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Existence of homoclinic connections in continuous

piecewise linear systems

Victoriano Carmona † Fernando Fernández-Sánchez †
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Abstract

Numerical methods are often used to put in evidence the existence of global connections

in differential systems. The principal reason is that the corresponding analytical proofs

are usually very complicated. In this work we give an analytical proof of the existence

of a pair of homoclinic connections in a continuous piecewise linear system, which can

be considered to be a version of the widely studied Michelson system. Although the
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computations developed in this proof are specific to the system, the techniques can be

extended to other piecewise linear systems.
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Nowadays, piecewise linear systems are becoming an important tool in the un-

derstanding of a wide range of dynamical phenomena in several areas of physics,

engineering and sciences in general. In fact, they are being actively studied be-

cause they are able to reproduce the richness of behavior found in general nonlinear

systems. Among these complex behavior in three-dimensional systems, global con-

nections (in particular, homoclinic orbits) have a relevant role since their presence

assure, under certain conditions, the appearance of chaos. However, the proof of

the existence of these orbits is generically a difficult task and numerical techniques

are often used. In this work, we give an analytical proof of the existence of a sym-

metrical pair of homoclinic connections in a continuous piecewise linear system.

This system can be considered to be a version of the widely studied Michelson sys-

tem, which appears in the analysis of steady solutions of the Kuramoto-Sivashinsky

equation.

1 Introduction

Recently, in work [Carmona et al., 2008], the proof of the existence of a reversible T-point

heteroclinic cycle has been given in a continuous piecewise linear system. The used methods

are based on the explicit integration of the flow in each linear region of the space of variables

and the construction of a system of equations and inequalities that have to be fullfilled by such

kind of global bifurcation.
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The system studied in work [Carmona et al., 2008],




ẋ = y,

ẏ = z,

ż = 1− y − c|x|,

(1.1)

where c > 0, can be considered as a continuous piecewise linear version of the well known

Michelson system [Freire et al., 2002; Kuramoto et al., 1976; Michelson, 1986; Webster et al.,

2003]. In fact, the equations of (1.1) can be obtained from the Michelson system performing a

simple linear change of variables followed by the change of function x2 → |x|. Moreover, both

systems are volume-preserving and time-reversible with respect to the involution R(x, y, z) =

(−x, y,−z). Some other dynamical aspects of the Michelson system also remain in its piecewise

linear version [Carmona et al., 2008].

System (1.1) is formed by two linear systems separated by the plane {x = 0}, called sepa-

ration plane, and it can be written in a matricial form as

ẋ =





A+x+ e3 if x ≥ 0,

A−x+ e3 if x ≤ 0,

(1.2)

with

A+ =




0 1 0

0 0 1

−c −1 0




, A− =




0 1 0

0 0 1

c −1 0




and e3 =




0

0

1




.

In the half-space {x < 0}, the system has exactly one equilibrium point p− = (−1/c, 0, 0)T

which is a saddle-focus point. Let λ > 0 and α± i β be the eigenvalues of the Jacobian matrix

at p−. This clearly implies that

c = λ(1 + λ2), α = −λ

2
, β =

√
4 + 3λ2

2
. (1.3)
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By the reversibility with respect to R, there exists exactly one saddle-focus equilibrium p+ =

(1/c, 0, 0)T in the half-space {x > 0} whose eigenvalues are given by −λ and −α± i β.

Using the expression of the parameter c given in (1.3), system (1.1) can be written as




ẋ = y,

ẏ = z,

ż = 1− y − λ(1 + λ2)|x|,

(1.4)

and the parameter λ > 0 can be choosen as the fundamental parameter of the family.

Homoclinic connections are orbits that are biasymptotic, for t → ±∞, to the same equilib-

rium point. The existence of a homoclinic connection to a saddle-focus equilibrium point

usually forces a complex dynamical behaviour in a neigbourhood of such connection, see

[Gonchenko et al., 1997]. For instance, the celebrate works of Shil’nikov [Shil’nikov, 1965;

Shil’nikov, 1970] assure, if a certain eigenvalue ratio condition is satisfied, the existence of

infinitely many periodic orbits of saddle type accumulating to the homoclinic cycle.

The proof of the existence of a homoclinic connection is generally a difficult task, even

for piecewise linear systems. Some recent works [Wilczak, 2005; Wilczak, 2006] have been

devoted to obtain computer-assisted proofs of the existence of global connections in Michelson

system. Regarding piecewise linear systems, there are a lot of works about the existence of

homoclinic cycles. In many of them [Arneodo et al., 1981; Chua et al., 1986; Coullet et al., 1979;

Matsumoto et al., 1985; Matsumoto et al., 1988; Medrano et al., 2005; Medrano et al., 2006]

authors require numerical arguments to show that existence. In others [Llibre et al., 2007],

authors start from a degenerate situation to avoid any numerical dependence. In the present

work we consider a different strategy which can be also used in a generic case.

In the particular case of piecewise linear systems with two zones, homoclinic connections
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can be classified attending to the number of intersections with the separation plane. It is

obvious that the number of intersections between any homoclinic connection of (1.4) and the

separation plane {x = 0} has to be greater than one. So, we say that a homoclinic connection

of system (1.4) is direct if it intersects the separation plane {x = 0} at exactly two points.

The analytical proof of the existence of a pair of direct homoclinic connections will be the

main goal of this work, as it is summarized in the following theorem.

Theorem 1.1 There exists a value λh > 1/2 such that the piecewise linear version (1.4) of

the Michelson system has, for λ = λh, two direct homoclinic connections, which are symmetric

respect to the involution R.

Note that, due to the reversibility, if there exists a homoclinic connection Γ of system (1.4),

then a new homoclinic connection which can be mapped onto Γ by R, also exists. Thus, it is

only necessary to prove the existence of a direct homoclinic connection Γ to the equilibrium p−.

On the other hand, the proof of Theorem 1.1 is partially based on some results of [Carmona

et al., 2008] where the boundary value 1/2, which does not have any dynamical meaning,

was choosen for the sake of simplicity of the handmade calculations. In fact, some numerical

computations allow to obtain λh ≈ 0.660759953.

In Figure 1 the pair of homoclinic connections of (1.4) given by Theorem 1.1 are shown.

The rest of the paper is organized as follows. In section 2 we describe the basic geometric

elements of the problem. Section 3 is devoted to the proof of Theorem 1.1, which is divided

into two parts. In section 4 we deal with other global connections and show some numerical

results.
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Figure 1: Direct homoclinic orbit to (a) p−, (b) p+.

2 Some geometric elements of the flow

In this section we describe the behaviour of the flow crossing the plane {x = 0} and the basic

elements of the linear dynamics locally contained in the half-spaces {x < 0} and {x > 0}.

For every point p = (xp, yp, zp)
T ∈ R3 we denote by xp (t;λ) = (xp (t;λ) , yp (t;λ) , zp (t;λ))

T

the solution of the system (1.4) with parameter λ and initial condition xp (0;λ) = p. The cor-

responding orbit is denoted by γp.

If xp = 0 and yp > 0, then the orbit γp crosses transversaly the plane {x = 0} with

xp(−t;λ) < 0 and xp(t;λ) > 0 for t > 0 small enough. If xp(t;λ) vanishes in (0,+∞), then

we define the flying time t+p as the positive value such that xp

(
t+p ;λ

)
= 0 and xp (t;λ) > 0 in

(
0, t+p

)
. In such a case, we define the Poincaré map Π+ at the point p as Π+ (p) = xp(t

+
p ;λ).

Note that the Poincaré map Π+ only depends on the linear system ẋ = A+x+e3 given in (1.2).

If xp = 0 and yp < 0, then the orbit γp crosses transversaly the plane {x = 0} with

xp(−t;λ) > 0 and xp(t;λ) < 0 for t > 0 small enough. If xp(t;λ) vanish in (0,+∞), then

we define the flying time t−p as the positive value such that xp

(
t−p ;λ

)
= 0 and xp (t;λ) < 0 in
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(
0, t−p

)
. In such a case, we define the Poincaré map Π− at the point p as Π− (p) = xp(t

−
p ;λ).

This map only depends on the linear system ẋ = A−x+ e3.

If p belongs to the z-axis; i.e. xp = 0 and yp = 0, then p is called a contact point of the

flow of system (1.4) with the plane {x = 0} because the vector field at this point is tangent

to the plane. Following [Llibre et al., 2004], the first coordinate of the Taylor expansion of

xp (t;λ)− p at t = 0 is

eT1 (xp (t;λ)− p) = zp
t2

2
+

t3

3!
+ eT1 x

(4)
p (ξ;λ)

t4

4!
.

Hence, if zp < 0, then orbit γp is locally contained in the half-space {x ≤ 0}; if zp > 0, then γp

is locally contained in the half-space {x ≥ 0}; and if zp = 0, then γp crosses the plane {x = 0}

from the half-space {x < 0} to the half-space {x > 0} .

Now we describe the basic elements of the linear dynamics in the half-space {x < 0}, all this

information is summarized in Figure 2. The elements in the other half-space can be obtained

using the involution R.

The unstable manifold W u (p−) of p− contains the half-line L− = {p− − µ(1, λ, λ2)T :

−1
λ(1+λ2)

≤ µ < ∞} generated by the eigenvector associated to the eigenvalue λ of the matrix A−.

The half-line and the plane {x = 0} intersect at the point

m− =

(
0,

1

1 + λ2
,

λ

1 + λ2

)T

.

The stable two-dimensional manifold W s (p−) is locally contained in the half-plane

P− = {λ
(
1 + λ2

)
x+ λ2y + λz = −1 : x ≤ 0},

which is called the focal half-plane of p−. This half-plane is obtained from the eigenvectors

associated to the complex eigenvalues of A−. The half-plane P− and the separation plane
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{x = 0} intersect along the straight-line

D− =
{
x = 0, λ2y + λz = −1

}
.

Let us emphasize that not every point in D− belongs to the stable manifold W s (p−). The

intersection point of D− and the z-axis is q− = (0, 0,−1/λ)T . Since q− is a contact point, the

orbit γq− is tangent to the separation plane {x = 0} at q−. Thus, the segment S− ⊂ D− with

endpoints q− and Π−1
− (q−) is contained in W s (p−) .

z

x y

1Π _ ( )

Π+( )

_

_

_

_

q_

S

x=0
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q
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Figure 2: Direct homoclinic connection to p− and some geometric elements of the flow.

3 Existence of a direct homoclinic connection to p−.

A direct homoclinic orbit to p− has to intersect the plane {x = 0} at m−, since it corresponds

to the linear one-dimensional manifold of p−. On the other side, this orbit also has to belong

to the two-dimensional manifold of p−, that is, it has to intersect segment S−. Thus, when the

condition Π+(m−) ∈ S− holds, a direct homoclinic connection to p− exists in system (1.4). In
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fact, the existence of such homoclinic connection can be derived from conditions

qq− ⊂ S− (3.1)

and

Π+(m−) ∈ qq−, (3.2)

where q = (0,−1/λ2, 0) is the intersection point of the straight lines D− and D+, see Figure 2.

As a corollary of Proposition 3.3 in [Carmona et al., 2008], it follows that there exists a value

λ∗ ∈ (0, 1/2) such that for every λ ≥ λ∗ condition (3.1) is satisfied. On the other hand, since the

orbit throughm− cannot intersect the focal plane P+, it is easy to conclude that Π+(m−) ∈ qq−

if and only if Π+(m−) ∈ D−. In other words, conditions (3.1) and (3.2) are equivalent to the

existence of th > 0 and λh > 1/2 such that xm−(th, λh) ∈ D− and xm−(t, λh) > 0 for every

t ∈ (0, th). It is obvious that if a such a pair (th, λh) exists, then xm−(th, λh) has to satisfy the

system 



xm−(t, λ) = 0,

λ2ym−(t, λ)− λzm−(t, λ) + 1 = 0,

(3.3)

obtained by integrating, for x > 0, system (1.4) with initial condition x(0, λ) = m−.

Now, the proof of condition (3.2) is divided into two parts. First, we establish that system

(3.3) has a solution (th, λh) with th > 0 and λh > 1/2. Secondly, we check that xm−(t, λh) > 0

for every t ∈ (0, th).

After some algebra, system (3.3) leads to the following equivalent system





E1(t, λ) = 0,

E2(t, λ) = 0,

(3.4)
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where

E1(t, λ) = 2λ2e
3λ
2
t
[√

4 + 3λ2 cos (βt)− 3λ sin (βt)
]
+
√
4 + 3λ2

[
(1 + λ2)− (1 + 3λ2)eλt

]
, (3.5)

E2(t, λ) = 2λ2e
3λ
2
t
[√

4 + 3λ2 cos (βt) + λ sin (βt)
]
+
√
4 + 3λ2(1 + λ2)eλt, (3.6)

and β is defined in expression (1.3).

The curves defined by the equations of system (3.4) are shown in Figure 3. It is possible

to see that they intersect in several points. This is a numerical evidence of the existence of

solutions (t, λ), with t > 0 and λ > 0, for this system. In what follows, an analytical proof

of the existence of the first intersection point (corresponding to the smallest value of t > 0) is

derived.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t

λ

Figure 3: Dashed curves are given by equation E1(t, λ) = 0 and solid ones correspond to

equation E2(t, λ) = 0.

Taking into account the relative position of the curves given by the equations of system (3.4)

it is convenient to manipulate these equations to get a more suitable system. Adding eλt(1+λ2)
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times (3.5) to
[
eλt(1 + 3λ2)− (1 + λ2)

]
times (3.6) and dividing by 2λ2e

3λ
2
t gives

E(t, λ) =
√
4 + 3λ2

[
2(1 + 2λ2)eλt − (1 + λ2)

]
cos (βt)− λ

[
2eλt + 1 + λ2

]
sin (βt) = 0. (3.7)

From (3.4) the trigonometric functions are given by

sin (βt) = −
√
4 + 3λ2

[
2(1 + 2λ2)eλt − (1 + λ2)

]
e−

3λ
2
t

8λ3
,

cos (βt) = −
(
1 + λ2 + 2eλt

)
e−

3λ
2
t

8λ2
.

(3.8)

Note that both functions are strictly negative for t > 0 and λ > 0.

It is now obvious that

sin2(βt) + cos2(βt) =
e−3λt

64λ4

[
(4 + 3λ2)

[
2(1 + 2λ2)eλt − (1 + λ2)

]2

λ2
+
(
1 + λ2 + 2eλt

)2
]

or, equivalently,

e−3λt

64λ4

[
(4 + 3λ2)

[
2(1 + 2λ2)eλt − (1 + λ2)

]2

λ2
+
(
1 + λ2 + 2eλt

)2
]
− 1 = 0.

Simplifying this equation gives

p (t, λ) = −16λ6e3λt + (1 + λ2)2
[
4(1 + 3λ2)e2λt − 2(2 + 3λ2)eλt + 1 + λ2

]
= 0. (3.9)

Note that a solution (t, λ) of system (3.4) also satisfies the system given by equations (3.7)

and (3.9). However, as it is established in Lemma 3.1, another condition is necessary for the

converse to be true: the sinus function in (3.8) must always be negative for t > 0 and λ > 0.

In Figure 4 the curves given by equations (3.7) and (3.9) and the sign of the sinus function

in (3.8) are shown. Comparing with Figure 3, note that there exist intersection points between

the curves which are not solutions of system (3.4).
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Figure 4: Solid curves are given by equation (3.7) and the dashed one corresponds to equation

(3.9). The set where sin (βt) < 0 is shaded.

Lemma 3.1 For t > 0 and λ > 0, system (3.4) is equivalent to the system




E(t, λ) = 0,

p(t, λ) = 0,

sin (βt) < 0.

(3.10)

Proof. The first part of the equivalence, that is, the proof that a solution (t, λ) of system

(3.4) with t > 0 and λ > 0 also satisfies the system (3.10), is direct.

For the other implication, let us consider the system





−
√
4 + 3λ2

[
2(1 + 2λ2)eλt − (1 + λ2)

]
X + λ

[
2eλt + (1 + λ2)

]
Y = 0,

X2 + Y 2 − 1 = 0,

(3.11)

which represents the intersection in coordinates (X, Y ) of a straight line with positive slope

containing the origin and the unit circle. Obviously, system (3.11) has a unique solution which

negative second coordinate.
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Note that

(X1, Y1) =

(
−
(
2eλt + 1 + λ2

)
e−

3λ
2
t

8λ2
,−

√
4 + 3λ2

[
2(1 + 2λ2)eλt − (1 + λ2)

]
e−

3λ
2
t

8λ3

)

is a solution of system (3.11) whose second coordinate is negative for t > 0 and λ > 0.

On the other hand, if (t, λ) is a solution of system (3.4) with t > 0 and λ > 0, then

(X2, Y2) = (sin (βt), cos (βt))

is also a solution of system (3.11) whose second coordinate is negative.

Therefore, we conclude that (X1, Y1) = (X2, Y2) with t > 0 and λ > 0. Since this equality

corresponds to system (3.8), which is equivalent to system (3.4), the lemma holds.

Now let us proof that system (3.10) has at least a solution.

Lemma 3.2 System (3.3) has a solution (th, λh) in the open set

Ω =

{
(t, λ) ∈ R2 :

2π√
4 + 3λ2

< t <
4π√

4 + 3λ2
,

1

2
< λ <

√
3

}
.

Proof. From lemma 3.1 it is known that systems (3.3) and (3.10) are equivalent for t > 0 and

λ > 0.

Since the third condition of (3.10) is satisfied for every (t, λ) ∈ Ω it is only necessary to

show that system 



E(t, λ) = 0,

p(t, λ) = 0,

(3.12)

has solution in Ω. This is, as it is going to be proved, a consequence of Poincaré–Miranda the-

orem [Kulpa, 1997], which can be considered as a n-dimensional extension of Bolzano theorem.

The change of variables µ = λ2, τ =
√
4 + 3λ2 t/2 transforms system (3.12) into the system





Ẽ(τ, µ) = E
(

2τ√
4+3µ

,
√
µ
)
= 0,

p̃(τ, µ) = p
(

2τ√
4+3µ

,
√
µ
)
= 0,

(3.13)
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and Ω into Ω̃ = (π, 2π)× (1/4, 3).

From the definition of E it is obvious that Ẽ(π, µ) > 0 and Ẽ(2π, µ) < 0 for µ ≥ 0. Thus,

function Ẽ takes different signs at the vertical sides of the boundary of Ω̃.

In order to analyze the sign of function p̃ at the horizontal sides of the boundary of Ω̃, let

us define

P (s, µ) = −16µ3s3 + (1 + µ)2
[
4(1 + 3µ)s2 − 2(2 + 3µ)s+ 1 + µ

]
, (3.14)

which corresponds to function p̃ when

s = exp

(√
µ

2τ√
4 + 3µ

)
≥ 1. (3.15)

Since the derivative of P (s, 3) with respect to s is negative in R and P (1, 3) < 0, we have

P (s, 3) < 0 for s ≥ 1. Therefore, p̃(τ, 3) < 0 for every τ ∈ [π, 2π].

For the last side of the rectangle, straightforward computations show that the derivative of

P (s, 1/4) is positive in [1, 27]. Taking into account that P (1, 1/4) = 259
64

it follows that P (s, 1/4)

is positive for every s ∈ [1, 27].

Note that, from (3.15), if µ = 1/4 and τ ∈ [π, 2π], then s ∈ [1, 27]. Thus, p̃(τ, 1/4) is

positive for τ ∈ [π, 2π].

The lemma follows by the Poincaré–Miranda theorem.

At this moment we have proved that there exists a point (th, λh) ∈ Ω such that xm−(th, λh) ∈

D−. For condition (3.2) to be fulfilled it is also necessary to prove that xm−(t, λh) > 0 for every

t ∈ (0, th). The next result deals with this inequality.

Lemma 3.3 If (th, λh) ∈ Ω is a solution of system (3.10), then xm−(t, λh) > 0 for every

t ∈ (0, th).
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Proof. According to the equations of system (1.4), the derivative with respect to t of function

xm−(t, λh) is given by ym−(t, λh). By integrating this system for x > 0, we obtain

ẋm−(t, λh) = ym−(t, λh) = c1e
−λht + e

λh
2
t

[
c2 cos

(√
4 + 3λ2

h

2
t

)
+ c3 sin

(√
4 + 3λ2

h

2
t

)]
,

(3.16)

where

c1 =
1

1 + 3λ2
h

> 0, c2 =
2λ2

h

(1 + 3λ2
h)(1 + λ2

h)
> 0, c3 =

2λh(2 + 3λ2
h)

(1 + 3λ2
h)(1 + λ2

h)
√

4 + 3λ2
h

> 0.

On one hand, note that xm−(0, λh) = 0 and ẋm−(0, λh) > 0. On the other hand, let us

assume that (th, λh) ∈ Ω is a solution of system (3.10). Therefore, xm−(th, λh) = 0. Substituting

(3.8) in (3.16) it is obvious that

ẋm−(th, λh) = ym−(th, λh) =
−2 + e−λhth

2λ2
h

< 0.

Let us also assume that there exists a value t̂ ∈ (0, th) such that xm−(t̂, λh) = 0. Then,

ym−(t, λh) must vanish in at least three values in (0, th), that is, the equation

h(τ) = e

3λh√
4+3λ2

h

τ
[
c2
c1

cos(τ) +
c3
c1

sin(τ)

]
= −1,

which is obtained from ym−(t, λh) = 0, has to vanish in at least three values in (0, 2π).

Since h(0) = c2/c1 > 0, equation h(τ) = 0 must have at least three solutions in (0, 2π), what

is not possible. Thus, function xm−(t, λh) cannot vanish in (0, th) and the proof is concluded.

4 Other global connections

In the previous sections, the existence of a pair of direct homoclinic connections, which are

symmetric respect to the involution R, has been proved for λ = λh ≈ 0.660759953. The first
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step of this proof is the analysis of the solutions of the system (3.10). Those solutions are the

intersections of the solid and dashed curves of Figure 4 which lie in the shadow regions. Besides

the first intersection, which corresponds to the value λh, we can observe that other intersections

exist.

The second intersection point corresponds to (tH , λH) ≈ (10.15402101, 0.43391236). It can

be also proved that a pair of direct homoclinic connections, which are symmetric respect to

the involution R, exist for λH . Remember that the existence of a intersection point is not

the only condition that has to be fulfilled to assure the existence of a homoclinic connection;

it is also necessary to check that the orbit with initial condition m− does not intersect the

separation plane for t ∈ (0, tH) and xm−(tH , λH) belongs to S−. As a comparison with the first

pair of homoclinic orbits, these second homoclinic connections give an extra loop around the

one-dimensional manifold of the other equilibrium. The homoclinic connection to p− is shown

in Figure 5.
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Figure 5: (a) Projection onto the plane xy of a direct homoclinic orbit with a second loop to

p−. (b) Zoom of (a), where it is clear that the second loop does not intersect x = 0.

Regarding to the remainder intersection points in Figure 4, they do not correspond with real

17



direct homoclinic connections: although each one of them is a solution (t′, λ′) of system (3.10),

the orbit with initial condition m− intersects the separation plane for values of t ∈ (0, t′).

This behavior is similar for reversible T-point heteroclinic cycles in system (1.4) . In [Car-

mona et al., 2008], the existence of a “direct” reversible T-point heteroclinic cycle was proved

for λ ≈ 0.65153556. This cycle is called direct in the sense that its heteroclinic orbit corre-

sponding to the one-dimensional manifolds has exactly three intersections with the separation

plane (which is the minimum possible number of intersections) while the heteroclinic orbit cor-

responding to the two-dimensional manifolds has only one intersection. Moreover, the existence

of another direct reversible T-point heteroclinic cycle can be proved for λ ≈ 0.43327834. This

cycle has two extra loops around the one-dimensional manifolds of the equilibria, see Figure 6.

A first step in the proof of the existence of these reversible T-point heteroclinic cycles is the

analysis of the existence of solution of a system analogous to (3.10) (given by equations (4.3)

and (4.6) in [Carmona et al., 2008]). Besides the values of λ given in the previous paragraph,

there exist other solutions of the system which, as the homoclinic case, do not correspond with

real reversible T-point heteroclinic cycles.
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