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Abstract
Anisotropic electronic transport is a possible route towards nanoscale circuitry design, particularly in
two-dimensionalmaterials. Proposals to introduce such a feature in patterned graphene have to date
relied on large-scale structural inhomogeneities. Herewe theoretically explore how a random, yet
homogeneous, distribution of zigzag-edged triangular perforations can generate spatial anisotropies
in both charge and spin transport. Anisotropic electronic transport is found to persist under
considerable disordering of the perforation edges, suggesting its viability under realistic experimental
conditions. Furthermore, controlling the relative orientation of perforations enables spinfiltering of
the transmitted electrons, resulting in a half-metallic anisotropic transport regime.Ourfindings point
towards a co-integration of charge and spin control in a two-dimensional platformof relevance for
nanocircuit design.We further highlight how geometrical effects allowfinite samples to displayfinite
transverse resistances, reminiscent of SpinHall effects, in the absence of any bulkfingerprints of such
mechanisms, and explore the underlying symmetries behind this behaviour.

1. Introduction

An anisotropic electronic transport response in a system,where the ease withwhich electrons flowdepends on
themeasurement direction, is an important and challenging concept with a number of key potential
applications. Such a behavior can be used to engineer electronic circuits andwaveguides [1], optical circuits [2],
and communications devices [3]. It is particularly promising in two-dimensionalmaterials, where the reduced
dimensionality allows significant tuning of their electronic properties with onlyminor structuralmodifications
[4–10]. Indeed,much of the recent excitement surroundingmonolayer black phosphorus, or phosphorene,
relates to its intrinsic electronic anisotropy arising from a buckled geometry [11, 12]. However, the high
chemical reactivity of phosphorene presents a significant obstacle to its incorporation in devices [13, 14], and
another strategy for implementing two-dimensional electronic anisotropy needs to be envisioned.One
possibility is to induce anisotropic behavior in an otherwise isotropicmaterial. Graphene is themost natural
candidate for such an approach due to its exceptional electronic quality, ease of fabrication and electronic
measurement, and a range of constantly improving patterning and etching techniques [15–17].

Anisotropic transport has been experimentally demonstrated in graphene under strain [18, 19], in graphene
sheets with periodic nanofacets [20], and has been suggested in anisotropically arranged graphene antidot
lattices [6]. The latter case consists of an array of perforations, or antidots, whose spacing is different along the x
and y directions. All thesemethods introduce a system-wide physical anisotropy into the graphene sheet to break
the equivalence of transport in the x and y directions. In this workwe consider an alternative patterning
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approach based on uniformly distributed perforations, where the anisotropic behavior is dictated by the atomic-
level properties of the perforation edges.

Extended edges with the zigzag (zz) geometry locally break sublattice symmetry, leading to the formation of
localized states [21, 22], and to the formation of localmagneticmoments when electron-electron interactions
are considered [23–27]. Localmoments of opposite sign occur at the edges associatedwith different sublattices,
so that global ferromagnetism can only occurwhen the overall sublattice symmetry is broken [23, 28, 29], in
accordancewith Lieb’s theorem [30]. This does not occur for zz-edged nanoribbons [31] or perforations
containing edges equally divided between the sublattices [32]. However, the three edges of a zz-edged triangular
graphene antidot (zz-TGA) are all associatedwith a single sublattice, which dictates large ferromagnetic
moments [8, 33–37] (see figure 1).

Recent works have demonstrated that lattices of approximately 1 nm side length zz-TGAs provide an
excellent platform for electronic and spintronic applications due to robust band gaps, half-metallicity, and spin-
splitting properties [8, 9]. In the case of spin-splitting, incoming currents can be directed into output leads
according to their spin orientation. Such behavior is analogous to the spinHall effect [38], but without relying on
spin–orbit coupling (SOC) effects. These features were shown to be robust against disorder, unlike those in other
antidot geometries, due to their dependence on local symmetry breaking effects and cumulative scattering from
multiple antidots, and not on the exact separation and size of perforations.With state-of-the-art lithographic
methods, triangular holes in graphene [39], as well as zz-etched nanostructures [40–42], can be realised.
Alternatively, a patterned layer of hexagonal boron nitride, intowhich triangular holes can be naturally etched
with a large degree of control [42], could be employed as a lithographicmask.Many fabricationmethodswhich
give precise edge control require seeding, so the exact distribution of features can be difficult to control.
Accounting for a randompositioning of triangular defects is therefore crucial for realistic predictions in such
systems. Recently, bottom-up techniques have also been developedwhich can independently give rise to perfect
zigzag edges [43] or perforations [44], suggesting that further development in thisfieldmay allow a combination
of these features in a given sample.

Here we present simulationswhich demonstrate how the scattering properties of zz-TGAs also give rise to a
significant transport anisotropy—namely a higher conductivity is observed for the armchair (ac) than the zigzag
direction. Furthermore, inspired by the spinHall-like transport behavior infinite TGA superlattice devices [9],
we also examine their bulk analog by calculating off-diagonal Hall conductivities. Negligible values are obtained
for both the charge and spin conductivities, contrastingwith non-zeroHall-like transport in certain device
geometries. Using time-reversal symmetry (TRS) arguments, we reconcile these seemingly contradictory results
and highlight the role theymay play in experiment.We consider zz-TGAswith side lengths~5 nm, which are
distributed randomly throughout the sample. Two small sections of our simulated samples are depicted in
figures 1(a) and (b), with red and blue triangles denoting individual zz-TGAs.With a homogeneous distribution
(with respect to the x and y directions), anisotropic features originate solely from the edge structure of the zz-
TGAs. The strong positional disorder and broken translational invariance in all the simulated samples closely
resembles what could be produced, for example, using seeded growth and selective edging techniques.
Furthermore, we separately considermore experimentally relevant conditions by including significant side
length and edge disorder, and comparing these systems to thosewith individually precise zz-TGAs.

Figure 1. Schematic illustrations of the distributions of (a) randomly oriented and (b) aligned zz-TGAs, together with the atomic
structures andmagneticmoment profiles of two edge-disordered TGAswith opposite alignment (c), (d). In all panels, blue (red)
colouring indicates spin-up (spin-down)polarization.
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Disordered systems, containingmillions of atoms and hundreds of structural perforations, are simulated
using a combination ofmean-fieldHubbard approaches for individual zz-TGAs and large-scale quantum
transportmethods to study composite systems. The electronic behavior is analysed using theChebyshev
expansion of the density of states (DOS) [45, 46], while the longitudinal [47–50] and transverse [38, 51, 52]
conductivities are computed using theKubo-Greenwood formalism. TheKubomethod gives direct access to
both the diagonal conductivitiesσxx andσyy, fromwhich the charge transport anisotropyσyy/σxx can be
measured, and the off-diagonal conductivities sxy , which can be connected tomeasurements of the spinHall
effect. Further details of the geometry and simulationmethodologies are presented in section 2, after whichwe
consider themost general case of randomly oriented triangles in section 3.Herewe find that a significant
anisotropy arises in the electronic transport, with identical behavior for each spin channel. Upon considering
triangles with the same alignment in section 4, amarked increase in the strength of the anisotropy is obtained,
with the emergence of a robust half-metallicity, hence yielding a spin-selective anisotropic transport behavior.
In section 5, we discuss the off-diagonal conductivity and reconcile the zero signal observed herewith the
previously predicted spin-Hall type behavior for zz-TGAs in a finite device geometry.We conclude by
summarising and discussing ourfindings in light of recent developments in the field, particularly those
investigating spin transportmechanisms in graphene-based systems.

2.Geometry andmodel

Weconsider samples of approximately ´360 nm 360 nm, which are periodic in both dimensions, and contain
400 randomly embedded zz-TGAs and almost 5million atoms. Small sections from two of our samples are
illustrated schematically infigures 1(a) and (b). The sample infigure 1(a) illustrates themost general
distribution, where not only the position, but also the orientation, of each triangle is randomised. The sixfold
symmetry of the graphene lattice allows for only two possible orientations of zz-TGAs. Each orientation exposes
zz-edges fromdifferent sublattices and, in turn, the two orientations exhibitmagneticmoments of opposite sign.
We use red and blue coloring throughout this work to represent the spin up and downorientation, respectively.
The sample infigure 1(b) shows the case where all the triangles are aligned and have the samemagnetic
orientation. Note that the x (y) axis in this work is alignedwith a high symmetry zz (ac) direction of the
underlying graphene lattice.

All samples discussed in this work contain randomly positioned zz-TGAs.However, we also compare the
cases when individual perforations are either pristine or disordered by including side length variations and edge
roughness. In the pristine case, the zz-TGAs have side length L=20a (~5 nm), where the graphene lattice
constant is = Åa 2.46 , and in the disordered case we consider side lengths in the range L=22±8a. This size
allows us to determine if properties predicted in small systems persist to larger scales, whilst also allowing a large
number of triangles to be included in the system. Edge-disordered TGAs undergo a further simulated etching,
where edge atoms are removedwith probability p=0.05. This etch is performed four times. Previous studies [9]
indicate that side-length variation has only aminor impact on the qualitative transport-scatteringmechanisms
of small-scale zz-TGAs.On the other hand, edge disorder has amore dramatic effect, reducing the
correspondingmagneticmoment distributions and affecting the spin-polarization properties.

The calculations are performed using a nearest-neighbor tight-bindingmodelHamiltonian

 å å= +s s s s s s ( )† †tc c c c , 1
i

i i i
ij

ij i j

where s
†ci ( sci ) is the creation (annihilation) operator for spinσ on site i. The hopping parameter tij is

= -t 2.7 eV for neighbors i and j, and zero otherwise. No spin-orbit terms are included in the calculation. Local
magneticmoments are included via spin-dependent on-site energies  = s mi

U
i2
, with− for s =  and+ for

s = . The on-sitemagneticmomentsmi are calculated from a self-consistent solution of theHubbardmodel
within themeanfield approximation, = á ñ - á ñ m n ni i i , where sni is the number operator. Themagnetic
moment distributions for individual triangles are calculated in periodic systems using ´a a50 30 3 unit cells
(approximately ´12 nm 12 nm), which are then embedded into the larger samples. Aminimum separation of

»X 12 nmmin is imposed between neighboring triangles, which prevents the unit cells used in themean-field
parameterization of individual perforations fromoverlapping. The on-siteHubbard parameter is set as
= ∣ ∣U t1.33 , which gives good agreement with ab initio calculations in the case of graphene nanoribbons [25].
The atomic structure of two such edge-disordered zz-TGAs and their associatedmagneticmoments are

displayed infigures 1(c) and (d). Note that the orientations of the TGAs infigures 1(c) and (d) are rotated 60°
with respect to one another, which in turns yields oppositely spin-polarized edges.While in one case, figure 1(c),
all three edges still display significantmagneticmoments, in the other case, figure 1(d), significantly lowered
magneticmoments are seen. A small number of TGAs in our samples will have a considerable quenching of the
magneticmoments along one ormore of their edges.
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TheDOS is determined using the efficient linear-scaling kernel polynomialmethod [45]with the Jackson
Kernel, and a spectral resolution of approximately 4 meV. The conductivity tensorσα,β is determinedwithin the
linear response regime, using theKubo-Bastin formula [53]:
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where E is the Fermi energy,G+(H, ε) the advancedGreen’s function, δ(x) theDirac’s delta function and
ºa a[ ]v H X i, theα-component of the velocity operator. The off-diagonal elements are computed

numerically by using an efficient linear-scaling algorithmbased on the kernel polynomialmethod [38, 51]. For
the diagonal elements, equation (2) simplifies to theKubo-Greenwood formula, where amore efficient real-
space time-dependent wavepacket propagationmethod [47–50] is applicable. In this approach, a random
wavepacket is injected into the system. In the presence of disorder, the propagation of the packet quickly
becomes diffusive. In such situations, one can relate the time evolution of themean square displacement
operatorΔX(E, t) [50] to the diffusive coefficient

=
¶
¶

D( ) ( ) ( )D E t
t

X E t, , 3

which canfinally be used to compute the conductivity by themeans of Einstein’s relation
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where ρ(E) the density of states, andσαα (E, t) is a timescale-dependent conductivity. The semiclassical
conductivityσsc is obtainedwhen the diffusion coefficient reaches a saturation limit (maximumvalue), where
s rº ( ) ( )e E D E t,sc

1

2
2

max , whereas at longer times localization effects start to dominate and suppress the
conductivity, eventually leading to an insulating behavior. Thismethod also allow for exploring both limits by
exploiting the relation between the effective system size L and themean square displacement º D ( )L X E t,2 ,
which permits us to select sizes that aremuch larger than themean free path but shorter than the localization
length [50].

3. Randomly oriented triangles

Wefirst consider the case illustrated infigure 1(a), where both the position and orientation of the triangles are
randomized. Each (spin) orientation occurs with the same probability and, as expected, we find no significant
spin-dependence in either theDOS or transport results. For the case without edge disorder, the spin-up and
spin-downDOS (red and blue curves, respectively) infigure 2(a) are almost exactly superimposed, and they have
half the value of the total DOS (black curve)displayed infigure 2(b).Minor differences between the spin
channels become negligible as the system size is further increased. The systemdisplays semi-conducting
behavior, with a gap of approximately 40 meV. Similar band gap and spin-unpolarized behavior has been
demonstrated for periodic superlattices [8], but emerges here for a completely randomdistribution of antidots.
Including edge-disorder, as in the gray curve offigure 2(b), results in a qualitatively similar total DOS (dashed
curve)with only a slight reduction of the semiconducting gap. This extraordinary robustness against disorder is
in stark contrast to, for example, the band-gap formation in lattices of circular or hexagonal antidots, which is
very sensitive tofluctuations in the lattice periodicity or antidot shape [5, 7]. This robust band gapwas previously

Figure 2.Density of states (DOS) for systemswith randomly oriented triangles, as illustrated infigures 1(a). Panel (a) shows the spin-
dependent DOS for each spin orientation (blue and red curves) for the casewith pristine edges and panel (b) compares the total DOS
for the pristine (black) and disordered (gray) edges. A prominent band gap is seen in all cases. The energies 30, 45 meV aremarked for
later discussion.
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studied for small-sized TGA superlattices [8], but here it survives evenwithout the constraint of a superlattice. In
figure 2(b)wehighlight the energies =E 30 meV (orange) and 45 meV (green), near the band-edge and peak of
the non-zeroDOS region respectively, whichwill be considered inmore detail below.

The electronic transport for randomly-oriented zz-TGA systems is examined for both pristine and rough-
edged triangles. The time-dependent conductivityσαα(E, t) gives access to the different transport regimes
emerging during the time evolution. Since both spins contribute equally, we consider only the total (charge)
conductivity s s s= + . The x- (dotted) and y- (solid) direction longitudinal conductivities for are given in
the top panels offigure 3 for =E 30 meV and 45 meV. In all cases the conductivities reach amaximumvalue at
short times <t 0.5 ps, implying the onset of a diffusive regime, whereas localization effects enter into play at
longer times [48, 54].We note that the graphene sections between perforations in our systems are pristine, so
that at extremely short time scales thewave packet can explore this regionwith an extremely high conductivity,
seen as sharp peaks near t=0 in our simulations.We neglect this regime throughout our discussion, which
focuses on the effects introduced by the zz-TGAs. The emergence of a transport anisotropy is clear by comparing
the solid and dashed lines for the same energy, and it is particularly significant for the higher energy (green) case
in the presence of disordered edges (figure 3(b)). The anisotropiesσyy/σxx at themaximum simulation time

»t 4.5 psmax are displayed infigures 3(c) and 3(d), for the pristine and disordered cases respectively, as a
function of energy. The faded sections of the curves correspond to the gapped regions of theDOS (see
figure 2(b)), where the individual conductivitiesσyy andσxx are nearly zero, and the anisotropy is not well-
defined.

In bothfigures 3(c) and (d) the transport anisotropy tends towardsσyy/σxx ∼2 at energies far from the gap,
and decreases towards unity at the band edges near the gap. Generally, the anisotropy lies above unity
(σyy/σxx>1), signifying a preferred ac (y) transport direction. Electronic states near the band edges in zz-TGA
systems are primarily localized near the edges of the TGAs, whereas states further inside the continuum tend to
bemore homogeneously dispersed [8]. Away from the gap, the anisotropy can be explained by a scattering of
thesemore dispersive states by the TGAswhich is stronger for currents along the zz-direction than those in the
ac-direction. Near the band edges, though, the electronic states are less dispersive and display a lower
conductivity. Furthermore, the current in this case is carried by highly localized states near the triangular edges,
so that pristine-edged triangles present very little scattering and result in a nearly isotropic transport regime. It is
interesting to note that the anisotropy is, in fact, larger for the samplewhich includes edge disorder. Disordered
edges degrade transportmore along the zz (x) directions, because this direction alignswith long nanoribbon-like
edges, whose transmission channels are reduced significantly by disorder. Edge-disordered samples are
inevitable in realistic systems, where position, orientation, and edge roughness will be difficult to control. It is

Figure 3.Conductivities σαα (a), (b) and anisotropiesσyy/σxx at themaximum simulation time »t 4.5 psmax (c), (d) for a samplewith
randomly aligned triangles (seefigure 1(a)). The sample in (a) and (c) has pristine-edged triangles, and that in (b) and (d) includes edge
disorder. The solid and dotted plots in (a), (b) correspond to ac (y) and zz (x) directions, respectively. The horizontal gray line notes the
isotropic caseσyy/σxx=1. In panels (c), (d), the shaded region denotes energy rangeswhere the anisotropy is ill-defined. The energies
30, 45 meV aremarked as infigure 2(b).
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reassuring that a homogeneous distribution of zz-TGAs, with randomorientations and edge disorder, displays
such a strong transport anisotropy.

4.Half-metallic aligned samples

Wenow consider systemswith all triangles aligned in the same direction, so only edges fromone sublattice are
exposed and all triangles havemagneticmoments of the same orientation, as infigure 1(b). The spin-polarized
DOS for pristine and disordered edges are shown infigures 4(a) and (b), respectively, where spin-up and spin-
downDOS are displayed by separate red and blue curves. An almost perfect spin polarizedDOS is observed
within  ∣ ∣E15 meV 50 meV, with opposite spin polarizations on either side ofE=0. These half-metallic
regions are separated by a band gap of approximately 30 meV. Just as in the case of randomly-oriented triangles,
the band gap and spin-polarization trends are similar to previous results in superlattices [8]. The inclusion of
edge defects does not affect the qualitative behavior, i.e. we still find twooppositely spin-polarized, half-metallic
regions separated by a small band gap. The principal effect of edge disorder is a slight smearing of theDOS
features. It is worth emphasizing that the near perfect halfmetallicity is exceedingly robust considering that it
emerges from a randomdistribution of edge-disordered antidots.

Electronic transport simulations, without edge-disorder, reveal a large anisotropy, illustrated by the spin-
down conductivities at the energies =E 30 meV and 45 meV infigure 5(a). The spin-up conductivity (not
shown) ismostly zero at these energies due to half-metallicity. The transport anisotropy is particularly large for
the =E 30 meV case. Here theσyy (ac-direction, solid orange curve) shows quasi-ballistic behavior, i.e. a sub-
linear increase, and, no sign of saturationwithin the accessible time range of 5 ps.Meanwhileσyy for the
=E 45 meV case saturates to a diffusive, constant value. For both energiesσxx localizes quickly at ~t 1 ps. The

simulations are stopped at 5 ps, at which time the simulation length Ly for the =E 30 meV case (solid curve in
the inset offigure 5(a)), exceeds the sample size >L 360 nmy .When the simulationwave-packets become
larger than the simulation samples, artifactsmay develop originating solely from the periodic boundary
conditions used. The remaining conductivities infigure 5(a) have correspondingwavepacket propagation
lengths below 360 nm (the x-direction case at =E 30 meV is shown by the dashed line in the inset).

The conductivity anisotropiesσyy/σxx of the sample without edge-disorder, at themaximum simulation
time »t 5 psmax , are displayed infigure 5(c). The spin-up and spin-down anisotropies are displayed by separate
red and blue curves, with the total charge anisotropy shown in black. The individual anisotropies are ill-defined
in the dotted sections where conductivitiesσyy andσxx vanish. The anti-symmetry infigure 5(c) between the two
spin channels originates from the anti-symmetric DOS (see figure 4(a)). Figure 5(c) reveals amaximum
anisotropy (for spin-down)near ~ E 20 meV, withσyy/σxx∼20. This corresponds to the onset of states
which are largely localized on the zz-edges, but have some penetration into the surrounding graphene [8]. A
comparisonwith themore isotropic transport found for randomTGAorientations (see figure 3(c)) suggests that
localised states at TGAswith the same orientation couple quite strongly to form robust transport channels along
the ac direction. The anisotropy for spin-down decreases towards larger energies, but never reaches values below
unity, and transport in the ac direction is always preferred. At higher energies still, the onset of spin-up states
(red curve, see alsofigure 4(a)) of a similar, butmore dispersive, nature than their lower-energy spin-down
counterparts gives a lessmassive, but still significant, anisotropy s s ~ 5yy xx . The total charge anisotropy (black
curve) is lowest at the crossover between the spin-down and spin-up regimes.Most importantly, since low-
energy transport is driven by coupling between states localised near zz-TGAs, and not bulk-states which can be
scattered by them, a quasi-ballistic regime emerges inwhich extremely large anisotropies are present.

Figure 4. Spin-dependent DOS (a)without edge disorder and (b) including edge disorder for the case of alignedTGAs as illustrated in
figure 1(b). The spin-up (down) polarization is shown by the red (blue) curve. The energies 30, 45 meV aremarked as infigure 2(b).
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The decrease in conductivity on including edge disorder ismost evident for the =E 30 meV case (orange
curves) infigure 5(b). Nowbothσyy (solid) andσxx (dotted) saturate near ~t 0.5 ps and afterwards begin to
localize. The =E 45 meV conductivities saturate even earlier, and themaxima cannot be resolved. All
simulation lengths now remainwithin the sample size (not shown). Earlier onset of localized behaviorwas also
observed infigure 3(b) for randomly-aligned triangles, and can be attributed to a degradation of transport
mediated by channels near the triangle edges by scattering due to edge roughness. The anisotropiesσyy/σxx of
the edge-disordered sample are displayed infigure 5(d) at themaximum simulation time tmax. These show a
continued preference for ac-direction transmission, as they again remain above unity. However, themaximum
ismuch smaller than the pristine case and is reduced to s s ~ 2yy xx for the spin-down channel. However,
the higher-energy up-spin transport suffers a less dramatic reduction and takes valuesσyy/σxx∼4 at
= E 90 meV. The rough edges significantly quench electronic transport near the band edges, although not

enough to completely remove the transport anisotropy. However, the higher-energy states aremore dispersed
and thus less sensitive to edge roughness.We note that controlling the orientation of a randomdistribution of
zz-TGAs allows for behaviorwith huge potential for spintronic applications—namely a device whose spin-
polarization and degree of anisotropy is tunable by gate voltage. Furthermore, this behavior remains
qualitatively similar under reasonable disorder of the triangle edges. Considering only the total charge current
(black curve infigure 5(d)), we note that aligned triangles give a similar anisotropy to the randomly aligned case,
butwith a somewhat greatermagnitude. This suggests that such setupsmay be interesting even for electronic
devices which neglect the spin properties underpinning their anisotropic transport behavior.

5.Off-diagonal conductivities

The anisotropic transport discussed so far emerges due to a geometric asymmetry— the x- and y-directions in
the lattice have a different alignment relative to the zigzag edge segments. A strong anisotropy then arises when
transport ismediated by electronic states associatedwith these edges. Edgemagnetism can then further lead to a
strong spin-dependent behavior.

A similar spin-dependent geometric asymmetry can be observed in the electronic scattering profile of zz-
TGAs. Electrons incident along the x-direction display radically different scattering probabilities in the+y or−y
directions due to the broken reflection symmetry inherent in the triangular shape. In a previous work [9], we
demonstrated how zz-TGAdevicesmay be engineered to exploit this property to spatially split spins according
to their orientation, as shown infigures 6(a) and (b). In certain geometries, non-zero transverse resistances could
be induced. These behaviors suggest analogies with the SpinHall and inverse SpinHall effects (SHE/iSHE),
which induce similar results when spin–orbit coupling terms are included.

Figure 5.The spin down conductivities σαα (a), (b) and anisotropiesσyy/σxx of both spin-types at themaximum simulation time
»t 5 psmax (c), (d) for the aligned triangles sample shown infigure 1(b). The left (right) panels show cases with pristine (disordered)

triangle edges. Solid (dotted) curve shows the zz (ac) direction conductivity in panels (a) and (b). The horizontal gray line notes the
isotropic case s s = 1yy xx . Faded sections in panels (b) and (d) correspond to regionswith ill-defined anisotropy. The energies
30, 45 meV aremarked as infigure 2(b). The inset in (a)displays the =E 30 meV simulation lengths Lα as a function of time.
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These effects can be simulated in bothfinite device geometries, using Landauer-Büttikermethods, and in
bulk systems, using theKubo-Bastin approach. Transverse resistances and spin currents, corresponding directly
to experimentally-measurable quantities, emerge frommulti-terminal simulations and are associatedwith the
off-diagonal elements of the bulk conductivity tensor,σxy. This quantity captures the intrinsic response of the
system, and unlike theHall resistanceRxy, it is independent of themeasurement geometry or device setup. The
off-diagonalmatrix elements of the conductivity (σxy) and resistivity (ρxy) tensors are connected by

r
s

s s s
=

+
( )5xy

xy

xx yy xy
2

fromwhichwe note that their zeros coincide in conducting systems. TheOnsager reciprocity relation forces the
off-diagonal elements of the conductivity tensor to be zero unless time-reversal symmetry (TRS) is broken.
However, even in cases whenTRS is preserved, the off-diagonal tensor elements are not necessarily trivial once
we consider individual spin channels. Treating the spin channels as separate, non-interacting systems, SOC
enters as an effectivemagnetic fieldwhich breaks TRS in each channel independently, giving finite sxy and s


xy.

However, the two spin channels form a time-reversal symmetric pair and contribute equally but oppositely to
the off-diagonal conductivity, i.e. s s= - ¹  0xy xy . The total, or charge, off-diagonal conductivity

s s s= + 
xy xy xy is then zero, consistent with the conservation of TRS in the system as awhole.However, the

spinHall conductivity s s s= - 
xy
S

xy xy isfinite.
In the case of zz-TGA structures, the presence ofmagneticmoments breaks TRS.However, the absence of

spin-mixing terms allows the system to oncemore be considered as two separate, non-interacting spin channels.
Ourmodel considers two parallel channels with different (i.e. spin-dependent) potential landscapes, andwithin
each channel, TRS is effectively preserved (up to spin orientation) and thus the individual off-diagonal
conductivities sxy and s


xy are identically zero. The total off-diagonal conductivityσxy, being a sumof the two

spin channel contributions, is also zero despite the broken time-reversal symmetry of the complete system. A full
Kubo-Bastin calculation confirms that both theHall and Spin-Hall conductivities are zero, as shownby the solid
black lines infigures 6(c) and (d), respectively. However, it is worth pointing out that the stochastic scheme used
to compute both conductivities inherently breaks all the system’s symmetries because it connects all its possible
subspaces. These symmetries need later to be restored, either by averaging overmany randomvectors, or by an
explicit imposition of the symmetries through a set transformationwhich cancels additional randomnoise [55].
Infigures 6(c), (d), we show the result for an arbitrary randomvector (blue curve) and note the non-zero,
oscillatory behaviour. A large set of randomvectors is required for the averaging approach, and the result can
displaymisleading behaviour en route to convergence. Unlike the case of true spin or valley hall effects, we

Figure 6. Spin scattering features (a), (b), transverse conductivities in bulk (c), (d), finite device schematic for separating spin types
(e), and transverse spin-Hall-like resistances for said device (f). (a) and (b)The spin scattering around a zz-TGA,with the TGA in (a)
rotatedwith respect to (b). Notice the spin-dependent scattering directions are the same in (a) and (b), regardsless of TGAorientation.
(c) and (d)TheHall and spin-Hall conductivities of the sample infigure 1(a). The blue curves showσxy(E) evaluated for a single
randomvector, and the red curves showσyx(−E). These quantities should be equal by theOnsager relations, which indicate that the
trueHall and spin-Hall conductivities are identically zero (black lines). (e) Schematic illustration of device; a graphene cross bar
with a 4×5 array of zz-TGAs of either orientation and correspondingly spin-polarized, originally proposed in previouswork [9].
(f)Transverse (Landauer-Büttiker) resistances Rxy of the device illustrated in (e), with either spin unpolarized (dashed) or spin-up
polarized (solid) left lead (as in inset).
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cannot take advantage of an overall TRS in the set transformation approach [55]. However, the spin-asymmetry
around E=0 allows towrite anOnsager relation [56]σxy(E)=σyx(−E), and calculateσxy(E) as an average of
these two quantities evaluated for a small number of randomvectors.σyx(−E) is plotted by a red curve in
figures 6(c), (d), and exactly cancelsσxy(E) for the same randomvector, indicating that the charge and spinHall
conductivities are identically zero.

Infinite,multi-terminal devices, the Landauer formula

å= -a
b

ba a ab b( ) ( )I
e

h
T V T V , 6

2

can be used to calculate the currents (Iα) and potentials (Vα) at each lead from the transmissions (Tβα) between
leads. To evaluate the transverse resistance in the four-terminal cross-bar shown infigure 6(e), we solve this
systemof equations under the boundary conditions = - º = = º =I I I I I V V V, 0, , 01 4 2 3 1 4 , so that

=
-

º ( )R
V V

I

V

I
. 7xy

2 3 23

Restricting our analysis only to the conditions that give rise to a non-zero transverse resistance, we assume from
here on thatRxy followsV23, and omit complicating prefactors and denominators. In itsmost general form [57],

~ - + + -
+ -
( ) ( )( )

( )
R T T T T T T T T

T T T T , 8
xy 13 21 31 12 31 21 23 32

21 43 31 42

and for independent spin channels, each transmission term can bewritten = +ba ba ba
 T T T . Under TRS

( =ba abT T ), equation (8) simplifies to

~ - ( )R T T T T , 9xy 21 43 31 42

showing that the transverse resistance can befinite evenwhen the associated resistivity is zero.However, this
discrepancy requires asymmetric couplings between sets of probeswhichwewould generally expect to be
symmetric (e.g.T21 andT24)This can be achieved, for example, by offsetting the top and bottomprobes in non-
ballistic devices and it is underpinned by a simple conceptual explanation. If the top (or bottom) lead couples
identically to the left and right leads, its potentialmust lie half way between them = -

( )V V V
2 3 2

1 4 .Moving the top
probe nearer to either the left or right lead changes its potential, and breaking the symmetry between top and
bottomprobes then gives afiniteV23.

In homogeneous spin-orbit systems, with a symmetric placement of leads, we assume that the transmissions
between neighboring leads depends only on their relative alignment, i.e. clockwise (c.) or anti-clockwise (a.c.),
and on the spin orientation. Using the identity =ab ba

 T T to relate the two spin channels with SOC,wewrite

= = =

= = = = º º

= = =

= = = = º º

   

     

   

      ( )

T T T T

T T T T T T

T T T T

T T T T T T 10

42 34 13 21

24 43 31 12 a.c. c.

24 43 31 12

42 34 13 21 c. a.c.

and quickly findRxy=0 from equation (9).
No charge currentflows in the voltage probes; however a net spin current is possible because spinmixing is

allowed in these leads, so that they can absorb and reinject electronswith opposite spin as long as the net charge
current is zero. The general expression for the spin current in each lead is

å

= -

= - - -

a a a

b
ba ba a ab ab b

 

   {( ) ( ) } ( )

I I I

e

h
T T V T T V , 11

s

2

which in its expanded form is quite complicated. For a homogeneous SOCand symmetric leads, using
equation (10), it simplifies significantly to

= - = - ( ) ( )I I
Ve

h
T T 12s s

2 3

2

c. c.

–the hallmark transverse spin current of the SHE. All-electrical detection of the SHEusually employs a non-local
setupwhere this spin current generates a potential difference between an additional pair of probes via the inverse
SpinHall effect. A similar effect can be demonstrated in the cross geometry (seefigure 6(e)) by using a
ferromagnetic contact as our injector, so that the left lead only injects spin-up electrons, with the other leads
unchanged. Setting = =a a

 T T 01 1 wefind
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~ + - +   ( ) ( ) ( )R T T T T T T 13xy 21 13 43 13 12 42

for TRS SOCpairs, which simplifies to

~ -  ( )R T T 14xy c
2

c
2

in the homogeneous, symmetric case. Here the finite potential difference across the device is directly connected
to differences between spin-up and spin-down transmission probabilities. Swapping the spin-orientation of the
injector changes the sign of the transverse resistance, confirming its spin-related origin.

We now turn back tomagnetic triangles, which also induce a spatial splitting of spin channels, but obey a
different set of symmetries. As discussed above, each spin channel has a different potential landscape and
effectively conserves TRS. Thus ¹ab ba

 T T , but =ab ba
 T T and =ab ba

 T T , so that the total transmission also
obeys =ab baT T , despite the absence of overall TRS.With unpolarized leads, the analysis based on equation (9)
still holds, and the transverse resistance is zero for symmetric probe configurations. The isotropic condition
assumed for SOC cases is no longer a relevant limit here, as geometric anisotropies are essential to the effects
studied.However, pristine triangles are symmetric upon reflection in the y-axis, and asymmetries due to triangle
position and disorder should average out in large enough samples, so it is useful to consider the case of left-right
symmetric transmissions. This forces bothRxy=0 and =I 0s

2,3 —a critical difference between SOC and
magnetic-scattering cases. For SOC, each spin channel generates an equal and opposite transverse current
leading to afinite spin, but zero charge, current, whereas for zz-TGAs each channel independently preserves
TRS, so that neither generates a transverse current and both their sum and difference are zero. Neither scenario
generates a non-negligible transverse resistancewith non-magnetic leads.With a FM injector lead however, the
zz-TGA system generates a non-zero transverse resistance

~ -  ( )R T T T T 15xy 21 43 31 42

which simplifies to

~ -    ( )R T T T T 16xy 21 43 31 24

under left-right symmetry. The result from a full simulation of this quantity in a cross-device is shown in
figure 6(f). Finally, we note that this iSHE-type behavior for zz-TGAs emerges in the absence of a corresponding
SHE-type behavior for the charge current.

6. Conclusion

Wehave examined graphene systems patternedwith zz-TGAs and demonstrated how large-scale, disordered
samples display a range of spatial anisotropies in their charge and spin transport characteristics. Electronic band-
gaps are found for both aligned and randomly-oriented triangles, whereas the aligned case also shows a strong
half-metallic behaviour, with up- and down- spin electrons dominating transport at opposite sides of half-
filling. These properties are robust in the presence of strong edge disorder, and in the absence of a superlattice,
where they have previously been predicted [8].

We have further demonstrated that such systems display significant anisotropic transport behaviourwith
respect to the direction of currentflow. A strong preference for armchair direction transport is found, leading in
certain cases to quasi-ballistic behaviour in one direction and localization in the other, despite a homogeneous
distribution of perforations. The qualitative anisotropic trends survive the introduction of edge disorder,
suggesting application in realistic devices where a control of the direction offlowof charge current, or spin-
polarised current is required.

Triangular perforations can also scatter electrons anisotropically in directions perpendicular to the charge
current. The generation of a transverse resistance by a spin-polarised current is the essence of the iSHE, andwe
note that zz-TGAs can give rise toRxywhose functional form (equation (16)) is similar to that for the SOC case
(equation (14)). Furthermore, we note that, for zz-TGAs, the iSHE-type behaviour emerges in the absence of a
corresponding SHE-type behaviour for the charge current and zero bulk transverse resistivities. Therefore zz-
TGAdevices offer the possibility not just tofilter different spin channels into different leads, as discussed in [9],
but of generating a transverse resistancewhose sign depends on the spin-polarisation of the input current.

A key feature of zigzag-edgemagnetism in graphene is the spin-dependent asymmetry with respect to Fermi
energy, so that sweeping through half-filling inverts the role of the two spin channels. This leads to an
antisymmetry in theRxymeasuredwith an FM injector, as the spin-polarised current is deflected towards
opposite edges of the system for different charge carriers. The symmetry with respect toEF in standard iSHE
setups depends on the type of SOC considered: intrinsic Kane-Mele coupling should present a symmetric signal
[58]whereas Rashba coupling should give an asymmetric signal with a linear transition [58, 59] throughEF=0.
This suggests that contributions from zigzag-edgemagnetism could result in Rashba-like behaviour being
observed in inverse SpinHallmeasurements.
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Finally, the behaviors discussed here emerge from the presence of two key features in our systems: i) local
magnetic defects with a sublattice-dependent antiferromagnetic alignment and ii) geometric asymmetries.
These features arise naturally for zz-TGAs, butwe note that itmay be be possible to generate similar effects,
deliberately or inadvertently, in other systems. A number of individual defects, including vacancies, hydrogen
adatoms and substitutional species, are predicted to induce localmagneticmoments in graphene. The alignment
of thesemoments, through e.g. indirect exchange interactions [60, 61], is expected to be highly sublattice-
dependent. Local clustering, or an asymmetric occupation of sublattices, could give rise to the conditions
necessary for anisotropic transport or transverse resistance signals. This is perhapsmost relevant for hydrogen
atoms, which have been proposed as both a source of localmagnetism [62, 63] and of spin–orbit coupling [64].
Experimental signatures of SHE and iSHEmechanisms have been detected [65], but have also proven difficult to
reproduce [66], suggesting that amore complexmechanism than a simple enhancement of SOC is at play
[67, 68]. In this direction, a recent study [69] has also highlighted the importance of the interplay between
magnetism, disorder and SOC in determining the exactHall response in graphene systems.
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