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Abstract 

Background: Genomic prediction (GP) is a method whereby DNA polymorphism information is used to predict 
breeding values for complex traits. Although GP can significantly enhance predictive accuracy, it can be expensive 
and difficult to implement. To help design optimum breeding programs and experiments, including genome‑wide 
association studies and genomic selection experiments, we have developed SeqBreed, a generic and flexible forward 
simulator programmed in python3.

Results: SeqBreed accommodates sex and mitochondrion chromosomes as well as autopolyploidy. It can simulate 
any number of complex phenotypes that are determined by any number of causal loci. SeqBreed implements several 
GP methods, including genomic best linear unbiased prediction (GBLUP), single‑step GBLUP, pedigree‑based BLUP, 
and mass selection. We illustrate its functionality with Drosophila genome reference panel (DGRP) sequence data and 
with tetraploid potato genotype data.

Conclusions: SeqBreed is a flexible and easy to use tool that can be used to optimize GP or genome‑wide associa‑
tion studies. It incorporates some of the most popular GP methods and includes several visualization tools. Code is 
open and can be freely modified. Software, documentation, and examples are available at https ://githu b.com/migue 
lpere zenci so/SeqBr eed.
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Background
Genomic prediction (GP) is a method whereby DNA 
polymorphism information is used to predict the breed-
ing value of individuals for complex traits. The availabil-
ity of high-throughput single nucleotide polymorphism 
(SNP) genotyping in a cost-effective manner has led GP 
to become a standard tool in the analysis and improve-
ment of complex traits [1]. GP has revolutionized breed-
ing programs in plants and animals and, today, GP 
methods are also widely used in human genetics or ecol-
ogy. Nevertheless, GP is more expensive than traditional 
pedigree-based breeding. GP can be difficult to imple-
ment in practical scenarios, due in part to the difficulty 
of optimizing genotyping strategies and to uncertainty 

about the genetic basis of complex traits. Thus, it is 
highly advisable to evaluate its potential advantages and 
expected performance in advance. GP accuracy depends 
on a large number of factors. Several of these can be 
controlled by the practitioner, to some extent, such as 
the number of SNPs, number of individuals, selection 
intensity, and the evaluation method. Other factors can-
not be modified, such as linkage disequilibrium and are 
even unknown (genetic architecture). Although several 
approximations of the accuracy of GP have been devel-
oped, e.g. [2, 3], it remains difficult to analytically assess 
the influence of these factors in practical scenarios across 
generations. For this purpose, stochastic computer simu-
lation is the most reliable option. Although critical fac-
tors such as the detailed genetic architecture of complex 
traits are unknown, the main genetic parameters are rea-
sonably well known for most complex traits, such as her-
itability and the distribution of genetic effects, which can 
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be approximated by a gamma distribution [4–6]. Thus, a 
simulation study can be performed to evaluate the effect 
of the number of causal loci quantitative trait nucleotides 
(QTN) and of their location to assess the robustness of 
predictions.

Here, we present a versatile python3 forward simu-
lation tool, SeqBreed, to evaluate GP performance in 
generic scenarios and with any genetic architecture (i.e., 
number of QTN, their effects and location, and the num-
ber of traits). The purpose of SeqBreed is to generate 
phenotype and genotype data of individuals under differ-
ent (genomic) selection strategies. SeqBreed is inspired 
by a previous pSBVB fortran software program [7], but 
the code has been rewritten in python3 and many new 
options have been added. Python can be much slower 
than compiled languages, but is much easier and friend-
lier to use, allowing direct interaction with the user to, 
e.g., make plots or control selection and breeding deci-
sions. In addition, many libraries in python, such as 
‘numpy’ (https ://numpy .org/) or ‘pandas’ (https ://panda 
s.pydat a.org/), are wrappers on compiled languages, 
such that careful programming significantly alleviates 
the limited speed of native python. Thus, SeqBreed is 
much more versatile than pSBVB and incorporates many 
new options, such as genome-wide association stud-
ies (GWAS) and principal component analysis (PCA). 
Most importantly, it allows automatic implementation 
of standard genomic selection procedures. Usage details 
and the main features of SeqBreed are described in the 
following and in the accompanying GitHub site https ://
githu b.com/migue lpere zenci so/SeqBr eed.

Implementation
Outline
Broadly, SeqBreed takes genotype/sequence data from 
a founder population and simulates phenotypes accord-
ing to a predetermined genetic architecture. Offspring 
genomes and phenotypes can be simulated under selec-
tion or random drift. By default, selection is simulated 
across a predetermined number of generations and selec-
tion intensities. SeqBreed offers extensive flexibility to 
the user. For example, accuracy of GP with several SNP 
arrays can be simultaneously compared using the same 
data; offspring of specific pairs of parents can be gener-
ated; and dihaploid offspring can be simulated. SeqBreed 
can be run using scripts or interactively, where the user 
can, say, obtain plots for each generation or generate 
genotype data of a given set of individuals. Examples of 
the program’s usage are in the GitHub’s jupyter notebook 
https ://githu b.com/migue lpere zenci so/SeqBr eed/blob/
maste r/SeqBr eed_tutor ial.ipynb  and in the python script 
https ://githu b.com/migue lpere zenci so/SeqBr eed/blob/
maste r/main.py.

SeqBreed is programmed in python3 using an object-
oriented paradigm. The generic SeqBreed flowchart 
is visualized in Fig.  1. As input, SeqBreed minimally 
requires a genotype file from the founder base population 
in vcf [8] or plink-like format [9]. A typical SeqBreed run 
consists of the following steps:

1. Upload founder sequence genotypes in vcf or plink 
format. The program automatically determines 
ploidy and the number of chromosomes and SNPs.

2. Specify genome characteristics. Sex-linked SNPs 
and/or recombination rates can be specified.

3. Specify desired heritabilities and causal SNPs (QTN) 
and their effects for every trait. Environmental vari-
ances are inferred given founder genomes, QTN 
effects and heritabilities.

4. Offspring genomes and phenotypes are simulated by 
gene-dropping along a predetermined pedigree or by 
implementing selection.

PCA plots or GWAS options are also implemented. 
The main python classes are:

• Population: This class contains the main attributes 
for running selection experiments and is a container 
for Individual objects. It includes methods to add 
new individuals generated by mating two parents 
or randomly shuffling founder genomes in order to 
increase the number of base population animals (see 
[10]). It also prints basic population data and sum-
mary plots.

• Individual: It allows generation, manipulation, and 
printing of the genotypes and phenotypes of individ-
uals. Internally, an individual’s genome is represented 
by contiguous non recombining blocks rather than 
by the list of all SNP alleles, which allows dramatic 
savings in memory and increases in efficiency (see 
Figure 1 in Pérez-Enciso et al. [10]).

• Genome: All genome characteristics are stored and 
can be accessed by methods in this class. It speci-
fies ploidy, number and class of chromosomes, and 
recombination rates or SNP positions.

• GFounder: SeqBreed requires as minimum input the 
genotypes of the so-called ‘founder population’, which 
comprises the parents of the rest of the individuals to 
be generated. This class stores these genotypes and 
automatically retrieves main genome features such 
as SNP positions, number of chromosomes, etc. Ini-
tial genotypes can be filtered by minimum allele fre-
quency (MAF).

• QTN: This class determines the genetic architecture 
for each trait simulated. It has methods to determine 
the environmental variance given a desired heritabil-

https://numpy.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://github.com/miguelperezenciso/SeqBreed
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https://github.com/miguelperezenciso/SeqBreed/blob/master/SeqBreed_tutorial.ipynb
https://github.com/miguelperezenciso/SeqBreed/blob/master/main.py
https://github.com/miguelperezenciso/SeqBreed/blob/master/main.py
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ity, and to plot variance components for QTN. In its 
current version, SeqBreed allows for dominance and 
additive actions, but not epistasis.

• Chip: This class is basically a container for the list 
of SNPs that are included in a genotyping array. It 
allows easy comparison of different genotyping strat-
egies in genomic selection.

Specifying genome features and genetic architecture
By default, SeqBreed assumes that all loci are autosomal 
and a recombination rate of 1 cM = 1 Mb throughout the 
genome. It includes options to specify sex or mitochon-
drial chromosomes, and local and sex specific recombi-
nation maps. A pseudo-autosomal region (PAR) is not 
accommodated for sex chromosomes, i.e., the whole 
Y chromosome is assumed to be non-recombining. A 
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Fig. 1 Outline of the SeqBreed pipeline. Inputs are shown in red squares, dashed border rectangles represent optional input, internal data are 
in blue rounded squares, main operations are indicated in blue, and outputs are in green circles; G and y refer to genotypes and phenotypes, 
respectively. The program starts with an optional gene dropping step following an input pedigree. No selection is performed at this stage. The 
bottom loop represents selection, where new offspring are generated based on the genotypes of selected parents. A list of SNPs in the genotyping 
array must be determined when using GBLUP and BLUP. A new cycle starts when these new offspring are added to the existing population. Plots 
can be performed at several stages
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mitochondrial chromosome is a non-recombining chro-
mosome that is transmitted maternally. SeqBreed allows 
for autopolyploidy of any level, which is automatically 
detected from vcf files. Accurate modeling of meiosis in 
polyploids is notoriously difficult [11, 12] and SeqBreed 
implements a simplified algorithm:

1. For each chromosome id, homologs are randomly 
paired.

2. Within each pair of homologs, cross-over events are 
generated as for diploids, i.e., no interaction between 
homologous chromosomes is modeled and the num-
ber of cross-over events is simulated following a Pois-
son distribution with a rate equal to chromosome 
length in Morgans.

3. Sex chromosomes are modeled with a maximum 
ploidy of 2.

Therefore, our algorithm does not fully model the 
interaction of preferential pairing of homologous chro-
mosomes and double reduction arising from multivalent 
formation [13]. For the purposes of this software (i.e. 
comparison of GP strategies over a limited number of 
generations), it is unlikely that this approximation has a 
dramatic effect.

SeqBreed allows the simulation of any number of 
phenotypic traits, regardless of ploidy. For each trait, 
broad-sense heritability must be specified. There are 
three options to specify the number of QTN and their 
effects (https ://githu b.com/migue lpere zenci so/SeqBr 
eed#3-speci fying -genet ic-archi tectu re): (i) a random 
number of QTN positions are sampled genome-wide 
and additive effects are sampled from a gamma distri-
bution Ŵ (shape = 0.2 and scale = 5), as suggested by 
Caballero et  al. [5]; (ii) the positions of the QTN are 
specified in a file and additive effects are sampled from 
a gamma distribution; and (iii) QTN positions and addi-
tive and dominant effects for each trait are specified 
in an external file. By default, QTN are not removed 
from the sequence data to perform genomic evalua-
tion. To remove QTN from evaluation, a SNP chip can 
be defined that excludes the QTN. Options (i) and (ii) 
can only be used with one trait and without dominance. 
SeqBreed adjusts the environmental variance Var(e) to 
retrieve the desired broad-sense heritabilities ( H2 ) from 
Var(e) = Var

(

g
)

×
(

1−H2
)

/H2 , where Var
(

g
)

 is the 
variance of the genotypic values of individuals in the 
founder population. The genotypic value for individual i 
is defined as:

gi =

nQTN
∑

j=1

γijaj +

nQTN
∑

j=1

δijdj ,

where nQTN  is the number of QTN, aj is the additive 
effect of the j-th QTN, that is, half the expected differ-
ence between homozygous genotypes, with γij taking the 
values − 1, 0 and 1 for homozygous, heterozygous, and 
alternative homozygous genotypes, respectively, dj is the 
dominance effect of the j-th QTN, with δij taking the 
value 1 if the genotype is heterozygous and 0 otherwise. 
In the case of polyploids:

where ηij is the number of copies of the alternative allele 
(coded as 1) minus half the ploidy for the j-th QTN 
and the i-th individual, and aj is therefore the expected 
change in phenotype per copy of allele ‘1’ at the j-th 
QTN. In polyploids, technically as many dominance coef-
ficients as ploidy levels (h) minus two can be defined, 
which is not practical. As in pSBVB [7], we define ϕij as 
the minimum number of copies of allele ‘1’ such that 
the expected phenotype is d (see Figure  1 in Zingaretti 
et al. [7]). SeqBreed uses ϕij = 1 , that is, all heterozygous 
individuals have the same genotype value as the com-
plete homozygous ‘1’. SeqBreed computes genotypic val-
ues for each individual and simulate phenotypes from 
yi = µ+ gi + ei , where µ is a constant and e is a normal 
deviate e ∼ N (0,Var(e)).

For multiple traits, the user needs to specify additive 
and dominant QTN effects separately for each trait. This 
is done via an external text file, where additive and domi-
nant QTN effects are specified for each trait (option 3 in 
https ://githu b.com/migue lpere zenci so/SeqBr eed#3-speci 
fying -genet ic-archi tectu re). There is no specific assump-
tion on genetic correlations between traits. To simulate 
no pleiotropy, QTN for each trait have zero effects for 
all other traits. Note that this does not prevent a non-
zero genetic correlation arising from linkage disequilib-
rium. The program does not automatically adjust desired 
genetic correlations and, thus, different QTN values may 
need to be tested to fit desired correlations. Environmen-
tal correlations are always zero.

It is typically difficult to find real sequence data to gen-
erate a reasonably sized founder population. To accom-
modate this, SeqBreed can generate ‘dummy’ founder 
individuals by randomly combining recombinant hap-
lotypes. This can be done in two ways, either by gener-
ating a random pedigree and simulating a new founder 
individual by gene-dropping along this pedigree, or by 
directly simulating a number of recombining breakpoints 
and assigning random founder genotypes to each block 
between recombination breakpoints (https ://githu b.com/
migue lpere zenci so/SeqBr eed/blob/maste r/READM 
E.md#breed ing-popul ation ).

gi =

nQTN
∑

j=1

ηijaj +

nQTN
∑

j=1

ϕijdj ,

https://github.com/miguelperezenciso/SeqBreed#3-specifying-genetic-architecture
https://github.com/miguelperezenciso/SeqBreed#3-specifying-genetic-architecture
https://github.com/miguelperezenciso/SeqBreed#3-specifying-genetic-architecture
https://github.com/miguelperezenciso/SeqBreed#3-specifying-genetic-architecture
https://github.com/miguelperezenciso/SeqBreed/blob/master/README.md#breeding-population
https://github.com/miguelperezenciso/SeqBreed/blob/master/README.md#breeding-population
https://github.com/miguelperezenciso/SeqBreed/blob/master/README.md#breeding-population
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Gene dropping and selection implementation
Seqbreed can be run along a predetermined pedigree 
or using a combination of options (several examples are 
provided in the GitHub site). It is also possible to gener-
ate new individuals interactively, including dihaploids. To 
speed up computations and avoid unnecessary memory 
usage, only recombination breaks and ancestor haplotype 
ids are stored for each individual (see Figure 1 in [14]).

SeqBreed allows computing estimated breeding val-
ues using several GP methods. It also allows several lists 
of SNPs (SNP chips) to be defined, such that GP per-
formance can be easily compared across chips. From a 
methodological point of view, most GP implementations 
are based on penalized linear methods (e.g., de los Cam-
pos et al. [15]). SeqBreed includes some of the most pop-
ular GP options, including pedigree BLUP [16], GBLUP 
[17], and single-step GBLUP [18]. Only single trait GP 
algorithms are implemented so far. Mass selection is also 
implemented. For GBLUP and single-step GBLUP, the 
genomic relationship matrix G is obtained using Van-
Raden [17] as:

where X is a N × nSNP matrix containing genotypes 
(coded 0,1,2 deviated from the mean) for SNPs on the 
chip, pj is the allele frequency of the j-th SNP, N  is the 
number of individuals, and nSNP is the number of SNPs. 
To avoid potential singularity problems, diagonal ele-
ments of G are multiplied by 1.05. SeqBreed requires 
that heritabilities to be used in BLUP or GBLUP are pro-
vided (i.e., they are not estimated). The program allows 
the incorporation of other custom GP methods based 
on a user python function or by exporting SNP data and 
phenotypes from SeqBreed, running a genetic evaluation, 
externally and then importing the resulting estimated 
breeding values.

Selection can be automatically configured and run, 
as documented in the GitHub examples (https ://githu 
b.com/migue lpere zenci so/SeqBr eed). Running a selec-
tion scheme requires specifying the number of genera-
tions, the numbers of females and males to be selected, 
and the number of offspring per female. SeqBreed splits 
the selection process in three steps, which allows a fine 
control over the breeding program. First, breeding values 

G =
XX

′

2
∑nSNP

j=1 pj
(

1− pj
)
,

are predicted using the chosen evaluation method and 
marker information. By default, the data from all indi-
viduals across the current and previous generations are 
used, but this can be changed by specifying the subset 
of individuals to be used. Second, a function is used to 
generate offspring from selected parents. This function 
requires specifying the candidates for selection (allowing 
for continuous or discrete generations), selection inten-
sity, family size, and either assortative or random mating 
between selected parents. Hierarchical mating between 
females and males is employed by default (https ://githu 
b.com/migue lpere zenci so/SeqBr eed#7-imple menti ng-
selec tion). Assortative and random mating schemes are 
implemented; more sophisticated mating schemes, such 
as those based on optimal contributions [19, 20], have to 
be specified manually by modifying the function ‘Return-
NewPed’ in the selection module (https ://githu b.com/
migue lpere zenci so/SeqBr eed/blob/maste r/src/selec tion.
py).

Visualization
A novel feature of SeqBreed, as compared to our previ-
ous software pSBVB, is the capability of graphical out-
puts. Figure  2 illustrates some of the plots that can be 
performed automatically. Figure  2a shows the results of 
the QTN.plot() function, which plots the individual QTN 
variance as a function of MAF, the histogram of QTN 
variances, and the cumulative variance when QTN are 
sorted by MAF. This is performed for each phenotype 
and for both additive and dominance variances, based 
on allele substitution effects α = a+ d(1− 2p) , where p 
is the minimum allele frequency, and assuming complete 
equilibrium. In addition, PCA plots using all sequence or 
custom defined SNP sets (Fig.  2b) are available, as well 
as GWAS plots showing p-values or false discovery rate 
(FDR) values (Fig. 2c). Genotype and phenotype data can 
also be exported in text files.

Usage and examples
The basic functioning of SeqBreed is illustrated by the 
main.py script that is available at https ://githu b.com/
migue lpere zenci so/SeqBr eed/blob/maste r/main.py. This 
script, or its equivalent jupyter notebook (SeqBreed_
tutorial.ipynb), shows the basic commands to run Seq-
Breed and import the required modules. First, SeqBreed 
modules are imported as:

from SeqBreed import genome as gg
from SeqBreed.selection import selection as sel

https://github.com/miguelperezenciso/SeqBreed
https://github.com/miguelperezenciso/SeqBreed
https://github.com/miguelperezenciso/SeqBreed#7-implementing-selection
https://github.com/miguelperezenciso/SeqBreed#7-implementing-selection
https://github.com/miguelperezenciso/SeqBreed#7-implementing-selection
https://github.com/miguelperezenciso/SeqBreed/blob/master/src/selection.py
https://github.com/miguelperezenciso/SeqBreed/blob/master/src/selection.py
https://github.com/miguelperezenciso/SeqBreed/blob/master/src/selection.py
https://github.com/miguelperezenciso/SeqBreed/blob/master/main.py
https://github.com/miguelperezenciso/SeqBreed/blob/master/main.py
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Founder population genotypes are uploaded from the 
vcf file, using the command:

Fig. 2 Example plots produced by SeqBreed. a Contribution of each QTN to total variance. Top, individual QTN variances as a function of minimum 
allele frequency (MAF); middle, histogram of QTN variances; bottom, cumulative variance when QTN are sorted by MAF. In blue, additive variances; 
in red, dominance variances. The figure shows a fully additive phenotype, thus dominance variances are zero. b Principal component analysis plot; 
individuals of different generations are in different colors. c Genome‑wide association study showing false discovery rate values (− log10 scale). 
SNPs on different chromosomes are represented in alternate colors

gbase = gg.GFounder(vcfFile=vcffile, snpFile=seqfile)

which generates a GFounder object that contains 
founder genotypes, vcffile is the file containing genotypes 
and seqfile is generated by the program and contains 

information about SNP positions, which are used in the 
next step.

Next, the main genome features are specified. The fol-
lowing command creates a Genome object that assumes 
that the ‘X’ chromosome is the sex X chromosome, while 
SNPs on the chromosome named ‘MT’ are mitochondrial.

# seqfile is a file obtained in previous step
gfeatures = gg.Genome(snpFile=seqfile, mapFile=mapfile, ploidy=gbase.ploidy, XChr='X', 
MTChr='MT')
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Genetic architecture can be specified in different 
ways. The simplest is to generate nqtn QTN randomly 
distributed along the genome with effects sampled 
from a gamma distribution, where h2 is the desired 
heritability.

We illustrate the software with sequence data from the 
Drosophila genome reference panel (DGRP, [21]), parsed 
and filtered as explained in [22], and genotype data from 
tetraploid potato [23], parsed as described in [7]. Data 
and scripts are in https ://githu b.com/migue lpere zenci so/

# 10 QTNs are simulated, h2 of the trait is 0.7
qtn = gg.QTNs(h2=[0.7], genome=gfeatures, nqtn=10) 
# environmental variances are computed
qtn.get_var(gfeatures, gbase)

Selection is implemented in cycles, the number of gen-
erations, the numbers of males and females selected, and 
family size must be specified. The following is an example 
with GBLUP selection, random mating, and continuous 
generations.

ngen = 5        # no. of selection generations
nsel = [5, 10]    # no. of males and females selected
noffspring = 10 # no. offspring per female

# selection cycles
for t in range(ngen): 

# STEP 0: generate marker data for evaluation, stored in X matrix
# pop is a Population object containing individual genomes and phenotypes
# chip0 is a Chip object containing SNPs to be used in genomic evaluation

    X = gg.do_X(pop.inds, gfeatures, gbase, chip0) 

# STEP 1: estimate breeding values using criterion GBLUP, assuming h2=0.3
# criterion can take values 'random', 'phenotype', 'blup', 'gblup' or 'sstep'

    sel.doEbv(pop, criterion='gblup', X=X, h2=0.3, nh=gfeatures.ploidy) 

# STEP 2: pedigree with offspring of selected individuals
# mating can be ‘assortative’ or ‘random’
# generation indicates that individuals from generation onwards are considered as selection 

candidates
    newPed = sel.ReturnNewPed(pop, nsel, famsize=noffspring, mating='random',  generation=0) 

# STEP 3: generates new offspring (this function adds QTN genotypes, true bvs and 
phenotypes)

# New individuals are added to current Population
pop.addPed(newPed, gfeatures, qtn, gbase)

SeqBr eed/tree/maste r/DGRP and in https ://githu b.com/
migue lpere zenci so/SeqBr eed/tree/maste r/POTAT O for 
the Drosophila and potato examples, respectively. The 
DGRP scripts illustrate the specific recombination map 
of Drosophila, where males do not recombine, as shown 

https://github.com/miguelperezenciso/SeqBreed/tree/master/DGRP
https://github.com/miguelperezenciso/SeqBreed/tree/master/DGRP
https://github.com/miguelperezenciso/SeqBreed/tree/master/POTATO
https://github.com/miguelperezenciso/SeqBreed/tree/master/POTATO
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in the ‘dgrp.map’ file. The example provided in GitHub 
consists of a small experiment to compare genomic and 
mass selection. Plots in the jupyter notebook are imple-
mented to track phenotypic changes by generation. The 
potato scripts illustrate how to generate an F2 cross 
between extreme lines and to perform a GWAS experi-
ment in polyploids. GWAS results using PCA corrected 
phenotypes are also shown.

Conclusions and future developments
Several other programs have been developed for simi-
lar purposes as SeqBreed, including our own pSBVB [7], 
AlphaSim [24] and its successor AlphaSimR (https ://
alpha genes .rosli n.ed.ac.uk/wp/softw are-2/alpha simr/), 
PedigreeSim [13], simuPOP [25], and QMSim [26]. How-
ever, SeqBreed offers a unique combination of features 
for simulation of GP of complex traits, including built-
in implementation of several GP methods, the possibil-
ity of simulating polyploid genomes, and several options 
to specify QTN and SNP arrays. It also allows new indi-
viduals to be generated interactively and provides graphi-
cal plots of results. It is easy to use, easy to install, and 
software options are illustrated with several examples in 
the GitHub site. Given the interactive nature of python 
and its graphical features, SeqBreed is especially suited 
for educational purposes. However, for large-scale simu-
lations SeqBreed will not be as efficient as some Fortran 
counterparts such as AlphaSim or pSBVB.

Note that SeqBreed was designed to evaluate the per-
formance of GP or GWAS over a short time horizon, 
i.e., new mutations are not generated. SeqBreed is not 
designed to investigate the long-term effects of demog-
raphy or selection on DNA variability because new muta-
tions are not generated. For these purposes, Slim [27] or 
similar tools are more appropriate. To investigate realistic 
scenarios, the recommended input for SeqBreed is real 
sequence data.

Plans for further development of SeqBreed include 
additional features to generalize available genetic archi-
tectures (e.g., imprinting, epistasis), integration with 
machine-learning tools (scikit, keras) for genetic evalua-
tion, development of an educational tool with an html-
based interface, and improving output and plotting 
features.

Authors’ contributions
MPE conceived research. MPE and LMZ wrote software and documentation. 
MPE, LMZ and LCRA tested and validated the program. All authors read and 
approved the final manuscript.

Funding
This work was supported by a PhD grant from the Ministry of Economy 
and Science (MINECO, Spain) to LMZ, by MINECO grant AGL2016‑78709‑R 
and from the EU through the BFU2016‑77236‑P (MINECO/AEI/FEDER, EU) 
to MPE and the “Centro de Excelencia Severo Ochoa 2016–2019” award 

SEV‑2015‑0533. LCRA is funded by “Don Carlos Antonio López” Graduate 
program (BECAL) from Paraguay.

Availability of data and materials
https ://githu b.com/migue lpere zenci so/SeqBr eed
Availability and requirements: Project name: SeqBreed. Project home page: 
https ://githu b.com/migue lpere zenci so/SeqBr eed. Operating systems: Tested 
in linux and mac. It should also run in windows python. Programming lan‑
guage: Python. License: GNU GPLv3. Any restrictions to use by non‑academics: 
None.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Centre for Research in Agricultural Genomics (CRAG), CSIC‑IRTA‑UAB‑UB, 
08193 Bellaterra, Barcelona, Spain. 2 ICREA, Passeig de Lluís Companys 23, 
08010 Barcelona, Spain. 3 Universidad Nacional de Villa María, IAPBCyA‑IAPCH 
Villa María, Córdoba, Argentina. 

Received: 27 August 2019   Accepted: 29 January 2020

References
 1. Meuwissen T, Hayes B, Goddard M. Accelerating improvement of live‑

stock with genomic selection. Annu Rev Anim Biosci. 2013;1:221–37.
 2. Daetwyler HD, Villanueva B, Woolliams JA. Accuracy of predicting the 

genetic risk of disease using a genome‑wide approach. PLoS One. 
2008;3:e3395.

 3. Goddard M. Genomic selection: prediction of accuracy and maximisation 
of long term response. Genetica. 2009;136:245–57.

 4. Hayes B, Goddard ME. The distribution of the effects of genes affecting 
quantitative traits in livestock. Genet Sel Evol. 2001;33:209–29.

 5. Caballero A, Tenesa A, Keightley PD. The nature of genetic variation for 
complex traits revealed by GWAS and regional heritability mapping 
analyses. Genetics. 2015;201:1601–13.

 6. Eyre‑Walker A, Keightley PD. The distribution of fitness effects of new 
mutations. Nat Rev Genet. 2007;8:610–8.

 7. Zingaretti ML, Monfort A, Pérez‑Enciso M. pSBVB: a versatile simulation 
tool to evaluate genomic selection in polyploid species. G3 (Bethesda). 
2019;9:327–34.

 8. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The 
sequence alignment/map format and SAMtools. Bioinformatics. 
2009;25:2078–9.

 9. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second‑
generation PLINK: rising to the challenge of larger and richer datasets. 
Gigascience. 2015;4:7.

 10. Pérez‑Enciso M, Forneris N, de Los Campos G, Legarra A. Evaluating 
sequence‑based genomic prediction with an efficient new simulator. 
Genetics. 2017;205:939–53.

 11. Baduel P, Bray S, Vallejo‑Marin M, Kolář F, Yant L. The, “Polyploid Hop”: 
Shifting challenges and opportunities over the evolutionary lifespan of 
genome duplications. Front Ecol Evol. 2018;6:117.

 12. Jighly A, Lin Z, Forster JW, Spangenberg GC, Hayes BJ, Daetwyler HD. 
Insights into population genetics and evolution of polyploids and their 
ancestors. Mol Ecol Resour. 2018;18:1157–72.

 13. Voorrips RE, Maliepaard CA. The simulation of meiosis in diploid and 
tetraploid organisms using various genetic models. BMC Bioinformatics. 
2012;13:248.

 14. Pérez‑Enciso M, Varona L, Rothschild MF. Computation of identity by 
descent probabilities conditional on DNA markers via a Monte Carlo 
Markov Chain method. Genet Sel Evol. 2000;32:467–82.

https://alphagenes.roslin.ed.ac.uk/wp/software-2/alphasimr/
https://alphagenes.roslin.ed.ac.uk/wp/software-2/alphasimr/
https://github.com/miguelperezenciso/SeqBreed
https://github.com/miguelperezenciso/SeqBreed


Page 9 of 9Pérez‑Enciso et al. Genet Sel Evol            (2020) 52:7  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

 15. de los Campos G, Hickey JM, Pong‑Wong R, Daetwyler HD, Calus MPL. 
Whole‑genome regression and prediction methods applied to plant and 
animal breeding. Genetics. 2013;193:327–45.

 16. Henderson CR. Applications of linear models in animal breeding. Guelph: 
University of Guelph; 1984.

 17. VanRaden PM. Efficient methods to compute genomic predictions. J 
Dairy Sci. 2008;91:4414–23.

 18. Legarra A, Aguilar I, Misztal I. A relationship matrix including full pedigree 
and genomic information. J Dairy Sci. 2009;92:4656–63.

 19. Sánchez L, Bijma P, Woolliams JA. Minimizing inbreeding by managing 
genetic contributions across generations. Genetics. 2003;164:1589–95.

 20. Sonesson AK, Meuwissen THE. Mating schemes for optimum contribu‑
tion selection with constrained rates of inbreeding. Genet Sel Evol. 
2000;32:231–48.

 21. Huang W, Massouras A, Inoue Y, Peiffer J, Ràmia M, Tarone AM, et al. Natu‑
ral variation in genome architecture among 205 Drosophila melanogaster 
genetic reference panel lines. Genome Res. 2014;24:1193–208.

 22. Forneris NS, Vitezica ZG, Legarra A, Pérez‑Enciso M. Influence of epistasis 
on response to genomic selection using complete sequence data. Genet 
Sel Evol. 2017;49:66.

 23. Enciso‑Rodriguez F, Douches D, Lopez‑Cruz M, Coombs J, de Los Campos 
G. Genomic selection for late blight and common scab resistance in 
tetraploid potato (Solanum tuberosum). G3. (Bethesda). 2018;8:2471–81.

 24. Faux A‑M, Gorjanc G, Gaynor RC, Battagin M, Edwards SM, Wilson DL, et al. 
AlphaSim: software for breeding program simulation. Plant Genome. 
2016;9:1–14.

 25. Peng B, Kimmel M. simuPOP: a forward‑time population genetics simula‑
tion environment. Bioinformatics. 2005;21:3686–7.

 26. Sargolzaei M, Schenkel FS. QMSim: a large‑scale genome simulator for 
livestock. Bioinformatics. 2009;25:680–1.

 27. Messer PW. SLiM: simulating evolution with selection and linkage. Genet‑
ics. 2013;194:1037–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	SeqBreed: a python tool to evaluate genomic prediction in complex scenarios
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Implementation
	Outline
	Specifying genome features and genetic architecture
	Gene dropping and selection implementation
	Visualization
	Usage and examples

	Conclusions and future developments
	References




