD2P implies the DLD2P. The Daugavet property implies the DSD2P,
as it was shown in [BLR18]. Moreover, it is easy to see that each diametral
diameter two property implies its counterpart in the regular diameter two
properties, that is, the DSD2P implies the SD2P, the DD2P implies the
D2P, and the DLD2P implies the LD2P. These observations are captured in
the following diagram.

Daugavet property DSD2P DD2P DLD2P

SD2P D2P LD2P

Let us now look at the reverse implications. An example of a Banach space
with the DD2P and failing the DSD2P was given in [BLR18, Example 2.2],
hence DD2P 6⇒ DSD2P. The converse of both Daugavet property⇒ DSD2P
and DD2P ⇒ DLD2P, are still open questions (see [BLR18, Question 4.1]).
That SD2P 6⇒ DSD2P, D2P 6⇒ DD2P, and LD2P 6⇒ DLD2P, follows, for
example, from the fact that c0 has the SD2P, but fails the DLD2P (see also
[AHNTT16]).
Example 2.1.4. The sequence space c0 has the SD2P, but fails to have the
DLD2P. Indeed, it is known that the sequence space c0 has the SD2P (see
[ALN13]). Let us show that c0 does not have the DLD2P. Consider a slice of
the unit ball Bc0 of the form S = {x = (ξk) ∈ Bc0 : e1(x) = ξ1 > 0}. Then
e1 ∈ Sc0 ∩ S. However, for any y = (ηk) ∈ S we have that

‖e1 − y‖ = max{|1− η1|, |η2|, |η3|, . . . } ≤ 1.

Therefore for ε ∈ (0, 1) there is no y ∈ S such that ‖e1 − y‖ ≥ 2 − ε, hence
c0 does not have the DLD2P. We remark that one can show similarly that
sequence spaces c and `∞ do not have the DLD2P.
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Let us briefly consider w∗-versions of the diametral diameter two proper-
ties. It is known that there is a strong connection between the DLD2P and
the w∗-DLD2P in the following sense.

Proposition 2.1.5 (see [AHNTT16, Theorem 3.6]). Let X be a Banach
space. Then X has the DLD2P if and only if X∗ has the w∗-DLD2P.

Whether the similar connection holds between the DD2P and the w∗-
DD2P or between the DSD2P and the w∗-DSD2P were posed as open prob-
lems in [BLR18] and have remained unanswered.

Recall that all regular diameter two properties have a convenient con-
nection to their corresponding w∗-versions in bidual, e.g. a Banach space
X has the LD2P if and only if X∗∗ has the w∗-LD2P. Similar equivalences
do not hold for the diametral diameter two properties, since X = C[0, 1]
has the Daugavet property (hence also the DSD2P, the DD2P, the DLD2P)
but its dual has the Radon–Nikodým property, so X∗ fails the DLD2P, and
consequently, by Proposition 2.1.5, X∗∗ fails the w∗-DLD2P (cf. [BLR18,
Remark 2.4]). Nonetheless, for all diametral diameter two properties the
implication in the other direction holds, i.e. a Banach space whose bidual
has a w∗-diametral diameter two property has the corresponding diametral
diameter two property. In the case of the DLD2P this result is a simple
corollary of Proposition 2.1.5, the cases regarding the DD2P and the DSD2P
were proved in [BLR18].

Proposition 2.1.6 (see [AHNTT16, Theorem 3.6] and [BLR18, Proposition
2.3]). Let X be a Banach space. If X∗∗ has the w∗-DLD2P (respectively, w∗-
DD2P, w∗-DSD2P), then X has the DLD2P (respectively, DD2P, DSD2P).

To end this section, we observe different characterisations of the diametral
diameter two properties. For the DLD2P we have the following equivalent
descriptions (cf. Proposition 1.4.5).

Proposition 2.1.7 (see [IK04, Theorem 1.4] and [Wer01, Corollary 2.3]).
Let X be a Banach space. The following assertions are equivalent:

(i) X has the DLD2P, i.e. for every slice S of BX , every x ∈ SX ∩ S and
every ε > 0 there exists y ∈ S such that ‖x− y‖ ≥ 2− ε;

(ii) ‖ Id−P‖ ≥ 2 for every rank-1 projection P : X → X;

(iii) x ∈ conv ∆ε(x) for every x ∈ SX and every ε > 0, where

∆ε(x) = {y ∈ BX : ‖x− y‖ ≥ 2− ε}.
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The DD2P can be equivalently formulated using special kind of rank-1
projections.

Proposition 2.1.8 (see [BLR18, Proposition 2.9]). Let X be a Banach space.
The following assertions are equivalent:

(i) X has the DD2P;

(ii) for every n ∈ N, x∗1, . . . , x∗n ∈ SX∗, every x ∈ X with x∗i (x) 6= 0 for
every i ∈ {1, . . . , n}, and every ε > 0 there exists y ∈ BX such that for
every i ∈ {1, . . . , n} we have

x∗i (y)
x∗i (x) ≥ 0

and
‖y − Piy‖ > 2− ε,

where
Pi = 1

x∗i (x)x
∗
i ⊗ x.

There is no known equivalent characterisation by the set of almost di-
ametral points for the DD2P. For the DSD2P, however, there is no known
characterisation with projections either.

The following lemma suggests that, in the definition of DSD2P (see Def-
inition 2.1.1 part (c)), we can replace the elements of the unit ball in the
convex combination with elements of the unit sphere. This lemma plays the
key role in the proof of Theorem 2.2.6, where it is proved that given two
Banach spaces with the DSD2P, their `1-sum also has the DSD2P.

Lemma 2.1.9. Let X be a Banach space. Then X has the DSD2P if and
only if for every n ∈ N, non-empty relatively weakly open subsets U1, . . . , Un
of BX , λ1, . . . , λn ∈ [0, 1] such that ∑n

i=1 λi = 1, every x ∈ ∑n
i=1 λi

(
SX ∩Ui

)
,

and every ε > 0 there exists y ∈ ∑n
i=1 λiUi satisfying

‖x− y‖ ≥ 1 + ‖x‖ − ε.

Proof. Firstly, notice that the space X may be assumed to be infinite-
dimensional (because clearly no finite-dimensional space can have the DSD2P)
and the sets U1, . . . , Un to be convex (because, since x = ∑n

i=1 λiui where
ui ∈ Ui, for every i ∈ {1, . . . , n}, it suffices to consider in the role of Ui a
convex relatively weakly open neighbourhood Vi of ui satisfying Vi ⊂ Ui).
Now, to prove the lemma, it suffices to observe that
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(∗) every a ∈ Ui can be written in the form a = (1 − µi)yi + µizi where
µi ∈ [0, 1] and yi, zi ∈ SX ∩ Ui,

because, if (∗) holds, then the element x can be written as

x =
n∑
i=1

λi(1− µi)yi +
n∑
i=1

λiµizi

and (by the convexity of U1, . . . , Un)
n∑
i=1

λi(1− µi)Ui +
n∑
i=1

λiµiUi ⊂
n∑
i=1

λiUi.

It remains to prove (∗). Let i ∈ {1, . . . , n} and let a ∈ Ui, ‖a‖ < 1. Let
m ∈ N, x∗1, . . . , x∗m ∈ X∗, and δ > 0 be such that

Ui ⊃ {b ∈ BX : |x∗j(b)− x∗j(a)| < δ, j = 1, . . . ,m}.

Choose a non-zero c ∈ ⋂m
j=1 kerx∗j (such a c exists when the space X is

infinite-dimensional), and consider the function f(t) = ‖a+ tc‖, t ∈ R. Since
f(0) = ‖a‖ < 1 and f(t)→∞ in the process t→ ±∞, there are s, t ∈ (0,∞)
such that f(−s) = f(t) = 1, but now yi = a−sc, zi = a+tc, and µi = s/(s+t)
do the job.

2.2 Diametral diameter two properties in ab-
solute sums

Y. Ivakhno and V. Kadets proved that an absolute sum of Banach spaces
has the DLD2P if and only if each component space has the DLD2P (cf.
[IK04, Theorem 3.2]). We give the result with a proof to present the basic
techniques used in dealing with the DLD2P.

Theorem 2.2.1 (cf. [IK04, Theorem 3.2]). Let X and Y be Banach spaces
and N an absolute normalised norm on R2. Then X ⊕N Y has the DLD2P
if and only if both X and Y have the DLD2P.

Proof. (⇐) Assume Z = X ⊕N Y has the DLD2P. We show that X has the
DLD2P (the case Y has the DLD2P is similar). Assume by contradiction that
X does not have the DLD2P. In that case, there exist a slice S(BX , x

∗, α),
x ∈ SX ∩ S(BX , x

∗, α), and δ > 0 such that for every u ∈ S(BX , x
∗, α) we

have that
‖x− u‖ < 2− δ.
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By Lemma 1.4.2, we may assume that α < δ. Denote z∗ = (x∗, 0) and
z = (x, 0). Clearly z∗ ∈ SZ∗ and z ∈ SZ . Note that z ∈ S(BZ , z

∗, α),
because z∗(z) = x∗(x) > 1 − α. An arbitrary w = (u, v) ∈ S(BZ , z

∗, α)
satisfies that u ∈ S(BX , x

∗, α), since x∗(u) = z∗(w) > 1 − α. Therefore,
‖x− u‖ < 2− δ and ‖u‖ > 1− α. In conclusion we get that

‖z − w‖N = ‖(x, 0)− (u, v)‖N = N(‖x− u‖, ‖v‖)
< N(2− δ, ‖v‖)
= N

(
(2− δ − ‖u‖, 0) + (‖u‖, ‖v‖)

)
≤ (2− δ − ‖u‖) + 1
<
(
2− δ − (1− α)

)
+ 1

= 2− δ + α,

which contradicts the fact that Z has the DLD2P.
(⇒) Assume X and Y have the DLD2P. Set Z = X ⊕N Y . Let ε > 0.

Consider a slice S(BZ , z
∗, α) and an element z ∈ SX ∩ S(BZ , z

∗, α), where
z∗ = (x∗, y∗) and z = (x, y). Let

S1 = {u ∈ BX : ‖x‖x∗(u) > x∗(x)− α1}

and
S2 = {v ∈ BY : ‖y‖y∗(v) > y∗(y)− α2} ,

where α1, α2 > 0 satisfy the condition α1 + α2 ≤ z∗(z)− (1− α).
The sets S1 and S2 are slices of the unit ball. For example, S1 is a slice

of BX , since for x = 0 or x∗ = 0 we have S1 = BX and if x 6= 0 and x∗ 6= 0
we have

S1 = S
(
BX ,

x∗

‖x∗‖
, 1− x∗(x)− α1

‖x∗‖‖x‖

)
.

Take u ∈ S1 and v ∈ S2 such that∥∥∥x− ‖x‖u∥∥∥ ≥ (2− ε)‖x‖

and ∥∥∥y − ‖y‖v∥∥∥ ≥ (2− ε)‖y‖.

Such an element u exists for the following reason (the existence of v can be
shown similarly): if x = 0, then any u ∈ S1 will be suitable; if x 6= 0, then
x/‖x‖ ∈ SX ∩ S1 and since X has the DLD2P, there exists u ∈ S1 such that
‖x/‖x‖ − u‖ ≥ 2− ε, i.e. ‖x− ‖x‖u‖ ≥ (2− ε)‖x‖.
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Note that w =
(
‖x‖u, ‖y‖v

)
∈ S(BZ , z

∗, α), because

z∗(w) = ‖x‖x∗(u) + ‖y‖y∗(v)
> x∗(x) + y∗(y)− (α1 + α2)
= z∗(z)− (α1 + α2)
≥ 1− α.

In addition we have that ‖z − w‖N ≥ 2− ε, since

‖z − w‖N =
∥∥∥(x, y)− (‖x‖u, ‖y‖v)

∥∥∥
N

= N
(∥∥∥x− ‖x‖u∥∥∥, ∥∥∥y − ‖y‖v∥∥∥)

≥ N
(
(2− ε)‖x‖, (2− ε)‖y‖

)
= 2− ε.

In conclusion, Z has the DLD2P.

The stability of the DD2P and the DSD2P under `p-sums was explored in
[BLR18]. We consider the stability of the DD2P in a more general setting of
absolute sums. Our proof slightly differs from the original proof for `p-sums
in [BLR18].

Proposition 2.2.2 (cf. [BLR18, Theorem 2.12 and Proposition 2.13]). Let
X and Y be Banach spaces and N an absolute normalised norm on R2. Then
X ⊕N Y has the DD2P if and only if both X and Y have the DD2P.

Proof. (⇒) Assume Z = X ⊕N Y has the DD2P. We show that X has
the DD2P, the proof for the case Y has the DD2P is analogical. Let U be
a relatively weakly open subset of BX , x ∈ SX ∩ U, and ε ∈ (0, 1). Let
δ ∈ (0, ε/2). Then 1 < (2 − ε)/(1 − δ) < 2. Consider a relatively weakly
open subset of BZ

W =
{

(u, v) ∈ BZ : u ∈ U, ‖u‖ > 1− δ
}
.

Obviously, (x, 0) ∈ SZ ∩ W . Since X ⊕N Y has the DD2P, there exists
(u, v) ∈ W such that

‖(x, 0)− (u, v)‖N ≥
2− ε
1− δ .
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Since

‖(x− u, v)‖N ≤
∥∥∥∥(‖x− u‖1− δ u, v

)∥∥∥∥
N

≤ max
{‖x− u‖

1− δ , 1
}
‖(u, v)‖N

≤ max
{‖x− u‖

1− δ , 1
}
,

we can conclude that

2− ε
1− δ ≤ max

{‖x− u‖
1− δ , 1

}
,

i.e. ‖x− u‖ ≥ 2− ε, hence X has the DD2P.
(⇐) Assume X and Y have the DD2P. In the following we prove that

Z = X ⊕N Y has the DD2P. Let W be a relatively weakly open subset of
BZ , z = (x, y) ∈ SZ ∩W, and ε > 0. We show the existence of w ∈ W such
that

‖z − w‖N ≥ 2− ε.

It is sufficient to look at the case

W =
{
w ∈ BZ : |z∗i (z − w)| < 1 ∀i ∈ {1, . . . , n}

}
,

where n ∈ N, z∗i = (x∗i , y∗i ) ∈ Z∗. Let us first consider the case x 6= 0 and
y 6= 0. The sets

U =
{
u ∈ BX :

∣∣∣∣x∗i( x

‖x‖
− u

)∣∣∣∣ < 1
2‖x‖ ∀i ∈ {1, . . . , n}

}

and
V =

{
v ∈ BY :

∣∣∣∣y∗i ( y

‖y‖
− v

)∣∣∣∣ < 1
2‖y‖ ∀i ∈ {1, . . . , n}

}
are obviously relatively weakly open. Since x/‖x‖ ∈ SX ∩ U and y/‖y‖ ∈
SY ∩ V , then there exist u ∈ U and v ∈ V such that∥∥∥∥ x

‖x‖
− u

∥∥∥∥ > 2− ε

and ∥∥∥∥ y

‖y‖
− v

∥∥∥∥ > 2− ε.
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Take w = (‖x‖u, ‖y‖v). Then w ∈ W , because

‖w‖N =
∥∥∥(‖x‖u, ‖y‖v)

∥∥∥
N

= N(‖x‖‖u‖, ‖y‖‖v‖)
≤ N(‖x‖, ‖y‖) = 1,

which gives us that w ∈ BZ , and for every i ∈ {1, . . . , n}

|z∗i (z − w)| =
∣∣∣x∗i (x− ‖x‖u) + y∗i (y − ‖y‖v)

∣∣∣
≤ ‖x‖

∣∣∣∣x∗i( x

‖x‖
− u

)∣∣∣∣+ ‖y‖∣∣∣∣y∗i ( y

‖y‖
− v

)∣∣∣∣
< ‖x‖ 1

2‖x‖ + ‖y‖ 1
2‖y‖

= 1.

Notice that

‖z − w‖N =
∥∥∥(x− ‖x‖u, y − ‖y‖v)

∥∥∥
N

= N
(∥∥∥x− ‖x‖u∥∥∥, ∥∥∥y − ‖y‖v∥∥∥)

= N
(
‖x‖

∥∥∥∥ x

‖x‖
− u

∥∥∥∥, ‖y‖∥∥∥∥ y

‖y‖
− v

∥∥∥∥)
≥ N

(
(2− ε)‖x‖, (2− ε)‖y‖

)
= 2− ε.

Now, let us consider the case x = 0 or y = 0. Assume y = 0. The set

U =
{
u ∈ BX : |x∗i (x− u)| < 1 ∀i ∈ {1, . . . , n}

}
is obviously relatively weakly open. Since x ∈ SX ∩U and X has the DD2P,
there is u ∈ U such that ‖x − u‖ ≥ 2 − ε. Take w = (u, 0). Then w ∈ W ,
because

‖w‖N = ‖(u, 0)‖N = N(‖u‖, 0) = ‖x‖ ≤ 1,
hence w ∈ BZ , and for every i ∈ {1, . . . , n}

|z∗i (z − w)| = |x∗i (x− u)| < 1.

Notice that

‖z − w‖N = ‖(x− u, 0)‖N = N(‖x− u‖, 0) = ‖x− u‖ ≥ 2− ε.
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Recall that no `p-sum for 1 < p < ∞ can have the SD2P (see Theorem
1.4.17). Since the DSD2P implies the SD2P, it is evident that such `p-sums
cannot have the DSD2P either.

Theorem 2.2.3. Let X and Y be Banach spaces. The Banach space X⊕pY
fails the DSD2P for every 1 < p <∞.

The behaviour of the DSD2P by taking `1- and `∞-sums, was studied in
[BLR18]. In the `∞-case the DSD2P was shown to be stable.

Theorem 2.2.4 (see [BLR18, Proposition 3.6 and Theorem 3.7]). Let X and
Y be Banach spaces. Then X ⊕∞ Y has the DSD2P if and only if X and Y
have the DSD2P.

For the `1-sum, however, the behaviour was described in the direction
from the sum to the summands.

Proposition 2.2.5 (see [BLR18, Proposition 3.6]). Let X and Y be Banach
spaces. If X ⊕1 Y has the DSD2P, then X and Y have the DSD2P.

We completed this research in [HPP16] with the other direction.

Theorem 2.2.6. Let X and Y be Banach spaces with the DSD2P. Then
X ⊕1 Y has the DSD2P.

Proof. Set Z = X ⊕1 Y , and let n ∈ N, let W1, . . . ,Wn be relatively weakly
open subsets of BZ , let λ1, . . . , λn ∈ [0, 1] satisfy ∑n

i=1 λi = 1, and let z =∑n
i=1 λizi where zi = (xi, yi) ∈ SZ ∩Wi. (The last inclusion holds because of

Lemma 2.1.9.) We must find a w = (u, v) ∈ ∑n
i=1 λiWi so that ‖z − w‖ ≥

‖z‖ + 1 − ε, i.e. putting x = ∑n
i=1 λixi and y = ∑n

i=1 λiyi (now one has
z = (x, y)),

‖x− u‖+ ‖y − v‖ ≥ ‖x‖+ ‖y‖+ 1− ε.

For every i ∈ {1, . . . , n}, putting

x̂i =

xi/‖xi‖, if xi 6= 0,
0, if xi = 0,

and ŷi =

yi/‖yi‖, if yi 6= 0,
0, if yi = 0,

there are relatively weakly open neighbourhoods Ui ⊂ BX and Vi ⊂ BY of
x̂i and ŷi, respectively, such that

(
‖xi‖Ui

)
×
(
‖yi‖Vi

)
⊂ Wi. Indeed, letting

m ∈ N, z∗j = (x∗j , y∗j ) ∈ SZ∗ , j = 1, . . . ,m, and δ > 0 such that

Wi ⊃ {w ∈ BZ : |z∗j (w)− z∗j (zi)| < δ, j = 1, . . . ,m},
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and defining

Ui = {u ∈ BX : |x∗j(u)− x∗j(x̂i)| < δ, j = 1, . . . ,m},

Vi = {v ∈ BY : |y∗j (v)− y∗j (ŷi)| < δ, j = 1, . . . ,m},

one has, whenever u ∈ Ui and v ∈ Vi, for every j ∈ {1, . . . ,m},∣∣∣z∗j (‖xi‖u, ‖yi‖v)− z∗j (zi)∣∣∣ =
∣∣∣z∗j (‖xi‖u, ‖yi‖v)− z∗j (xi, yi)∣∣∣

=
∣∣∣x∗j(‖xi‖u)+ y∗j

(
‖yi‖v

)
− x∗j(xi)− y∗j (yi)

∣∣∣
=
∣∣∣x∗j(‖xi‖u)+ y∗j

(
‖yi‖v

)
− x∗j(‖xi‖x̂i)− y∗j (‖yi‖ŷi)

∣∣∣
=
∣∣∣‖xi‖x∗j(u− x̂i) + ‖yi‖y∗j (v − ŷi)

∣∣∣
≤ ‖xi‖|x∗j(u− x̂i)|+ ‖yi‖|y∗j (v − ŷi)|
<
(
‖xi‖+ ‖yi‖

)
δ

= ‖zi‖δ = δ.

Put
α =

n∑
i=1

λi‖xi‖ and β =
n∑
i=1

λi‖yi‖.

Notice that

α + β =
n∑
i=1

λi
(
‖xi‖+ ‖yi‖

)
=

n∑
i=1

λi‖zi‖ =
n∑
i=1

λi = 1.

We only consider the case when both α 6= 0 and β 6= 0. (The case when
α = 0 or β = 0 can be handled similarly and is, in fact, simpler.)

For every i ∈ {1, . . . , n}, letting

αi = λi‖xi‖
α

and βi = λi‖yi‖
β

,

one has αi, βi ∈ [0, 1], and ∑n
i=1 αi = ∑n

i=1 βi = 1. Since X and Y have the
DSD2P, observing that

x

α
=

n∑
i=1

λi‖xi‖
α

x̂i ∈
n∑
i=1

αiUi and y

β
=

n∑
i=1

λi‖yi‖
β

ŷi ∈
n∑
i=1

βiVi,

there are u0 ∈
∑n
i=1 αiUi and v0 ∈

∑n
i=1 βiUi such that∥∥∥∥xα − u0

∥∥∥∥ ≥ 1
α
‖x‖+ 1− ε and

∥∥∥∥ yβ − v0

∥∥∥∥ ≥ 1
β
‖y‖+ 1− ε.
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Finally, putting
u = αu0 ∈

n∑
i=1

ααiUi =
n∑
i=1

λi‖xi‖Ui,

v = βv0 ∈
n∑
i=1

ββiVi =
n∑
i=1

λi‖yi‖Vi,

one has
(u, v) ∈

n∑
i=1

λi

((
‖xi‖Ui

)
×
(
‖yi‖Vi

))
⊂

n∑
i=1

λiWi

and

‖x− u‖+ ‖y − v‖ ≥ ‖x‖+ ‖y‖+ (α + β)(1− ε) = ‖x‖+ ‖y‖+ 1− ε,

as desired.

Theorems 2.2.4, 2.2.6, and Proposition 2.2.5 provide a complete picture
regarding the stability of the DSD2P taking `p-sums. By [HLN18] no other
absolute sum can have the DSD2P.

Proposition 2.2.7 (see [HLN18, Corollary 3.8]). Let X and Y be Banach
spaces and N an absolute normalised norm on R2. If Z = X ⊕N Y has the
DSD2P, then either Z = X ⊕1 Y or Z = X ⊕∞ Y .

2.3 Diametral diameter two properties in
subspaces and M-ideals

The aim of this section is to complement the existing inheritance results for
the diametral diameter two properties by showing that the DLD2P and the
DD2P pass from the space to its M -ideals. These results are new to the
knowledge of the author.

In [BLR18], it was shown that the DD2P and the DLD2P pass down
from the space to finite co-dimensional subspaces, similarly to the regular
diameter two properties (see [BLR16]).

Proposition 2.3.1 (see [BLR18, Theorems 2.14 and 3.8]). Let X be a Ba-
nach space.

(a) Assume that X has the DD2P. If Y is a closed subspace of X such that
X/Y is finite-dimensional, then Y has the DD2P.

(b) Assume that X has the DSD2P. If X has the DSD2P and X/Y is
strongly regular, then Y also has the DSD2P.



2.3. DD2P IN SUBSPACES AND M -IDEALS 37

Remark 2.3.2. Recall that a Banach space X is strongly regular if every non-
empty closed convex bounded subset of X has finite convex combinations
of slices (equivalently, relatively weakly open subsets) with arbitrarily small
diameter (see, e.g. [BLR18]). Obviously, every finite-dimensional subspace
is strongly regular.

It is known that all diametral diameter two properties pass down from
the second dual (see Proposition 2.1.6). More generally, all three diametral
diameter two properties and the Daugavet property are inherited by cer-
tain subspaces called almost isometric ideals (see [ALN14], [ALNT16], and
[BLR18]).

Furthermore, the Daugavet property is inherited byM -ideals, and assum-
ing that both the M -ideal Y in a Banach space X and the quotient space
X/Y share the Daugavet property, we obtain the Daugavet property for X as
well (see [KSSW00]). Note that if Y is an M -ideal in X, then X\Y need not
have the Daugavet property. For example, Y = {f ∈ C[0, 1] : f(0) = 0} is an
M -ideal in X = C[0, 1] but in this case X\Y is one dimensional, therefore,
fails even the LD2P.

It is known that the regular diameter two properties lift from an M -ideal
to the superspace (see [HL14]). We will now show that the DLD2P and the
DD2P behave differently, they pass down from the space to its M -ideals,
similarly to the Daugavet property.

Definition 2.3.3 (see, e.g. [HWW93]). Let X be a Banach space and Y a
closed subspace of X. Then Y is said to be an M-ideal in X if there exists
a linear projection P : X∗ → X∗ such that ‖x∗‖ = ‖Px∗‖ + ‖x∗ − Px∗‖ for
every x∗ ∈ X∗ and kerP = Y ⊥, where

Y ⊥ = {x∗ ∈ X∗ : x∗(y) = 0 for all y ∈ Y }.

If Y is anM -ideal in X and P is a linear projection from Definition 2.3.3,
then ranP is isometric to Y ∗ and we shall identify them by identifying Px∗
and x∗|Y for every x∗ ∈ X∗.

Proposition 2.3.4. Let X be a Banach space. If X has the DLD2P, then
every M-ideal in X also has the DLD2P.

Proof. Assume that X has the DLD2P. Let Y be an M -ideal in X and let
P : X∗ → X∗ be a linear projection as in Definition 2.3.3. We will show that
Y has the DLD2P.

Fix ε > 0 and y∗ ∈ SY ∗ . Let y ∈ SY ∩ S(BY , y
∗, ε). Pick δ > 0 such

that y∗(y) > 1− ε+ δ. Consider the slice S(BX , Px
∗, ε− δ), where x∗ ∈ X∗
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is a norm-preserving extension of y∗. Since X has the DLD2P and y ∈
S(BX , Px

∗, ε− δ), we can find x0 ∈ S(BX , Px
∗, ε− δ) such that

‖y − x0‖ ≥ 2− ε

3 .

For some z∗ ∈ SX∗ we have z∗(y−x0) ≥ 2−ε/3, which gives z∗(y) ≥ 1−ε/3,
and so

‖z∗|Y ‖ ≥ 1− ε

3 and ‖z∗ − Pz∗‖ = ‖z∗‖ − ‖z∗|Y ‖ ≤
ε

3 .

According to [Wer94, Propostion 2.3], since Y is an M -ideal in X, there
exists y0 ∈ BY such that

|Px∗(x0 − y0)| < δ and |Pz∗(x0 − y0)| < ε

3 .

Then y0 ∈ S(BY , y
∗, ε), because

y∗(y0) = (Px∗)(y0)
= (Px∗)(x0)− (Px∗)(x0 − y0)
> 1− (ε− δ)− δ
= 1− ε.

Notice that

‖y − y0‖ ≥ z∗(y − y0)
= z∗(y − x0) + Pz∗(x0 − y0) + (z∗ − Pz∗)(x0)

≥ 2− ε

3 −
ε

3 −
ε

3
= 2− ε.

Therefore, Y has the DLD2P.

Proposition 2.3.5. Let X be a Banach space. If X has the DD2P, then
every M-ideal in X also has the DD2P.

Proof. Assume that X has the DD2P. Let Y be an M -ideal in X and let
P : X∗ → X∗ be a linear projection as in Definition 2.3.3. We will show that
Y has the DD2P.

Fix ε > 0, y ∈ SY , n ∈ N, and y∗1, . . . , y
∗
n ∈ SY ∗ . Consider relatively

weakly open subsets

U =
{
z ∈ BY : |y∗i (y − z)| < ε ∀i ∈ {1, . . . , n}

}
,
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V =
{
z ∈ BX : |Px∗i (y − z)| < ε

2 ∀i ∈ {1, . . . , n}
}
,

where x∗i ∈ X∗ is a norm-preserving extension of y∗i for every i ∈ {1, . . . , n}.
Since X has the DD2P, we can find x0 ∈ V such that

‖y − x0‖ ≥ 2− ε/3.

For some x∗ ∈ SX∗ we have x∗(y−x0) ≥ 2−ε/3, which gives x∗(y) ≥ 1−ε/3,
and so

‖x∗|Y ‖ ≥ 1− ε

3 and ‖x∗ − Px∗‖ = ‖x∗‖ − ‖x∗|Y ‖ ≤
ε

3 .

According to [Wer94, Propostion 2.3], since Y is an M -ideal in X, there
exists y0 ∈ BY such that for every i ∈ {1, . . . , n}

|Px∗(x0 − y0)| < ε

3 and |Px∗i (x0 − y0)| < ε

2 .

Then y0 ∈ U because for every i ∈ {1, . . . , n} we have

|y∗i (y − y0)| ≤ |(Px∗i )(y − x0)|+ |(Px∗i )(x0 − y0)|

<
ε

2 + ε

2 = ε.

Notice that

‖y − y0‖ ≥ x∗(y − y0)
= x∗(y − x0) + Px∗(x0 − y0) + (x∗ − Px∗)(x0)

≥ 2− ε

3 −
ε

3 −
ε

3
= 2− ε.

Therefore, Y has the DD2P.

So far, it is not clear whether the DSD2P is inherited by M -ideals. It is
also not known whether any of the diametral diameter two properties lifts
from an M -ideal to the whole space.

2.4 Convex diametral local diameter two
property

In [AHLP20], we introduced and studied the property that was inspired by
the description of the DLD2P via the set of almost diametral points (see
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Proposition 2.1.7): it is known from that characterisation that a Banach
space has the DLD2P if and only if every element of the unit sphere is
contained in the closed convex hull of its almost diametral points. In this
section, we look at the Banach spaces where there are enough elements of the
unit sphere satisfying this condition so that the closed convex hull of their
collection equals to the whole unit ball.

For a Banach space X set ∆X to be the collection of all those unit sphere
elements x such that x ∈ conv ∆X

ε (x) for every ε > 0, where

∆X
ε (x) = {y ∈ BX : ‖x− y‖ ≥ 2− ε}.

We write ∆ and ∆ε(x) instead of ∆X and ∆X
ε (x), respectively, when no

confusion can arise.

Definition 2.4.1. Let X be a Banach space. If BX = conv(∆), then we
say that X has the convex diametral local diameter two property (convex
DLD2P).

According to Proposition 2.1.7 part (c), a Banach spaceX has the DLD2P
if and only if ∆ = SX . It immediately follows that the DLD2P implies the
convex DLD2P. It turns out that the convex DLD2P implies the LD2P.

Proposition 2.4.2. Let X be a Banach space. If X has the convex DLD2P,
then X has the LD2P.

Proof. Let x∗ ∈ SX∗ , ε > 0, and consider the slice S(BX , x
∗, ε). Pick some

x̂ ∈ S(BX , x
∗, ε /4). Choose (xi)ni=1 ⊂ ∆ and a convex combination x =∑n

i=1 λixi with ‖x − x̂‖ < ε /4. Now at least one of the xi-s must be in
S(BX , x

∗, ε /2) otherwise

x∗(x) =
n∑
i=1

λix
∗(xi) <

n∑
i=1

λi(1− ε /2) < 1− ε /2,

which contradicts the fact that x̂ ∈ S(BX , x
∗, ε /4) and ‖x̂− x‖ < ε /4. Now

let xk be one of the xi-s which are in S(BX , x
∗, ε /2) and use the same idea

as above to produce some y ∈ ∆ε(xk) such that y ∈ S(BX , x
∗, ε). Since

xk ∈ S(BX , x
∗, ε /2) ⊂ S(BX , x

∗, ε) and ‖xk − y‖ > 2− ε we are done.

The following result provides a class of Banach spaces with the convex
DLD2P.

Proposition 2.4.3. If K is an infinite compact Hausdorff space, then C(K)
has the convex DLD2P.
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Proof. We only need to show that SC(K) ⊂ conv ∆. Let f ∈ C(K) with ‖f‖ =
1. If |f(x)| = 1 for some limit point of K, then f ∈ ∆ by Theorem 3.2.4.
Assume that |f(x)| < 1 for every limit point of K and let x0 be a limit point
of K.

Let ε > 0 and choose a neighbourhood U of x0 such that |f(x)−f(x0)| < ε
for every x ∈ U . We use Urysohn’s Lemma to find a function η : K → [0, 1]
such that η(x0) = 1 and η = 0 on K \ U . Define

f+(x) = (1− η(x))f(x) + η(x)(1),
f−(x) = (1− η(x))f(x) + η(x)(−1).

Then f± ∈ BC(K) and both are in ∆ by Theorem 3.2.4. Let λ =
(
1+f(x0)

)
/2

and consider
g(x) = λf+(x) + (1− λ)f−(x).

Then

g(x) =

f(x), x ∈ K \ U,
(1− η(x))f(x) + η(x)f(x0), x ∈ U.

We get
‖g − f‖ ≤ max

x∈U
|η(x)(f(x)− f(x0))| < ε.

Since ε > 0 was arbitrary we get that f ∈ conv ∆.

Corollary 2.4.4. Both c = C([0, ω]) and `∞ = C(βN) have the convex
DLD2P.

Recall that due to Example 2.1.4 the spaces c0, c, and `∞ fail to have the
DLD2P. However, c0 even fails the convex DLD2P, because of the following
observation.

Example 2.4.5. For c0 we have ∆ = ∅. Indeed, assume to the contrary that
∆ 6= ∅. Let x = (ξi)∞i=1 ∈ Sc0 be such that x ∈ conv ∆ε(x) for every ε > 0.
Since x ∈ c0, there are only finite number of indices such that |ξi| = 1, say
n ∈ N. We may assume without loss of generality that these are the first n
terms of x, and find ε > 0 such that |ξi| < 1−ε for every i > n. Since x ∈ ∆,
there exist yk = (ηki ) ∈ Bc0 , k ∈ {1, . . . ,m} such that∥∥∥∥x− 1

m

m∑
k=1

yk

∥∥∥∥ ≤ ε

2 (2.4.1)

and
‖x− yk‖ ≥ 2− ε

2 for every k ∈ {1, . . . ,m}. (2.4.2)
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It follows from (2.4.1) that that sgn ξi = sgn ηki , for every i ∈ {1, . . . , n}
and every k ∈ {1, . . . ,m}. Consequently, |ξi−ηki | ≤ 1 for every i ∈ {1, . . . , n}
and every k ∈ {1, . . . ,m}. However, from (2.4.2) we get that for every
k ∈ {1, . . . ,m} there is ik ∈ {1, . . . , n} such that |ξik − ηkik | ≥ 2 − ε/2, a
contradiction.

Remark 2.4.6. Unlike the DLD2P and the DD2P, the convex DLD2P is not
inherited by M -ideals, since c0 is an M -ideal in `∞.
Remark 2.4.7. It is known that the LD2P is inherited from the bidual (see
[Lan15, Corollary 2.15]). In contrast, it can be said by the previous obser-
vations, that the convex DLD2P is not inherited from the bidual. Moreover,
the convex DLD2P is not inherited by subspaces of codimension 1, since c0
is of codimension 1 in c.

In conclusion we have that the convex DLD2P is a new diameter two prop-
erty, different from the ones observed so far, i.e. the following implications
hold whereas the reverse implications do not

DLD2P⇒ convex DLD2P⇒ LD2P.

We continue with another example of a class of Banach spaces that has
the convex DLD2P, more precisely, we will show that Müntz spaces have the
convex DLD2P.

Definition 2.4.8. Let Λ = (λn)∞n=0 be an increasing sequence of non-negative
real numbers

0 = λ0 < λ1 < · · · < λn < · · ·
such that ∑∞i=1 1/λi < ∞. Then M(Λ) := span{tλn}∞n=0 ⊂ C[0, 1] is called
the Müntz space associated with Λ.

We will sometimes need to exclude the constants and consider the sub-
space M0(Λ) := span{tλn}∞n=1 of M(Λ).

Theorem 2.4.9. Let X = M(Λ) or X = M0(Λ) be a Müntz space. Then X
has the convex DLD2P.

Proof. It is enough to show that SX ⊂ conv ∆. Since P := span{tλn} is
dense in X, it is enough to show that if f ∈ BP with ‖f‖ = 1 − s for some
0 < s < 1, then f ∈ conv ∆. To this end, given n ∈ N we define

f+
n (x) = f(x) + (1− f(1))xλn

and
f−n (x) = f(x)− (1 + f(1))xλn .
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From Proposition 3.2.10 we see that f±n are candidates for being elements of
the set ∆ since

f±n (1) = f(1)± (1∓ f(1)) = ±1.
If we define µ = (f(1) + 1)/2, that is, 2µ − 1 = f(1), we have a convex
combination

µf+
n (x) + (1− µ)f−n (x) = f(x) +

(
2µ− 1− f(1)

)
xλn = f(x).

We need to show that when n is large enough we have f±n ∈ SP .
Since f ∈ P we can write

f(x) =
m∑
k=0

akx
λk .

Now, f , f ′, and f ′′ are all generalised polynomials so by Descartes’ rule of
signs, see, e.g. [Jam06, Theorem 3.1], they only have a finite number of zeros
on (0, 1]. Hence, there exists t0 ∈ (0, 1) such that neither f ′ nor f ′′ changes
sign on (t0, 1). Without loss of generality we may assume that f ′ < 0 on
(t0, 1). (If f ′ > 0 on (t0, 1) we consider −f .)

There exists N such that

tλn0 < s/2 for n > N. (2.4.3)

For n > N we get

|f−n (x)| ≤ 1− s+ (1 + f(1))s/2 ≤ 1

on [0, t0] and on [t0, 1] we have

d

dx
(f−n (x)) = f ′(x)− λn(1 + f(1))xλn−1 < 0.

We have |f−n (x)| ≤ 1 in both endpoints of [t0, 1]. Hence ‖f−n ‖ ≤ 1.
It remains to find n > N such that also f+

n ∈ SP . We consider two cases.
Case I: Assume there exists 0 < t0 < 1 such that f ′ < 0 and f ′′ > 0 on

(t0, 1). For n > N we have d2/dx2(f+
n ) > 0 on (t0, 1), hence f+

n is convex on
[t0, 1] and (by using (2.4.3))

‖f+
n ‖ ≤ max(f+

n (t0), f+
n (1)) ≤ max(1− s+ (1− f(1))tλn0 , 1) ≤ 1

since also f+
n (x) > f(x) ≥ −1 for all x ∈ [0, 1].

Case II: Assume there exists 0 < t0 < 1 such that f ′ < 0 and f ′′ < 0 on
[t0, 1].
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Let δ = f(t0)− f(1) > 0. Define

tn = λn

√
1− δ

1− f(1) ,

that is
tλnn = 1− f(1)− δ

1− f(1)
Note that tn → 1.

Write gn(x) = (1− f(1))xλn . Then g′n(x) = (1− f(1))λnxλn−1 and

g′n(tn) = (1− f(1))λn
1− f(1)− δ

1− f(1)

(
1− f(1)− δ

1− f(1)

)−1/λn

= λn(1− f(1)− δ)
(

1− f(1)− δ
1− f(1)

)−1/λn

.

Note that g′n(tn) → ∞ (since we assume that ∑∞n=1 λ
−1
n < ∞). Let M =

maxx∈[t0,1] |f ′(x)|. Choose n > N such that t0 < tn < 1 and
g′n(tn) > M.

Then for x ∈ [tn, 1] we have
d

dx
(f+
n (x)) = f ′(x) + λn(1− f(1))xλn−1 > −M + g′n(tn) > 0

hence f+
n (x) ≤ f+

n (1) on [tn, 1].
For x ∈ [t0, tn] we get

f+
n (x) = f(x) + gn(x)

≤ f(1) + δ + (1− f(1))tλnn
= f(1) + δ + (1− f(1)− δ)
≤ 1.

While on [0, t0] we have, by using (2.4.3),
|f+
n (x)| ≤ ‖f‖+ 2 · s/2 ≤ 1.

Hence, ‖f+
n ‖ ≤ 1.

Recall that the convex DLD2P lies in between the DLD2P and the LD2P
which are both stable by taking absolute sums. It turns out that the convex
DLD2P moving from summands to the absolute sum is also stable by taking
absolute sums. In order to have `∞-sum with the convex DLD2P, it is enough
to assume that only one summand has the convex DLD2P. The stability in the
direction from the absolute sum to summands is not known for any absolute
sum.
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Theorem 2.4.10. Let N be an absolute normalised norm on R2. If X and
Y have the convex DLD2P, then X ⊕N Y has the convex DLD2P.

Proof. Assume that X and Y are Banach spaces with the convex DLD2P.
Denote Z = X ⊕N Y . Now let (x, y) ∈ SZ . We will show that (x, y) ∈
conv ∆Z .

Let δ > 0. First consider the case x 6= 0 and y 6= 0. Then x/‖x‖ ∈
conv ∆X and y/‖y‖ ∈ conv ∆Y by the assumption, hence there are x1, . . . , xn ∈
∆X and y1, . . . , yn ∈ ∆Y such that∥∥∥∥ x

‖x‖
− 1
n

n∑
i=1

xi

∥∥∥∥ < δ and
∥∥∥∥ y

‖y‖
− 1
n

n∑
i=1

yi

∥∥∥∥ < δ.

By Proposition 3.4.1 we have (‖x‖xi, ‖y‖yi) ∈ ∆Z . All that remains is to
note that ∥∥∥∥(x, y)− 1

n

n∑
i=1

(
‖x‖xi, ‖y‖yi

)∥∥∥∥
N

= N
(
‖x‖

∥∥∥∥ x

‖x‖
− 1
n

n∑
i=1

xi

∥∥∥∥, ‖y‖∥∥∥∥ y

‖y‖
− 1
n

n∑
i=1

yi

∥∥∥∥)
≤ N

(
δ‖x‖, δ‖y‖

)
= δN

(
‖x‖, ‖y‖

)
= δ.

Now consider the case where y = 0 (a similar argument holds for the case
x = 0). We have

‖(x, 0)‖N = N(‖x‖, 0) = ‖x‖,

so that (x, 0) ∈ conv ∆Z follows from x ∈ conv ∆X since the claim above
shows that (xi, 0) ∈ ∆Z when xi ∈ ∆X .

Proposition 2.4.11. Let X and Y be Banach spaces. If X has the convex
DLD2P, then X ⊕∞ Y has the convex DLD2P.

Proof. Assume that X has the convex DLD2P. Denote Z = X ⊕∞ Y. Let
(x, y) ∈ SZ . We will show that (x, y) ∈ conv ∆Z .

Let δ > 0. Since X has the convex DLD2P, we have that x ∈ conv ∆X =
BX . Hence, there are x1, . . . , xn ∈ ∆X such that ‖x− 1/n∑n

i=1 xi‖ < δ.
Let ε, γ > 0. Since xi ∈ conv ∆ε(xi) for every i ∈ {1, . . . , n}, there are

xji ∈ ∆ε(xi) such that∥∥∥∥xi − 1
m

m∑
j=1

xji

∥∥∥∥ < γ and ‖xi − xji‖ ≥ 2− ε.
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Therefore, we have firstly, that

‖(xi, y)− (xji , y)‖∞ = max{‖xi − xji‖, 0} ≥ 2− ε,

and secondly, that∥∥∥∥(xi, y)− 1
m

m∑
j=1

(xji , y)
∥∥∥∥
∞

= max
{∥∥∥∥xi − 1

m

m∑
j=1

xji

∥∥∥∥, 0} < γ.

As a result, (xi, y) ∈ ∆Z for every i ∈ {1, . . . , n}. Finally, it is now obvious
that ∥∥∥∥(x, y)− 1

n

n∑
i=1

(xi, y)
∥∥∥∥
∞

= max
{∥∥∥∥x− 1

n

n∑
j=1

xi

∥∥∥∥, 0} < δ,

hence (x, y) ∈ conv ∆Z .

2.5 Perspectives
In the following we list a few possible perspectives for the future research. The
main open problems in the world of the diametral diameter two properties
are of course the following two.

Problem 1. Does there exist a Banach space with the DSD2P that fails the
Daugavet property?

Problem 2. Does there exist a Banach space with the DLD2P that fails the
DD2P?

Regarding the w∗-versions of the diametral diameter two properties, it is
known that a Banach space X has the DLD2P if and only if the dual space
X∗ has the w∗-DLD2P. Similar results for the stronger diametral diameter
two properties are still unknown (see [BLR18, Questions 4.2 and 4.3]).

Problem 3. Let X be a Banach space. Is it true that X has the DD2P (re-
spectively, DSD2P) if and only if the dual X∗ has the w∗-DD2P (respectively,
w∗-DSD2P)?

It is known that the DLD2P and the DD2P have a full characterisation
with rank-1 projections.

Problem 4. Does the DSD2P admit to a characterisation with finite-rank
projections?

It is known that the convex DLD2P falls strictly between the DLD2P and
the LD2P, which have characterisations with slices.
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Problem 5. Is there a characterisation for the convex DLD2P with slices?

The Daugavet property and the DLD2P have a characterisation given by
describing all elements of the unit sphere (see Propositions 1.4.5 (iii) and
2.1.7 (iii), respectively).

Problem 6. Do the DD2P and the DSD2P have a characterisation by de-
scribing all elements of the unit sphere?

The Daugavet property, the DD2P and the DLD2P have been proved to
pass on to M -ideals.

Problem 7. Does the DSD2P also pass to the M-ideals?

Additionally, if Y is an M -ideal in a Banach space X such that Y and
the quotient space X/Y share the Daugavet property, then X also has the
Daugavet property.

Problem 8. Let X be a Banach space and Y an M-ideal in X. Assume Y
and X/Y share the DSD2P (respectively, DD2P, DLD2P, convex DLD2P).
Then does X have the DSD2P (respectively, DD2P, DLD2P, convex DLD2P)?

It is known that the convex DLD2P passes on from component spaces to
every absolute sum. How about the reverse?

Problem 9. Provided the absolute sum has the convex DLD2P, do the sum-
mands have the convex DLD2P?





Chapter 3

Daugavet- and ∆-points

Inspired by the characterisations of the Daugavet property and the DLD2P
due to [Wer01] and [IK04], we introduce Daugavet- and ∆-points. We ex-
plore these notions in different classes of spaces and show that, despite the
general difference, Daugavet- and ∆-points coincide in L1(µ) spaces and their
preduals, C(K) spaces for infinite compact Hausdorff space K, and a wide
class of Müntz spaces. A thorough treatment of the stability of Daugavet-
and ∆-points by taking absolute sums is also presented. We show that all
absolute sums can be divided into two classes: absolute sums equipped with
A-octahedral norms (see Definition 3.3.3) and absolute sums equipped with
norms with property (α) (see Definition 3.3.4); the former absolute sums
provide positive stability results for Daugavet-points whereas the latter ab-
solute sums can have no Daugavet-points. ∆-points, however, behave well
under all absolute sums. Unexpectedly, the `∞-sum can have ∆-points even
if the component spaces have no ∆-points. These results were obtained in
[AHLP20] and [HPV].

3.1 Definitions and examples
Daugavet- and ∆-points are both relatively new notions. Their origin can be
tracked back to [Wer01, Corollary 2.3], which states that a Banach space has
the Daugavet property if and only if every element on the unit sphere satisfies
that the closed convex hull of its almost diametral points equals the unit ball
(see also Proposition 1.4.5 part (iii)). Recall that the DLD2P admits a
similar characterisation, i.e. every element of the unit sphere is contained in
the closed convex hull of its almost diametral points (see Proposition 2.1.7
part (iii)). The notions of Daugavet-point and ∆-point arise naturally from
these characterisations.

49
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Definition 3.1.1. Let X be a Banach space. We say that x ∈ SX is a
(a) Daugavet-point if BX = conv ∆ε(x) for every ε > 0;

(b) ∆-point if x ∈ conv ∆ε(x) for every ε > 0,
where

∆ε(x) = {y ∈ BX : ‖x− y‖ ≥ 2− ε}.
Remark 3.1.2. Note that a Banach space has the DLD2P if and only if every
element of the unit sphere is a ∆-point. The set ∆ from Chapter 2 (see p.
40) can now be regarded as the set of all ∆-points. Consequently, a Banach
space has the convex DLD2P if and only if its unit ball is equal to the closed
convex hull of all of its ∆-points.

Every Daugavet-point is obviously a ∆-point. The converse is not true
in general (see, e.g. Example 3.4.3). The difference between these notions
was established by inspecting the behaviour of Daugavet- and ∆-points by
taking absolute sums and these results are presented later in this chapter
(see Sections 3.3 and 3.4). Despite these notions being different, there are
examples of spaces where Daugavet- and ∆-points are the same (see Section
3.2).

Sometimes it is useful to take into account that in the previous definitions
the approximating elements can be chosen to be of norm 1, i.e. the following
result holds.
Lemma 3.1.3. In the definition of Daugavet- and ∆-points one can equiva-
lently use the set {y ∈ SX : ‖x− y‖ ≥ 2− ε} instead of ∆ε(x).
Proof. Let x, y ∈ SX be such that y ∈ conv ∆ε(x) for all ε > 0. Fix ε > 0
and γ > 0. Assume without loss of generality that γ ≤ ε ≤ 1.

Let x1, . . . , xn ∈ ∆γ/2(x) be such that ‖x − 1/n∑n
i=1 xi‖ < γ/2. Then

‖xi‖ > 1− γ/2. Therefore,∥∥∥∥x− xi
‖xi‖

∥∥∥∥ ≥ ‖x− xi‖ − (1− ‖xi‖)

> 2− γ

2 −
γ

2
≥ 2− ε

and ∥∥∥∥x− 1
n

n∑
i=1

xi
‖xi‖

∥∥∥∥ ≤ ∥∥∥∥x− 1
n

n∑
i=1

xi

∥∥∥∥+
∥∥∥∥ 1
n

n∑
i=1

(
xi −

xi
‖xi‖

)∥∥∥∥
≤ γ

2 + γ

2 = γ.

Hence, y ∈ conv{y ∈ SX : ‖x− y‖ > 2− ε} for all ε > 0.
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Inspecting the proofs of the characterisations of the Daugavet property
and the DLD2P appearing in Propositions 1.4.5 and 2.1.7, respectively, one
observes that pointwise versions of some of these hold as well.

Lemma 3.1.4. Let X be a Banach space and x ∈ SX . The following asser-
tions are equivalent:

(i) x is a Daugavet-point, that is, BX = conv ∆ε(x) for every ε > 0;

(ii) for every slice S of BX and every ε > 0 there exists y ∈ S such that
‖x− y‖ ≥ 2− ε;

(iii) for every non-zero x∗ ∈ X∗, the rank-1 operator T = x∗ ⊗ x satisfies
‖ Id−T‖ = 1 + ‖T‖;

(iv) for every x∗ ∈ SX∗ the rank-1 norm-1 operator T = x∗ ⊗ x satisfies
‖ Id−T‖ = 2.

Lemma 3.1.5. Let X be a Banach space and x ∈ SX . The following asser-
tions are equivalent:

(i) x is a ∆-point, that is, x ∈ conv ∆ε(x) for every ε > 0;

(ii) for every slice S of BX with x ∈ S and every ε > 0 there exists y ∈ S
such that ‖x− y‖ ≥ 2− ε;

(iii) for every x∗ ∈ X∗ with x∗(x) = 1 the projection P = x∗ ⊗ x satisfies
‖ Id−P‖ ≥ 2.

Note that the version (iv) of Lemma 3.1.4 cannot be added to Lemma 3.1.5.

Proposition 3.1.6. Let X = `1 and let x = (xi)∞i=1 ∈ SX be a smooth point
with |x1| > 1/3. Then the following statements hold:

(a) for x∗ ∈ SX∗ with x∗(x) = 1, the projection P = x∗ ⊗ x satisfies
‖ Id−P‖ = 2;

(b) the projection P = x−1
1 e∗1 ⊗ x satisfies ‖ Id−P‖ < 2.

Proof. (a) Write x = (xi)∞i=1. Let x∗ = (sgn xi)∞i=1 ∈ SX∗ and P = x∗ ⊗ x.
Observe that x∗(x) = 1. If en is the n’th standard basis vector in X, then

‖(Id−P )(en)‖ = ‖en − sgn xnx‖
= |1− (sgn xn)xn|+

∑
i 6=n
|xi|

= 1− |xn|+ ‖x‖ − |xn|
= 2− 2|xn|,



52 CHAPTER 3. DAUGAVET- AND ∆-POINTS

and since this holds for all n, we get ‖ Id−P‖ = 2.
(b) Let P = x−1

1 e∗1⊗x, where e∗1 is the first coordinate vector in X∗ = `∞.
Observe that x−1

1 e∗1(x) = 1, so that P is a projection. If y ∈ SX we get

‖(Id−P )y‖ = ‖y − x−1
1 y1x‖

=
∑
i>1
|yi − x−1

1 y1xi|

≤
∑
i>1
|yi|+ |x1|−1|y1|

∑
i>1
|xi|

= 1− 2|y1|+ |x1|−1|y1|
≤ 1 +

∣∣∣2− |x1|−1
∣∣∣ < 2,

so ‖ Id−P‖ < 2, and we are done.

Remark 3.1.7. It follows from Theorem 3.2.1 below that, in fact, no point on
the unit sphere in `1 is a ∆-point.

In our language it is stated in [Wer01, Problem (7)] without a proof that
the DLD2P is equivalent to the following property.
Definition 3.1.8. Let X be a Banach space. We say that X has property
D if every rank-1 norm-1 projection P : X → X satisfies that ‖ Id−P‖ = 2.

Looking at the Daugavet property and the fact that in this case it is
enough to only consider rank-1 norm-1 operators T , one would at first glance
maybe expect the equivalence of the DLD2P and property D to be true. The
problem is, however, that a scaled projection is not a projection, so the
argument in the Daugavet setting does not apply in the DLD2P setting.
As remarked in the Introduction of [AHLP20], neither the authors of that
paper nor the author of [Wer01] have been able to give a correct proof of
the equivalence of the DLD2P and property D. Whether this equivalence is
true or not is therefore still an open question. In the following we will see
that there are similarities between the DLD2P and property D. Recall from
Proposition 2.1.5 that a Banach space has the DLD2P if and only if its dual
has the w∗-DLD2P. In particular, if the dual of a space has the DLDP2, then
so does the space. The same is true for property D .
Proposition 3.1.9. Let X be a Banach space. If ‖ IdX∗ −P‖ = 2 for all
rank-1 norm-1 projections P on X∗, then ‖ IdX −Q‖ = 2 for all rank-1
norm-1 projections Q on X.
Proof. If Q is a rank-1 projection on X, then Q = x∗ ⊗ x with x∗ ∈ X∗,
x ∈ SX , and x∗(x) = 1. Then

P = Q∗ = x⊗ x∗ = (‖x∗‖x)⊗ x∗

‖x∗‖
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is a rank-1 projection on X∗ and by assumption ‖ IdX∗ −P‖ = ‖ IdX −Q‖ ≥
2.

If a Banach space has the DLD2P, then the space has the LD2P and its
dual has the w∗-LD2P. The same is true for spaces with property D .
Proposition 3.1.10. Let X be a Banach space. If ‖ Id−P‖ = 2 for all
rank-1 norm-1 projections P on X, then X has the LD2P and X∗ has the
w∗-LD2P.
Proof. Let x∗ ∈ SX∗ and α > 0 define a slice S(BX , x

∗, α). Let ε > 0 such
that ε < α/2. Find y∗ ∈ SX∗ such that y∗ attains its norm on BX and
‖x∗ − y∗‖ < α/2. Let y ∈ BX be such that y∗(y) = 1 and define P = y∗ ⊗ y.
Then ‖ Id−P‖ = 2, by assumption, and we can find z ∈ SX such that

‖z − P (z)‖ = ‖z − y∗(z)y‖ > 2− ε.

We may assume that y∗(z) > 0. We have

y∗(z) = |y∗(z)| = ‖P (z)‖ ≥ ‖P (z)− z‖ − ‖z‖ > 2− ε− 1 > 1− α

2 .

Hence,
x∗(z) = y∗(z)− (y∗ − x∗)(z) > 1− α

2 −
α

2 = 1− α,

i.e. z ∈ S(BX , x
∗, α), and

‖z − y‖ ≥ ‖z − y∗(z)y‖ − ‖y∗(z)y − y‖ > 2− ε− |y∗(z)− 1| > 2− 2ε.

This proves that X has the LD2P.
To show that X∗ has the w∗-LD2P we start with a w∗-slice S(BX∗ , x, α),

where x ∈ SX and α > 0. Then we find a y∗ ∈ SX∗ where ‖ Id∗−P ∗‖ almost
attains its norm. The proof is similar to the LD2P case.

There are Banach spaces with the LD2P that fail to have the DLD2P.
The same is true for the LD2P and property D as well.
Example 3.1.11. The sequence space `∞ has the LD2P but fails property
D . Indeed, since `∞ has the SD2P (see [ALN13]), it has the LD2P. To see
that `∞ fails property D, consider rank-1 norm-1 projection P = e∗1 ⊗ e1,
where e∗1 and e1 are the first coordinate vectors of `1 and `∞, respectively.
Then for every x = (ξi)∞i=1 ∈ B`∞ we have

‖(Id−P )x‖ = ‖x− e∗1(x)e1‖
= ‖x− ξ1e1‖
= ‖(0, ξ2, ξ3, . . . )‖ ≤ 1.

Hence, ‖ Id−P‖ ≤ 1, and therefore `∞ fails property D .
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Note that, despite Proposition 3.1.6, Proposition 3.1.10 tells us that `1 is
not a candidate for separating property D and the DLD2P since it fails the
LD2P.

3.2 Daugavet- and ∆-points in some classes
of spaces

In the first two parts of this section we present the results regarding Daugavet-
and ∆-points in Banach spaces X of the type L1(µ), C(K), K infinite com-
pact Hausdorff space, and L1(µ)-preduals. We prove that Daugavet- and
∆-points coincide in all these spaces. Moreover, we obtain characterisations
of Daugavet- and ∆-points in terms of their support. These characterisations
are easy to check, for example, if X = C([0, ω]) = c then the Daugavet-points
are exactly the sequences with limits ±1. The last part of the section con-
tains results about Daugavet- and ∆-points in Müntz spaces X of the type
M0(Λ) ⊂ M(Λ) ⊂ C[0, 1] (see Subsection 3.2.3 for a definition of these
spaces). We prove that in M0(Λ) Daugavet- and ∆-points are the same and
that they are exactly the functions f ∈ SX for which f(1) = ±1.

3.2.1 L1(µ) spaces
Let µ be a (countably additive, non-negative) measure on some σ-algebra Σ
on a set Ω. We will assume that µ is σ-finite even though it is not strictly
necessary in all the results. We use the usual notion that an atom for µ
is a set A ∈ Σ such that 0 < µ(A) < ∞, and if B ∈ Σ with B ⊆ A
satisfies µ(B) < µ(A), then µ(B) = 0. In this section we consider the space
L1(µ) = L1(Ω,Σ, µ).

Theorem 3.2.1. The following assertions for f ∈ SL1(µ) are equivalent:

(i) f is a Daugavet-point;

(ii) f is a ∆-point;

(iii) supp(f) does not contain an atom for µ.

Proof. The implication (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii). Fix f ∈ SL1(µ). Let A be an atom in supp(f). Note that

a measurable function is a.e. constant on an atom. We may assume that
f |A = c a.e. for some positive constant c. Fix 0 < ε < 2cµ(A).
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Let g ∈ BL1(µ) be such that ‖f − g‖ ≥ 2− ε. We have g|A = d for some
constant d. Note that

2− ε ≤
∫

Ω
|f − g|dµ =

∫
Ω\A
|f − g|dµ+

∫
A
|f − g|dµ

≤
∫

Ω\A
|f |dµ+

∫
Ω\A
|g|dµ+

∫
A
|f − g|dµ

≤ 1−
∫
A
|f |dµ+ 1−

∫
A
|g|dµ+

∫
A
|f − g|dµ

= 1− cµ(A) + 1− |d|µ(A) + |c− d|µ(A).

Therefore
cµ(A) + dµ(A) ≤ |c− d|µ(A) + ε.

If c ≤ d, then |c− d| = d− c and we get c ≤ ε/(2µ(A)), and this contradicts
our choice of ε. Thus we have c ≥ d, and hence |c − d| = c − d and d ≤
ε/(2µ(A)) < c.

If g1, . . . , gm ∈ ∆ε(f), then
∥∥∥∥f − m∑

i=1

1
m
gi

∥∥∥∥ ≥ ∫
A

∣∣∣∣f − m∑
i=1

1
m
gi

∣∣∣∣ dµ ≥ (c− ε

2µ(A)
)
µ(A) > 0.

This shows that f /∈ conv ∆ε(f) for this choice of ε.
(iii) ⇒ (i). Let f ∈ SL1(µ) be such that supp(f) does not contain atoms.

Let ε > 0, δ > 0, and x∗0 ∈ SL1(µ)∗ . By Lemma 3.1.4 we need to find g ∈ SL1(µ)
with ‖f − g‖ ≥ 2− ε such that g ∈ S(BL1(µ), x

∗
0, δ).

Since µ is σ-finite (so that L1(µ)∗ = L∞(µ)) we can find a step-function
x∗ = ∑n

i=1 aiχEi ∈ SL1(µ)∗ such that ‖x∗ − x∗0‖ < δ (and the Ei ∩ Ej = ∅ for
i 6= j).

We may assume that |a1| = 1. Find a subset A of E1 such that
∫
A |f |dµ <

ε/2. Define

g = sgn(a1)
µ(A) χA ∈ SL1(µ).

Then
x∗(g) =

n∑
i=1

∫
Ei
aigdµ = 1

µ(A)

∫
A
a1 sgn(a1)dµ = 1,

‖f − g‖ =
∫
Ac
|f |dµ+

∫
A
|f − g|dµ ≥ |f |+ |g| − 2

∫
A
|f |dµ ≥ 2− ε,

and finally
x∗0(g) = x∗(g)− (x∗ − x∗0)(g) > 1− δ

as desired.
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We also discovered that in L1(µ) spaces the Daugavet property and prop-
erty D are equivalent. In order to prove that result, note that L1(µ) can have
the LD2P only if the measure µ does not have any atoms.

Lemma 3.2.2. If µ is a measure with an atom, then L1(µ) does not have
the LD2P.

Proof. Assume that A is an atom and consider χA ∈ L1(µ)∗. We have
‖χA‖ = 1. If f ∈ S(BL1(µ), χA, ε), then

f(t) > 1− ε
µ(A) for a.e. t ∈ A,

and
f(t) ≤ 1

µ(A) for a.e. t ∈ A.

Hence ‖f |A‖ > 1− ε and ‖f |AC‖ < ε.
Thus for f1, f2 ∈ S(BL1(µ), χA, ε) we have

‖f1 − f2‖ ≤
∫
Ac
|f1 − f2| dµ+

∫
A
|f1 − f2| dµ

≤ ‖f1|Ac‖+ ‖f2|Ac‖+
∫
A

ε

µ(A) dµ ≤ 3ε,

so this slice does not have diameter 2.

Theorem 3.2.3. Consider X = L1(µ). The following assertions are equiv-
alent:

(i) ‖ Id−P‖ = 2 for all rank-1 norm-1 projections on X;

(ii) X has the Daugavet property.

Proof. If (i) holds, then X has the LD2P, by Proposition 3.1.10. From
Lemma 3.2.2 we see that X does not have atoms. By [BM05] (see also
[BM06] for the explicit statement for L1(µ) spaces) X has the Daugavet
property.

The implication (ii) ⇒ (i) is trivial.

3.2.2 C(K) spaces and L1(µ)-preduals
In the following we examine Daugavet- and ∆-points in C(K) spaces and in
L1(µ)-preduals. We start with a characterization in C(K) spaces.
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Theorem 3.2.4. Let K be an infinite compact Hausdorff space. The follow-
ing assertions for f ∈ SC(K) are equivalent:

(i) f is a Daugavet-point;

(ii) f is a ∆-point;

(iii) ‖f‖ = |f(x0)| for a limit point x0 of K.

Proof. The implication (i) ⇒ (ii) is trivial.
(iii) ⇒ (i). Let f ∈ SC(K) and assume that there is a limit point x0 of

K such that |f(x0)| = 1. We will show that f is a Daugavet-point. Fix
g ∈ BX , ε > 0, and m ∈ N. Consider a neighbourhood U of x0 such
that |f(x0) − f(x)| < ε for every x ∈ U . Since x0 is a limit point, we can
find m different points x1, . . . , xm ∈ U and corresponding pairwise disjoint
neighbourhoods U1, . . . , Um ⊂ U . For every 1 ≤ i ≤ m use Urysohn’s Lemma
to find a continuous function ηi : K → [0, 1] with ηi(xi) = 1 and ηi = 0 on
K \ Ui. Define gi ∈ BC(K) by

gi(x) =
(
1− ηi(x)

)
g(x)− ηi(x)f(x0).

From gi(xi) = −f(x0) it follows that

‖f − gi‖ ≥ |f(xi)− g(xi)| = |f(xi) + f(x0)| > 2− ε.

Hence gi ∈ ∆ε(f). Note that g − gi = 0 on K \ Ui, and consequently∥∥∥∥g − 1
m

m∑
i=1

gi

∥∥∥∥ ≤ 1
m

max
1≤i≤m

‖g − gi‖ ≤
2
m
.

We thus get g ∈ conv ∆ε(f), and so f is a Daugavet-point.
(ii) ⇒ (iii). We assume that there is no limit point x of K such that

|f(x)| = 1 and show that f is not a ∆-point. Define

H = {x ∈ K : |f(x)| = 1}.

ThenH is a set of isolated points. By compactness, H is finite since otherwise
it would contain a limit point. Note that H is (cl)open, hence δ = 1 −
maxx∈K\H |f(x)| > 0. Let εh = sgn f(h) for all h ∈ H. Since H 6= ∅ we can
define

µ = 1
|H|

∑
h∈H

εhδh,

where δh ∈ SC(K)∗ is the point evaluation map at h. We have ‖µ‖ = 1 and
〈µ, f〉 = 1, hence P = µ⊗ f is a norm-1 projection.
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Let g ∈ BC(K) and consider ‖(Id−P )g‖ = ‖g−Pg‖ = ‖g−〈µ, g〉f‖. For
x /∈ H we have

|g(x)− 〈µ, g〉f(x)| ≤ 1 + 1− δ = 2− δ.

While for x ∈ H we use that

〈µ, g〉 = 1
|H|

∑
h∈H

εhg(h)

and εhf(h) = |f(h)| = 1, so that

|g(x)− 〈µ, g〉f(x)| = |g(x)− 1
|H|

∑
h∈H

εhg(h)f(x)|

=
∣∣∣∣(1− 1

|H|

)
g(x)− 1

|H|
∑

h∈H\{x}
εhg(h)f(x)

∣∣∣∣
≤
(

1− 1
|H|

)
+ |H| − 1
|H|

= 2− 2
|H|

.

With ε = min{δ, 2/|H|} we have ‖(Id−P )g‖ ≤ 2− ε < 2 for all g ∈ BC(K),
hence ‖ Id−P‖ < 2.

Now we move on to the case of L1(µ)-preduals. A Banach space is called
an L1(µ)-predual if its dual is isometric to L1(µ). It is well known that the
bidual of an L1(µ)-predual is isometric to a C(K) space for some (extremally
disconnected) compact Hausdorff space K (see [Lin64, Theorem 6.1]). We
will now show that Daugavet- and ∆-points are the same in L1(µ)-preduals.
Its proof relies on the following lemma.

Lemma 3.2.5. Let X be a Banach space and let x, y ∈ SX . The following
assertions are equivalent:

(i) y ∈ conv ∆X
ε (x) for all ε > 0;

(ii) y ∈ conv ∆X∗∗
ε (x) for all ε > 0.

Proof. The implication (i) ⇒ (ii) is trivial as ∆X
ε (x) ⊂ ∆X∗∗

ε (x).
(ii) ⇒ (i). Let ε > 0 and δ > 0. Find y∗∗n ∈ BX∗∗ such that ‖x− y∗∗n ‖ ≥

2− ε and ‖y −∑m
n=1 λny

∗∗
n ‖ < δ.

Define E = span{x, y, y∗∗n }. Let η > 0 and use the Principle of Local
Reflexivity to find T : E → X such that
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(1) T (e) = e for all e ∈ E ∩X;

(2) (1− η)‖e‖ ≤ ‖Te‖ ≤ (1 + η)‖e‖.

Then ‖x − Ty∗∗n ‖ = ‖T (x − y∗∗n )‖ ≥ (1 − η)‖x − y∗∗n ‖ > 2 − ε if η is small
enough. Also, if η is small enough,

‖y −
m∑
n=1

λnTy
∗∗
n ‖ ≤ (1 + η)‖y −

m∑
n=1

λny
∗∗
n ‖ < δ.

Remark 3.2.6. The argument shows that the conclusion in Lemma 3.2.5 also
holds in the more general setting of X being an almost isometric ideal (see
[ALN14] for the definition) in Z, replacing X∗∗ with Z.

Theorem 3.2.7. Let X be an (infinite-dimensional) L1(µ)-predual and x ∈
SX . The following assertions are equivalent:

(i) x is a Daugavet-point;

(ii) x is a ∆-point.

Proof. The implication (i) ⇒ (ii) is trivial.
(ii) ⇒ (i). By Lemma 3.2.5 we get x ∈ conv ∆X∗∗

ε (x) for all ε > 0. Since
X∗∗ is isometric to a C(K) space, we get from Theorem 3.2.4 that x is a
Daugavet-point in X∗∗, that is, BX∗∗ = conv ∆X∗∗

ε (x) for all ε > 0. Using
Lemma 3.2.5 again we get the desired conclusion.

As for L1(µ) spaces, the Daugavet property and property D coincide for
L1(µ)-preduals.

Theorem 3.2.8. Let X be an L1(µ)-predual. The following assertions are
equivalent:

(i) ‖ Id−P‖ = 2 for all rank-1 norm-1 projections P on X;

(ii) X has the Daugavet property.

Proof. (i) ⇒ (ii). If ‖ Id−P‖ = 2 for all rank-1 norm-1 projections, then
X∗ has the w∗-LD2P by Proposition 3.1.10 which is equivalent to X having
extremely rough norm (cf. [JZ78, Proposition 1]). By [BM06, Theorem 2.4]
this implies the Daugavet property for L1(µ)-preduals.

The implication (ii) ⇒ (i) is trivial.
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3.2.3 Müntz spaces
Recall that a Müntz space is a space of the form M(Λ) := span{tλn}∞n=0 ⊂
C[0, 1], where Λ = (λn)∞n=0 is an increasing sequence of non-negative reals and∑∞
i=1 1/λi <∞. In this section, we will also consider the subspace M0(Λ) :=

span{tλn}∞n=1 of M(Λ).
It is known that the spaces X = M(Λ) are isomorphic to subspaces of

c, even isometrically isomorphic in the case X = M0(Λ) (see [Wer08] and
[Mar18]). Therefore it is no surprise that they share many properties with
c. As for c, all Müntz spaces fail to be locally octahedral and almost square.
Moreover, if X = M0(Λ), then X is not even locally almost square (see
[Mar18] and the definitions of these properties within). Furthermore, it is
known that, as for c, the dual of a Müntz space is octahedral and that a
Müntz space contains asymptotically isometric copies of c0 (see [ALMN17]
and the definitions within).

Based on the preceding observations one can expect that the results re-
garding Daugavet- and ∆-points for Müntz spaces would also be similar to
those for c. This expectation proved to be correct. Before we can prove
the result about the equivalence of Daugavet- and ∆-points in most Müntz
spaces, the following lemma is needed.

Lemma 3.2.9. For every ε > 0 and every δ > 0, there exist k, l ∈ N with
k < l such that for f = (tλk− tλl)/‖tλk− tλl‖ one has f ≥ 0 and f |[0,1−ε] < δ.

Proof. Fix positive numbers ε and δ. Let k be such that

tλk |[0,1−ε] <
δ

2 .

Choose l > k such that ‖tλk − tλl‖ > 1/2. Then

tλk − tλl
‖tλk − tλl‖

<
δ/2
1/2 = δ

for any t ∈ [0, 1− ε].

Now we are ready to prove that unit sphere elements f in Müntz spaces
satisfying the condition f(1) = ±1 are Daugavet-points. It is worth pointing
out that this result holds as well for Müntz spaces where constant functions
are included.

Proposition 3.2.10. Let X = M(Λ) or X = M0(Λ). If f ∈ SX satisfies
f(1) = ±1, then f is a Daugavet-point.
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Proof. Fix f ∈ SX with f(1) = ±1 and ε > 0. We show that any g ∈ SX
can be approximated by the elements of conv ∆ε(f). For this purpose, fix
g ∈ SX , δ > 0 and choose m ∈ N with m ≥ 2/δ.

Let t1 ∈ (0, 1) be such that |f(1)− f(t)| < δ and |g(1)− g(t)| < δ for all
t ∈ [t1, 1]. We use Lemma 3.2.9 to obtain f1 such that f1|[0,t1] < δ/2.

Let t2 ∈ (0, 1) be such that f1|[t2,1] < δ/2. We use Lemma 3.2.9 again to
obtain f2 such that f2|[0,t2] < δ/2.

We continue finding t0 < t1 < · · · < tm < tm+1 = 1 and f1, . . . , fm.
Define gi = g − [g(1) + 1]fi for i = 1, . . . ,m. Then ‖gi‖ ≤ 1 + δ. Indeed, for
t ∈ [0, 1] \ [ti, ti+1] we have that fi(t) < δ/2 and therefore

|gi(t)| ≤ |g(t)|+ (1 + g(1))fi(t) < 1 + 2δ2 = 1 + δ,

while for t ∈ [ti, ti+1] we have

|gi(t)| ≤ |g(1)− [g(1) + 1]fi(t)|+ |g(t)− g(1)|
≤ |g(1)|(1− fi(t)) + fi(t) + δ

≤ 1− fi(t) + fi(t) + δ

= 1 + δ.

Denote by si the unique point in (ti, ti+1) where fi(si) = 1. We have

‖gi − f‖ ≥ |gi(si)− f(si)|
= |(g(si)− (g(1) + 1))− f(si)|
≥ |1 + f(si)| − |g(1)− g(si)|
≥ 2− δ − δ
= 2− 2δ.

Hence,

‖(1 + δ)−1gi − f‖ ≥ ‖gi − f‖ − ‖(1 + δ)−1gi − gi‖ ≥ 2− 3δ

since

‖(1 + δ)−1gi − gi‖ = |(1 + δ)−1 − 1|‖gi‖ ≤ |(1 + δ)−1 − 1|(1 + δ) ≤ δ.
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We get that (1 + δ)−1gi ∈ ∆ε(f) whenever 3δ < ε. Finally∥∥∥∥g − m∑
i=1

1
m

(1 + δ)−1gi

∥∥∥∥ =
∥∥∥∥(1− (1 + δ)−1)g + (1 + δ)−1[g(1) + 1]

m∑
i=1

1
m
fi

∥∥∥∥
≤ δ

1 + δ
‖g‖+ (g(1) + 1)

m(1 + δ) ‖
m∑
i=1

fi‖

≤ δ

1 + δ
+ 2
m

(
1 + (m− 1)δ2

)
≤ δ + δ + δ

= 3δ.

Hence g ∈ conv ∆ε(f).

The proof of the upcoming Proposition 3.2.13, that clarifies the rest of
the cases, relies, in part, on the following results.

Theorem 3.2.11 (Full Clarkson–Erdös–Schwartz Theorem, see [Erd03, The-
orem 1.1]). Suppose (λi)∞i=1 is a sequence of distinct positive numbers. Then
span{1, xλ1 , xλ2 , . . . } is dense in C[0, 1] if and only if

∞∑
i=1

λi
λ2
i + 1 =∞.

Moreover, if
∞∑
i=1

λi
λ2
i + 1 <∞,

then every function from the C[0, 1] closure of span{1, xλ1 , xλ2 , . . . } can be
represented as an analytic function on {z ∈ C\(−∞, 0] : |z| < 1} restricted
to (0, 1).

Theorem 3.2.12 (Bernstein’s inequality, see [BE97, Theorem 3.2]). Assume
that 1 ≤ λ1 < λ2 < λ3 < . . . and ∑∞i=1 1/λi <∞. Then for every δ > 0 there
is a constant c = c(Λ, δ) such that

‖p′‖[0,1−δ] ≤ c‖p‖[0,1],

for all p ∈ span(tλi)∞i=1.

Our next aim is to show that in Müntz spacesM0(Λ) with λ1 ≥ 1 only the
elements of the unit sphere that satisfy the condition in Proposition 3.2.10
can be ∆-points, which also implies that every ∆-point in such a space is
necessarily a Daugavet-point.



3.2. DAUGAVET- AND ∆.POINTS IN SOME SPACES 63

Proposition 3.2.13. Let X be a Müntz space M0(Λ) with λ1 ≥ 1. If f ∈ SX
with |f(1)| < 1, then f /∈ ∆.

Proof. First note that from the Theorem 3.2.11, f is the restriction to (0, 1)
of an analytic function on Ω = {x ∈ C\(−∞, 0] : |z| < 1}. Let I be the set of
points in [0, 1] where f attains its norm, and put I± = {x ∈ I : f(x) = ±1}.
From the assumptions we have I ⊂ (0, 1) since every g ∈ M0(Λ) satisfies
g(0) = 0.

Suppose I is infinite. Then either I+ or I− is infinite. Suppose without
loss of generality that I+ is. Then I+ must have an accumulation point a in
[0, 1]. By the continuity of f we must have f(a) = 1, so 0 < a < 1. Since f is
analytic on Ω and I+, I+ has an accumulation point in (0, 1) ⊂ Ω, we must
have 1− f = 0 everywhere, which is a contradiction.

Suppose I is finite and that f attains its norm on (yk)mk=1 ⊂ (0, 1) with 0 <
y1 < y2 < · · · < ym < 1, i.e. 1 = ‖f‖ = |f(yk)| for every k = 1, . . . ,m. By
density it suffices to show that there is ε > 0 such that f 6∈ conv(∆ε(f)∩P )
where P = span(tλn)∞n=1 ⊂ X. To this end, let s be a point satisfying
(1 + ym)/2 < s < 1. By Theorem 3.2.12, there exists a constant c = c(Λ, s)
such that for any p ∈ P

‖p′‖[0,s] ≤ c‖p‖[0,1].

Since f ∈ C[0, 1] there exists δ > 0 such that for all x, y ∈ [0, 1]

|x− y| < δ =⇒ |f(x)− f(y)| < 1.

By choosing δ smaller if necessary we may assume that cδ < 1/2 and that
ym + δ/2 < s. Let Ik,δ = (yk − δ/2, yk + δ/2). Note that f does not change
sign on any Ik,δ.

Put Iδ = ∪mk=1Ik,δ, and M = sup{|f(y)| : y ∈ [0, 1] \ Iδ}. Since [0, 1] \ Iδ is
compact and since f is continuous, the value M is attained and thus M < 1.
Let 0 < ε < min{1/(2m), 1−M, 1/4}. Then

|f(x)| ≥ 1− ε⇒ x ∈ Iδ.

Assume that p ∈ ∆ε(f) ∩ P . Since ‖f − p‖ ≥ 2− ε the norm is attained on
Iδ. Therefore there exist k and x ∈ Ik,δ such that

|f(x)− p(x)| ≥ 2− ε.

Since |f(x)| ≥ 1− ε and f does not change sign on Ik,δ we must have |f(x)−
f(yk)| ≤ ε, hence

|f(yk)− p(yk)| ≥ |f(x)− p(x)| − |f(yk)− f(x)| − |p(x)− p(yk)|
≥ 2− 2ε− ‖p′i‖[0,s]|x− yk| > 3/2− cδ > 1.
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Now, let n ∈ N and p1, . . . , pn ∈ ∆ε(f)∩P . Find r ∈ N such that (r−1)m <
n ≤ rm. By the pigeonhole principle, there is an interval Ij,δ where at least
r of the polynomials (pi)ni=1 satisfy |f(yj)− pi(yj)| > 1. Put

L = {i ∈ {1, . . . , n} : |f(yj)− pi(x)| > 2− 2 ε, x ∈ Ij,δ}.

We get that∣∣∣∣f(yj)−
1
n

n∑
i=1

pi(yj)
∣∣∣∣ ≥ ∣∣∣∣f(yj)−

1
n

∑
i∈L

pi(yj)
∣∣∣∣− 1

n

∑
i/∈L
|pi(yj)|

> 1− 1
n

∑
i/∈L

1

≥ r

n
≥ 1
m
> ε .

Hence f /∈ conv(∆ε(f) ∩ P ).

In conclusion, we have established the equivalence of Daugavet- and ∆-
points in a large class of Müntz spaces along with a simple characterisation
for such elements.
Theorem 3.2.14. Let X be a Müntz spaceM0(Λ) with λ1 ≥ 1. The following
assertions for f ∈ SX are equivalent:

(i) f is a Daugavet-point;

(ii) f is a ∆-point;

(iii) ‖f‖ = |f(1)|.
Proof. The implication (i) ⇒ (ii) is trivial, (ii) ⇒ (iii) follows from Propo-
sition 3.2.13, and (iii) ⇒ (i) is the result of Proposition 3.2.10.

3.3 Daugavet-points in absolute sums
In this section we present the results regarding Daugavet-points in absolute
sums. This research was started in [AHLP20] and completed in [HPV]. On
the one hand, we explore how the existence of Daugavet-points in the absolute
sum of Banach spaces depends on the existence of Daugavet-points in the
summands. On the other hand, we investigate how the existence of Daugavet-
points in the summands is influenced by the existence of Daugavet-points in
the absolute sum. Since these stability results are dependent on the absolute
normalised norm that the absolute sum is equipped with, we will start with
an overview of the absolute normalised norms that are important in this
context.
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3.3.1 On some specific absolute normalised norms
Absolute normalised norms on R2 were already defined in Chapter 1. As
mentioned, `p-norms for 1 ≤ p ≤ ∞, are simple examples of such norms.
We will now introduce some new types of normalised absolute norms that
will turn out to be useful when analysing the existence of Daugavet-points
in absolute sums of Banach spaces.

Definition 3.3.1 (see [HLN18] and Figure 3.1). We say that an absolute
normalised norm N on R2 is positively octahedral (POH) if there exist non-
negative reals a and b with N(a, b) = 1 such that

N
(
(0, 1) + (a, b)

)
= 2 and N

(
(1, 0) + (a, b)

)
= 2.

0 a

b

1

1

Figure 3.1: The first quadrant of the unit ball of a POH norm.

Example 3.3.2. Both `1-norm and `∞-norm, on R2 are POH. Indeed, in
`1-norm case any element (a, b), a, b ≥ 0, on the unit sphere will do. In the
case of `∞-norm, the element (1, 1) satisfies the conditions.

POH norms have their own importance, for example, it is known that if
X and Y are octahedral, then an absolute sum X ⊕N Y is octahedral if and
only if the absolute normalised norm N is POH (see [HLN18, Theorem 3.2]).
Recall that a norm on a Banach space X is called octahedral if, for every
n ∈ N, x1, . . . , xn ∈ SX , and every ε > 0, there is a y ∈ SX such that
‖xi + y‖ ≥ 2− ε for all i ∈ {1, . . . , n} (see, e.g. [HLP15]).

In this thesis POH norms are more important from the historical view-
point, since the first stability results published regarding Daugavet-points
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were obtained for POH norms. It turns out that the same stability results
that hold for POH norms extend to a wider class of absolute normalised
norms.

Definition 3.3.3. Let X be a Banach space and A ⊂ SX . We say that
the norm on X is A-octahedral (A-OH) if for every n ∈ N, x1, . . . , xn ∈ A
and every ε > 0 there exists y ∈ SX such that ‖xi + y‖ ≥ 2 − ε for every
i ∈ {1, . . . , n}.

It is obvious that every absolute normalised norm that is octahedral is,
by Definition 3.3.3, SX-OH, and a POH norm is exactly {(0, 1), (1, 0)}-OH.
This justifies the name of this more general term, A-octahedrality, that we
use to describe absolute sums, or more precisely absolute normalised norms,
for which the absolute sums possess Daugavet-points

Consider an absolute normalised norm N on R2. We now define a specific
set A. Set

c = max
N(e,1)=1

e and d = max
N(1,f)=1

f, (3.3.1)

and define
A = {(c, 1), (1, d)}.

Suppose that the norm N is A-OH. By Definition 3.3.3, there exists
(a, b) ∈ R2 with the following property:

a, b ≥ 0, N(a, b) = 1, and
N
(
(a, b) + (c, 1)

)
= 2 and N

(
(a, b) + (1, d)

)
= 2.

(3.3.2)

In the following, we will always consider an absolute normalised norm N to
be A-OH for the specific set A = {(c, 1), (1, d)}, where c, d ≥ 0 are as in
(3.3.1) (see also Figure 3.2).

It is not hard to see, that there are absolute normalised norms on R2 that
are not A-OH. The absolute normalised norms with the following property,
in fact, describe all absolute normalised norms on R2 that are not A-OH.

Definition 3.3.4. We will say that an absolute normalised norm N on R2

has property (α) if for all non-negative reals a and b with N(a, b) = 1, there
exist ε > 0 and a neighbourhood W of (a, b) with

sup
(c,d)∈W

c < 1 or sup
(c,d)∈W

d < 1,

such that (c, d) ∈ W for all non-negative reals c and d with

N(c, d) = 1 and N
(
(a, b) + (c, d)

)
≥ 2− ε.
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Figure 3.2: The first quadrant of the unit ball of an A-OH norm.

Example 3.3.5. The `p-norm, 1 < p <∞, on R2 has property (α). Indeed,
given c, d ≥ 0 with ‖(c, d)‖p = 1 for all δ > 0 there exists ε > 0 such that
for all (a, b) with ‖(a, b)‖p ≤ 1 and ‖(a, b) + (c, d)‖p ≥ 2− ε we have (a, b) ∈
B((c, d), δ) =: W . Choosing δ small enough we have either sup(a,b)∈W a < 1
or sup(a,b)∈W b < 1.

Similarly, any strictly convex absolute normalised norm N on R2 has
property (α) (see also Figure 3.3).

0 1

1

Figure 3.3: The first quadrant of the unit ball of a norm with property (α).

Our next aim is to show that every absolute normalised norm on R2 is
either A-OH or has property (α). For that it is useful to notice that the
ε > 0 in Definition 3.3.4 can be relaxed and we may let ε = 0.
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Lemma 3.3.6. Property (α) can also be formulated in the following way:
(α) for all non-negative reals a and b with N(a, b) = 1, there exists a neigh-

bourhood W of (a, b) with
sup

(c,d)∈W
c < 1 or sup

(c,d)∈W
d < 1,

such that (c, d) ∈ W for all non-negative reals c and d with

N(c, d) = 1 and N
(
(a, b) + (c, d)

)
= 2.

Proof. On the one hand, it is obvious that if the statement holds for some
ε > 0, then it also holds for ε = 0.

One the other hand, let us assume that the statement holds for the case
ε = 0. Choose a neighbourhood of (a, b) such that sup(e,f)∈W e < 1 (the case
sup(e,f)∈W f < 1 is analogical). Fix c ∈ (sup(e,f)∈W e, 1) and let d ≥ 0 be such
that N(c, d) = 1. Then N

(
(a, b) + (c, d)

)
< 2. Set ε = 2−N

(
(a, b) + (c, d)

)
and W̃ = {(x, y) : x ≤ c}. Then for every x, y ≥ 0 with N(x, y) = 1 and
N
(
(a, b) + (x, y)

)
≥ 2 − ε, we have that x ≤ c which means that (x, y) ∈

W̃ .

Now we confirm that there is a dichotomy between absolute normalised
norms with property (α) and absolute normalised norms that are A-OH for
the set A = {(c, 1), (1, d)}, where c, d are as in (3.3.1).
Proposition 3.3.7. Every absolute normalised norm on R2 either has prop-
erty (α) or is A-OH.
Proof. Let N be an absolute normalised norm that does not have property
(α). Then there exist a, b ≥ 0 with N(a, b) = 1 such that for every (a, b)-
neighbourhood W which satisfies either sup(c,d)∈W c < 1 or sup(c,d)∈W d < 1,
there exist c, d ≥ 0 with N(c, d) = 1 such that (c, d) /∈ W and N

(
(a, b) +

(c, d)
)

= 2. To show that N is A-OH, we need to find c, d ≥ 0 satisfying

N(c, 1) = N(1, d) = 1 and N
(
(a, b) + (c, 1)

)
= N

(
(a, b) + (1, d)

)
= 2.

If a = 1 (respectively, b = 1), then take d = b (respectively, c = a).
However, if a 6= 1, then for every n ∈ N large enough (a < 1−1/n), by taking
Wn = {(x, y) : x ≤ 1− 1/n}, we can find cn, dn ≥ 0 with N(cn, dn) = 1 such
that (cn, dn) /∈ Wn and N

(
(a, b) + (cn, dn)

)
= 2. Passing to a subsequence if

necessary, we can assume that (cn, dn) → (1, d) for some d ≥ 0. Obviously
N(1, d) = 1 and N

(
(a, b) + (1, d)

)
= 2. It can be proved similarly that if

b 6= 1, then there exists c ≥ 0 with N(c, 1) = 1 and N
(
(a, b) + (c, 1)

)
= 2.

Combining these facts we have that N is A-OH.
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3.3.2 From summands to absolute sum
In the following we analyse the existence of Daugavet-points in the absolute
sum of Banach spaces assuming the summands have Daugavet-points. It
turns out that the existence of Daugavet-points in an absolute sum depends
greatly on the absolute normalised norm. We start with absolute normalised
norms with property (α) and then move on to the case of A-OH norms.

The following result shows that in the case where the absolute sum is
equipped with a norm with property (α), the absolute sum cannot have any
Daugavet-points.

Proposition 3.3.8. Let X and Y be Banach spaces and N an absolute nor-
malised norm on R2 with property (α). Then X⊕NY has no Daugavet-points.

Proof. Let X and Y be Banach spaces and N an absolute normalised norm
on R2 with property (α). Denote Z = X ⊕N Y and let z = (x, y) ∈ SZ .

Let (c, d) = (‖x‖, ‖y‖). From the definition of property (α) there exists
ε > 0 and a neighbourhood W of (c, d). Without loss of generality we may
assume that sup(a,b)∈W a < 1 since the case sup(a,b)∈W b < 1 is similar. Choose
δ > 0 such that sup(a,b)∈W ≤ 1− δ.

Assume that (u, v) ∈ ∆ε(z). Then

2− ε ≤ N(‖u− x‖, ‖v − y‖) ≤ N(‖u‖+ ‖x‖, ‖v‖+ ‖y‖),

hence, (‖u‖, ‖v‖) ∈ W from property (α). In particular, ‖u‖ ≤ 1− δ.
Let w ∈ SX and consider (w, 0) ∈ SZ . Given (x1, y1), . . . , (xn, yn) ∈ ∆ε(z)

we have ‖xi‖ ≤ 1− δ for each i = 1, . . . , n and we get that
∥∥∥∥(w, 0)− 1

n

n∑
i=1

(xi, yi)
∥∥∥∥
N
≥
∥∥∥∥w − 1

n

n∑
i=1

xi

∥∥∥∥
≥ ‖w‖ − 1

n

n∑
i=1
‖xi‖

≥ 1− 1
n

n∑
i=1

(1− δ) = δ,

i.e (w, 0) /∈ conv ∆ε(z). Consequently, z is not a Daugavet-point.

Despite the fact that all absolute sums with an absolute normalised norm
with property (α) fail to have Daugavet-points, we also have positive stability
results. Initially we managed to show that an absolute sum equipped with a
POH norm has Daugavet-points provided the summands have (see [AHLP20,
Proposition 4.3]). Not long after, this result was extended to all A-OH norms.
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Theorem 3.3.9. Let X and Y be Banach spaces, x ∈ SX , y ∈ SY , and let
N be an A-OH norm with (a, b) as in (3.3.2). If x and y are Daugavet-points
in X and Y , respectively, then (ax, by) is a Daugavet-point in X ⊕N Y .

Proof. Assume that x and y are Daugavet-points. Set Z = X ⊕N Y and fix
f = (x∗, y∗) ∈ SZ∗ , α > 0, and ε > 0. Choose δ > 0 to satisfy δN(1, 1) < ε.
By Lemma 3.1.4 we obtain u ∈ BX and v ∈ BY such that

x∗(u) ≥
(

1− α

2

)
‖x∗‖ and y∗(v) ≥

(
1− α

2

)
‖y∗‖

and
‖x− u‖ ≥ 2− δ and ‖y − v‖ ≥ 2− δ.

By the properties of absolute normalised norms and A-OH norms, there
exist k, l ≥ 0 such that

N(k, l) = 1, N
(
(a, b) + (k, l)

)
= 2, and k‖x∗‖+ l‖y∗‖ = 1.

Therefore (ku, lv) ∈ S(BZ , f, α), because

f(ku, lv) = kx∗(u) + ly∗(v) ≥
(

1− α

2

)
(k‖x∗‖+ l‖y∗‖) > 1− α.

On the other hand, from ‖x− u‖ ≥ 2− δ and ‖y − v‖ ≥ 2− δ, we get that∥∥∥ax− ku∥∥∥ ≥ a+ k − δ and
∥∥∥by − lv∥∥∥ ≥ b+ l − δ.

In conclusion we have that

‖(ax, by)− (ku, lv)‖N = N(‖ax− ku‖, ‖by − lv‖)
≥ N(a+ k − δ, b+ l − δ)
≥ N(a+ k, b+ l)−N(δ, δ)
= N

(
(a, b) + (k, l)

)
− δN(1, 1)

> 2− ε,

which means that by Lemma 3.1.4 (ax, by) is a Daugavet-point.

Since every absolute normalised norm either has property (α) or is A-OH,
we now have from Proposition 3.3.8 and Theorem 3.3.9 a clear picture of the
existence of Daugavet-points in absolute sums of Banach spaces, at least when
both summands have Daugavet-points. In some cases, however, it is enough
to assume that only one summand has Daugavet-points to guarantee that
the absolute sum has Daugavet-points. The following two results describe
these special occasions. The proofs are very similar to the proof of Theorem
3.3.9 and therefore omitted.
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Proposition 3.3.10. Let X and Y be Banach spaces, x ∈ SX and y ∈ SY ,
and let N be an A-OH norm with (a, b) as in (3.3.2).

(a) If b = 0 and x is a Daugavet-point in X, then (ax, by) = (x, 0) is a
Daugavet-point in X ⊕N Y .

(b) If a = 0 and y is a Daugavet-point in Y , then (ax, by) = (0, y) is a
Daugavet-point in X ⊕N Y .

Proposition 3.3.11. Let X and Y be Banach spaces, x ∈ SX and y ∈ SY .

(a) If x is a Daugavet-point in X, then (x, by) is a Daugavet-point in X⊕∞
Y for every b ∈ [0, 1].

(b) If y is a Daugavet-point in Y , then (ax, y) is a Daugavet-point in X⊕∞
Y for every a ∈ [0, 1].

3.3.3 From absolute sum to summands
Now we consider the stability results of Daugavet-points in the other direc-
tion, i.e. the existence of Daugavet-points in the summands provided the
absolute sum has Daugavet-points.

Due to Proposition 3.3.8 there is nothing to research in the case of ab-
solute normalised norms with property (α), and according to Proposition
3.3.7 it is enough to consider A-OH norms. We show that the existence of
Daugavet-points in an absolute sum assures the existence of Daugavet-points
in the summands for all A-OH norms. For technical reasons we exclude the
`∞-norm at first.

Theorem 3.3.12. Let X and Y be Banach spaces, x ∈ BX , y ∈ BY , and let
N be an absolute normalised norm on R2, different from `∞-norm. Assume
that (x, y) is a Daugavet-point in X ⊕N Y .

(a) If x 6= 0, then x/‖x‖ is a Daugavet-point in X.

(b) If y 6= 0, then y/‖y‖ is a Daugavet-point in Y .

Proof. We prove only the first statement, the second can be proved similarly.
Suppose that x 6= 0. Fix x∗ ∈ SX∗ , α > 0, and ε > 0. We will find
u ∈ S(BX , x

∗, α) such that ‖x/‖x‖ − u‖ ≥ 2 − ε. Set f = (x∗, 0) and
Z = X ⊕N Y . Then f ∈ SZ∗ . Using Lemma 1.4.14 choose δ > 0 such that,
for every p, q, r ≥ 0, if

2− δ ≤ N(p, q) ≤ N(r, q) ≤ 2 and q < 2− δ,
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then |p−r| < ‖x‖ε/2. There is no loss of generality in assuming that δ ≤ ε/2,
δ ≤ α, and (1− δ)N(1, 1) > 1 (here we use the fact that N(1, 1) > 1, i.e. N
is not `∞-norm).

Since (x, y) is a Daugavet-point in Z, there exists (u, v) ∈ S(BZ , f, δ)
such that ‖(x, y)− (u, v)‖N ≥ 2− δ. Consequently,

x∗(u) = f(u, v) > 1− δ ≥ 1− α,
which gives us that u ∈ S(BX , x

∗, α) and ‖u‖ > 1−δ. We also conclude that
‖v‖ < 1− δ, because otherwise

N(‖u‖, ‖v‖) ≥ N(1− δ, 1− δ) = (1− δ)N(1, 1) > 1,

a contradiction. In addition we have that

2− δ ≤ N
(
‖x− u‖, ‖y − v‖

)
≤ N

(
‖x‖+ ‖u‖, ‖y − v‖

)
≤ 2

and
‖y − v‖ ≤ ‖y‖+ ‖v‖ < 1 + 1− δ = 2− δ.

Hence, by the choice of δ, we have that∣∣∣‖x− u‖ − (‖x‖+ ‖u‖)
∣∣∣ < ‖x‖ε2 .

Thus ‖x− u‖ > ‖x‖+ ‖u‖ − ‖x‖ε/2, and therefore,∥∥∥∥ x

‖x‖
− u

∥∥∥∥ =
∥∥∥∥ 1
‖x‖

(x− u)−
(
u− 1
‖x‖

u
)∥∥∥∥

≥ 1
‖x‖
‖x− u‖ −

( 1
‖x‖
− 1

)
‖u‖

≥ 1
‖x‖

(
‖x‖+ ‖u‖ − ‖x‖ε2

)
− ‖u‖
‖x‖

+ ‖u‖

= 1 + ‖u‖ − ε

2
> 1 + 1− δ − ε

2
≥ 2− ε.

According to Lemma 3.1.4, the element x/‖x‖ is a Daugavet-point in X.

We now move to the case of `∞-sum. Recall that according to Proposition
3.3.11 `∞-sum can have Daugavet-points even if one of the summands fails to
have Daugavet-points. However, assuming that `∞-sum has Daugavet-points,
we will prove, that at least one of the summands has Daugavet-points.
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Theorem 3.3.13. Let X and Y be Banach spaces, x ∈ BX and y ∈ BY .
Assume that (x, y) is a Daugavet-point in X ⊕∞ Y . Then x is a Daugavet-
point in X or y is a Daugavet-point in Y .

Proof. Firstly, look at the case, where only one of x and y has norm 1, and the
other has norm less than 1. Assume that ‖y‖ < 1 and let us prove that x is a
Daugavet-point in X. (The statement, if ‖x‖ < 1, then y is a Daugavet-point
in Y , can be proved similarly.) Fix x∗ ∈ SX∗ , α > 0 and ε > 0. Choose δ > 0
such that δ ≤ ε and ‖y‖ < 1 − δ. Set Z = X ⊕∞ Y and f = (x∗, 0) ∈ SZ∗ .
Since (x, y) is a Daugavet-point then there exists (u, v) ∈ S(BZ , f, α) such
that ‖(x, y) − (u, v)‖∞ ≥ 2 − δ. Therefore, x∗(u) = f(u, v) > 1 − α, i.e.
u ∈ S(BX , x

∗, α) and

‖y − v‖ ≤ ‖y‖+ ‖v‖ < 1− δ + 1 = 2− δ.

Combining this with the fact that

‖(x, y)− (u, v)‖∞ = max{‖x− u‖, ‖y − v‖} ≥ 2− δ,

we get that ‖x−u‖ ≥ 2−δ ≥ 2−ε. Thus, by Lemma 3.1.4, x is a Daugavet-
point in X.

Secondly, consider the case, where both x and y are of norm 1, and
neither of them is a Daugavet-point. Then we can fix slices S(BX , x

∗, α) and
S(BY , y

∗, α), and ε > 0 such that S(BX , x
∗, α)∩∆ε(x) = ∅ and S(BY , y

∗, α)∩
∆ε(y) = ∅. There is no loss of generality in assuming that α < ε < 1. Set
f = 1/2(x∗, y∗) and Z = X⊕∞ Y , and consider the slice S(BZ , f, α/2). Note
that

S(BZ , f, α/2) ⊂ S(BX , x
∗, α)× S(BY , y

∗, α).
Let (u, v) ∈ SZ ∩ S(BZ , f, α/2) be arbitrary. Then

‖u‖ > 1− α > 0 and ‖v‖ > 1− α > 0,

and
u/‖u‖ ∈ S(BX , x

∗, α) and v/‖v‖ ∈ S(BY , y
∗, β).

Therefore

‖(u, v)− (x, y)‖∞ = max{‖u− x‖, ‖v − y‖}

≤ max
{∥∥∥∥u− u

‖u‖

∥∥∥∥+
∥∥∥∥ u

‖u‖
− x

∥∥∥∥, ∥∥∥∥v − v

‖v‖

∥∥∥∥+
∥∥∥∥ v

‖v‖
− y

∥∥∥∥}
< α + 2− ε
= 2− (ε− α).

As a result, S(BZ , f, α/2) ∩ ∆ε−α(x, y) = ∅, which by Lemma 3.1.4 implies
that (x, y) is not a Daugavet-point.
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3.4 ∆-points in absolute sums
This section is dedicated to results concerning the stability of ∆-points un-
der absolute sums. We showed already in [AHLP20] that for any absolute
normalised norm the existence of ∆-points in the summands easily ensures
the existence of ∆-points in the absolute sum. This result was enough to
separate the notions Daugavet-point and ∆-point. The stability results in
the other direction were established in [HPV]. More precisely, in all absolute
sums with the exception of `∞-sum, the existence of ∆-points in the absolute
sum guarantees the existence of ∆-points in the summands. From here on,
we mostly consider arbitrary absolute normalised norms N . We start with
the result in the direction from the summands to the absolute sum.

Proposition 3.4.1. Let X and Y be Banach spaces, x a ∆-point in X, and
y a ∆-point in Y . If a, b ≥ 0 with N(a, b) = 1, then (ax, by) is a ∆-point in
Z.

Proof. Let ε > 0 and 0 < γ < ε. Since x is a ∆-point in X and y a ∆-point
in Y , we have x1, . . . , xm ∈ ∆X

ε (x) and y1, . . . , ym ∈ ∆Y
ε (y) such that∥∥∥∥x− 1

m

m∑
i=1

xi

∥∥∥∥ < γ and
∥∥∥∥y − 1

m

m∑
i=1

yi

∥∥∥∥ < γ.

Note that∥∥∥∥(ax, by)− 1
m

m∑
i=1

(
axi, byi

)∥∥∥∥
N

= N
(
a
∥∥∥∥x− 1

m

m∑
i=1

xi

∥∥∥∥, b∥∥∥∥y − 1
m

m∑
i=1

yi

∥∥∥∥)
≤ N(γa, γb)
= γN(a, b) = γ,

and ∥∥∥(ax, by)− (axi, byi)
∥∥∥
N

= N(a‖x− xi‖, b‖y − yi‖)
≥ N(a(2− ε), b(2− ε))
= (2− ε)N(a, b)
= 2− ε.

Recall, that it was already proved in [IK04] using slices, that the DLD2P
is stable under all absolute normalised norms (see [IK04, Theorem 3.2] or
Theorem 2.2.1). The stability in one direction can also be seen as a simple
consequence of Proposition 3.4.1.
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Corollary 3.4.2. Let X and Y be Banach spaces and N an absolute nor-
malised norm on R2. If X and Y both have the DLD2P, then X ⊕N Y has
the DLD2P.

Proof. Recall that Z = X ⊕N Y has the DLD2P if and only if every element
of the unit sphere is a ∆-point. Let (x, y) ∈ SZ be arbitrary. It is obvious
that

1 = ‖(x, y)‖N =
∥∥∥∥(‖x‖ x

‖x‖
, ‖y‖ y

‖y‖

)∥∥∥∥
= N

(
‖x‖

∥∥∥∥ x

‖x‖

∥∥∥∥, ‖y‖∥∥∥∥ y

‖y‖

∥∥∥∥)
= N(‖x‖, ‖y‖).

Therefore, since by assumption x/‖x‖ is a ∆-point in X and y/‖y‖ is a
∆-point in Y , we have by Proposition 3.4.1 that (x, y) is a ∆-point in Z.

In contrast, as shown in the previous section, there are absolute nor-
malised norms N for which the space X⊕N Y has no Daugavet-points. There
even exists a space where every point of the unit sphere is a ∆-point, but
none of them are Daugavet-points.

Example 3.4.3. Consider the space X = C[0, 1] ⊕2 C[0, 1]. Since C[0, 1]
has the Daugavet property and in particular the DLD2P, then X has the
DLD2P (see [IK04, Theorem 3.2]). But, by Proposition 3.3.8, X has no
Daugavet-points even though every x ∈ SX is a ∆-point.

We now move on to the stability results in the other direction, i.e. from
the absolute sum to summands. Firstly, we show that for most absolute sums
the summands have ∆-points, provided the absolute sums do.

Theorem 3.4.4. Let X and Y be Banach spaces, x ∈ SX , y ∈ SY , N an
absolute normalised norm on R2, and a, b ≥ 0 such that N(a, b) = 1. Assume
that (ax, by) is a ∆-point in X ⊕N Y .

(a) If b 6= 1, then x is a ∆-point in X.

(b) If a 6= 1, then y is a ∆-point in Y .

Proof. We prove only the first statement, the second can be proved similarly.
Assume that b 6= 1. Note that then a 6= 0. Let c, d ≥ 0 be such that
N∗(c, d) = 1 and ac+ bd = 1.

Suppose that x is not a ∆-point in X. Then, by Lemma 3.1.5, there exist
x∗ ∈ SX∗ , α > 0, and ε > 0 such that

x ∈ S(BX , x
∗, α) and S(BX , x

∗, α) ∩∆ε(x) = ∅.
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Let y∗ ∈ SY ∗ be such that y∗(y) = 1 and let f = (cx∗, (1− α)dy∗). Then

f(ax, by) = acx∗(x) + (1− α)bdy∗(y) > (1− α)(ac+ bd) = 1− α.

Choose β, γ > 0 such that β < aε and β < γε, and

f(ax, by) > 1− (α− γ).

Now, using Lemma 1.4.14, choose δ > 0 such that, for every p, q, r ≥ 0, if

2− δ ≤ N(p, q) ≤ N(r, q) ≤ 2 and q < 2− δ,

then |p − r| < β. There is no loss of generality in assuming that b < 1 − δ.
There exists (u, v) ∈ BZ , where Z = X ⊕N Y , such that

f(u, v) > 1− (α− γ) and ‖(ax, by)− (u, v)‖N ≥ 2− δ.

Then

cx∗(u) + (1− α)d‖v‖ ≥ cx∗(u) + (1− α)dy∗(v)
= f(u, v)
> 1− (α− γ)
> 1− α
≥ (1− α)(c‖u‖+ d‖v‖),

which yields
cx∗(u) > (1− α)c‖u‖,

i.e. x∗(u/‖u‖) > 1 − α. Since S(BX , x
∗, α) ∩∆ε(x) = ∅, we know now that

‖x − u/‖u‖‖ < 2 − ε. We now show that ‖ax − u‖ < a + ‖u‖ − β. Let us
consider two cases. If ‖u‖ ≥ a, then

‖ax− u‖ ≤
∥∥∥∥ax− a u

‖u‖

∥∥∥∥+
∥∥∥∥a u

‖u‖
− u

∥∥∥∥
≤ a(2− ε) +

∣∣∣a− ‖u‖∣∣∣
= a+ ‖u‖ − aε
< a+ ‖u‖ − β.

On the other hand, if a ≥ ‖u‖, we have

c‖u‖+ (1− α)d‖v‖ ≥ cx∗(u) + (1− α)dy∗(v)
= f(u, v)
> 1− α + γ

≥ (1− α)d‖v‖+ γ,
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from which we conclude ‖u‖ ≥ c‖u‖ > γ. Now we see that

‖ax− u‖ ≤
∥∥∥ax− ‖u‖x∥∥∥+

∥∥∥‖u‖x− u∥∥∥
≤ a− ‖u‖+ ‖u‖(2− ε)
= a+ ‖u‖ − ‖u‖ε
< a+ ‖u‖ − γε
< a+ ‖u‖ − β.

That gives us the following:

2− δ ≤ ‖(ax, by)− (u, v)‖N = N(‖ax− u‖, ‖by − v‖)
≤ N(a+ ‖u‖ − β, b+ ‖v‖)

and therefore

2− δ ≤ N(a+ ‖u‖ − β, b+ ‖v‖) ≤ N(a+ ‖u‖, b+ ‖v‖) ≤ 2.

Since b+ ‖v‖ < 2− δ, we have by the choice of δ that∣∣∣(a+ ‖u‖ − β)− (a+ ‖u‖)
∣∣∣ < β,

i.e. β < β, a contradiction. Hence x is a ∆-point in X.

Theorem 3.4.4 does not cover the case a = b = 1 (for `∞-norm). Now
we will show that in this case, if x ∈ SX and y ∈ SY , then (x, y) can be
a ∆-point even if x and y are not ∆-points. Moreover, we introduce the
conditions that x ∈ SX and y ∈ SY must satisfy in order for (x, y) to be a
∆-point in X ⊕∞ Y . The corresponding results rely heavily on the concept
of another type of elements of the unit sphere similar to ∆-points (compare
with Lemma 3.1.5).

Definition 3.4.5. Let X be a Banach space, x ∈ SX , and k > 1. We say
that x is a ∆k-point in X, if for every S(BX , x

∗, α) with x ∈ S(BX , x
∗, α)

and for every ε > 0 there exists u ∈ S(BX , x
∗, kα) such that ‖x−u‖ ≥ 2− ε.

It is obvious that every ∆-point is a ∆k-point for every k > 1. The reverse,
however, does not hold, since the upcoming example shows the existence of
a ∆k-point that is not a ∆-point, which proves that the concepts ∆-point
and ∆k-point are not the same.

Example 3.4.6. Let X and Y be Banach spaces, x ∈ SX and y ∈ SY , and
let k > 1. Set Z = X ⊕1 Y and z =

(
(1− 1/k)x, y/k

)
. Assume that x is not
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a ∆-point in X and y is a ∆-point in Y . Then, according to Theorem 3.4.4,
z is not a ∆-point in Z.

Fix f = (x∗, y∗) ∈ SZ∗ and α > 0, such that f(z) > 1− α, and fix ε > 0.
Then

1− 1
k

+ 1
k
y∗(y) ≥

(
1− 1

k

)
x∗(x) + 1

k
y∗(y) = f(z) > 1− α.

It follows that y∗(y) > 1−αk. Since y is a ∆-point in Y , there exists v ∈ BY

such that
y∗(v) > 1− αk and ‖y − v‖ ≥ 2− ε.

Then f(0, v) = y∗(v) > 1− αk, i.e. (0, v) ∈ S(BZ , f, αk), and∥∥∥∥((1− 1
k

)
x,

1
k
y
)
− (0, v)

∥∥∥∥
1

=
(

1− 1
k

)
‖x‖+

∥∥∥∥1
k
y − v

∥∥∥∥
≥
(

1− 1
k

)
+ ‖y − v‖ −

(
1− 1

k

)
‖y‖

≥ 2− ε.

This proves that z is a ∆k-point.

Remarkably, (x, y) with x ∈ SX , y ∈ SY can be a ∆-point in X ⊕∞ Y
even if neither x nor y is a ∆-point in X and Y , respectively. This is a direct
consequence of Example 3.4.6 and the following proposition.

Proposition 3.4.7. Let X and Y be Banach spaces, x ∈ SX and y ∈ SY .
Let p, q > 1 satisfy 1/p+ 1/q = 1.

(a) If x is a ∆p-point in X and y is a ∆q-point in Y , then (x, y) is a
∆-point in X ⊕∞ Y .

(b) If x is not a ∆p-point in X and y is not a ∆q-point in Y , then (x, y)
is not a ∆-point in X ⊕∞ Y .

Proof. (a) Assume that x is a ∆p-point in X and y is ∆q-point in Y . Set Z =
X ⊕∞ Y . Fix f = (x∗, y∗) ∈ SZ∗ and α > 0 such that (x, y) ∈ S(BZ , f, α),
and fix ε > 0. Then

x∗(x) + y∗(y) = f(x, y) > 1− α

from what we get

x∗(x) > 1− (α + y∗(y)) = ‖x∗‖ −
(
α + y∗(y)− ‖y∗‖

)
.
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We now show that there exists (u, v) ∈ S(BZ , f, α) such that

‖(x, y)− (u, v)‖∞ ≥ 2− ε.

Let us consider two cases. If α+y∗(y)−‖y∗‖ ≤ α/p, then x∗(x) > ‖x∗‖−α/p
and therefore, since x is a ∆p-point, there exists u ∈ BX such that x∗(u) >
‖x∗‖ − α and ‖x− u‖ ≥ 2− ε. Let v ∈ BY be such that

f(u, v) = x∗(u) + y∗(v) > ‖x∗‖ − α + ‖y∗‖ = 1− α.

Then also ‖(x, y)− (u, v)‖∞ = max{‖x− u‖, ‖y − v‖} ≥ 2− ε.
If α + y∗(y)− ‖y∗‖ > α/p, then

y∗(y) > ‖y∗‖ − α + α

p
= ‖y∗‖ − 1

q
α

and analogically, using the fact that y is a ∆q-point, we can find (u, v) ∈
S(BZ , f, α) such that ‖(x, y) − (u, v)‖∞ ≥ 2 − ε. Therefore (x, y) is a ∆-
point.

(b) Assume that x is not a ∆p-point in X and y is not a ∆q-point in Y .
By definition there exist x∗ ∈ SX∗ , y∗ ∈ SY ∗ , and α1, α2, ε > 0, with x ∈
S(BX , x

∗, α1) and y ∈ S(BX , y
∗, α2) such that for every u ∈ S(BX , x

∗, pα1)
and for every v ∈ S(BY , y

∗, qα2) we have

‖x− u‖ < 2− ε and ‖y − v‖ < 2− ε.

Set Z = X ⊕∞ Y . Let λ ∈ (0, 1) satisfy (1 − λ)/λ = (pα1)/(qα2), let
α = λα1 + (1− λ)α2 and let f = (λx∗, (1− λ)y∗) ∈ SZ∗ . Then

f(x, y) = λx∗(x) + (1− λ)y∗(y)
> λ(1− α1) + (1− λ)(1− α2)
= 1− α.

Fix (u, v) ∈ S(BZ , f, α). From

1− α < f(u, v) = λx∗(u) + (1− λ)y∗(v) ≤ λx∗(u) + 1− λ

we get that

x∗(u) > 1− α

λ
= 1−

(
α1 + 1− λ

λ
α2

)
= 1− p

(
α1

p
+ α1

q

)
= 1− pα1.

Therefore u ∈ S(BX , x
∗, pα1) and analogically v ∈ S(BY , y

∗, qα2). It follows
that ‖x− u‖ < 2− ε and ‖y − v‖ < 2− ε. Consequently,

‖(x, y)− (u, v)‖∞ = max{‖x− u‖, ‖y − v‖} < 2− ε

and thus, (x, y) is not a ∆-point.



80 CHAPTER 3. DAUGAVET- AND ∆-POINTS

In fact, as we can see from the following result, Proposition 3.4.7 gives
an equivalent condition for (x, y) being a ∆-point in X ⊕∞ Y where neither
x nor y is a ∆-point in X and Y , respectively.

Proposition 3.4.8. Let X and Y be Banach spaces and x ∈ SX and y ∈ SY .
Assume that neither x nor y is a ∆-point in X and Y , respectively. Then
the following statements are equivalent:

(i) there exist p, q > 1 with 1/p + 1/q = 1 such that x is ∆p-point in X
and y is ∆q-point in Y ;

(ii) for every p, q > 1 with 1/p+ 1/q = 1 either x is ∆p-point in X or y is
∆q-point in Y .

Proof. (i) ⇒ (ii). Assume that (i) holds. Let p, q > 1 be such that 1/p +
1/q = 1. According to (i) x is ∆p′-point in X and y is ∆q′-point in Y for
some p′, q′ > 1 with 1/p′ + 1/q′ = 1. Then p′ ≥ p or q′ ≥ q and therefore x
is ∆p-point in X or y is ∆q-point in Y , hence (ii) holds.

(ii) ⇒ (i). Assume that (ii) holds. Define

A = {k ∈ [1,∞) : x is ∆k-point in X}

and
B = {k ∈ [1,∞) : y is ∆k-point in Y }.

Firstly, let us examine the case where set A is non-empty. Let a =
inf A. We show that a ∈ A. Fix x∗ ∈ SX∗ , α > 0 and ε > 0 such that
x ∈ S(BX , x

∗, α). Let γ > 0 be such that x∗(x) > 1 − (α − γ) and let
k = aα/(α−γ). Then k > a and therefore k ∈ A. Since x ∈ S(BX , x

∗, α−γ),
there exists u ∈ S(BX , x

∗, k(α−γ)) = S(BX , x
∗, aα) such that ‖x−u‖ ≥ 2−ε.

From that we get a ∈ A. Analogically we can show that if B is non-empty,
then b = inf B ∈ B.

It is not hard to see that neither A nor B can be empty. Indeed, if A = ∅
(the case B = ∅ is analogical), then since (ii) holds, we have that (1,∞) ⊂ B.
However, according to the previous argumentation we now get that 1 ∈ B,
i.e. y is a ∆-point, which is a contradiction. Therefore, A = [a,∞) and
B = [b,∞). From the assumption we can easily see that 1/a + 1/b ≥ 1,
hence, there exist p, q > 1 that satisfy 1/p + 1/q = 1 such that p ∈ A and
q ∈ B.
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3.5 Perspectives
In the following we will list some of the relevant open problems regarding
Daugavet- and ∆-points.

Problem 10. Does there exist a Banach space with property D that fails the
DLD2P?

Problem 11. Is there a simple characterisation of Daugavet- and ∆-points
in the L1(µ)-preduals? Are there other well-known Banach spaces where
Daugavet- and ∆-points coincide?

Let X and Y be Banach spaces and N an absolute normalised norm.
Then it is known what conditions x ∈ SX and y ∈ SY that are not ∆-points
need to satisfy, so that (x, y) ∈ X ⊕∞ Y would be a ∆-point.

Problem 12. What are the specific conditions for x ∈ SX and y ∈ SY so
that (x, y) ∈ X⊕∞ Y would be a ∆-point (without the assumption that x and
y are not ∆-points)?





Appendix

In the following we present, firstly, a diagram with explanations about all the
relations between the diameter two properties addressed in this thesis, and
secondly, three tables that encapsulate the stability results of the diametral
diameter two properties, Daugavet-, and ∆-points.

83



84 APPENDIX

Diagram: Diameter two properties

Daugavet

DSD2P

SD2PDD2P

DLD2P D2P

convDLD2P D

LD2P

(a)

(j)

(b) (i)

(c) (h)

(d) (f)

(e)

(k)

(l)

(g)

Figure 3.4: Diameter two properties

The reverse implications of (a), (c), and (f) are open problems. In the
following we present a list of the counterexamples for all of other reverse
implications (for detailed discussion see Sections 1.4, 2.1, 3.1, and 2.4).

(b) C[0, 1]⊕2 C[0, 1];

(d), (g), (h), and (i) `∞;

(e), (j) c0;

(k) c0 ⊕2 c0;

(l) a renorming of c0 (see [BLR15]).



85

Table 1: Overview of the stability results of
the diametral diameter two properties

Absolute Related

normalised X and Y X ⊕N Y reference(s)

norm N

∀N DLD2P ⇔ DLD2P [IK04]

∀N DD2P ⇔ DD2P [BLR18], Thm 2.2.2

`1-norm DSD2P ⇔ DSD2P [BLR18], Thm 2.2.6

`∞-norm [BLR18]

∀N convex ⇒ convex Thm 2.4.10

DLD2P DLD2P

`1-norm Daugavet ⇔ Daugavet [BKSW05]

`∞-norm property property

From the table above, for example, it reads: for every absolute normalised
norm N both X and Y have the DLD2P if and only if the absolute sum
X ⊕N Y has the DLD2P.
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Table 2: Overview of the stability results of
Daugavet-points

Let X and Y be Banach spaces, x ∈ SX , and y ∈ SY . Let N be an absolute
normalised norm.

Conditions on N , and a, b ≥ 0 Results

N 6= ‖ · ‖∞, x and y are Daugavet-points

a 6= 0 and b 6= 0 ⇔

(ax, by) is a Daugavet-point

N 6= ‖ · ‖∞ and a = 0, y is a Daugavet-point

N
(
(a, b) + (1, d)

)
= 2 ⇔

(ax, by) is a Daugavet-point

N 6= ‖ · ‖∞ and b = 0, x is a Daugavet-point

N
(
(a, b) + (c, 1)

)
= 2 ⇔

(ax, by) is a Daugavet-point

b = 0 and N
(
(a, b) + (1, d)

)
< 2

or (ax, by) is not a Daugavet-point

a = 0 and N
(
(a, b) + (c, 1)

)
< 2

x or y is a Daugavet-point

N = ‖ · ‖∞ ⇔

(ax, by) is a Daugavet-point

From the table above, for example, it reads: let N be an absolute nor-
malised norm that differs from `∞-norm, and let a and b be strictly positive;
then x and y are Daugavet-points in Banach spaces X and Y , respectively,
if and only if (ax, by) is a Daugavet-point in X ⊕N Y.
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Table 3: Overview of the stability results of
∆-points

Let X and Y be Banach spaces, x ∈ SX , and y ∈ SY . Let N be an absolute
normalised norm.

Conditions on a, b ≥ 0 Results

a 6= 1 and b 6= 1 x and y are ∆-points ⇔ (ax, by) is a ∆-point

a = 1 and b 6= 1 x is a ∆-point ⇔ (ax, by) is a ∆-point

a 6= 1 and b = 1 y is a ∆-point ⇔ (ax, by) is a ∆-point

a = 1 and b = 1 x or y is a ∆-point ⇒ (ax, by) is a ∆-point

From the table above, for example, it reads: let a 6= 1 and b 6= 1; then x
is a ∆-point in X and y is a ∆-point in Y if and only if (ax, by) is a ∆-point
in X ⊕N Y.
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Diametraalsed diameeter-2 omadused,
Daugaveti- ja ∆-punktid Banachi ruumides

Käesoleva väitekirja põhieesmärk on laiendada teadmisi Banachi ruumidel
vaadeldavate diameeter-2 omaduste kohta, täpsemalt uuritakse töös diamet-
raalseid diameeter-2 omadusi ning nendega seotud Daugaveti- ja ∆-punktide
olemasolu. Ühelt poolt on diametraalsed diameeter-2 omadused tugevamad
vastavatest klassikalistest diameeter-2 omadustest, teiselt poolt on nad tun-
tud Daugaveti omaduse loomulikud üldistused ja seega Daugaveti omadu-
sest (formaalselt) nõrgemad. Uute omaduste sissetoomisel lähtuti Daugaveti
omaduse geomeetrilistest kirjeldustest ühikkera viilude, suhteliselt nõrgalt
lahtiste osahulkade ja nende kumerate kombinatsioonide abil. Diametraalse
diameeter-2 omadusega Banachi ruumi ühikkera viilu (või omaduse tugeva-
ma versiooni korral suhteliselt nõrgalt lahtise osahulga või nende osahulkade
kumera kombinatsiooni) elemendile leidub selles hulgas (viilus, suhteliselt
nõrgalt lahtises osahulgas või nende hulkade kumeras kombinatsioonis) talle
peaaegu diametraalne element. Kas Daugaveti omadus ja tugevaim vaadel-
dud uutest omadustest – tugev diametraalne diameeter-2 omadus – on üle-
üldse erinevad, pole siiski veel selge. Kokkulangevus oleks üllatav ja näitaks
Daugaveti omadust uuest küljest.

Vastavalt tuntud geomeetrilisele kirjeldusele on Banachi ruumil X Dau-
gaveti omadus parajasti siis, kui ruumi X iga normiga üks elemendi x korral:
iga positiivse arvu ε korral on hulga

∆ε(x) = {y ∈ BX : ‖x− y‖ ≥ 2− ε}

kinnine kumer kate kogu ühikkera BX . Sellist tingimust rahuldavat elementi
x nimetatakse Daugaveti-punktiks. Element x on ∆-punkt, kui iga positiivse
arvu ε korral x kuulub hulga ∆ε(x) kinnisesse kumerasse kattesse. Ilmselt on
iga Daugaveti-punkt ∆-punkt. Suvaline ∆-punkt ei tarvitse Daugaveti-punkt
olla, kuigi intuitiivselt võib nii paista.

Töös esitatakse diametraalsete diameeter-2 omaduste stabiilsustulemused
absoluutse normiga (nt `p-normiga) summaruumide ja vastavate komponent-
ruumide vahel. Need tulemused näitavad, et osa diametraalseid diameeter-2
omadusi käituvad sarnaselt vastavale klassikalisele diameeter-2 omadusele,
aga tugev diametraalne diameeter-2 omadus käitub nagu Daugaveti oma-
dus. Väitekirjas uuritakse ka Daugaveti- ja ∆-punktide olemasolu summa-
ruumides. Nendest tulemustest järeldub, et Daugaveti- ja ∆-punkti mõis-
ted on erinevad, kuigi selgub, et mitmeski tuntud Banachi ruumide klassis
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nagu näiteks C(K) ruumides lõpmatu kompaktse Hausdorffi ruumi K kor-
ral, L1(µ) ruumides ja teatud Müntzi ruumides langevad need punktid kok-
ku. Lisaks sellele antakse nendes ruumides Daugaveti-punktide lihtne kirjel-
dus, millele vastavust on kerge kontrollida. Näidatakse, et C(K) ruumidel ja
Müntzi ruumidel on eriline diameeter-2 omadus, mida kutsutakse kumeraks
diametraalseks lokaalseks diameeter-2 omaduseks.

Väitekiri koosneb kolmest peatükist ja ühest lisast. Esimeses peatükis
antakse lühiülevaade väitekirjas vaadeldavate põhiomaduste ajaloolisest taus-
tast ja senisest käsitlusest, esitatakse väitekirja kokkuvõte ning kirjeldatakse
väitekirjas kasutatavaid tähistusi. Veel antakse läbi väitekirja töö põhiomadus-
tega võrdlemisel vajalikud Daugaveti omaduse ja klassikaliste diameeter-2
omaduste mõisted ning töös kasutatud tulemused nende kohta.

Teine peatükk põhineb artiklitel [HPP16] ja [AHLP20]. Selles peatükis
keskendutakse diametraalsete diameeter-2 omaduste uurimisele. Alustuseks
antakse ülevaade kolmest diametraalsest diameeter-2 omadusest ja nende
seostest Banachi ruumide teiste tuntud omadustega. Tõestatakse, et kaks
diametraalset diameeter-2 omadust on stabiilsed kõikide absoluutsete sum-
made puhul, kuid diametraalne tugev diameeter-2 omadus on stabiilne ainult
`1- ja `∞-summa korral. Lisaks selgitame diametraalsete diameeter-2 oma-
duste pärandumist alamruumidesse, sh M -ideaalidele. Teise peatüki lõpus
näidatakse, et kumer diametraalne lokaalne diameeter-2 omadus jääb rangelt
diametraalse lokaalse diameeter-2 omaduse ja lokaalse diameeter-2 omaduse
vahele, ning tõestatakse, et C(K) ruumidel lõpmatu kompaktse Hausdorffi
ruumi K korral ja kõigil Müntzi ruumidel on kumer diametraalne diameeter-
2 omadus. Lisaks sellele osutub, et kumer diametraalne diameeter-2 omadus
on stabiilne kõigi absoluutsete summade võtmisel. Peatükk lõpeb loeteluga
lahtistest küsimustest.

Kolmas peatükk põhineb artiklitel [AHLP20] ja [HPV]. Peatükis selgita-
takse Daugaveti- ja ∆-punktide olemasolu. Alguses antakse nende punktide
üldised kriteeriumid. Järgnevas esitatakse nende punktide lihtsad ja prakti-
lised kirjeldused L1(µ) ruumides, C(K) ruumides lõpmatu kompaktse Haus-
dorffi ruumi K korral ja laias klassis Müntzi ruumides. Näidatakse, et kõi-
gis eelnimetatud ruumides langevad Daugaveti- ja ∆-punktid kokku. Kahes
viimases alapeatükis keskendutakse Daugaveti- ja ∆-punktide olemasolu sel-
gitamisele absoluutse normiga summaruumides. Daugaveti-punktide korral
saab kõik absoluutsed summad jagada kahte klassi: absoluutseteks summa-
deks, mis on varustatud A-OH normiga ja absoluutseteks summadeks, mis
on varustatud normiga, millel on omadus (α); millest esimestes võib olla
Daugaveti punkte, teistes ei saa aga Daugaveti-punkte olla. Kõikides `∞-
summast erinevates absoluutsetes summades leidub ∆-punkte parajasti siis,
kui neid leidub mõlemas komponentruumis. Üllatuslikult võib `∞-summas
olla ∆-punkte isegi siis, kui neid komponentruumides ei leidu. Peatükk lõpeb
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lahtiste küsimustega.
Lisas on esiteks selgitavate kommentaaridega diagramm, mis illustree-

rib kõikide väitekirjas vaadeldud diameeter-2 omaduste omavahelisi seoseid.
Veel on lisatud kolm tabelit, mis võtavad kokku vastavalt diametraalsete
diameeter-2 omaduste, Daugaveti- ja ∆-punktide stabiilsustulemused abso-
luutsete summade võtmisel.
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