
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

QGIS plugin for geospatial data processing
in the cloud

Oriol Casas Carrasquer

Resum– QGIS és una eina GIS de programari de codi obert que amb l’ajuda d’un plugin es pot
comunicar amb un servei web, els quals han estat desenvolupats en aquest projecte. Un grup
d’investigadors han desenvolupat algoritmes d’aprenentatge automàtic que processen imatges
geospatials, aquests processos tenen uns costos computacionals considerables per executar-se
en una màquina local. El servei web executarà els processos en un servidor i retornarà els
resultats a QGIS per analitzar i emmagatzemar informació. Per obtenir els resultats, els proces-
sos s’inicien en imatges de Docker montades a partir de Dockerfiles personalitzats per a cada procés.

Paraules clau– GeoAI, GIS, QGIS, Aprenentatge automàtic, processament al núvol, Servei
Web, Client-Servidor

Abstract– QGIS is a GIS open source software tool which with the help of a plugin can communicate
with a web service, both of them have been developed in this project. A group of researchers has
developed Machine Learning algorithms that process geospatial images, these processes have
considerable computational costs to run in a local machine. The web service will run the processes
in a server and return the results to QGIS in order to analyze and store information. To get the
results, the processes are launched in Docker images build by custom Dockerfiles for each process.

Keywords– GeoAI, GIS, QGIS, Machine learning, Cloud processing, Web Service, Client-
Server

F

1 INTRODUCTION

GEOGRAPHICAL INFORMATION SYSTEMS[1]
(GIS) are software tools that manipulate data from
real-world linked to a spatial reference and can

perform a wide range of tasks with them. Among these
tasks, the most notorious are: store, manipulate, analyze
and present data. In order to do these tasks, the data needs
information about which coordinates are represented,
which features shall be known about these coordinates and
how can different coordinates are related between them.
The data is represented by two types of layers that are listed
below.

• Raster layers are pixel based. Information is orga-
nized in a 2D matrix, where each matrix cell (pixel)
provides data of a rectangular area.

• Vector layers describe real-world locations using
points (an exact point), lines (paths) or polygons (re-
gions). These locations are described by features. At

• E-mail de contacte: oriol.casasc@e-campus.uab.cat
• Menció realitzada: Enginyeria del Software
• Treball tutoritzat per: Daniel Ponsa Mussarra (CVC)
• Curs 2019/20

the same time, each feature is defined by its attributes,
data in the form of text or numerical information.

Figure 1 shows an example of how these layers can rep-
resent a real-world location.

The most popular GIS software are: QGIS[3] and Ar-
cGIS[4].

QGIS is an open source program which supports multi-
ple formats of layers. It also allows using data from ex-
ternal web services. QGIS counts with a wide community
and it even incorporates third-party GIS packages. Lastly,
it allows developing plugins for the program which can be
useful to automate tasks and customize some tasks.

ArcGIS has a licensing system, different types of paid
licenses are available based on the level of functionalities
wanted. It disposes of different desktop applications which
can be extended with paid extensions.

The functionalities in both platforms are similar but
QGIS does not require to buy every functionality and extra
tool that could be needed. This means we have a free sys-
tem with no costs and extensible using plugins apart from
its community with lots of support being open source.

In the last decade, a significant amount of georeferenced
information has been gathered by drones in addition to
decades of data gathered by satellites. The discipline that
studies and analyzes this information is called Geospatial

Octubre de 2019, Escola d’Enginyeria (UAB)



2 EE/UAB TFG INFORMÀTICA: QGIS PLUGIN FOR GEOSPATIAL DATA PROCESSING IN THE CLOUD

Fig. 1: GIS layers example. Source: [2]

Imaging[5]. GIS tools can analyze this data and combine
different types of imagery.

Today’s research is very active in proposing new ap-
proaches to analyze this data. These new methods are not
available in GIS programs. In fact, most times the process-
ing is made in external tools. Due to the large amount of
data and the new computationally expensive techniques, the
processing is done in calculation servers with parallel com-
putation capacities.

Being able to connect QGIS to this cloud processing in a
comfortable way is very interesting, and in fact, this is what
motivated this project.

The group MSIAU has developed Machine Learning al-
gorithms to be used in this context. Therefore, a system
that combines the power of QGIS and their algorithms is
desirable.

The section 2 covers the essential concepts related to spa-
tial data processing and the tools and libraries most com-
monly used for its analysis. Once the context is explained,
the objectives to be achieved in this project are set out in
the section 3. To meet these goals, the methodology that
has been followed is described in the section 4, where all
the details of the steps taken and their purpose are given.
The main milestones of the project are highlighted in the
section 4.2. The results obtained, together with a brief de-
scription of the tasks performed, are set out in the section
5. Some tasks that could not be completed are explained in
the subsections of this section. Finally, the conclusions are
put together with work to be done as a continuation of the
project in the section 7.

2 STATE OF THE ART

To clarify the context of this TFG, some concepts are ex-
plained below.

The first concept is GeoAI[6], which is the combination

Fig. 2: Object detection example

of artificial intelligence like Machine Learning with geospa-
tial solutions like QGIS.

Another basic concept is Machine Learning[7], the abil-
ity of artificial intelligence to improve from experience and
learn automatically. To do so, a training process is required.
The algorithms build models from samples which will de-
fine their behavior and decision making.

The main types of machine learning are listed below:

• Supervised machine learning: the system needs an ex-
isting set of inputs and their desired outputs to do the
training. This way, the set of data which is already
tagged, the training set, will be used as the model to
classify future incoming data.

• Unsupervised machine learning: in this case, there is
no labeled data to do the training. The training set con-
sists of inputs and the system has to explore the exist-
ing data, for example by grouping and clustering every
feature available, to find the structure and define the
models by itself.

The following list details some of the most important use
cases of Machine Learning that are more commonly applied
in GIS[8]:

• Object Detection: task that identifies objects of a cer-
tain type and its location in the image. In a society
where there are systems that constantly take images, it
can be really useful in fields like video surveillance or
social studies. See Figure 2.

• Semantic Segmentation: task that classifies every
pixel of an object in the image in a particular class.
This way, all the objects in an image can be classified
by its type and can be differentiated from the others.
See Figure 3.

• Instance Segmentation: task that mixes the previous
two. It identifies each object in the image in a pixel
level. The boundaries of each object are clear and the
object is properly classified by its type. See Figure 4.

This use cases can be helpful but they need a mechanism
to take part in a GIS software workflow.



ORIOL CASAS: QGIS PLUGIN FOR GEOSPATIAL DATA PROCESSING IN THE CLOUD 3

Fig. 3: Semantic segmentation example

Fig. 4: Instance segmentation example

QGIS, the GIS software used in this project, has lots of
plugins and a great community. Plugins can be created us-
ing Python and Qt. The pros of this program are that it is
free and open plus a plugin is needed in order to use the
already developed processes. Some frameworks let the user
apply some Machine Learning.

Orfeo ToolBox[9] is an open source library build over
ITK, a popular C++ library, that offers the user a wide range
of AI applications and can be used in most Operating Sys-
tems. Between its applications, we find supervised and un-
supervised machine learning. The processes that were in-
teresting for this project. Some of the tools it offers once
it is added to QGIS have been quoted as important for this
project before. It can classify and segment objects in im-
ages. Despite these facts, using this library would require
the adaptation of the developed algorithms to fit them in the
library.

Raster Vision[10]Raster Vision is another framework. In
this case, it has been developed in Python. It has its own
workflow with built-in support for chip classification, ob-
ject detection, and semantic segmentation using Tensorflow.
Again, the developed algorithms should be adapted to this
framework.

Both of them have builtin functions to apply Machine
Learning but the code should be rewritten which is un-
wanted.

In the case of ArcGIS, it does not need any third-party
solution as it already provides the necessary tools, ArcGIS
API for Python, to help every step of the Machine Learn-
ing workflow so it would be easier to insert these processes
but once again, some code should be rewritten and also the

Fig. 5: Sequence diagram of the connection between QGIS
plugin and web service

licenses should be avoided.
ArcGIS API for Python is a built-in API for ArcGIS. It

comes with lots of tools that eases tasks as downloading
data or importing layers. This tasks can be accomplished
by a plugin in QGIS.

3 OBJECTIVES

The goal of this project is to build a plugin for QGIS that lets
users connect with a web service with built-in functions that
apply Machine Learning on the layers selected by the users.
We also want to avoid rewriting the existing code and make
a good use of QGIS and its power alongside these services.

The QGIS plugin must establish the connection with the
web service and shall send the necessary information so that
the service can perform the desired process with its params.
Once the response arrives, the plugin has to create a new
layer where the results will be shown.

On the server side, a web service is needed so it can
launch the processes as the plugin requires. It also has to
answer requests with information about available processes
and layers.

Figure 5 shows the sequence diagram of the connection
between QGIS plugin and web service. The messages 5 and
6 are optional as they are only called when the user wants
to use a layer from the server, not from QGIS.

In order to achieve this, some specific objectives must be
reached and are listed below:

• Implement a web service to provide access to image
processing algorithms.

• Establish a protocol to connect the QGIS plugin with
the server.

• Refer the results pixels, points or areas with the proper
geographical coordinates.

• Retrieve all the services available in server.

• Send data between QGIS plugin and web service and
vice versa.

• Retrieve the results and show them to the user.



4 EE/UAB TFG INFORMÀTICA: QGIS PLUGIN FOR GEOSPATIAL DATA PROCESSING IN THE CLOUD

4 METHODOLOGY

The product was not clear from the beginning but the con-
tact with the client and final user was established. An it-
erative and incremental flow was followed so the product
could be defined and the stakeholders could check that it
was appropriate as the project moved forward.

In order to accomplish the objectives, the project has
been split into three phases.

The first phase was focused on gathering information and
requirements from the final users. At the same time, some
investigation about QGIS and its frameworks, the way they
work and how to develop a plugin was done. Also, the Min-
imum Viable Product was defined here. The planning had to
be done at this stage although revisions were made because
of the iterative flow.

The 2nd and 3rd phases are the ones where the plugin and
the web service have been implemented. The second being
more focused on the MVP development. And the third one
was thought as a phase to end the MVP and complete the
product.

The QGIS Plugin and the web service had their own
repository created in Github, a control version tool. Every
time a milestone was completed or a feature was developed,
the changes were pushed. This way, if the development of
the next feature broke the software the changes could be
reversed easily.

Other tools used for the development have been Qt Cre-
ator to implement the Graphical User Interface of the plu-
gin. This program was chosen because there is an existing
plugin that creates the bases of new plugins and uses ”.ui”
files.

In order to implement the Python code, Visual Studio
Code was used. It is a powerful IDE that can be used for
multiple programming languages and formats in a single
tool. This way, apart from developing in Python, the Dock-
erfiles and JSON files could be edited in the same applica-
tion.

Lastly, the tools used for writing the reports and drawing
diagrams were Overleaf, which is a LaTex editor. Gram-
marly, a tool that corrects spelling and grammar. And fi-
nally, StarUML was used for the Use Case and Sequence
diagrams, although some figures were drawn in Draw.io and
the user story map in Miro app.

4.1 Minimum Viable Product (MVP)
The Minimum Viable Product is the product that has the
minimum features implemented to consider it is valuable
for the client. The MVP is used as a reference that proves
the product can be developed and sets the base for its devel-
opment.

For this project, the MVP has been divided into two parts
as it is a two-sided system. On one side, there is the server
which will launch the process and return the results. On the
other side, a plugin for QGIS is needed in order to establish
the connection and communicate with the server. It must do
the right requests at the right moment.

4.1.1 MVP - Web Service

The service should be up and running, accepting connec-
tions and responding to them. This service must be able

to manage JSON files as the petitions and process informa-
tion are using this format. The processes and layers are not
being stored in a database but in the server’s folder.

Apart from returning its availability, the server must re-
spond to requests asking for which processes and layers are
available. For the MVP, only two processes are available:
save layer and load layer. On the server side they work as
an example for core functions as saving files sent from the
plugin and sending server’s files to the plugin.

Finally, the web service must be able to build and launch
Docker containers from Dockerfiles stored in local folders.

4.1.2 MVP - QGIS Plugin

The plugin should be able to connect to the server and check
if it is available. It is responsible to establish the connection
and show all the information the user needs.

This information includes the available processes from
the web service. The plugin guides the user making the
drop-down menus available every time a new option, the
process selection or the layers available, is selected. It also
should give the user the possibility to abort the current pro-
cess and show in which state it is.

Once there is an output or result, the plugin must create a
new layer where the results are visualized and it should link
the pixels to their coordinates properly.

4.2 Planning
In this section the main milestones will be explained in Ta-
ble 1. The planning was based in the three phases of the
project, being the second one the most important.

The planning has been modified multiple times due to
blocks in the development. These blocks have ended in ma-
jor delays that have affected the final result of this project.

The second phase had to be extended a couple times caus-
ing the delay of the third one which could not be started at
the end.

Also personal timetables changes have had a great impact
in the development of this project.

4.3 Phases

4.3.1 Requirements and design iteration (1st Phase)

In this first iteration, the purpose was to define the prod-
uct, understand which were the purposes it should have and
design a product that fits the needs of the stakeholders.

The first steps were to design the interface, the first
sketches of the plugin were made and with the help of the
stakeholders, these sketches better defined. Also, the dia-
grams and specs were drawn and written at this phase.

The stakeholders were interviewed twice to plan how the
plugin would be more user friendly, which features are use-
ful and which ones are not. Firstly, a user story map was
done and explained to the stakeholders in the first interview.
This way, we put together the idea we had of the plugin
and some ideas were exchanged. After this first interview,
the sketches were done and discussed in a second interview
which was useful to set the design. The information needed
to be processed and how to display it was defined. This in-
terview also was useful to see if the design of the plugin was
clear for them or should be sketched another way.



ORIOL CASAS: QGIS PLUGIN FOR GEOSPATIAL DATA PROCESSING IN THE CLOUD 5

Milestone Explanation Date

MVP Definition This is the first milestone, it defines the basics that should be accomplished in this
project. 28/10/2019

MVP
implementation The plugin should have the MVP implemented. 28/11/2019

Web Service
running

The server must be running properly locally and the basic functionalities should be
available and working. 27/12/2019

Plugin finished Now the plugin should be finished. 03/01/2020

MSIAU’s server
running The web service should be running properly in the group’s server. 10/01/2020

Final report The final report must be ready. 26/01/2020

Presentation The presentation must be ready before the date to defend the project. 09/02/2020

TABLE 1: TABLE THAT SHOWS THE MAIN MILESTONES

The MVP was defined in this phase as it is the prime ob-
jective of the project. When the user story mapping was
done, its purpose was to have a better understanding of the
system, which features should be included in the MVP and
which don’t. The user story mapping (Appendix A.2) was
done using post-its and an online app to have a better look-
ing and clearer image.

The requirements and restrictions of the system were not
only taken from this user story mapping. The interview was
helpful for the design of the plugin and which features were
most useful. Finally, an use case diagram (see Appendix
A.3) was also done in order to complete the whole concept
of the project and the establishment of the MVP.

In this project no formal specifications documents have
been generated as only one person has developed the sys-
tem. The requirements are defined by the user story map-
ping, the use-case diagram and plugin sketches (see Annex
A.4) that gave the general idea and the goals of the project
as they varied as the project moved forward.

Once these documents were settled, the tasks and features
that should be included in the MVP, the ones that have more
value for the users. A viability analysis had to be done to
check that all the required functionalities could be imple-
mented.

Apart from the plugin, designing a proper strategy to
communicate with the web service was basic. Different
strategies were evaluated.

Firstly, an SSH communication solution was evaluated,
it would mean just sending files between plugin and server,
but it was dismissed as it required that the plugin should
do a great part of the process management, which functions
should be called and when.

So the alternative was to mount a web server. This way,
the plugin should only do petitions and manage the re-
sponses. The server is responsible to supervise the process
in the server part, the whole workflow done in this side.

To implement the web based solution, we used Flask, a
framework that uses Python like the rest of the plugin which

Fig. 6: Docker containers

makes the language ideal and avoids the need to use differ-
ent languages for a single project.

Docker[11] is a powerful tool that creates containers on a
virtualized machine. The containers run on this machine in
separate environments where applications are run without
sharing any information with other containers. This way,
multiple petitions can be done and they will not overlap
other processes’ data.

It is used to isolate different processes and applications.
Containers and applications do not depend on the environ-
ment this way and they do not share information across
them. Taking the example of the Figure6, the operating sys-
tem is not specified as it can run over multiple OSs. Over
the OS, Docker mounts its containers. These containers do
not share any information between them. For example, App
A does not have any information nor access to App B. These
facts make Docker an ideal service to deploy a web service



6 EE/UAB TFG INFORMÀTICA: QGIS PLUGIN FOR GEOSPATIAL DATA PROCESSING IN THE CLOUD

Fig. 7: System Overview

that can be easily scalated.
For this project, Dockerfiles for every process were done.

These Dockerfiles contain the steps Docker should take to
build the images and which commands should be executed
once the container is running.

So the concept of the system is a QGIS plugin that com-
municates with a web service as seen in Figure 7. Flask
is the one responsible to build the Docker images which
will be mounted on Docker containers. These containers
are launched in parallel and they are represented by ML1,
ML2, and so on.

4.3.2 MVP implementation (2nd Phase)

This phase is focused on building the bases and core of the
project, making the new plugin and implementing the first
functionalities of the web service.

To build a QGIS plugin we need QT for the graphical
interface and Python to develop and implement the func-
tionalities.

The design of the plugin was done in QT following the
sketches done in the first phase. Some buttons and menus
were not implemented in this phase as they do not belong to
MVP and could be misleading. These functionalities were
related to giving extra information about the processes and
layers which are not essential.

Also, the first implementation of the web service was
done. Flask was run locally. For the MVP basic function-
alities as saving or loading layers were used. This way, we
had the basics of the communications between the plugin
and the service.

All functionalities should had been tested by the end of
the phase and the possible bugs solved.

4.3.3 Finishing the product (3rd Phase)

Once the MVP was finished, it was time to implement the
extra features. The ones that better describe more the pro-
cesses and their needs, as well as having the web service
implemented and running in MSIAU’s server.

By the end of this iteration, the plugin should have been
finished and running without any issue alongside the server.

Before the end of January, the iteration had to be closed
and the documentation ready.

5 RESULTS

This section reviews the system components that have been
successfully implemented and tested.

The MVP’s functionalities were the first elements to be
completed. MVP has functionalities to be implemented on
both sides of the architecture.

On the server side, the web service should be able to re-
trieve any request and process it. In order to test the con-
nectivity, the first function to be developed was related to
request its availability. Not only it returns a 200 OK HTTP
response but its content is the text ”Available”. This re-
sponse was made this way so any request to this function
could know that the server is reachable, the 200 response,
and that the service was called properly thereby the ”Avail-
able” response.

The next step to do in the server was to respond which
processes are available. To manage these processes, a JSON
file was created with every process available and informa-
tion about it as well as an id for each one. For each process,
a folder was created and the Dockerfiles to build their im-
ages were scripted. In addition to the Dockerfiles, a script
in python was created with the flow to be followed by each
process. This script is launched once the container is run-
ning.

If the selected process is ”load a layer”, the service shall
return the available layers. Another JSON was created with
the layers and their information. Both JSONs must be
edited manually, but in the case of layers, there is a use
case where the file is automatically edited. When a layer is
saved, the process is responsible for updating the content.

Finally, the most obvious functionality was to run a pro-
cess. The web service processes the request and gets all the
information needed, which process should be launched and
all the necessary parameters to run. It is also responsible for
saving and managing the layers involved in the process. In
the same function, the docker images are built and the con-
tainers launched. A binding between the web service and
the docker container is made in order to communicate both
of them. This way, the process in the container has all the
parameters needed to run and can inform the service about
the gotten results.

Before saving the files, the web service checks if the file
is retrieved and if the extension is an expected one. The
system has been designed to be only capable of retrieving
zip or geotiff files in the server side.

An extra functionality was created. It launches a simple
ubuntu image in docker which will print ”Hello World” on
screen. It was useful when Docker was incorporated in the
development to test if it was running as expected.

In order for the plugin to have the functionalities imple-
mented, in Qt the first dialog was designed to link the func-
tions to be developed to the corresponding elements. In
Figure 8 the main window of the plugin is displayed. The
drop-down menus and a text field for the server address are
available. Also, a label is displayed to indicate that the plu-
gin is connected to the server or not.

Once the plugin verifies if the communication is estab-
lished, it request which are the available processes and
shows them to the user using a drop-down menu.

This drop-down menu enables the layers menu. The plu-
gin knows when to show QGIS’ project layers or the layers
from the server.

The label changes its color to green when the connection
is established. Also the first option of each drop-down is
automatically selected if they are enabled. See Figure 9 as



ORIOL CASAS: QGIS PLUGIN FOR GEOSPATIAL DATA PROCESSING IN THE CLOUD 7

Fig. 8: Plugin’s main dialog

Fig. 9: Plugin’s main dialog when filled

an example of this state.

In order to show the progress, another dialog is launched,
see Figure 10. This one, indicates timing information as
well as the current task that is being done. A button to abort
the process is available too.‘

Once the layer from the project is selected, depending on
if it is a raster layer or a vector one, the plugin writes it to
a temporary directory. Note that if it is a shapefile, more
than one file is created. So, in order to send them, they are
compressed in a zip file.

Lastly, the plugin receives the response and creates the
required layer to show the results.

Fig. 10: Process dialog

5.1 MVP analysis

This subsection will analyze which features have been ac-
complished and which ones have not.

Firstly, the web service side is almost complete. The
MVP has been accomplished on this side. Although the
docker containers are not fully independent as they share
files and folders directly from the server there is not any fea-
ture missed. It is not easy to prevent the container and the
web service from sharing directories as the containers are
isolated and sending and receiving information from them
is not a very desirable use case when you want them to be
independent.

It also has security mechanisms and functions related to
treating the files received in order to avoid risky extensions
to be opened or executed in the server. The service is miss-
ing an admin so nobody can manage the processes JSON
and the folders created to store their information.

Lastly, the web service has been developed in the local
machine where the system has been developed. This way,
the logs, outputs, and inputs could be easily accessed and
eased the development. There has not been time to imple-
ment the service in the server as it was desired.

On the other side, the plugin’s MVP was developed at
90%. It establishes the connection with the server, the di-
alogs are fully functional, it can export the layers to send
them and shows the necessary information to the user.

Although it creates new layers and can import the shape-
files from the server. Geotiff files have been problematic
and the function to import them is not functional. This
causes the pixel binding to real-world coordinates cannot
be checked.

The plugin establishes the connection to the server prop-
erly, although it could have issues if the server needs the
user to log in.

5.2 Problems faced during the development

The very first problem was the fact that the GIS software
was unknown and I have never worked with them. I had
to learn how they worked, understand them and create a
plugin for one of these systems. Some terms were unheard-
of before this project.

At the same time, I had to understand the purposes of the
project, what should be done: it was not easy as I hardly had
some interaction with the software nor the university group
at this point. Thanks to the first interviews with the tutor
and the group the understanding and purposes were clearer
and the project was being better detailed.

These first points led to insecurities and not knowing
which steps to take. Which features should be developed or
how the plugin and web service would communicate. But
as more and more information was given to me in addition
to my research, these insecurities disappeared.

Once the product was settled, the plugin had to be imple-
mented. The hardest features have been related to files man-
agement and exporting different layers is also a hard task
if the necessary knowledge about QGIS Python library’s
classes and methods. First of all, the shapefiles had to be
packed in a zip in order to be sent to the web service. The
zip file and the layers were written in a temporary folder.
The big issue here was to find out why the zipping caused



8 EE/UAB TFG INFORMÀTICA: QGIS PLUGIN FOR GEOSPATIAL DATA PROCESSING IN THE CLOUD

problems and blocked QGIS. Finally, it turned out to be the
fact that the zip file was being created inside itself and had
to skip zipping zip files.

On the server side, Docker was the one causing major
blocks. It started well, the test function that was developed
was working as expected. The first built images did not
print any output nor did they show a sign of being working.
After hours looking into it, it turned out to be Dockerfiles’
problems. The way they work and their commands were
reviewed and the issue was found. Every command was
launched at build time and the containers were doing noth-
ing. Using Python was useful as Python has a library to
integrate Docker in the system easily. It is one of the only
three languages supported officially by Docker. A reason
to use this framework before another one like Java Spring,
a powerful framework that is widely used to deploy Java
applications in a server but it is supported unofficially.

Python is a very useful language, it can be used both in
the plugin and the web service which allows the developer
to use a single language and be able to test the whole work-
flow easily. It was a little unexpected that the server side
was so comfortable to develop in Flask and Python.

6 FUTURE WORK

On the server side, some mechanism should be developed
in order to avoid multiple processes overlap one another. As
it is at the end of the development, if two users call the same
service, the JSON would be overwritten and end in a wrong
result. The issue here is that there is not an easy solution
to get and set data between the docker container and the
service.

Additionally, the server should be managed by an admin.
The JSONs and images have to be modified in the server
and there is not an existing function to manage it. This fea-
ture should be implemented only granting access to the ad-
min. The admin also could create some cron jobs to cleanup
the files that are not needed anymore in the service as the
processes leave files in the server that are not useful ones
the process finishes and the results are sent.

And last but not least, the plugin needs some fixes too.
There are visual issues and not all the objectives have been
accomplished.

The requests should be launched in a background asyn-
chronous thread in the plugin. This way the process dialog
would show the details while the process is running. Also
it would make the ”abort” option available to the user in the
same dialog.

Another feature that came up in an initial final product
idea was implementing an option that would show the user
a table of the processes and their description.

This initial final product idea also included a feature to
partition the layer to process. In some cases, the layer needs
more precise dimensions or resolution for the developed
processes and it would be helpful a tool to partition it au-
tomatically.

Lastly, the plugins should relate a pixel from a raster
layer to its real world coordinates. The lack of the func-
tionality that adds a raster layer aggravates the test and im-
plementation of this feature.

7 CONCLUSIONS

In order to meet the goals, the first step was to collect the
specifications of the system the final users require. This
way, a product that fits the user needs could be proposed.

To do this, a client-server architecture was designed
to communicate QGIS with an external web service that
launches the different processes developed independently
of the operating system.

In order to develop the MVP on the plugin side, we have
been able to export and import different types of layers. It
is also capable of sending and receiving these layers to the
server. There was not enough time to implement all the
functions to make the plugin create all types of layers as it
can not import raster layers.

On the other hand, on the server side, the MVP has been
fully developed. It can send and receive files from the client
and process them properly. In addition, it is also able to
identify what type of file it receives and whether it should
process it or not.

ACKNOWLEDGEMENT

I want to thank Daniel Ponsa for his help as tutor. He has
aided and guided me every time I needed guidance and
made all the possible in order to keep the project going.
I also want to thank MSIAU’s researchers for their advice
and ideas for the plugin.

This work has been done with the support of the BOSSS
project (TIN2017-89723-P).

REFERENCES

[1] GIS Cooperative and Fort Collins. “The unique qual-
ities of a geographic information system: a commen-
tary”. In: Photogrammetric Engineering and Remote
Sensing 54.11 (1988), pp. 1547–1549.

[2] TERC Inc. Eyes in the Sky II. visited on 2020-02-06.
Nov. 2016. URL: https://serc.carleton.
edu/eyesinthesky2/week5/intro_gis.
html.

[3] QGIS. visited on 2020-01-29. 2019. URL: https:
//qgis.org/en/site/.

[4] ArcGIS. visited on 2020-01-29. URL: https://
www.esri.com/en- us/arcgis/about-
arcgis/overview.

[5] J.D. Bossler et al. Manual of Geospatial Sci-
ence and Technology. CRC Press, 2010. ISBN:
9781420087345.

[6] K. Jansen and R. Parsons. GeoAI: Feature detection
and classification. visited on 2019-11-05. URL: ht
tps://orbica.world/uploads/files/
GEOAI-A5.pdf.

[7] Unknown. What is Machine Learning? A defini-
tion. visited on 2019-11-05. Expert System, Mar.
2017. URL: https://expertsystem.com/
machine-learning-definition/.



ORIOL CASAS: QGIS PLUGIN FOR GEOSPATIAL DATA PROCESSING IN THE CLOUD 9

[8] R. Singh. Integrating Deep Learning with GIS.
visited on 2019-10-05. Medium, Feb. 2019. URL:
https : / / medium . com / geoai /
integrating - deep - learning - with -
gis-70e7c5aa9dfe.

[9] Orfeo ToolBox. visited on 2019-12-11. 2019. URL:
https://www.orfeo-toolbox.org/.

[10] Raster Vision. visited on 2019-11-25. 2018. URL: ht
tps://rastervision.io/.

[11] Docker. visited on 2020-01-31. 2019. URL: https:
//www.docker.com/.

[12] O. Casas. Story Map. visited on 2020-12-06. Oct.
2019. URL: https://miro.com/welcomeonb
oard/B8ITP1fPr1km3mP20pC5Er62xvO2qS
CENtjOTqdTqflDuBkWsJqsC7a1t4zJHqb3.



10 EE/UAB TFG INFORMÀTICA: QGIS PLUGIN FOR GEOSPATIAL DATA PROCESSING IN THE CLOUD

APPENDIX

A.1 Mean-Ends tree
The tree of the Figure 11 shows the mean-ends tree of the project. This tree was generated at the beginning of the
elicitation to identify project purposes based on the needs to be met.

In the central box, we find the main objective. The upper boxes represent the needs to be met and the lower ones
represent the goals to meet these needs.

Fig. 11: Mean-Ends tree

A.2 User story mapping
The user story mapping was done in Miro app and can be found on the following link[12]. The first sketch was done with
post its and can be seen in the Figure 12.

This user story represents the workflow of the system. Each task is represented in order and contains a list of what
functionalities each task must have. These functionalities are grouped as indispensable or not and if they add value to the
product to be developed. In other words, they are classified as to whether they should be part of the MVP or not.

Fig. 12: User Story Mapping



ORIOL CASAS: QGIS PLUGIN FOR GEOSPATIAL DATA PROCESSING IN THE CLOUD 11

A.3 Use case diagram
The Figure 13 shows the use cases of the project. It is really useful to define the MVP alongside the user story mapping.

Fig. 13: Use cases Diagram



12 EE/UAB TFG INFORMÀTICA: QGIS PLUGIN FOR GEOSPATIAL DATA PROCESSING IN THE CLOUD

A.4 Sketches
The Figure 14 shows the first sketches done. They represent the first idea of how the GUI of the plugin should be. They
were shown to final users, and with the help of these, the interface was redesigned.

Fig. 14: First sketches done


