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Abstract. In this paper we study the existence of limit cycles of planar piece-

wise linear Hamiltonian systems without equilibrium points. First we prove

that if these systems are separated by a parabola they can have at most two
crossing limit cyles, and if they are separated by a hyperbola or an ellipse they

can have at most three crossing limit cycles. Additionally we prove that these
upper bounds are reached. Second we show that there is an example of two

crossing limit cycles when these systems have four zones separated by three

straight lines.

1. Introduction

The problem of existence of limit cycles is one of the most and difficult problem
in the qualitative theory of differential systems in the plane. Limit cycles appear
in natural way in many appliations.

We recall that a limit cycle is a periodic orbit of a differential system which is
isolated in the set of all periodic orbits of the system.

Recently the problem of existence and the number of limit cycles has also been
studied for discontinuous piecewise linear differential systems, this study goes back
to Andronov et all [1], and still have attention by researchers, mainly due to
their simplicity and to their applications to a large number of phenomena, such
as switches in electronic circuits, see for instance [2, 10, 11]. Lum and Chua [15]
conjectured that a continuous planar piecewise linear system with two zones sepa-
rated by a straight line can exhibit at most one limit cycle. Freire et al [5] proved
this conjecture in 1998. For the planar discontinuous piecewise linear systems, Han
and Zhang [7] conjectured that these systems can have at most two crossing limit
cycles when we separate them by a straight line, but Huan and Yang [8] gave a
numerical example with three limit cycles, this result was proved analytically by
Llibre and Ponce [13]. In 2015 Llibre et all [12] proved that if we separate the
planar discontinuous piecewise linear differential centers by a straight line we can
not have any limit cycle. Recently, in [3, 9, 14] were studied planar discontinous
linear differential centers separated by an algebraic curve, such that a conic, or a
reducible and irreducible cubic, and it was proved that these differential systems
can exhibit at most three crossing limit cycles having two intersection points with
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the conic of separation and the same result is proved if the curve of separation is a
cubic.

In the literature we find many papers studying pieccewise smooth vector fields
with two zones, and few papers for three and four zones.

In this paper we consider planar piecewise linear Hamiltonian systems without
equilibrium points.

Our first objective is to provide the exact maximum number of crossing limit
cycles of planar discontinuous piecewise linear Hamiltonian systems without equi-
librium points (or simply PHS) and separated by a conic Σ. We follow the Filippov
rules for defining the flow of the piecewise differential systems on a line of discon-
tinuity, see [4].

We know that any conic takes nine canonical formes, but the four following
formes: x2 + 1 = 0, x2 + y2 = 0, and x2 + y2 + 1 = 0 do not sepatate the plane in
connected regions, then we omit them. We do not study the crossing limit cycles
separated by the conic x2−1 = 0, because in [6] it was proved that PHS with three
zones which separated by two parallel straight lines have at most one crossing limit
cycle.

The second objective of this paper is to study the crossing limit cycles of piecewise
smooth differential systems such that in each piece the differential system is linear,
Hamiltonian and without equilibrium points. Then easy computations show a such
differential system in each piece must have a vector field of the form

Xi(x, y) = (−λibix+ biy + γi,−λ2i bix+ λibiy + δi),

δi 6= λiγi and bi 6= 0, with i = 1 . . . 4. Their corresponding Hamiltonian function is

Hi(x, y) = (−λ2i bi/2)x2 + λibixy − (bi/2)y2 + δix− γiy.

For more details see [6].

1.1. Crossing limit cycles for planar piecewise linear Hamiltonian systems
without equilibrium points separated by a conic. In this subsection we give
the upper bound of crossing limit cycles of PHS separated by a parabola, P: y−x2 =
0, by a hyperbola H: x2 − y2 − 1 = 0 or by an ellipse E: x2 + y2 − 1 = 0.

We consider only the crossing limit cycles that intersect the conics in exactly
two points, for this reason we will not study the crossing limit cycles separated by
two intersecting straight lines xy = 0.

Our first main result is the following.

Theorem 1. The following statements hold.

(a) The maximum number of crossing limit cycles of PHS intersecting the
parabola P in two points is at most two, and this maximum is reached,
see Figure 1.

(b) The maximum number of crossing limit cycles of PHS intersecting the hy-
perbola H in two points is at most three, and this maximum is reached, see
Figure 2.
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(c) The maximum number of crossing limit cycles of PHS intersecting the el-
lipse E in two points is at most three, and this maximum is reached, see
Figure 3.

The proof of Theorem 1 is given in section 2.

1.2. Crossing limit cycles for planar piecewise linear Hamiltonian systems
without equilibrium points with four zones. In this subsection we study the
existence of crossing limit cycles of the planar piecewise linear Hamiltonian systems
without equilibrium points with four zones

(1) X(x, y) =





X1(x, y), x ≤ −1,
X2(x, y), −1 ≤ x ≤ 0,
X3(x, y), 0 ≤ x ≤ 1,
X4(x, y), x ≥ 1.

satisfying the condition:

C. The vector fields X1, X2, X3 and X4 are linear and Hamiltonian without
equilibrium points.

Our second results are the following.

Theorem 2. Continuous planar piecewise Hamiltonian systems without equilib-
rium points with four zones satisfying C, have no crossing limit cycles.

Theorem 3. There are discontinuous planar piecewise Hamiltonian systems with-
out equilibrium points with four zones satisfying C, exhibiting exactly two crossing
limit cycles.

The proofs of Theorems 2 and 3 are given in section 3.
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Figure 1. Two crossing limit cycles of PHS intersecting the
parabola in two points.

2. Proof of Theorem 1

Proof of statement (a) of Theorem 1. In the region R1 = {(x, y) : y − x2 ≥ 0} we
consider the planar discontinuous piecewise linear Hamiltonian systems without
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Figure 2. Three crossing limit cycles of PHS intersecting the hy-
perbola in two points.
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Figure 3. Three crossing limit cycles of PHS intersecting the el-
lipse in two points.

equilibrium points

(2) ẋ = −λ1b1x+ b1y + γ1, ẏ = −λ21b1x+ λ1b1y + δ1,

with b1 6= 0 and δ1 6= λ1γ1. Its corresponding Hamiltonian function is

(3) H1(x, y) = −(λ21b1/2)x2 + λ1b1xy − (b1/2)y2 + δ1x− γ1y.
In the region R2 = {(x, y) : y − x2 ≤ 0} we consider

(4) ẋ = −λ2b2x+ b2y + γ2, ẏ = −λ22b2x+ λ2b2y + δ2,

with b2 6= 0 and δ2 6= λ2γ2. Its corresponding Hamiltonian function is

(5) H2(x, y) = −(λ22b2/2)x2 + λ2b2xy − (b2/2)y2 + δ2x− γ2y.
In order to have a crossing limit cycle which intersects the parabola y − x2 = 0 in
the points (xi, yi) and (xk, yk), these points must satisfy the following system

(6)

H1(xi, yi)−H1(xk, yk) = 0,
H2(xi, yi)−H2(xk, yk) = 0,
yi − x2i = 0,
yk − x2k = 0.
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We suppose that the two systems (2) and (4) have three crossing limit cycles. Then
system (6) must have three pairs of points as solutions, namely pi = (ri, r

2
i ) and

qi = (si, s
2
i ), with i = 1, 2, 3. Due to the fact that these points satisfy system (6)

and if we consider the points p1 = (r1, r
2
1) and q1 = (s1, s

2
1), from (6) we obtain

that the parameters γ1 and γ2 must be

γ1 =
1

2(r1 + s1)
(−r1r31 − b1r21s1 − b1r1s21 − b1s31 + 2δ1 + 2b1r

2
1λ1 + 2b1r1s1λ1

+2b1s
2
1λ1 − b1r1λ21 − b1s1λ21),

and γ2 has the same expression that γ1 changing (b1, λ1, δ1) by (b2, λ2, δ2).

If the second points p2 = (r2, r
2
2) and q2 = (s2, s

2
2) satisfy system (6), then the

parameters δ1 and δ2 must be

δ1 =
b1

2(r1 − r2 + s1 − s2)
(−r31r2 − r1r32 + r21r2s1 − r32s1 + r1r2s

2
1 + r2s

3
1 + r31s2

−r1r22s2 + r21s1s2 − r22s1s2 + r1s
2
1s2 + s31s2 − r1r2s22 − r2s1s22 − r1s32 − s1s32

−2r21r2λ1 + 2r1r
2
2λ1 − 2r1r2s1λ1 + 2r22s1λ1 − 2r2s

2
1λ1 − 2r21s2λ1 + 2r1r2s2λ1

−2r1s1s2λ1 + 2r2s1s2λ1 − 2s21s2λ1 + 2r1s
2
2λ1 + 2s1s

2
2λ1),

and δ2 has the same expression that δ1 changing (b1, λ1) by (b2, λ2).

Finally, we suppose that the points p3 = (r3, r
2
3) and q3 = (s3, s

2
3) satisfy system

(6), then the parameters λ1 and λ2 must be λ1 = A/B where

A = r31(r2 − r3 + s2 − s3) + r21s1(r2 − r3 + s2 − s3) + r32(r3 − s1 + s3) + r22s2(r3 − s1
+s3) + r1(−r32 + r33 − r3s21 − r22s2 + s21s2 − s32 + r2(s21 − s22) + r23s3 − s21s3 + r3s

2
3

+s33) + (s1 − s2)(r33 + r23s3 + (s1 − s3)(s2 − s3)(s1 + s2 + s3)− r3(s21 + s1s2 + s22
−s23))− r2(r33 − s31 + s1s

2
2 + r23s3 − s22s3 + s33 + r3(−s22 + s23)),

B = 2((s1 − s2)(r23 + (s1 − s3)(s2 − s3)− r3(s1 + s2 − s3)) + r21(r2 − r3 + s2 − s3)
+r22(r3 − s1 + s3) + r1(−r22 + r23 − r3s1 + r2(s1 − s2) + s1s2 − s22 + r3s3 − s1s3
+s23)− r2(r23 + r3(−s2 + s3)− (s1 − s3)(s1 − s2 + s3)).

And λ2 has the same expression that λ1 changing b1 by b2.

We replace γ1, λ1 and δ1 in the expression of H1(x, y), and γ2, λ2 and δ2 in the
expression of H2(x, y) and we obtain H1(x, y) = H2(x, y). So the piecewise linear
differential system becomes a linear differential system, which does not have limit
cycles. So the maximum number of crossing limit cycles in this case is two.

Example with two limit cycles. Consider the planar discontinuous piecewise
linear Hamiltonian system without equilibrium points separated by the parabola
P:

(7) ẋ = 5.5x− 0.5y + 3, ẏ = 60.5x− 5.5y + 0.2,

in the region R1, its corresponding Hamiltonian function is

H1(x, y) = 30.25x2 − 5.5xy + 0.2x+ 0.25y2 − 3y.

The second system is

(8) ẋ = 0.2x− 0.1y − 0.778814, ẏ = 0.4x− 0.2y + 0.00727332,

in the region R2, its corresponding Hamiltonian function is

H2(x, y) = 0.2x2 − 0.2xy + 0.00727332x+ 0.05y2 + 0.778814y.
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These PHS have the limit cycles shown in Figure 1. This completes the proof of
statement (a) of Theorem 1. �

Proof of statements (b) of Theorem 1. In the region R1 = {(x, y) : x2−y2−1 ≥ 0}
we consider the PHS given in (2). Its corresponding Hamiltonian function is given
by equation (3).

In the region R2 = {(x, y) : x2 − y2 − 1 ≤ 0} we consider the PHS given in (2).
Its corresponding Hamiltonian function is given by equation (5).

In order that to have a crossing limit cycle which intersects the hyperbola x2 −
y2 − 1 = 0 in the points (xi, yi) and (xk, yk), these points must satisfy the system

(9)

H1(xi, yi)−H1(xk, yk) = 0,
H2(xi, yi)−H2(xk, yk) = 0,
x2i − y2i = 1,
x2k − y2k = 1.

We assume that the two systems (2) and (4) have four crossing limit cycles. So sys-
tem (9) must have four pairs of points pi = (cosh ri, sinh ri) and qi = (cosh si, sinh si)
for i = 1, 2, 3, 4 as solutions. Since these points satisfy system (9), we consider the
points p1 = (cosh r1, sinh r1) and q1 = (cosh s1, sinh s1), and from (9) we obtain
that the parameters γ1 and γ2 must be

γ1 =
1

2(sinh r1 − sinh s1)
(2δ1 cosh r1 − b1λ21 cosh2 r1 + b1λ

2
1 cosh2 s1 − 2 cosh s1(δ1

+b1λ1 sinh s1) + b1(− sinh2 r1 + λ1 sinh(2r1) + sinh2 s1).

If we change (b1, λ1, δ1) by (b2, λ2, δ2) in the expression of γ1 we get the expression
of γ2.

We suppose that the second points p2 = (cosh r2, sinh r2) and q2 = (cosh s2, sinh s2)
satisfy system (9), then the parameters δ1 and δ2 must be

δ1 =
1

4
(

cosh
(r1 − 2r2 + s1

2

)
− cosh

(r1 + s1 − 2s2
2

)) (b1csch(
r1 − s1

2
)(−λ21 cosh2 r1

sinh r2 + λ21 cosh2 s1 sinh r2 − sinh2 r1 sinh r2 + λ1 sinh(2r1) sinh r2 + sinh r1 sinh2 r2
−λ1 sinh r1 sinh(2r2) + λ21 cosh2 r2(sinh r1 − sinh s1)− sinh2 r2 sinh s1 + λ1 sinh(2r2)

sinh s1 + sinh r2 sinh2 s1 + λ21 cosh2 s2(− sinh r1 + sinh s1)− λ1 sinh r2 sinh(2s1)

+λ21 cosh2 r1 sinh s2 − λ21 cosh2 s1 sinh s2 + sinh2 r1 sinh s2 − λ1 sinh(2r1) sinh s2
− sinh2 s1 sinh s2 + λ1 sinh(2s1) sinh s2 − sinh r1 sinh2 s2 + sinhs1 sinh2 s2
+λ1(sinh r1 − sinh s1) sinh(2s2))).

If we change (b1, λ1) by (b2, λ2) in the expression of δ1 we obtain δ2.

Now we suppose that points p3 = (cosh r3, sinh r3) and q3 = (cosh s3, sinh s3)

satisfy system (9), then we obtain two values of λ1 we name them λ
(1)
1 and λ

(2)
1

and two values of λ2 we name them λ
(1)
2 and λ

(2)
2 . The first value of λ1 is given by
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λ
(1)
1 = (A− (1/2)

√
B)/C and λ

(2)
1 = (A+ (1/2)

√
B)/C, where

A = − sinh
(r1 − r2 − r3 + s1 − s2 − 3s3

2

)
+ sinh

(r1 − r2 − r3 + s1 − 3s2 − s3
2

)

− sinh
(r1 − r2 − 3r3 + s1 − s2 − s3

2

)
+ sinh

(r1 − 3r2 − r3 + s1 − s2 − s3
2

)

− sinh
(3r1 + r2 − r3 + s1 + s2 − s3

2

)
+ sinh

(r1 + 3r2 − r3 + s1 + s2 − s3
2

)

− sinh
(r1 + r2 − r3 + 3s1 + s2 − s3

2

)
+ sinh

(r1 + r2 − r3 + s1 + 3s2 − s3
2

)

+ sinh
(3r1 − r2 + r3 + s1 − s2 + s3

2

)
− sinh

(r1 − r2 + 3r3 + s1 − s2 + s3
2

)

+ sinh
(r1 − r2 + r3 + 3s1 − s2 + s3

2

)
− sinh

(r1 − r2 + r3 + s1 − s2 + 3s3
2

)
,

B = −4
(

cosh
(r1 − r2 − r3 + s1 − s2 − 3s3

2

)
− cosh

(r1 − r2 − r3 + s1 − 3s2 − s3
2

)

+ cosh
(r1 − r2 − 3r3 + s1 − s2 − s3

2

)
− cosh

(r1 − 3r2 − r3 + s1 − s2 − s3
2

)

− cosh
(3r1 + r2 − r3 + s1 + s2 − s3

2

)
+ cosh

(r1 + 3r2 − r3 + s1 + s2 − s3
2

)

− cosh
(r1 + r2 − r3 + 3s1 + s2 − s3

2

)
+ cosh

(r1 + r2 − r3 + s1 + 3s2 − s3
2

)

+ cosh
(3r1 − r2 + r3 + s1 − s2 + s3

2

)
− cosh

(r1 − r2 + 3r3 + s1 − s2 + s3
2

)

+ cosh
(r1 − r2 + r3 + 3s1 − s2 + s3

2

)
− cosh2

(r1 − r2 + r3 + s1 − s2 + 3s3
2

)
)

+4(sinh
(r1 − r2 − r3 + s1 − s2 − 3s3

2

)
− sinh

(r1 − r2 − r3 + s1 − 3s2 − s3
2

)

+ sinh
(r1 − r2 − 3r3 + s1 − s2 − s3

2

)
− sinh

(r1 − 3r2 − r3 + s1 − s2 − s3
2

)

+ sinh
(3r1 + r2 − r3 + s1 + s2 − s3

2

)
− sinh

(r1 + 3r2 − r3 + s1 + s2 − s3
2

)

+ sinh
(r1 + r2 − r3 + 3s1 + s2 − s3

2

)
− sinh

(r1 + r2 − r3 + s1 + 3s2 − s3
2

)

− sinh
(3r1 − r2 + r3 + s1 − s2 + s3

2

)
+ sinh

(r1 − r2 + 3r3 + s1 − s2 + s3
2

)

− sinh
(r1 − r2 + r3 + 3s1 − s2 + s3

2

)
+ sinh2

(r1 − r2 + r3 + s1 − s2 + 3s3
2

))
,

and the expression of C is

C = cosh
(r1 − r2 − r3 + s1 − s2 − 3s3

2

)
− cosh

(r1 − r2 − r3 + s1 − 3s2 − s3
2

)

+ cosh
(r1 − r2 − 3r3 + s1 − s2 − s3

2

)
− cosh

(r1 − 3r2 − r3 + s1 − s2 − s3
2

)

− cosh
(3r1 + r2 − r3 + s1 + s2 − s3

2

)
+ cosh

(r1 + 3r2 − r3 + s1 + s2 − s3
2

)

− cosh
(r1 + r2 − r3 + 3s1 + s2 − s3

2

)
+ cosh

(r1 + r2 − r3 + s1 + 3s2 − s3
2

)

+ cosh
(3r1 − r2 + r3 + s1 − s2 + s3

2

)
− cosh

(r1 − r2 + 3r3 + s1 − s2 + s3
2

)

+ cosh
(r1 − r2 + r3 + 3s1 − s2 + s3

2

)
− cosh

(r1 − r2 + r3 + s1 − s2 + 3s3
2

)
.

We get the expression of λ
(1)
2 and λ

(2)
2 by changing b1 by b2 in the expression of

λ
(1)
1 and λ

(2)
1 , respectively.

We replace γ1, δ1 and λ
(i)
1 in the expression of H1(x, y), and γ2, δ2 and λ

(i)
2 in

the expression of H2(x, y), and we obtain H1(x, y) = H2(x, y), for i = 1, 2. Hence
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in these cases the piecewise linear differential system becomes a linear differential
system, which does not have limit cycles. So the maximum number of crossing limit
cycles in this case is two.

Now we consider either λ
(2)
1 and λ

(1)
2 , or λ

(1)
1 and λ

(2)
2 , by replacing the expres-

sions of γ1, δ1 and λ
(2)
1 (resp. λ

(1)
1 ) in the expression of H1(x, y), and γ2, δ2 and

λ
(1)
2 (resp. λ

(2)
2 ) in the expression of H2(x, y) we have H1(x, y) 6= H2(x, y).

Then we assume that points p4 = (cosh r4, sinh r4) and q4 = (cosh s4, sinh s4)
satisfy system (9), then we obtain b1 = 0 and b2 = 0. This is a contradiction
because by the assumptions they are not zero. Then we proved that the maximum
number of crossing limit cycles for PHS separated by a hyperbola is at most three.

Example with three limit cycles. We consider a PHS separated by the
hyperbola H:

(10) ẋ = −0.14..x+ 1.4y +
1

5
, ẏ = −0.014..x+ 0.14y + 1.9,

in the region R1 = {(x, y) : x2 − y2 − 1 ≤ 0}. It has the Hamiltonian function

H1(x, y) = −0.007..x2 + 0.14xy + 1.9x− 0.7y2 − y

5
.

Now we consider the second PHS

(11) ẋ = 5x− y

2
− 7.14286.., ẏ = 50x− 5y − 67.8571..,

in the region R2 = {(x, y) : x2 − y2 − 1 ≥ 0}. This differential system has the
Hamiltonian function

H2(x, y) = 25x2 − 5xy − 67.8571..x+
y2

4
+ 7.14286..y.

The PHS (10)–(11) has exactly three crossing limit cycles, because the system of
equations

(12)

H1(α, β)−H1(γ, δ) = 0,
H2(α, β)−H2(γ, δ) = 0,
α2 − β2 − 1 = 0,
γ2 − δ2 − 1 = 0,

has three real solutions (α1, β1, γ1, δ1) = (3.99376.., 3.86653.., 3.31341..,−3.1589..),
(α2, β2, γ2, δ2) = (3.43842.., 3.28979.., 2.86513..,−2.68496..) and (α3, β3, γ3, δ3) =
(2.64219.., 2.44565.., 2.2285..,−1.99154..), see Figure 2. �

Proof of statement (c) of Theorem 1. We consider the PHS given in (2) in the re-
gion R1 = {(x, y) : x2 + y2 − 1 ≥ 0}, with its corresponding Hamiltonian function
(3).

We consider the PHS given in (2) in the region R2 = {(x, y) : x2 + y2 − 1 ≤ 0},
with its corresponding Hamiltonian function (5).
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In order that systems (2) and (4) have crossing limit cycles intersect the ellipse
x2 + x2 − 1 = 0 in the points (xi, yi) and (xk, yk), they must satisfy the system

(13)

H1(xi, yi)−H1(xk, yk) = 0,
H2(xi, yi)−H2(xk, yk) = 0,
x2i + y2i = 1,
x2k + y2k = 1.

We suppose that systems (2) and (4) have four crossing limit cycles. So system
(13) must have four pairs of points pi = (cos ri, sin ri) and qi = (cos si, sin si) for
i = 1, 2, 3, 4 as solutions. So if we consider the points p1 = (cos r1, sin r1) and
q1 = (cos s1, sin s1), from (13) we obtain that the parameters γ1 and γ2 must be

γ1 =
1

4(sin r1 − sin s1)
(4δ1 cos r1 + b1 cos(2r1)− b1λ21 cos(2r1)− 4δ1 cos s1 − b1 cos(2s1)

+b1λ
2
1 cos(2s1) + 2b1λ1 sin(2r1)− 2b1λ1 sin(2s1)).

If we change (b1, λ1, δ1) by (b2, λ2, δ2) in the expression of γ1 we get the expression
of γ2.

Now if the second points p2 = (cos r2, sin r2) and q2 = (cos s2, sin s2) satisfy
system (13), then the parameters δ1 and δ2 take the values

δ1 =
r1 cos((r1 + s1)/2) csc((r2 − s2)/2) csc((r1 − r2 + s1 − s2)/2)

4
(

sin r1 − sin s1

) (λ21 cos2 r2 sin r1

−λ21 cos2 s2 sin r1 − 2λ1 cos r2 sin r1 sin r2 + sin r1 sin2 r2 + 2λ1 cos(r1 + s1)
sin r2 sin(r1 − s1)− λ21 cos2 r2 sin s1 + λ21 cos2 s2 sin s1 + 2λ1 cos r2 sin r2 sin s1
− sin2 r2 sin s1 − sin r2 sin(r1 − s1) sin(r1 + s1) + λ21 sin r2 sin(r1 − s1) sin(r1 + s1)
−2λ1 cos(r1 + s1) sin(r1 − s1) sin s2 + sin(r1 − s1) sin(r1 + s1) sin s2 − λ21
sin(r1 − s1) sin(r1 + s1) sin s2 − sin r1 sin2 s2 + sin s1 sin2 s2 + λ1 sin r1 sin(2s2)
−λ1 sin s1 sin(2s2)).

If we change (b1, λ1) by (b2, λ2) in the expression of δ1 we obtain δ2.

If we assume that the points p3 = (cos r3, sin r3) and q3 = (cos s3, sin s3) satisfy

system (13), then we obtain two values of λ1 namely λ
(1)
1 and λ

(2)
1 and two values

of λ2 namely λ
(1)
2 and λ

(2)
2 , such that λ

(1)
1 = (A+

√
B)/C and λ

(2)
1 = (A−

√
B)/C,

where

A = − sin
(r1 − r2 − r3 + s1 − s2 − 3s3

2

)
+ sin

(r1 − r2 − r3 + s1 − 3s2 − s3
2

)

− sin
(r1 − r2 − 3r3 + s1 − s2 − s3

2

)
+ sin

(r1 − 3r2 − r3 + s1 − s2 − s3
2

)

− sin
(3r1 + r2 − r3 + s1 + s2 − s3

2

)
+ sin

(r1 + 3r2 − r3 + s1 + s2 − s3
2

)

− sin
(r1 + r2 − r3 + 3s1 + s2 − s3

2

)
+ sin

(r1 + r2 − r3 + s1 + 3s2 − s3
2

)

+ sin
(3r1 − r2 + r3 + s1 − s2 + s3

2

)
− sin

(r1 − r2 + 3r3 + s1 − s2 + s3
2

)

+ sin
(r1 − r2 + r3 + 3s1 − s2 + s3

2

)
− sin

(r1 − r2 + r3 + s1 − s2 + 3s3
2

)
,
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B = cos
(r1 − r2 − r3 + s1 − s2 − 3s3

2

)
− cos

(r1 − r2 − r3 + s1 − 3s2 − s3
2

)

+ cos
(r1 − r2 − 3r3 + s1 − s2 − s3

2

)
− cos

(r1 − 3r2 − r3 + s1 − s2 − s3
2

)

− cos
(3r1 + r2 − r3 + s1 + s2 − s3

2

)
+ cos

(r1 + 3r2 − r3 + s1 + s2 − s3
2

)

− cos
(r1 + r2 − r3 + 3s1 + s2 − s3

2

)
+ cos

(r1 + r2 − r3 + s1 + 3s2 − s3
2

)

+ cos
(3r1 − r2 + r3 + s1 − s2 + s3

2

)
− cos

(r1 − r2 + 3r3 + s1 − s2 + s3
2

)

+ cos
(r1 − r2 + r3 + 3s1 − s2 + s3

2

)
− cos2

(r1 − r2 + r3 + s1 − s2 + 3s3
2

)

+(sin
(

2
r1 − r2 − r3 + s1 − s2 − 3s3

)
− sin

(r1 − r2 − r3 + s1 − 3s2 − s3
2

)

+ sin
(r1 − r2 − 3r3 + s1 − s2 − s3

2

)
− sin

(r1 − 3r2 − r3 + s1 − s2 − s3
2

)

+ sin
(3r1 + r2 − r3 + s1 + s2 − s3

2

)
− sin

(r1 + 3r2 − r3 + s1 + s2 − s3
2

)

+ sin
(r1 + r2 − r3 + 3s1 + s2 − s3

2

)
− sin

(r1 + r2 − r3 + s1 + 3s2 − s3
2

)

− sin
(3r1 − r2 + r3 + s1 − s2 + s3

2

)
+ sin

(r1 − r2 + 3r3 + s1 − s2 + s3
2

)

− sin
(r1 − r2 + r3 + 3s1 − s2 + s3

2

)
+ sin2

(r1 − r2 + r3 + s1 − s2 + 3s3
2

)
,

and the expression of C is

C = cos
(r1 − r2 − r3 + s1 − s2 − 3s3

2

)
− cos

(r1 − r2 − r3 + s1 − 3s2 − s3
2

)

+ cos
(r1 − r2 − 3r3 + s1 − s2 − s3

2

)
− cos

(r1 − 3r2 − r3 + s1 − s2 − s3
2

)

− cos
(3r1 + r2 − r3 + s1 + s2 − s3

2

)
+ cos

(r1 + 3r2 − r3 + s1 + s2 − s3
2

)

− cos
(r1 + r2 − r3 + 3s1 + s2 − s3

2

)
+ cos

(r1 + r2 − r3 + s1 + 3s2 − s3
2

)

+ cos
(3r1 − r2 + r3 + s1 − s2 + s3

2

)
− cos

(r1 − r2 + 3r3 + s1 − s2 + s3
2

)

+ cos
(r1 − r2 + r3 + 3s1 − s2 + s3

2

)
− cos

(r1 − r2 + r3 + s1 − s2 + 3s3
2

)
.

The expression of λ
(1)
2 and λ

(2)
2 are the same than the expressions of λ

(1)
1 and λ

(2)
1 ,

respectively, if we change b1 by b2.

We replace γ1, δ1 and λ
(i)
1 in the expression of H1(x, y), and γ2, δ2 and λ

(i)
2 in

the expression of H2(x, y) and we obtain H1(x, y) = H2(x, y) for i = 1, 2. So the
maximum number of crossing limit cycles in these cases is two.

Now we consider either λ
(2)
1 and λ

(1)
2 , or λ

(1)
1 and λ

(2)
2 , by replacing the expres-

sions of γ1, δ1 and λ
(2)
1 (resp. λ

(1)
1 ) in the expression of H1(x, y), and γ2, δ2 and

λ
(1)
2 (resp. λ

(2)
2 ) in the expression of H2(x, y), and we get two different expressions

of the Hamiltonian functions H1(x, y) and H2(x, y).

Then we assume that points p4 = (cos r4, sin r4) and q4 = (cos s4, sin s4) satisfy
system (13), and by solving this system we obtain b1 = 0 and b2 = 0, which is a
contradiction. Then we proved that the maximum number of crossing limit cycles
for PHS separated by an ellipse is at most three.
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Example with three limit cycles. In the region R1 = {(x, y) : x2+y2−1 ≥ 0}
we consider the linear PHS

(14) ẋ = 2.53x+ 1.1y − 0.6, ẏ = −5.819x− 2.53y − 0.4,

its Hamiltonian function is

H1(x, y) = −2.9095x2 − 2.53xy − 0.4x− 0.55y2 + 0.6y.

In the region R2 = {(x, y) : x2 + y2 − 1 ≤ 0} we consider the linear PHS
(15)
ẋ = −0.308696x+ 0.71y + 0.0732085, ẏ = −0.134216x+ 0.308696y + 0.0488056.

Its Hamiltonian function is

H2(x, y) = −0.0671078x2 + 0.308696xy + 0.0488056x− 0.355y2 − 0.0732085y.

The linear PHS (14)–(15) has exactly three crossing limit cycles, because the system
of equations

(16)

H1(α, β)−H1(γ, δ) = 0,
H2(α, β)−H2(γ, δ) = 0,
α2 + β2 − 1 = 0,
γ2 + δ2 − 1 = 0,

has three real solutions (α1, β1, γ1, δ1) = (−0.0450412..,−0.998985.., 0.730814..,−0.682576..),
(α2, β2, γ2, δ2) = (−0.40163..,−0.915802.., 0.92153..,−0.388307..) and (α3, β3, γ3, δ3) =
(−0.760814..,−0.64897.., 0.99956..,−0.0296781..) �

-10 -5 0

-6

-4

-2

0

2

4

6

8

Figure 4. Two crossing limit cycles of PHS with four zones.

3. Proof of Theorems 2 and 3

Proof of Theorem 2. Consider a continuous linear Hamiltonian differential system
separated by the straight lines x = −1, x = 0 and x = 1. According to the
continuity of the vector field X we obtain
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X1(−1, y) = X2(−1, y), X2(0, y) = X3(0, y) and X3(1, y) = X4(0, y), ∀y ∈ R.

Which imply that
b1 = b2 = b3 = b4 = b,
δ1 = δ2 = δ3 = δ4 = δ,
γ1 = γ2 = γ3 = γ4 = γ,
λ1 = λ2 = λ3 = λ4 = λ.

Therefore, from system (1) the piecewise vector field becomes the vector field

X(x, y) = (−λbx+ by + γ,−λ2bx+ λby + δ), δ 6= λγ, b 6= 0.

Since this linear differential system has no equilibrium point it has no periodic
orbits, then no limit cycles. This completes the proof of Theorem 2. �

Proof of Theorem 3. If the PHS with four zones have crossing limit cycles, then
there are crossing points (−1, y0), (−1, y5); (0, y1), (0, y4); and (1, y2), (1, y3) satis-
fying

(17)

H1(−1, y0) = H1(−1, y5),
H2(−1, y0) = H2(0, y1),
H2(−1, y5) = H2(0, y4),
H3((0, y1) = H3(1, y2),
H3((0, y4) = H3(1, y3),
H4((1, y2) = H4(1, y3),

or equivalently

(y0 − y5)(2b1λ1 + b1y0 + b1y5 + 2γ1) = 0,(18)

−b2λ22 − b2y20 − 2b2λ2y0 + b2y
2
1 − 2δ2 − 2γ2y0 + 2γ2y1 = 0,(19)

−b2λ22 + b2y
2
4 − b2y25 − 2b2λ2y5 − 2δ2 + 2γ2y4 − 2γ2y5 = 0,(20)

b3λ
2
3 − b3y21 + b3y

2
2 − 2b3λ3y2 − 2δ3 − 2γ3y1 + 2γ3y2 = 0,(21)

b3λ
2
3 + b3y

2
3 − 2b3λ3y3 − b3y24 − 2δ3 + 2γ3y3 − 2γ3y4 = 0,(22)

(y2 − y3)(−2b4λ4 + b4y2 + b4y3 + 2γ4) = 0.(23)

As y0 6= y5 and y2 6= y3, we can solve equation (18) for y5 as well as we can solve
equation (23) for y3. Substituting the obtained values of y5 and y3 into equations
(20) and (22), respectively, we obtain the following two equations

(24)
γ2(

2γ1
b1

+ 2λ1 + y0 + y4)− δ2 −
1

2b21
(b2(b1(2λ1 − λ2 + y0 − y4) + 2γ1)

(b1(2λ1 − λ2 + y0 + y4) + 2γ1)) = 0,

and

(25)
b3(b4(λ3 − 2λ4 + y2 − y4) + 2γ4)(b4(λ3 − 2λ4 + y2 + y4) + 2γ4)
−2b4(b4(δ3 + γ3(−2λ4 + y2 + y4)) + 2γ3γ4) = 0.

First we solve equation (19) for y0 and we get

(26) y0 = (1/b2)(−b2λ2 − γ2 ±
√
b22y

2
1 + 2b2γ2λ2 − 2b2δ2 + 2b2γ2y1 + γ22)

then equation (21) for y2 and we get

(27) y2 = (1/b3)(+b3λ3 − γ3 ±
√
b23y

2
1 − 2b3γ3λ3 + 2b3δ3 + 2b3γ3y1 + γ23).
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Substituting (26) into (24) we obtain two equations f1,2(y1, y4) = 0 depend on y1
and y4. Then, substituting (27) into (25) we obtain two equations g1,2(y1, y4) = 0
depending on y1 and y4.

So we compute the product F (y1, y2) = f1(y1, y2)f2(y1, y2) = 0 and G(y1, y2) =
g1(y1, y2)g2(y1, y2) = 0, and we obtain two quartic polynomial equations with the
variables y1 and y4.

By using Bézout Theorem we obtain that the number of solutions of the system

F (y1, y4) = 0, G(y1, y4) = 0.(28)

is bounded by the product of the degrees of the polynomials F (y1, y4) and G(y1, y4).
If (y1, y4) is a solution of these equations, (y4, y1) is also a solution. So we obtain
that the number of different solutions of system (28) is at most 8 which is an upper
bound for the maximum number of limit cycles that can have the PHS (17). Due
to the higher degree of this system and the number of its parameters we only can
give an example with two limit cycles.

Example with two limit cycles. Consider the vector fieldsX = (X1, X2, X3, X4)
such that

X1(x, y) = (−x
2

+ 2y − 3,−x
8

+
y

2
+ 3),

X2(x, y) = (2 + 2x− 2y, 2x− 2y + 30),

X3(x, y) = (4 + 4x+ 2y, 13− 8x− 4y),

X4(x, y) = (−x
2

+ y − 3,−x
4

+
y

2
− 3).

Their corresponding Hamiltonian functions are given, respectively, by

H1(x, y) = −x
2

16
+
xy

2
+ 3x− y2 + 3y,

H2(x, y) = x2 − 2xy + 30x+ y2 − 2y,

H3(x, y) = −4x2 − 4xy + 13x− y2 − 4y,

H4(x, y) = −x
2

8
+
xy

2
− 3x− y2

2
+ 3y.

The first crossing limit cycle intersects the straight lines of discontinuity in the fol-
lowing points: (−1,−5.69679..) and (−1, 8.19679..); (0,−1.11032..) and (0, 7.25999..);
and (1, 0.66814..) and (1, 6.33186..). The second crossing limit cycle intersects the
straight lines of discontinuity in the points: (−1,−5.35506..) and (−1, 7.85506..);
(0, 0.177417..) and (0, 0.177417..); and (1, 1.07357..) and (1, 5.92643..). The crossing
limit cycles of X are shown in Figure 4. �
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