
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 1 

 

Implementation of a Web Application Firewall 
for a High Availability front end 

Hernan Espinosa Reboredo 

Abstract— Nowadays, thanks to globalisation, companies and their bussines are growing fast, making their main objectives to 

keep up with market demands to satisfy user needs. Since market demands are not static, high availability is a requirement that 

a company infastructure must meet. If any company wants to stay competitive in these circumstances, it must be able to change 

what it is doing to fill the needs and wants that customers have. Therefore, companies experience growth in its resources, services 

and data while still having to provide the efficiency and the quality of service of the offered services. This study aims to determine 

how companies should protect their services and how they could scale them by analysing, designing, implementing and testing a 

high availability web application firewall in order to avoid security threats and, as the company’s systems grows, to continue 

meeting market demands efficiently and securely. 

Index Terms—Web application firewall, web application, load testing, server security, HAProxy. 

 

Resumen— Actualmente, gracias a la globalización, las empresas y sus negocios están creciendo rápidamente, lo que hace 

que sus objetivos principales sean de satisfacer las demandas del mercado y satisfacer las necesidades de los usuarios. Dado 

que las exigencias del mercado no son estáticas, la alta disponibilidad es un requisito que deben cumplir las infraestructuras de 

la empresa. Si alguna empresa quiere mantenerse competitiva en estas circunstancias, debe ser capaz de cambiar el enfoque 

de lo que está haciendo para satisfacer las necesidades y las necesidades que los clientes tienen al momento. Debido a ello, las 

empresas deben proporcionar la eficiencia y la calidad del servicio de los servicios, aunque experimenten un crecimiento en sus 

recursos, servicios y datos. Este estudio tiene como objetivo determinar cómo las empresas deben proteger sus servicios y cómo 

pueden escalarlos analizando, diseñando, implementando y probando un web application firewall de alta disponibilidad para 

evitar amenazas de seguridad y a medida que crezcan los sistemas de la empresa, poder continuar satisfaciendo las exigencias 

del mercado de manera eficiente y de forma segura. 

Palabras clave—Firewall de Aplicación Web, aplicación web, test de rendimiento, seguridad de servidores, HAProxy. 

 

——————————   ◆   —————————— 

1 INTRODUCTION

HE aim of this project is to build a high availability web 
application firewall (WAF) [1] that will monitor and 

analyse client’s requests data, keeping in mind the protec-
tion of backend server’s security. 
 
A WAF helps to protect web applications by filtering and 
monitoring HTTP traffic between a web application and 
the Internet. By deploying a WAF in front of a web appli-
cation, a filter is placed between the web application and 
the Internet, increasing security, performance and reliabil-
ity by having client’s requests pass through the WAF be-
fore reaching the servers. A WAF operates through a set of 
rules often called policies. These policies aim to protect 
against vulnerabilities in the application by monitoring 
and filtering out malicious traffic.  
 
In this project, we are going to build a WAF for a high 
availability front end, and we are going to carry out a com-
prehensive analysis of the events that take place in the built 

architecture, using development tools to monitor the traf-
fic. 
 
The main reason that has motivated this work is to im-
prove the security of servers, to have a better control over 
the events of their activity, and to reduce the time of action 
after an incident. Therefore, this project is appliable to any 
web application architecture in order to improve its secu-
rity.  

2 STATE OF THE ART 

The WAF that we are going to build is going to be de-
ployed to a high availability front end and a lot of work 
has been conducted in this field, providing many available 
options in order to suit different use cases and needs [2][3]. 
The increasing use of web applications, the wide variety of 
platforms that need to run on and the flexibility and speed 
of today’s applications, have made companies offer cloud 
based WAF [4][5][6] to integrate security solutions into the 
applications and apply external security. The cloud Based 
WAF continuously monitors and protects the servers from 
incidents, all offered in a package which provides quick re-
sponse against threats. The cloud based WAF’s offer its 

February 2020, Escola d’Enginyeria (UAB) 

———————————————— 

• E-mail of contact:  hespinosar@gmail.com. 
• Degree Specialisation taken: Technologies of Information. 

• Work supervised by: Sergi Robles Martínez (DEIC). 
• Year 2020/21. 

 

T 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/328841035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hespinosar@gmail.com


2 EE/UAB TFG INFORMÀTICA: IMPLEMENTATION OF A WEB APPLICATION FIREWALL FOR A HIGH AVAILABILITY FRONT END 

 

 

services to the applications in real-time using AI-enhanced 
detection methods, behavioural analytics, application-
layer encryption and databases. These tools are used for 
securing certain functions and trasactions as part of an ap-
plications internal process, preventing vulnerabilities and 
zero-day threats. 
 
While cloud based WAF’s play a critical role in securing 
the web applications, it makes it a challenge to deploy a 
cloud based WAF to a web application, since there is a nec-
essary expertise required to deploy and manage traditional 
WAF’s and its software and hardware must be maintained 
in order to work correctly. Companies like Barracuda [7], 
Amazon [8], FortiNet, [9] or Altair [10], are offering WAF-
as-a-Service to simplify the deployment of security to an 
application. A WAF-as-a-service can be deployed in 
minutes with initial configuration and the client develop-
ers won’t have to maintain any hardware or software fo-
cusing their time dealing with the critical aspects of the ap-
plication’s security. 

3 OBJECTIVES 

The WAF developed in this project must be able to protect 
web applications by filtering and monitoring HTTP traffic 
between a web application and the Internet. We have 
planned a set of objectives to achieve by the end of this 
work. The objectives are listed in incremental priority: 

1. To learn how a WAF works, and how it is used. 
2. To identify which software tools, we are going to 

use to develop the project. 
3. To learn how the different software tools work, 

and how they are going to be for use, to make the 
project possible. 

4. To design, implement and test a scalable high 
available client-server web application architec-
ture. 

5. To apply the data persistency and load balancing 
feature to the web application firewall for redun-
dancy and performance efficiency purposes. 

6. To develop and add rules to the service to im-
prove security. 

7. To do the log management to analyse all the client 
requests that are done  in real-time as well as to 
establish rules to grant or deny access to the 
backend servers. 

4 METHODOLOGY AND PLANNING 

This project follows a software development model based 
in incremental prototyping [11]. Each prototype will fulfil 
a set of requirements. The final prototype will accomplish 
the objectives from this work. Each prototype built will 
verify the definition of requirements, since requirements 
can change from the initial requirements definition. 
 
This work is divided into three main phases: Web Appli-
cation Firewall version 1 (WAF_v1), Web Application Fire-
wall version 2 (WAF_v2) and Web Application Firewall 
version 3 (WAF_v3). For every phase these steps are going 

to be considered for the development: The architecture 
analysis, to justify the proposed structure, explaining the 
decisions made and reasons why the structure is suitable; 
The architecture design, to design the proposed structure, 
explaining the decisions made and reasons why the struc-
ture is suitable; The architecture implementation, to imple-
ment the design proposed, and Functional testing, to vali-
date that every project phase satisfies its initial require-
ments. For the final phase of the project, different types of 
tests are going to be performed to ensure that it can per-
form correctly under high load. 

Fig. 1. Shows the ideal Gantt chart diagram for this work.  

To keep track of the development of this project, we are 
going to use the Gantt chart, which is a useful way of 
scheduling a project and defining the different dependen-
cies between tasks. In Fig. 1, we can see the layout of the 
ideal progress from the phases of the project throughout 
time. This project is limited by time and budgetary re-
sources. The main developer leading the project fits in the 
salary category of an undergraduate engineering student, 
in the Universitat Autonoma de Barcelona. The salary for 
a category 2 undergraduate engineer is 18,44 €/hour, in 
conformity to the agreement for support research staff of 
the University, which can be found at the univeristy’s web-
site. The development includes 280 hours dedicated to the 
development of the project, which are held accountable at 
the salary, and 20 hours dedicated to meetings with the 
project supervisor and research staff, and the paper writ-
ing, which won’t be held accountable for the salary. The 
project is limited by the salary of the developer and the 
time limit of 300 hours. To conduct the project, the budget 
is 280€ x 18,44 €/hour, 5163€. 

5 TOOLS FOR THE DEVELOPMENT 

In this section of the paper we are going to describe the set 
of software that is going to be used to develop this work. 
This project will be developed using a Linux operating sys-
tem, Ubuntu. 

5.1 Docker: The development environment 

Docker [12] is a tool designed to make it easier to create, 
deploy, and run applications by using containers [13]. 
Containerization allows us to package up an application 
with all the parts it needs, such as libraries and other de-
pendencies, and run it all out as one package. Thanks to 

22-sep. 7-oct. 22-oct. 6-nov.21-nov. 6-dic. 21-dic. 5-ene.20-ene. 4-feb.

Analysis WAF_v1
Design WAF_v1

Implementation WAF_v1
Test WAF_v1

Analysis WAF_v2
Design WAF_v2

Implementation WAF_v2
Test WAF_v2

Analysis WAF_v3
Design WAF_v3

Implementation WAF_v3
Test WAF_v3

Overall Conclusions

Ideal project Gantt chart



3 EE/UAB TFG INFORMÀTICA: IMPLEMENTATION OF A WEB APPLICATION FIREWALL FOR A HIGH AVAILABILITY FRONT END 

 

 

the ease of use of the Docker environment management, it 
makes it a suitable environment for this project. Separating 
the different components of our web application service 
into different containers will have security advatages, be-
cause if one container is compromised, the others remain 
unaffected. Separating the different components of our 
web application into different containers will avoid con-
flicts with dependencies, therefore, gaining practicability. 

5.2 HAProxy: building tool 

For the development of the loadbalancers, we are going to 
use the HAProxy software because its grately used for de-
veloping high available load balancers and because its 
open source. HAProxy is a very fast and reliable solution 
offering high availability, load balancing and proxying for 
TCP and HTTP-based applications. It is particularly suited 
for web application services.  

5.3 Keepalived: building tool 

Keepalived is a routing software which provides facilities 
for load balanceing and high availability. The software 
provides transport layer loadbalancing implementing a set 
of checkers to dynamically and adaptively maintain and 
manage loadbalanced server pool according their health. 
High availability is achieved by Virtual Redundancy Rout-
ing Protocol (VRRP) [14]. 

5.4 Elastic Stack: Data Management tool 

The Elastic Stack [15] is a powerful search engine which 
will allow us to process logs generated from the architec-
ture. Elastic Stack is a complete end-to-end log analysis so-
lution which helps in deep searching, analysing and visu-
alizing the logs generated from different machines.  
Elastic stack will help us search through the multiple logs 
at a single place and identify the issues spanning through 
multiple servers by correlating their logs within a specific 
time frame found in our environment. 

5.5 Apache AB: Testing tool  

Apache AB [16] is an open source testing tool developed 
by the Apache organisation used for benchmarking an 
HTTP web server.  Apache AB will be used to test and 
measure the performance of the built architecture.  

5.6 Github: Version Control tool 

GitHub is a versioning tool which will be used, in order to 
keep copies and record of the work done over the course 
of this project. A repository has been created in GitHub 
[17] where the project is updated, and version controlled. 

6 PHASE 1: WAF_V1 

6.1 Analysis 

The first prototype of the project consists in building a cli-
ent-server architecture composed of three nodes. The client 
node, which generates the requests, the intermediary node,  
which will be used to secure the server node, and the 
server node, which will handle the client requests and will 
generate responses. The architecture will serve an in-
dex.html file stored in the backend server. The objective of 
this phase is to develop and simulate a web server 

architecture including the intermediary node, which will 
work as a load balancer in future prototypes. This phase 
will work as a base for future upgrades in the next phases. 
Different resources and processes will be carried out to suit 
the different objectives from the work. With this phase we 
want to improve backend server’s security and reduce se-
curity vulnerabilities from the web application service. 
 
To keep up with the main objectives from this work, we 
are going to develop data persistence in the nodes which 
serve the client requests. For this phase of the project, we 
are going to manage architecture networking and we are 
going to centralise the logs from the service’s activity. 

6.2 Design 

 
 
 

Fig. 2. Shows the UML component diagram from the design structure 
proposed for phase one of this work. 

In Fig. 2, we can observe the layout of the three nodes 
which compose WAF_v1. Both Intermediary and Backend 
Server 1 nodes are built on Docker containers and a private 
network has been designed to host the architecture. The 
Backend Server 1 node consists of an Apache web server 
which serves an index.html file that will be requested by 
the user client. 
In this phase of the project, the Intermediary node of the 
architecture is built to hide the backend server node’s IP 
from the Internet, making it more secure. Every time a user 
requests the index.html file from the backend server, in-
stead of connecting to the server endpoint directly, the user 
will request the file using the intermediary’s endpoint, 
which works as a proxy. The intermediary node will redi-
rect the client’s request to the server as well as it will redi-
rect the  server’s response to the user. Because of the  need 
of transparency and privacy of the backend server, we 
have opted to use the HAProxy software in the intermedi-
ary node, as its software can be configurable to work how 
we want to. Since we want to be able to run the Docker 
containers always with the same configuration, data per-
sistence has been developed. Since we want to monitor the 
activity from our architecture, logging has been configur-
ated so we can track requests and verify that everything 
works correctly. 

6.3 Implementation 

Since we are using containerization to develop our work, 
data does not persist when a container no longer exists, 
and it can be difficult to get the data out of the container if 
another process needs it. To manage this problem, we are 
using Host-based Persistence [18] among containers to 
store files in the host machine, even after the container 
stops. By using Host-based persistence, data presits 

INTERMEDIARY

Ports 

  Stats            

  Traffic            

Software  HAProxy

1 2.  .2.1

BACKEND SERVER 1

Ports 

  Traffic  2   2   

Software 

  Apache web server

1 2.  .2.2

USER LOAD BALANCER BACKEND SERVER 



4 EE/UAB TFG INFORMÀTICA: IMPLEMENTATION OF A WEB APPLICATION FIREWALL FOR A HIGH AVAILABILITY FRONT END 

 

 

outside of the container, which means it will be available 
even after a container is removed. In WAF_v1, data persis-
tence is important since we need our architecture’s con-
tainers to centrally store logs to the same directory, making 
it easier to process the logs, so we can test the architecture’s 
performance. For log management, we are going to use the 
software Rsyslog. Rsyslog is a powerful, secure and high-
performance log processing system which accepts data 
from different types of source and outputs it into multiple 
formats. Redirecting all the logs from rsyslog to the stand-
ard out device makes logs be compatible with docker de-
fault logging. In this configuration, the Intermediary node 
uses the software HAProxy to load balance traffic across 
the architecture. Regarding HAProxy event logging, the 
software, does not log to stdout by default. To solve that 
problem, we built a configuration which takes the logs 
generated by the software and sends them to a specific lo-
cal directory both in the container and in the local machine, 
where the containers are executed.  
 
Since the design is scalable, in a future situation we may 
have the use case where each backend server is connected 
to different databases to serve client requests, or we may 
have the situation where we have multiple load balancers 
that are interconected. Data is generally replicated to en-
hance reliability or to improve performance. One major 
problem is to keep replicas consistent. Data base servers as 
well as the load balancers must be configured to perform 
master-master replication as load balancing involves both 
reading and writing to all backends.  
 
When configuring the network for the architecture envi-
ronment in this phase of the project, a private network has 
been used to develop the infrastructure. The HAProxy in-
termediary node, is a basic load balancing node which lis-
tens on a specific IP address and port, then forwards the 
incoming traffic to a specified server. 
 

 
 
Fig.  . Shows the UML flow diagram from WAF_v1 of this work. 

In Fig. 3, there are represented in incremental order of pri-
ority, from letter A to B, the different possibilities from 
which the route of the request can take, through the archi-
tecture, in flow of execution. In this use case, when the ar-
chitecture is set up, the intermediary is the load balancer 
node, and the backend server 1 is the backend server which 
serves the index.html file. 
By typing to any web browser, the following URL address, 
172.43.1.1:28080/index.html, composed by the endpoint 
from the intermediary node, the index.html file stored in 
the Apache backend server node is requested by the user. 
Possibility A takes place: If the intermediary node is avail-
able, the request will be handled by the node in question.  

The HAProxy software will handle the request and will 
forward it to the backend server. If the intermediary 
node is not available, the HAProxy software will send 
to the user an HTTP 503 error response advertising the 
unavailability of the service. Then, possibility B takes 
place: If the backend server is available, it will deal with 
the response, which will be delivered to the client by the 
intermediary node. If the backend server is not availa-
ble, the intermediary node will send the user an HTTP 
503 error response advertising the unavailability of the 
service. Note that in any of the events, the backend 
server IP has been exposed to the Internet, but the inter-
mediary node IP has been exposed. 
 
Thanks to data persistency, and the software Rsyslog, the 
logs from the http request will be stored in a directory from 
the host’s computer and we are able to trace the client re-
quest and response. 

6.4 Test 

In this part we are going to perform a functional imple-
mentation test, to the architecture to verify that the proto-
type follows the initial requirements. 
Since the main objective of this phase is to build a base cli-
ent-server architecture, functional testing is going to be 
performed for quality assurance. Black-box testing will be 
performed, which bases its test cases on the specifications 
of the software component under test. Functions are going 
to be tested by feeding them input and examining the out-
put. In this phase, stress tests and other testing, are not go-
ing to be performed. 
 
For the test, we are going to simulate a test case where a 
single user performs a single HTTP request to the in-
dex.html file. The web application performance tool that 
we are going to use is ApacheAB. The tool is designed to 
give a impression of how the current Apache installation 
performs. The aim of this test is not to test how many re-
quests per second our Apache installation can serve, but to 
ensure the identification of functions that the software is 
supposed to do. 
By opening a new terminal window in the virtual machine 
environment and typing the following command line: ab -
n 1 http://172.34.2.1:8080/index.html we are performing 
a functional test which the index.html file is requested one 
time. The test will finish when the ApacheAB software re-
ceives a response from the server. The tool gives us infor-
mation about the request, such as the server hostname, IP, 
port and the document requested. Since the Intermediary 
node is the main load balancer from the architecture, by 
checking the log from the request, we can assure that the 
request has gone through the path expected. By analysing 
the log file from the HAProxy software from the interme-
diary node and the results from the ApacheAB test, the re-
quest follows the path designed and the architecture per-
forms as expected, allowing us to start the WAF_v2 devel-
opment. 

http://172.34.2.1:8080/index.html


5 EE/UAB TFG INFORMÀTICA: IMPLEMENTATION OF A WEB APPLICATION FIREWALL FOR A HIGH AVAILABILITY FRONT END 

 

 

7 PHASE 2: WAF_V2 

7.1 Analysis 

In this phase of the project, WAF_v1 has been upgraded  
by  developing high availability load balancing and data 
redundancy to the architecture, by adding two load bal-
ancers in the front-end of the architecture. The main objec-
tive of this phase of the project is to set up a simple IP fail-
over between two servers, which will be the load balanc-
ers. We want to develop and understand how high availa-
bility load balancing works, how different configurations 
can have an impact to the architecture’s performance and 
usability, and to improve backend server’s security. 
In order to carry out the objective, there has been an im-
provement regarding the architectural configuration from 
the WAF_v1’s set-up, by the addition of more nodes either 
on the frontend side of the architecture or on the backend, 
and the improvement in the software configuration that 
will suit the architecture’s needs. 
Functional tests have been performed, as well as the com-
parison between WAF_v1 and WAF_v2 from the project, 
in order to analyse the importance of a high availability 
load balancing set up. Different resources and processes 
have been carried out to suit the different objectives from 
the work. 

7.2 Design 

 
 

Fig.  . Shows the UML component diagram from the design structure 
proposed for phase two of this work. 

In Fig. 4, we can see the layout of the nodes which com-
poses the architecture’s prototype. Every node in this con-
figuration is built on Docker containers and a private net-
work has been designed to host the architecture. Backend 
server one, two and three consist of an Apache web server 
which serves an index.php file, containing the path of the 
request throughout every node. In this version of the WAF 
we have opted to use the index.php file since PHP has mul-
tiple native methods from its language, which makes it eas-
ier to get the IP and Hostname from a certain node from 
the architecture, and to display it in the file. The file is the 
element which will be requested by the user client. In this 
phase of the project, the load balancers are  built to provide 
robustness to the architecture. Every time a user requests 
the index.php file from the backend servers, instead of 

connecting to the server endpoint directly, the user will re-
quest the file using the intermediary’s endpoint, a virtual 
IP, which works as a proxy which will redirect the request 
to the load balancers. Considering high availability, one of 
the load balancers will be an active node, which will redi-
rect the request to the backend servers and will redirect the 
response to the User. The other load balancer will be a pas-
sive node. If the main server fails or it’s unavailable, the 
passive node, or the one that is available, takes the master 
role and can redirect and balance client requests through-
out the architecture, making the design more secure and 
reliable. Because of the  need of high availability as well as 
keeping transparency and privacy of the backend servers, 
we have opted to use Keepalived software alongside 
HAProxy software to run the load balancers, as its soft-
ware has been configured to work according to the require-
ments of the project. The backend of the architecture con-
sists of three Apache web servers, which will respond the 
index.php file that will be requested by the user, to test that 
the front-end is working as expected.  

7.3 Implementation 

In this version of the project we have set up a two-node 
front end load balancer in an active/passive configuration 
with HAProxy and Keepalived. The load balancers sit be-
tween the user and the three backend Apache web servers 
that hold the same content. The backend servers from this 
configuration reassemble a company’s service backend. 
Not only does the load balancers distribute the requests to 
the three backend Apache servers, but they also check their 
health to check their availability. If one of them is down, 
all requests will automatically be redirected to the remain-
ing backend servers. In addition to that, the two load bal-
ancers monitor each other using the software Keepalived, 
and if the master fails, the slave becomes the master, which 
means the users will not notice any disruption of the ser-
vice. Keepalived is the software that manages the configu-
ration of the Virtual Floating IP (VIP) from the architecture 
frontend. Thanks to Keepalived and HAProxy, we can 
scale our architecture by adding more load balancer nodes 
at any time in the future if it is needed. Haproxy performs 
load balancing on layer 7, HTTP and TCP-based services. 
Keepalived uses VIP’s to perform load balancing and fail-
over tasks on the active and passive routers. All nodes run-
ning Keepalived use the VRRP protocol.  
 
HAProxy lets configure the load balancer to load balance 
traffic to the backend servers using four different algo-
rithms. A static Round Robin, where each backendserver 
is used in turns per their weights and it is the algorithm 
used for the configuration of the WAF in this work. Unlike 
the Round Robin algorithm, changing server weight dur-
ing execution is not an option. When a server goes up, it is 
immediately introduced into the farm once the full map is 
recomputed and the load balancing algorithm does the 
scheduling. Other algorithms, like Least Connections, 
Source, URL or URL parameter can be used. More infor-
mation can be found in the HAproxy configuration web-
site. Depending on the situation and the use case of the ar-
chitecture, an algorithm or another will be used. Using a 

USER FRONT END BACK END 

ACTIVE 

PASSIVE 



6 EE/UAB TFG INFORMÀTICA: IMPLEMENTATION OF A WEB APPLICATION FIREWALL FOR A HIGH AVAILABILITY FRONT END 

 

 

Least Connections algorithm is useful when very long ses-
sions are expected, such as SQL, LDAP, etc. whilst using a 
Round Robin algorithm is useful when we want to assign 
equitable weight to every server from a net of servers.  
 

 
 

 
Fig. 5. Shows the UML flow diagram from WAF_v2. 

Due to the complexity of WAF_v2 architecture, in Fig. 5, 
we have arranged the representation of a UML flow dia-
gram reassembling  an example use case from a user re-
questing the index.php file from the backend servers. In 
the figure, there are represented, in incremental order of 
priority, from letter A to F, the different possibilities from 
which the route of the request can take through the archi-
tecture’s use case, in flow of execution. In this example, 
when the architecture is set up, the loadbalancer one is the 
master node, and the load balancer two is the backup node. 
The algorithm that the HAProxy is using to balance the 
traffic to the backend servers, in the current in the current 
configuration, is a RounRobin algorithm.  
 
When the Users wants to acces the service, they type to any 
web browser the following URL address, 
172.43.1.2:8080/index.php, which is the VIP endpoint. 
Through the VIP we are accessing through the virtual end-
point to the master node. Thanks to the Keepalived soft-
ware, the software in the master node sends periodic ad-
vertisements to the other load balancer, to check its status 
of operation. Possibility A takes place: If Load balancer 
1(LB1) is available, the request will be handled by the node 
in question. If LB1 is not available, possibility B takes place: 
If Load balancer 2 (LB2) is available, which is the backup 
node, the VRRP instance determines the running status of 
the active node. Since the active node fails to advertise after 
a previously configured interval, Keepalived initiates fail-
over and its status will change to master. As for LB1, it will 
change its status to inactive. In LB2, the HAProxy software 
will handle the request and will forward it to the backend 
servers, performing layer 7 traffic load balancing. If LB2 is 
also not available, an HTTP 503 error response is given to 
the user, advertising the unavailability of the service. 

Concerning the backend servers, possibility C goes in pair 
with possibility F, but changing the backendserver node. 
The same happens with possibility D and G, and possibil-
ity E and H. Possibility C and F: If the backendserver is 
available, the request will be handled from the load bal-
ancer to the backendserver node. If the backend server is 
unavailable, since replication is implemented for the 
backend servers, then possibility D and G take place. If the 
other backendserver is available, the request will be han-
dled by the node available. If either of the backend servers 
are not available, since replication is implemented for the 
backend servers, then possibility E and H take place. If the 
backendservers are not responding, the user will be in-
formed with a HTTP 503 error response, generated by the 
load balancer, advertising the unavailability of the service. 
For testing purposes, to follow the trace that the request 
has taken, the index.php file shows the request’s route 
taken, by showing the IP and Hostname where the request 
paquet has passed. As well as with the index.php file, by 
checking the load balancer logs, we can overview that the 
traffic from the client request and response goes through 
all phases anticipated, and we can corroborate that the im-
plementation of the design works.  
 
Thanks to the upgrades to WAF_v1, the internal imple-
mentation of our architecture is not exposed to the public 
internet. By having multiple nodes for both the front end 
and backend, front-end high availability has been devel-
oped, making the design more robust, fault tolerant and 
reliable to overtake large amounts of client requests. 

7.4 Test 

In this part we are going to perform an implementation test 
to the architecture to verify that the prototype meets the 
functional requirements. Since the main objective of this 
prototype is to perform high availability load balancing 
with the client requests, functional testing is going to be 
performed for quality assurance. In this test, functions are 
going to be tested by feeding them input and examining 
the output. 
 
For the test, we are going to simulate a test case where mul-
tiple users perform queries requiring the index.php file. 
We are going to use ApacheAB, the same tool used for test-
ing WAF_v1. The aim of this test is not to test how many 
requests per second our service can serve, but to ensure 
that the loadbalancers does serve the requests. The testing 
and analysis of how many requests per second our archi-
tecture is capable of serving under heavy load, the point of 
failure of our architecture, the average response time of the 
architecture under different loads and the maximum num-
ber of requests per second that the architecture can handle 
will be conducted in the performance testing section of this 
paper. 
The test is performed with the Keepalived configuration 
with LB1 as the master node and LB2 as the backup node. 
The HAProxy node’s software load balancing algorithm is 
set to Round Robin. The actual test is performed with a 
loadbalancer default configuration, meaning that there is 
not rate limiting or SSL termination. Since the backend 



7 EE/UAB TFG INFORMÀTICA: IMPLEMENTATION OF A WEB APPLICATION FIREWALL FOR A HIGH AVAILABILITY FRONT END 

 

 

from the architecture is composed by three backend serv-
ers, and the algorithm used to distribute the load is 
RoundRobin, we are going to perform 3 queries, so we can 
assure that all backend servers are requested the index.php 
file. 
 
By opening a new terminal window in the virtual machine 
environment and typing the following command line: ab -
n 3 http://172.34.1.2:8080/index.php, we are performing a 
functional test where the index.php file is requested three 
times. The test will finish when the ApacheAB software re-
ceives a response from the servers. By checking the log 
from the requests, in the master node, LB1, we can see that 
the requests have followed the expected path.  
Every time a request is made, if the LB1 stays as master 
node, the request will follow the path from the client IP to 
the backend server three’s  IP, all the way through the LB1. 
If the load balancer’s status changes, and the second load 
balancer is available, the path from the queries will change 
and the request will be handled by the LB2. If any load bal-
ancer is added to the architecture, its status would be 
backup, meaning that in case of failover, the nodes would 
be able to take the task of a master node. 
 
The request conducted is simple, therefore, the weight in 
processing power is very little. By analysing the log file 
from the HAProxy software from the loadbalancers, and 
the results from the  ApacheAB test, the request follows the 
path designed and the architecture’s loadbalancers for-
ward requests, passing the test performed.  

8    PERFORMANCE TESTING 

There are two perspectives when testing a WAF. The first 
perspective is to test the functionality of the set of software 
components implementing the functional requirements. In 
this work, each prototype’s functional requirements have 
been tested in the previous sections. The second perspec-
tive when testing a WAF, is to test that the running envi-
ronment composed of the hardware, software and middle-
ware components needed to execute the WAF, must meet 
the requirements to provide the service to a user. When 
testing the WAF, it is important to take in consideration 
both perspectives, since they are complementary. Also, 
when testing the WAF, it is important to take into consid-
eration that the aim of Web application testing consists of 
executing the application using combinations of input and 
state to reveal failures. A failure is the manifested inability 
of a system or component to perform a required function 
within specified performance requirements. Therefore, in 
this part of the work different types of testing will be per-
formed in order to find out the point of failure of the WAF. 

8.1 Functional Testing 

A WAF can be considered a distribuited system, wth a cli-
ent-server architecture, including the users that are access-
ing the system, which could be distribuited all over the 
world. The heterogeneous nature of hardware and soft-
ware which compound the system, and the ability of the 
system to generate software components at run-time, 

depending of input of the client’s requests, makes it im-
portant to test the WAF’s functionality. In order to verify 
the system requirements of the project, testing is required 
to find failures in the service/functionality in order to test 
that the behavior of the application is consistent with the 
service requirements. For each phase of the work, unity 
testing, has been conducted to the WAF, where the type of 
unit that has been tested is the front-end web page. Integ-
rity testing has also been conducted, where the interaction 
of the different parts which compound the software have 
been tested together as a whole, identifying failures due to 
their coupling. System testing has been tested to test the 
behaviour of the web application, where the navigation 
throughout the web application has been tested as well as 
the web application responses from client requests, which 
in every case, there were not any web application failures 
due to incorrect redirection of web pages.  

8.2 Non functional Tesing 

While testing the WAF, there are different non-functional 
requirements that a web application should satisfy, such as 
performance, scalability, compatibility, accessibility, usa-
bility, and security. For verifying each non functional re-
quire-ment, testing activities with specifc aims will have to 
be designed.  
 
To evaluate performance, we have tested server response 
time and the service availability. We have tested 13 differ-
ent simulations of regular user activity, the first test being 
one user requesting the service to the WAF and the 13th test 
being the test where the service reaches the point of failure. 
For every test we have monitored the web application re-
sponse times involving simultaneous users accessing the 
WAF. Measurements have been taken from the load-
balancer one of the architecture, since in this work, load-
balancer one is set to be the active node in the WAF’s con-
figuration. To verify the response time, we are expecting a 
response time of no more than 1 second. WAF_v2 has been 
designed so it can easly be horitzontally scaled, by adding 
more loadbalancers, or vertically scaled, by adding more 
power resources to the loadbalancers  to cope with the web 
application requirements, so it does not become a bottle-
neck between the user and the web application. To monitor 
the system testing, the log files have been monitored and 
analised. 
 
The WAF_v2 is running on Docker containers, each using 
4MBytes of RAM, that are running on a Linux Ubuntu VM 
powered with 8Gb of RAM, and a single core of an Intel 
I7700HQ processor. By default, Docker containers are de-
signed to use as many power resources as the host’s kernel 
scheduler allows. Memorywise, in order to not encounter 
situations where the system could get an out of memory 
exception, the docker daemon attempts to mitigate the 
risks of such failure. If the value of the memory flag on the 
container setting is not specified, the minimum amount of 
memory that the container will use is 4Mbytes, as the pre-
sent configuration on our containers. CPUwise, we can 
configure the Linux Kernel CPU scheduler  to configure 
the amount of access to the CPU resources our containers 

http://172.34.1.2:8080/index.php


8 EE/UAB TFG INFORMÀTICA: IMPLEMENTATION OF A WEB APPLICATION FIREWALL FOR A HIGH AVAILABILITY FRONT END 

 

 

have. All containers use as much CPU as they need. The 
more resources the containers have, the better they will 
perform. Since we are running several programs within the 
same Ubuntu machine, we might consume more CPU, 
which can affect other programs while dealing with paral-
lel runs, dissortiing our results. Docker relies on the 
amount of HW resources given, it does not resolve HW 
scaling problems, therefore the host OS and the container 
configurations need to be tuned. The size of the file re-
quested to the WAF is 437 Bytes. 
 
The unity that it is used to test the WAF performance is the 
number of responses over a period of time, how many re-
quests can the architecture handle before failing. That pa-
rameter will be given by the software testing tool Apache 
AB, for every measurement taken. The type of load testing 
that we have conducted to our WAF is steady load testing. 
Steady load testing, where a specified number of virtual 
users’ requests are sent to the architecture at once. We have 
conducted different measurements by increasing the num-
ber of parallel virtual user requests, from one, up to the 
breaking point of the service. Each test will be done taking 
in consideration two parameters: Parameter N, which rep-
resents the number of requests to perform for the bench-
marking session; and parameter C, which represents the 
numer of multiple requests to perform at a time by a vir-
tual user. By increasing the number of virtual users, differ-
ent parameters from the loadbalancers and the backend 
servers, like memory and CPU utilisation are monitored. 
We have obtained the following results: 
 

 
Fig. 6. Shows the graph showing the load balancer one, average re 
sponse time for each number of virtual users generating concurrent 
requests during the 1  measurements of the test. 

Requests (N and C) Max. CPU Usage  (%) Max. Memory Usage (%) 

1 0,5 0,11 

100 2,5 0,12 

1000 19 0,25 

5000 24 0,4 

7500 22 0,4 

7750 11 0,42 

7800 17 0,36 

7850 18 0,44 

7900 17 0,44 

8000 17 0,39 

8050 16 0,39 

8075 18 0,37 

8090 22 0,45 

Fig.  . Shows the table displaying the loadbalancer one average CPU 
and memory utilization during 1  tests. 

 

Fig.  . Shows the table displaying the backend server’s average CPU 

utilization during the 1  measurements of the test. 
 
In Fig. 6. the graph represents the average response times 
obtained from load balancer one, the first test with param-
eters N = 1 and C=1, and the last test with N = 8090 and C 
= 8090 concurrent virtual users. The graph shows that re-
sponse time increases as the load is increased, as expected.  
Fig. 7, shows the CPU and memory utilisation from the 
loadbalancer one, while during the tests. It is observed that 
during the test, as the number of concurrent virtual users 
increases, the CPU and memory usage from the load-
balancers increases as well, but not as we expected as if the 
loadbalancer would become oversaturated, that we would 
be expecting a 100% of CPU usage. There is a peak of 22% 
of the loadbalancer’s CPU usage that has been monitored 
at the 13th test, before system failure, at N = 8090 and C = 
8090 parameter measurement. Observing Fig. 9, we can see 
that the loadbalancer’s requests/second times drops as the 
N and C parameters keep increasing, till the breaking point 
of the service, fixed at N = 8090 and C = 8090. This situation 
makes us consider cheking the backend servers bench-
marks, to consider if the backend servers are being the bot-
tleneck of the service.  

 
Fig.  . Shows the graph displaying the load balancer one request/time 
rate, during the 1  measurements of the test. 

The system performs as expected till we hit N = 8090 total 
users and C = 8090 concurrent requests during the test. Af-
ter that measurement, the system is stressed beyond its 
specification limits, the service crashes and needs to be re-
started. The part of the architecture that is failing, are not 
the loadbalancers, but the backendservers. Observing Fig. 
9, which represents de monitorisation of the different 

1 10
0

10
00 50

00 75
00

77
50

78
00

78
50

79
00

80
00

80
50

80
75

80
90

2 13
4

15
99

30
68

7

54
69

4

54
69

4

54
69

6

54
50

6

55
19

3

56
77

0

55
67

0

55
87

6

55
41

4

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

A V E R A G E  R E S P O N S E  T I M E S  O V E R  C O N C U R R E N T  
R E Q U E S T S

Requests (N and C) Response time (ms)

838
715

608

316 300 275 252
144 143 144 142 144 146

1 2 3 4 5 6 7 8 9 10 11 12 13

REQU EST S/SECO ND

15 19
25

35

49 52
60

65
70 74

82
90

98

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13

Max. CPU Usage  (%)



9 EE/UAB TFG INFORMÀTICA: IMPLEMENTATION OF A WEB APPLICATION FIREWALL FOR A HIGH AVAILABILITY FRONT END 

 

 

measurements of requests over time of the loadbalancer, 
and checking Fig. 8, the average CPU activity of the 
backendservers, we can see that the backend server’s lack 
of multithreading capabilities and memory limitation to 
cope with that amount of load, brings the WAF capabilities 
to handle 838 requests/second at the first test, using 15% 
of backend server’s CPU average usage, to 146 re-
quests/second, at the last measurement, using 98% of 
backend server’s CPU usage. After the last measurement, 
the  apache servers oversaturate, throwing an 
apr_socket_recv connection reset by peer (104), meaning 
that the threads from the servers are heavy loaded with re-
quests and can’t handle any more requests. 
 
Using the Apache AB testing tool, we have verified that the 
breaking point of the WAF_v2 has been estimated to be at 
the point where the service must handle 8091 concurrent 
requests. The WAF has experienced an 82,5% loss of capa-
bility to handle requests over the test progression, from 838 
requests/second at the first reading to 146 requests/sec-
ond, at the last reading. It is important to note that the bot-
tleneck of the configuration is not located at the WAF, but 
at the backend servers. A solution would be to either 
change the loadbalancer distribution algorithm, or to ver-
tically scale the backendserver nodes, to consider a perfor-
mance improvement.  
 
Security testing is intended to verify the overall effective-
ness of the WAF security against undesired access of un-
authorised users. Since system vulnerabilities can be orig-
inated at the application level of the service, or at the run-
ning environment of the service, like middle-ware or hard-
ware components of the system, security measures must 
be taken in consideration when testing the WAF. Since  the 
loadbalancers in our WAF, are configured with HAProxy 
software, we can take advantage of the features  that 
HAProxy offers while configurating the haproxy.cfg file.  
 
To verify the security, we have arranged and tested a load-
balancer’s configuration to limit the rate of the web appli-
cation to 10 requests every 10 second and we have ar-
ranged a configuration where there is a table to put in all 
the abusive IP’s. Every IP that is marked as abusive is a 
threat or a false possitive. What we have observed from 
this test is that after the 10th request, in the 10 second inter-
val, all the endpoint’s TCP connections that were done af-
ter the 10th request and in the 10 second interval were re-
jected, as well as the inclusion of the IP to a blacklist of IP’s 
marked as abusive. With this method, we are preventing 
denial of service attacks, rejecting new connections which 
can take down the loadbalancers and we are notifying the 
possible threats in real time to the engineers in charge of 
the service monitorisation. Every loadbalancer in the archi-
tecture has a statistics table, where there is a summary of 
the loadbalancer activity. This statistics web page is pro-
tected by a user and password authentification, since the 
site contains critical information about the configuration 
and activity of the loadbalancer, which only should be 
viewed by the system administrators. 
 

9    CONCLUSION 

The increase of global connectivity throughout the Internet 
to satisfy the quality of service from different companies’ 
services, is becoming a necessity as the companies grow 
and offer more web application services. In order to satisfy 
the needs of a business growth, scalability is a must to meet 
market demands. In most cases, system scalability issues 
appear as performance problems caused by capacity limi-
tation of servers and networks.  
By building a high availability web application front end 
architecture, the architecture can be easily be vertical and 
horizontal scaled by adding more nodes and resources to 
the design, hiding communication, distribution and repli-
cation latencies as well as providing reliability and perfor-
mance.  When designing the architecture, we have not cov-
ered active-active replication in the backend servers, which 
is a must for data consistency in the backend side of the 
architecture, and we haven’t covered network reliability 
and homogeneity which is necessary to keep the scalability 
consistent. What we did cover is network security and the 
WAF’s development, from its analysis to its configuration, 
in order to satisfy the need of high availability.  
 
With this in mind,  scalability is one of the most important 
goals to achieve when building a high availability WAF, 
since a lot of requests are going to hit the architecture.  
 
With WAF_v1, we have understood how we can deploy a 
web service on Docker, and how we can take advantage of 
an intermediary node to mask the internal implementation 
of the web service’s backend, increasing security. The 
downside of using WAF_v1 for a high availability front-
end is that in certain demands, the architecture will rapidly 
become a bottle neck to the web service and will probably 
fail. 
 
WAF_v2 is an initial configuration of a high availability 
WAF, composed by two load balancers and three backend 
servers, as the use case for the analysis of this work. When 
referring to a initial configuration, we refer that every com-
pany service is different, with its different needs and goals. 
Depending on the use case, there must be a previous eval-
uation of what configuration would be more suitable tak-
ing in consideration the service’s needs. After evaluating 
the use case, the idea is to configure WAF_v2 architecture 
to satisfy the needs of the use case service,  by adding more 
nodes to the front end of the architecture, or by adding 
more resources to the load balancers, always to increase 
performance and high availability. 
 
After analysing the results from the tests conducted to 
WAF_v2, it is important that  the backendservers are given 
enough resources so there is a balance of performace be-
tween the WAF and the backendservers, preventing that 
the backendservers become a bottleneck to the service, as 
we have seen in the test results. An advantage of using the 
WAF_v2 architecture is that depending on the use case in 
which the architecture is deployed, the load balancers have 
been configured to prevent denial of service attacks by lim-
iting the rate of HTTP requests accessing the architecture. 



10 EE/UAB TFG INFORMÀTICA: IMPLEMENTATION OF A WEB APPLICATION FIREWALL FOR A HIGH AVAILABILITY FRONT END 

 

 

The loadbalancers have been configured for bot detection 
and IP masking and the load balancers could be configured 
to support SSL termination. WAF_v2 has passed all func-
tional and non-functional tests, based in the initial require-
ments, satisfying the requirements from this work. The 
configuration for each loadbalancer from the WAF can be 
found in the haproxy.cfg file in the GitHub repository, 
which is the master configuration file for the configuration 
of the load balancers. 

FUTURE WORK 

 
Fig. 1 . Shows the Gantt chart from the planning followed to develop 
this work. 

During the project development, we encountered with 
some issues that delayed the execution of the work. As we 
can see in Fig. 10, the development of WAF_V2 has lasted 
more time than expected. If we compare the effective gantt 
chart, which represents the initial planning of the different 
activities against time, with the ideal gantt chart, which 
represents the actual planning of the project development, 
which can be seen in Fig. 1, the development of WAF_v2 
has experienced a 7-week delay. The causes of the delay 
were the research of knowledge to understand the archite-
cure requirements and some changes in the initial design 
of WAF_v2 that had to be done in order to suit the require-
ments. Considering the comparison between the ideal pro-
ject development and the effective and the current devel-
opment of the project, the tasks that have not been accom-
plished will be done in future work, including: The devel-
opment of WAF_v3, consisting of the same architecture as 
WAF_v2, but with the integration of the Elastic stack to the 
project and the development of a Kibana module to moni-
tor logs and statistics in real time. The analysis of the com-
parison of performance gain/loss between the usage of dif-
ferent forwarding algorithms available by the HAProxy 
configuraton. Another line of work to be considered in fu-
ture research, is the development of a WAF hosted in the 
cloud and the build of a simulation where the cloud ser-
vices are provided to an organisation. Following the devel-
opment of a WAF-as-a-service, is the comparison between 
WAF_v2 and the WAF hosted in the cloud to test which 
architecture would perform better in a certain use case. 
 
 

ACKNOWLEDGMENT 

This work was supported partly by Sigma Gestion Univer-
sitaria with NIF V61213641. Also, I would like to thank 
Sergi Robles Martínez, and Porfidio Hernández Budé, re-
searchers from Universitat Autònoma de Barcelona, who 
provided insight and expertise that greatly assisted the re-
search, although they may not agree with all the interpre-
tations/conclusions of this paper. 

REFERENCES 

[1] C. Victor and H. Shahriar, “Web Application Firewall: Network 
Security models and Configuration” Tokyo, Japan. (Conference 
proceedings). 2018. 

[2] Kemp Technologies, “High availability and Performance for 
Microsoft SharePoint” https://kemptechnologies.com/es/white-
papers/high-availability-microsoft-sharepoint/. (Technical 
Report). 2019. 

[3] T. Nick, Dell EMC, “High Available Data Protection with Dell 
EMC Islion Scale-out NAS” https://www.dellemc.com/ro-
ro/collaterals/unauth/white-papers/products/storage/h10588-
isilon-data-availability-protection-wp.pdf. (Tecnichal Report). 
2019. 

[4] Oracle, “Oracle Cloud Web Application 
Firewall”https://www.oracle.com/es/cloud/security/cloud-
services/web-application-firewall.html. (Tecnichal Report). 
2019. 

[5] CloudFare, “La plataforma de nube global integrada” 
https://www.cloudflare.com/es-es/. (Tecnichal Report). 2020. 

[6] Akamai, “Firewall de Aplicaciones Web” 
https://www.akamai.com/es/es/resources/web-application-
firewall.jsp. (Tecnichal Report). 2020. 

[7] Barracuda, “Web Application Security, Simplified 
”https://www.barracuda.com/waf-as-a-service. (Tecnichal 
Report). 2020. 

[8] Amazon, “AWS WAF – Web Application Firewall” 
https://aws.amazon.com/es/waf/. (Tecnichal Report). 2020. 

[9] FortiNet, “FortiWeb cloud WAF-as-a-Service”. 
https://www.fortiweb-cloud.com/index/login. (Tecnichal 
Report). 2020. 

[10] Barracuda, “Barracuda WAF-as-a-Service” 
https://assets.barracuda.com/assets/docs/dms/Barracuda_WAF
_as_a_Service_SB_US.pdf . (Tecnichal Report). 2020. 

[11] Guru-99, “ Prototyping Model in Software Engineering: Meth-

odology, Process, Approach, “https://www.guru99.com/soft-

ware-engineering-prototyping-model.html. (Blog Report). 2019. 

[12] R. E. H, “GitHub Repository”  https://github.com/HernanEspi-

nosa/Web_Application_Firewall.git. (Version Control). 2019.  

[13] Hat. R, “Que es Docker?" https://www.redhat.com/es/top-

ics/containers/what-is-docker. 2019 (Tecnichal Report) 2019. 

[14] Cisco, “What is a VRRP?" https://www.cisco.com/c/es_mx/sup-

port/docs/security/vpn-3000-series-concentrators/7210-vrrp.pdf. 

2019. (Technical Report). 2019. 

[15] Docker, “What is a Container?" https://www.docker.com/re-

sources/what-container. 2019. (Tecnichal Report). 2019. 

[16] Elastic Products, “Productos de Elastic: Búsqueda, analíticas, 

logging y seguridad | Elastic " https://www.elastic.co/es/pro-

ducts/. (Tecnichal Report). 2019. 

[17] https://httpd.apache.org/docs/2.4/programs/ab.html 

[18] Docker Documentation, “Manage Data in Docker" 

https://docs.docker.com/storage/. (Technical Report). 2019. 
 

22-sep. 12-oct. 1-nov. 21-nov. 11-dic. 31-dic. 20-ene. 9-feb.

Analysis WAF_v1
Design WAF_v1

Implementation WAF_v1
Test WAF_v1

Analysis WAF_v2
Design WAF_v2

Implementation WAF_v2
Test WAF_v2

Overall Conclusions

Effective project Gantt chart

https://kemptechnologies.com/es/white-papers/high-availability-microsoft-sharepoint/
https://kemptechnologies.com/es/white-papers/high-availability-microsoft-sharepoint/
https://www.dellemc.com/ro-ro/collaterals/unauth/white-papers/products/storage/h10588-isilon-data-availability-protection-wp.pdf
https://www.dellemc.com/ro-ro/collaterals/unauth/white-papers/products/storage/h10588-isilon-data-availability-protection-wp.pdf
https://www.dellemc.com/ro-ro/collaterals/unauth/white-papers/products/storage/h10588-isilon-data-availability-protection-wp.pdf
https://www.oracle.com/es/cloud/security/cloud-services/web-application-firewall.html
https://www.oracle.com/es/cloud/security/cloud-services/web-application-firewall.html
https://www.cloudflare.com/es-es/
https://www.akamai.com/es/es/resources/web-application-firewall.jsp
https://www.akamai.com/es/es/resources/web-application-firewall.jsp
https://www.barracuda.com/waf-as-a-service
https://aws.amazon.com/es/waf/
https://www.fortiweb-cloud.com/index/login
https://assets.barracuda.com/assets/docs/dms/Barracuda_WAF_as_a_Service_SB_US.pdf
https://assets.barracuda.com/assets/docs/dms/Barracuda_WAF_as_a_Service_SB_US.pdf
https://www.guru99.com/software-engineering-prototyping-model.html
https://www.guru99.com/software-engineering-prototyping-model.html
https://github.com/HernanEspinosa/Web_Application_Firewall.git
https://github.com/HernanEspinosa/Web_Application_Firewall.git
https://www.redhat.com/es/topics/containers/what-is-docker.%202019
https://www.redhat.com/es/topics/containers/what-is-docker.%202019
https://www.cisco.com/c/es_mx/support/docs/security/vpn-3000-series-concentrators/7210-vrrp.pdf.%202019
https://www.cisco.com/c/es_mx/support/docs/security/vpn-3000-series-concentrators/7210-vrrp.pdf.%202019
https://www.cisco.com/c/es_mx/support/docs/security/vpn-3000-series-concentrators/7210-vrrp.pdf.%202019
https://www.docker.com/resources/what-container.%202019
https://www.docker.com/resources/what-container.%202019
https://www.elastic.co/es/products/
https://www.elastic.co/es/products/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://docs.docker.com/storage/

