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Abstract
Aim: Predictions of plant traits over space and time are increasingly used to improve 
our understanding of plant community responses to global environmental change. A 
necessary step forward is to assess the reliability of global trait predictions. In this 
study, we predict community mean plant traits at the global scale and present a sys-
tematic evaluation of their reliability in terms of the accuracy of the models, ecologi-
cal realism and various sources of uncertainty.
Location: Global.
Time period: Present.
Major taxa studied: Vascular plants.
Methods: We predicted global distributions of community mean specific leaf area, 
leaf nitrogen concentration, plant height and wood density with an ensemble model-
ling approach based on georeferenced, locally measured trait data representative of 
the plant community. We assessed the predictive performance of the models, the 
plausibility of predicted trait combinations, the influence of data quality, and the un-
certainty across geographical space attributed to spatial extrapolation and diverging 
model predictions.
Results: Ensemble predictions of community mean plant height, specific leaf area 
and wood density resulted in ecologically plausible trait–environment relationships 
and trait–trait combinations. Leaf nitrogen concentration, however, could not be 
predicted reliably. The ensemble approach was better at predicting community trait 
means than any of the individual modelling techniques, which varied greatly in pre-
dictive performance and led to divergent predictions, mostly in African deserts and 
the Arctic, where predictions were also extrapolated. High data quality (i.e., including 
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1  | INTRODUC TION

Global trait-based models have proliferated in recent years owing to 
the increasing availability of plant trait data (Kattge, 2019). Fitting 
and projecting trait–environment relationships over large spatial 
scales is becoming increasingly common to study trait trade-offs 
(e.g., Díaz et al., 2016; Wright et al., 2004), to relate traits to envi-
ronmental gradients (e.g., Moles et al., 2009; Wright et al., 2005) 
and to describe geographical patterns of traits (e.g., Madani et al., 
2018; Yang et al., 2016). Trait-based models can not only increase 
our understanding of trait–environment relationships, but can also 
allow us to estimate how plant traits might respond to global en-
vironmental change (Bjorkman et al., 2018). This, in turn, is consid-
ered particularly useful for predicting the impact of environmental 
change on vegetation (Webb, Hoeting, Ames, Pyne, & LeRoy Poff, 
2010), because trait-based models allow to directly link plant fitness 
to environmental filters, including climate, soil properties and distur-
bance (Keddy, 1992).

Recent attempts to model global plant trait distributions as a 
function of environmental conditions have yielded different trait 
patterns (e.g., Butler et al., 2017; Madani et al., 2018; Moreno-
Martínez et al., 2018; Van Bodegom, Douma, & Verheijen, 2014). 
For example, Butler et al. (2017) and Moreno-Martínez et al. (2018) 
predicted specific leaf area to be low in western Canada and high 
in northern Russia and eastern Brazil, whereas Van Bodegom et al. 
(2014) and Madani et al. (2018) predicted the opposite. Such dis-
crepancies among existing global trait models might arise from dif-
ferences in: (a) the sources of the underlying trait data (floras and 
measurements in natural areas, manipulated field experiments, 
botanical gardens and greenhouses); (b) the representativeness 
of the sampled species for the entire natural plant community; (c) 

the selection of environmental predictors; and (d) the model fitting 
techniques. The first difference translates to the use of global spe-
cies trait averages, which may cause a potential mismatch of trait 
and environmental data. The second and third differences may re-
sult in different spatial patterns of uncertainty owing to extrapola-
tions of trait–environment relationships (Thuiller, Brotons, Araujo, 
& Lavorel, 2004). The fourth difference may render considerable 
variation among predictions (Thuiller, Guéguen, Renaud, Karger, 
& Zimmerman, 2019). Furthermore, the ecological realism of the 
combination of predicted plant traits needs to be tested against 
observed trait combinations, which has, to our knowledge, not yet 
been done at the global scale. Additionally, although all studies re-
ported the variance explained by the trait-based models, the pre-
dictability of independent samples (i.e., data not used to train the 
models) has not yet been assessed thoroughly. A necessary step 
forward to increase macroecological insights in global trait–environ-
ment relationships with potential application in ecological impact 
or conservation assessments (e.g., Lavorel & Garnier, 2002; Madani 
et al., 2018) is to perform a thorough assessment of the reliability of 
global plant trait predictions.

Here, we predict community mean plant traits at the global 
scale and present a systematic evaluation of the reliability of the 
predictions in terms of the models'  accuracy, ecological realism 
and various sources of uncertainty. We systematically selected 
locally measured, representative data focusing on four widely 
studied plant traits (specific leaf area, leaf nitrogen concentration, 
height and wood density). These traits reflect the global spectra in 
plant form and function, are responsive to the abiotic environment 
and show physical trade-offs with other traits (Table 1; Díaz et al., 
2016; Lavorel & Garnier, 2002). For each of the traits, we calcu-
lated community mean trait values and predicted global patterns at 
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intraspecific variability and a representative species sample) increased model perfor-
mance by 28%.
Main conclusions: Plant community traits can be predicted reliably at the global scale 
when using an ensemble approach and high-quality data for traits that mostly re-
spond to large-scale environmental factors. We recommend applying ensemble fore-
casting to account for model uncertainty, using representative trait data, and more 
routinely assessing the reliability of trait predictions.
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a 0.5° resolution (c. 55 km × 55 km at the equator) using an ensem-
ble modelling approach based on two regression and two machine 
learning techniques. Subsequently, we evaluated the predictive 
performance of the models and assessed their ecological plausibil-
ity in terms of the trait–environment relationships and the correla-
tions and combinations of individually predicted community mean 
trait values (Díaz et al., 2016; Lavorel & Garnier, 2002). Finally, 
we evaluated the effect of various sources of uncertainty: (a) the 
effect of data quality in terms of representativeness of the sam-
pled species to the entire plant community and the use of global 
species trait averages versus local trait measurements; (b) the un-
certainty across geographical space attributed to extrapolation of 
traits outside the applicability domain (i.e., the geographical area 
with environmental variation covered by the environmental varia-
tion of the trait data); and (c) the uncertainty across geographical 

space owing to discrepancies among the predictions of the four 
modelling techniques. We build upon this assessment to provide 
guidelines for the further development, interpretability and us-
ability of global trait-based models.

2  | METHODS

2.1 | Plant functional traits

We selected four plant functional traits: specific leaf area (SLA; in 
square millimetres per milligram), leaf nitrogen concentration (LNC; 
in milligrams per gram), height (in metres) and wood density (in mil-
ligrams per cubic millimetre). The SLA and LNC are both linked to 
photosynthetic capacity and nutrient investment, where a high SLA 

TA B L E  1   Expectations for community mean trait–environment relationships

Predictor Rationale Impact and adaptations Expectations

Minimum temperature of the 
coldest month (Tmin)

Temperature-induced leaf damage, at low 
and high Tmin, affects plant performance1

Lower damage risk with increased 
tolerance via decreasing SLA2

˄ SLA

Enhanced metabolic activity and frost 
tolerance with increased LNC1,3

↓ LNC4

Lower frost-induced mortality risk  
with increasing Tmin

  ↑ Plant height4

↑ Wood density4

Humidity index (HumInd)

Lower drought-induced mortality  
risk with increasing HumInd

Increased drought tolerance with low 
transpiration rates via decreased SLA

↑ SLA2

↑ LNC2

Cavitation risk increases with height5 ↑ Plant height

Increasing wood density increases plant 
performance at low HumInd6

↓ Wood density

Precipitation in the driest 
quarter of the year (PrecDryQ)

Lower drought-induced mortality  
risk with increasing PrecDryQ

Cavitation risk increases with height5

ᴑ SLA

ᴑ LNC

↑ Plant height

ᴑ Wood density

Precipitation seasonality  
(PrecSeas)

Moisture availability affects  
plant survival

Changing leaf habit (deciduousness) not 
traits7

‒ SLA

‒ LNC4

↓ Plant height4

↓ Wood density4

Soil cation exchange capacity  
(CEC)

Higher CEC indicates a greater capacity to 
retain easily attainable nutrients  
(i.e., higher soil fertility)8

Less durable structures can be 
maintained9,10

↑ SLA

‒ LNC

ᴑ Plant height

↓ Wood density

Soil pH Higher pH increases the available 
phosphorus and nitrogen in the  
soil (i.e., higher soil fertility)11

Less durable structures can be 
maintained9,10

↑ SLA

‒ LNC

ᴑ Plant height

↓ Wood density

Note: Hypotheses are indicated as follows: ↑ = positive relationship; ↓ = negative relationship; ‒ = flat relationship; ˄ = unimodal response. 
Hypotheses are based on theory (no reference) or on significant, biologically relevant trends found at the community level in literature (reference 
included). ᴑ indicates relationships between trait and predictor that have not been discussed at the community level in literature.
Abbreviations: LNC = leaf nitrogen concentration; SLA = specific leaf area.
References in table: 1Went (1953); 2Wright et al. (2005); 3Reich, Oleksyn, and Tjoelker (1996); 4Swenson and Weiser (2010); 5Tyree and Sperry (1989); 
6Reich (2014); 7Borchert (1998); 8Ross and Ketterings (1995); 9Chave et al. (2009); 10Wright et al. (2004); 11Maire et al. (2015).
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and high LNC represent a fast return on investment at the expense 
of a shorter life span (Wright et al., 2004). Plant height is considered 
to be indicative of the ecological strategy of  carbon distribution, 
indirectly determining growth and reproduction and their initial re-
sponse to climate change (Moles et al., 2009). Last, wood density is 
a measure of carbon investment, representing a trade-off between 
growth (e.g., to overcome light limitation) and strength (e.g., me-
chanical support and drought tolerance), with higher wood density 
reflecting slower growth but increased strength at a similar stem 
diameter (Chave et al., 2009; Larjavaara & Muller-Landau, 2010).

The selected traits are easily measured according to standardized 
measurement procedures (Perez-Harguindeguy et al., 2013), which fa-
cilitates the integration of data from multiple datasets and reduces trait 
variation caused by seasonal changes (Bloomfield et al., 2018). To opti-
mize between the number of observations and the consistency of the 
measurement methods, we included SLA measurements on both sun-
leaves and shade-leaves, wood density measurements on both heart-
wood and sapwood, and plant height measurements on both vegetative 
and generative plant organs (see also Siefert et al., 2015).

2.2 | Data collection and selection procedure

Our main source for plant trait data was the TRY database (Kattge 
et al., 2011), from which we received 964,464 trait records on 85,437 
species from 168 datasets. We also obtained data from the Tundra 
Trait Team (TTT) database (Bjorkman et al., 2018) and from various 
other published and unpublished datasets (Supporting Information 
Appendix S1). A list of data sources is provided in the Appendix. All 
species names were standardized using The Plant List (2013).

We selected trait observations based on six criteria. First, we in-
cluded only georeferenced observations in order to enable a mean-
ingful link with environmental covariates. Second, we considered 
only real measurements of plant traits (i.e., no species-level averages) 
in order to include intraspecific trait variation, which can contribute 
substantially to the trait variation within and between communities 
(Albert et al., 2010; Bloomfield et al., 2018; Siefert et al., 2015). Third, 
we considered only measurements obtained from natural vegeta-
tion, to minimize the influences of local management practices and 
legacy effects of historical land use (Perring et al., 2017). Fourth, 
we included observations only from studies that measured all or the 
most abundant species present in the entire plant community or in 
the dominant vegetation structure, in order to account for the repre-
sentativeness of the sampled species for the plant community. This 
is in line with previous studies on this topic (e.g., Poorter et al., 2017) 
and in accordance with the biomass ratio hypothesis (Grime, 1998). 
Fifth, we included observations only from studies that targeted all 
life stages and/or size classes and from studies that targeted only 
adults. Thus, we excluded observations from studies focusing only 
on early-successional plant communities and studies measuring only 
seedlings or juveniles in a more established vegetation, in order to re-
duce confounding effects of ontogeny (e.g., Thomas & Bazzaz, 1999) 
and succession (e.g., Purschke et al., 2013). Sixth, we included only 

measurements conducted from 1980 onwards, in order to link up with 
the environmental covariate data, which span from 1979 to 2013. We 
excluded trait observations for which the listed criteria could not 
be checked. The Supporting Information (Appendix S2) contains an 
overview of the number of datasets excluded per criterion. In total, 
we removed 63.1% of all the datasets we originally received from TRY 
and 54.5% of all datasets in the TTT database.

2.3 | Data processing

We checked and corrected for possible errors in our database, such 
as duplicates, coordinate and unit inaccuracies and outliers (see 
Supporting Information Appendix S2). We then calculated location-
specific community means per trait and per study to represent the 
mean response of the plant community to the local environment 
(Ackerly & Cornwell, 2007). Using unweighted community means 
was the better compromise  over abundance-weighted community 
means, mainly because previous studies were not conclusive on the 
superiority of abundance-weighted means and because > 50% of our 
data did not include species abundances (for further discussion, see 
Supporting Information Appendix S3). We averaged the location-
specific community means to 0.5° grid cells (with a median of 22 
communities per grid cell) in order to describe large-scale patterns in 
traits. This is a common resolution used in global plant trait studies 
(Butler et al., 2017; Van Bodegom et al., 2014) and a good compro-
mise, accounting for the effect of climatic filtering on plant traits, 
the coordinate uncertainty of the trait data, avoidance of pseudo-
replicates and the uncertainty related to interpolated climatic vari-
ables (Stoklosa, Daly, Foster, Ashcroft, & Warton, 2015). These 
community means represent plant community average trait values, 
thereby making values not directly transferable to a specific species 
or a class of species. The final dataset used as input for model fitting 
included community mean trait values based on data from 76 stud-
ies and 8,955 species averaged to 486 grid cells, including 361 grid 
cells for SLA, 338 for LNC, 217 for height and 125 for wood density 
(Supporting Information Figure S4).

2.4 | Environmental data

We considered environmental variables that are expected to affect 
plant performance (e.g., Kimball, Gremer, Angert, Huxman, & Venable, 
2012). This allowed us to check the ecological plausibility of the result-
ing trait–environment relationships. Based on ecological relevance, we 
selected bioclimatic variables from CHELSA v.1.2 (Karger et al., 2017). 
Given that water availability to plants is not determined by precipitation 
alone, we calculated the aridity index as the mean annual precipitation 
divided by the mean annual potential evapotranspiration, which in turn 
was calculated using the Penman–Monteith model (Zomer, Trabucco, 
Bossio, & Verchot, 2008). However, given that lower values of the arid-
ity index indicate higher aridity, to avoid confusion this predictor will 
be referred to as the “humidity index” from now on. Furthermore, we 
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selected soil characteristics from SoilGrids250m (Hengl et al., 2017) 
and resampled them to a resolution of 0.5° to match the resolution 
of the plant community mean trait data. We averaged the soil data to 
a depth of 30 cm, which we considered most relevant for community 
composition via plant establishment and by influencing plants in later 
life stages, for example, through the potentially high nutrient availabil-
ity (e.g., Vitousek & Sanford, 1986).

To avoid collinearity, we reduced the number of predictors based 
on variance inflation factors (VIF < 4), while ensuring a combination 
of different environmental factors (i.e., both climatic and soil charac-
teristics; Franklin, Serra-Diaz, Syphard, & Regan, 2016). A complete 
list of the predictors considered and more details on our selection 
procedure can be found in the Supporting Information (Appendix 
S5). The final selection included six predictors: minimum tempera-
ture of the coldest month (Tmin; in degrees Celsius), humidity index 
(HumInd; dimensionless), precipitation in the driest quarter of the 
year (PrecDryQ; in millimetres), precipitation seasonality (PrecSeas, 
coefficient of variation based on monthly precipitation; as a per-
centage), soil cation exchange capacity (CEC; centimoles of positive 
charge per kilogram of soil) and soil pH.

2.5 | Model fitting and validation

For each relationship between the plant traits and environmental vari-
ables, we formulated expectations on the shape of the response based 
on existing literature (Table 1). To quantify the trait–environment rela-
tionships, we fitted four different models per trait: two statistical mod-
els [generalized linear model (GLM) and generalized additive model 
(GAM)] and two machine learning models [random forest (RF) and 
boosted regression trees (BRT); for full details on model parameteriza-
tion, see Supporting Information Appendix S6]. We validated all mod-
els by running a 10-fold cross-validation using a split-sample procedure 
(80%–20%) and evaluated the predictive performance (cross-validated 
pseudo-R2) of the models by regressing the predicted and observed 
trait values from all repetitions of the cross-validation.

To quantify the relative importance of each predictor in a consis-
tent way across the models, we predicted traits using permuted val-
ues for the predictor of concern, correlated those predictions with 
predictions of the model using the original data and quantified rela-
tive variable importance as one minus the Spearman rank correlation 
coefficient (Thuiller, Lafourcade, Engler, & Araújo, 2009).

2.6 | Testing sensitivity to data quality

To test the influence of data quality on the performance of the trait 
models, we created three alternative datasets differing in terms of trait 
values (i.e., including intraspecific trait variation versus using species-
specific trait values) and in terms of species representativeness (i.e., a 
representative sample of species versus the random selection of one 
species in the plant community; Supporting Information, Figure S7). 
For each alternative dataset, we fitted the four different models for 

each of the four traits, following the procedure described above for 
our default dataset. We then evaluated each model separately, where 
the predictions are confronted with the observed community means 
of the full dataset (Supporting Information Appendix S7).

2.7 | Spatial predictions and their assessment

To derive spatial predictions per trait, we used an ensemble fore-
casting procedure, which averages the predictions of the four 
algorithms weighted by their cross-validated pseudo-R2 values 
(Marmion, Parviainen, Luoto, Heikkinen, & Thuiller, 2009). Likewise, 
we estimated ensemble variable importance and partial response 
curves. Furthermore, we calculated the accuracy of the ensemble 
predictions by regressing the 20% test data of the cross-validations 
against the observed trait values. We checked whether among-trait 
correlations observed in the data were retained in the predictions 
by correlating the trait correlation matrix of the original dataset with 
the trait correlation matrix of the predictions. Additionally, we as-
sessed whether predicted trait combinations were realistic by com-
paring them with a hypervolume of all trait combinations existing in 
our dataset. We built the hypervolume with the “hypervolume_svm” 
function of the “hypervolume” R package using the original trait 
values before calculating community means or grid cell averages, 
because we wanted to check whether predicted trait combinations 
occurred naturally and because this ensured enough observations 
with all four traits measured to build the hypervolume (Blonder, 
Lamanna, Violle, & Enquist, 2014). Note that this test does not nec-
essarily imply that predicted trait combinations do not or cannot 
exist, but merely that they did not occur in the input data and should 
therefore be interpreted with caution.

To identify the applicability domain, we calculated and mapped 
the multivariate environmental similarity surface (Elith, Kearney, 
& Phillips, 2010). This analysis quantifies, per grid cell, the differ-
ence of the most extrapolated environmental predictor and the 
environmental range of that predictor covered by locations in the 
plant trait dataset, while considering the distribution of these data 
within the global environmental range. Finally, to quantify model 
uncertainty (i.e., the variability in predictions across models), the 
coefficient of variation was calculated as the difference in the pre-
dictions of each of the four individual models compared with the 
ensemble prediction weighted by the predictive performance of 
each of the models (further explanation in Supporting Information 
Appendix S8).

3  | RESULTS

3.1 | Predicted global plant trait variation

The variation explained by the environmental variables varied among 
traits (Figure  1). Model predictive performance was highest for 
plant height, followed by wood density, SLA and LNC (Figure 1). The 
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projected global trait maps revealed low SLA in arid areas and high SLA 
in temperate climates (Figure 2a), whereas LNC was found to be low in 
dry tropical regions (Figure 2c). We also found lower community plant 
height at higher latitudes, with the tallest vegetation in wet tropical 
areas and shorter vegetation in temperate climates (Figure 2e). Height 
values, like the other predicted traits, represent community means 
and thus cannot be transferred directly to a specific species or a class 
of species. Finally, wood density, representing the potential average 
wood density for all woody vegetation in a location, was predicted to 
be particularly low in areas with low PrecSeas (Figure 2g).

3.2 | Ecological assessment

3.2.1 | Trait–environment relationships

In our models, community mean SLA was mostly explained by 
HumInd and Tmin (Figure  3a). As expected, SLA showed a uni-
modal albeit mostly decreasing response to Tmin, an increase with 
HumInd and a flat response to PrecSeas. However, we did not find 
the expected response of SLA to soil CEC and soil pH (Table  1; 
Figure  4). We also found a flat response of SLA to PrecDryQ 
(Figure 4). Community mean LNC was mostly explained by Tmin 
(Figure 3b). We expected LNC to decrease with Tmin, to increase 
with HumInd and to show a flat response to PrecSeas, but we 
found a unimodal response of LNC with Tmin around 0  °C, and 
a decrease of LNC with HumInd and PrecSeas (Table 1; Figure 4). 
We also found LNC to increase with PrecDryQ and, as expected, 
to show a flat response to soil CEC and soil pH (Table 1; Figure 4). 
Community mean plant height was mostly explained by PrecDryQ 
(Figure  3c). As expected, height increased with increasing Tmin 
and PrecDryQ, whereas in contrast to our original expectation, 
we found height to decrease with HumInd and to increase with 
PrecSeas (Table 1; Figure 4). Height showed a flat response to soil 
CEC and a unimodal response to soil pH. Community mean wood 
density was mostly explained by Tmin (Figure  3d). As expected, 
wood density increased with Tmin, decreased with HumInd and 

decreased overall with soil CEC (Table 1; Figure 4). Against our ex-
pectations, wood density showed a flat response to PrecSeas and 
soil pH (Table 1; Figure 4). Furthermore, we found a flat response 
of wood density to PrecDryQ (Figure 4).

3.2.2 | Combinations of predicted traits

The predicted trait values largely preserved the global trait correla-
tions present in the training data (r = .83). Furthermore, for 99.9% of 
all grid cells, the predicted trait combination of community mean traits 
was found within the existing trait combinations found in individual 
plants or species. Locations with unrealistic predicted trait combina-
tions are presented in the Supporting Information (Figure S9).

3.3 | Uncertainty assessment

3.3.1 | Data quality

The predictive accuracy decreased by 11% on average across all 
traits and models when intraspecific trait variation was excluded 
(Figure  5; Supporting Information Table S7). When species were 
sampled randomly (i.e., an unrepresentative sample), the predictive 
accuracy of the models decreased on average by 19% (Figure 5). The 
combination of ignoring intraspecific trait variation and using a non-
representative species sample amplified the reduction in accuracy to 
28% compared with the default models (Figure 5).

3.3.2 | Applicability domain

Despite data paucity in large areas of the world (e.g., India, Asian 
Russia and Africa; Figure 6), the trait data covered a large part of the 
global environmental space (Figure 6; Supporting Information Figure 
S10). However, deserts, tropical islands and some parts of the Arctic 
were outside the environmental domain covered by the trait data.

F I G U R E  1   Model performance for different traits and different models presented as the cross-validated R2 values. Per trait, the bars 
represent the predictive performance of GLM, GAM, RF, and BRT from left to right. The horizontal black lines represent the accuracy 
of the ensemble predictions. Abbreviations: LNC = leaf nitrogen concentration; SLA = specific leaf area [Colour figure can be viewed at 
wileyonlinelibrary.com]
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3.3.3 | Model selection

Predictive performance differed between models per trait, where 
RF showed the highest predictive performance for SLA, LNC and 

wood density, and GLM for height (Figure  1). The ensemble pre-
dictions were always equal to or better than the individual mod-
els (Figure  1). The consistency in the predictions among the four 
modelling techniques varied geographically (Figure  2b,d,f,h). The 

F I G U R E  2   Global plant trait predictions. The left column presents the ensemble trait predictions, and the right column presents the ensemble 
coefficient of variation (CV) of different model predictions. The grey margin in each plot depicts the mean latitudinal value, and the horizontal dashed 
line indicates the Equator. Values in plots (a), (c), (e), (g) indicate the accuracy of the ensemble predictions (cross-validated R2). Values in plots (b), (d), 
(f), (h) indicate the predictive performance (cross-validated R2) of the different models, where glm indicates values of the GLMs, gam of GAMs, rf of 
RFs, and brt of BRT. These values indicate how well traits are predicted, while the CV maps only identify locations where predictions are divergent 
between models with high and/or similar predictive power. For extrapolation areas, see Figure 6. No predictions were made for Greenland (no soil 
data) , nor for the south of Egypt (no precipitation seasonality). All predictions represent potential trait values, as not all terrestrial world is vegetated or 
includes woody vegetation. Abbreviations: LNC = leaf nitrogen concentration; SLA = specific leaf area [Correction added on 16 April 2020, after first 
online publication: Figure 2 was previously incorrect and has been updated in this version.] [Colour figure can be viewed at wileyonlinelibrary.com]
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coefficient of variation of SLA was mostly low, apart from some 
areas in Africa. LNC had an overall low coefficient of variation, ex-
cept for the Sahara. Plant height showed a shifting pattern of high 
and low coefficients of variation over the globe. Wood density had 
an low coefficient of variation overall but was predicted with more 
uncertainty in parts of Africa and most of the Arctic.

4  | DISCUSSION

In this study, we established global plant trait models based on locally 
measured trait data representative of natural vegetation and used 
these models to make global trait predictions. We evaluated these 
trait predictions based on the predictive performance of the models, 
their ecological realism, the influence of the quality of input data, 
the applicability domain of the predictions and model choice uncer-
tainty. Our results showed that the models predicting community 
mean SLA, plant height and wood density were well able to explain 
trait variation. Although the trait–environment relationships were as 
expected only in part, our trait predictions preserved the observed 
among-trait correlations and combinations. Furthermore, we showed 
that most of the global environmental variation was within the 

applicability domain for trait predictions, that including intraspecific 
trait variation and having a representative species sample improved 
the predictability of traits at the resolution and extent applied here, 
that different modelling techniques demonstrated different predic-
tive performances for different traits and that the ensemble ap-
proach was better at predicting traits. Overall, these findings suggest 
that global predictions aimed at describing broad geographical plant 
community mean trait patterns are reliable with the data currently 
available, but caution is needed for certain traits and areas.

4.1 | Global trait patterns

The variance explained by our models predicting global community 
mean trait values along environmental gradients is comparable with 
other global or large-scale trait-based studies (Butler et al., 2017; 
Madani et al., 2018; Van Bodegom et al., 2014; Yang et al., 2016). 
For some areas, predicted spatial patterns were consistent with 
those predicted by previous studies. For example, we found lower 
SLA values in central Australia compared with the coast (Figure 2a), 
demonstrating the adaptation of leaves to drier conditions (Butler 
et al., 2017; Madani et al., 2018; Moreno-Martínez et al., 2018; Van 
Bodegom et al., 2014). Likewise, we found lower SLA values in the 
Amazon compared with the South American Cerrado (Figure  2a; 
Butler et al., 2017; Moreno-Martínez et al., 2018). Furthermore, 
we predicted vegetation in tropical climates to be taller than in 
temperate climates (Figure 2; Madani et al., 2018).

On the contrary, our SLA, LNC and wood density predictions dif-
fered from the predictions of previous studies for some areas. For 
example, we predicted higher SLA values for boreal forests com-
pared with desert areas, similar to Van Bodegom et al. (2014) but 
opposite to Butler et al. (2017). Additionally, predicted patterns for 
LNC and wood density did not match other maps (Figure 2; Butler 
et al., 2017; Moreno-Martínez et al., 2018; Van Bodegom et al., 
2014), but, given the poor predictive accuracy of the LNC models, 
we consider our LNC predictions unreliable (Figure 1).

Whenever trait predictions among different studies disagree, it is 
difficult to conclude which predictions are more reliable. One option is 
to validate global trait predictions against regional trait maps. For ex-
ample, we found wood density to be higher in the east of the Amazon 
region compared with the north-west and south-west (Figure 2g), as 
was found by Baker et al. (2004). However, the paucity of regional 
trait maps makes this validation method impractical. Another option 
is to consider model predictive performances and the applicability do-
main to infer reliability of predictions. Unfortunately, the lack of quan-
tification and indication of these in previous studies prevents us from 
drawing any conclusions about which predictions are more accurate.

4.2 | Ecological evaluation of global trait predictions

In general, we found community mean SLA, plant height and 
wood density to vary more with climatic factors than with soil 

F I G U R E  3   Relative predictor importance, calculated as 1—
Spearman rank correlation coefficient (see Section 2.5), where 
high values indicate high importance. The bars represent the 
ensemble relative predictor importance and the error bars show 
the ensemble coefficient of variation. Abbreviations: LNC = leaf 
nitrogen concentration; SLA = specific leaf area; Tmin = minimum 
temperature; HumInd = humidity index; PrecDryQ = precipitation 
in the driest quarter of the year; PrecSeas = precipitation 
seasonality and CEC for soil cation exchange capacity [Colour 
figure can be viewed at wileyonlinelibrary.com]
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characteristics (Figure 3). This might reflect the greater variation in 
soil characteristics at smaller scales compared with climatic variables 
(Supporting Information Figure S11). Furthermore, all predicted trait 
combinations and correlations were realistic.

Our results confirmed most of the expected relationships between 
SLA and the environmental variables (Table 1; Figure 4). However, we 
found SLA to decrease with soil CEC and to show a flat response to soil 
pH, whereas we expected SLA to increase with soil fertility because 

F I G U R E  4   Ensemble partial trait responses. Shaded areas are the ensemble coefficients of variation. Predictors are minimum 
temperature (Tmin; °C), humidity index (HumInd; unitless), precipitation in the driest quarter of the year (PrecDryQ; mm), precipitation 
seasonality (PrecSeas; %), soil cation exchange capacity (CEC; cmol+ kg-1), and soil pH. Extrapolated trait responses are shown with a dashed 
line. The symbols at the bottom left of each panel represent the expectation reported in Table 1: ↑ = positive relationship; ↓ = negative 
relationship; ‒ = flat relationship; ˄ = unimodal response; ᴑ = the relationship has not been discussed at the community level in literature. 
Other Abbreviations: LNC = leaf nitrogen concentration; SLA = specific leaf area [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  5   Performances of models based on datasets of different quality. The bars represent the average cross-validated R2 values 
over the four different models, where the errorbars indicate the minimum and maximum cross-validated R2 value. Datasets including 
and excluding intraspecific trait variation are indicated with intra and inter, respectively. Species representativeness is indicated with 
the shade of the bar, where darker shades represent datasets with a species sample representative of the community and lighter bars 
represent datasets with a non-representative species sample (Appendix S7). Thus, per trait, the bars from left to right represent plot 1, 2, 
3, and 4 of Appendix Figure S7. Abbreviations: LNC = leaf nitrogen concentration; SLA = specific leaf area [Colour figure can be viewed at 
wileyonlinelibrary.com]
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less durable structures are thought to be maintained with higher soil 
fertility (Table 1; Figure 4). The flat response of SLA with soil pH might 
be explained by a high nutrient turnover rate in areas of low soil fer-
tility (Vitousek & Sanford, 1986), although it might also be simply that 
SLA does not respond to changes in soil pH (Firn et al., 2019).

The expected responses of LNC to the environmental variables 
were not found (Table  1; Figure  4). The partial responses of LNC 
showed great variation over small environmental ranges, possi-
bly owing to the tendency of machine learning models to over-fit. 
Together with the low predictive performance of the models, this 
might reflect that LNC responds primarily to small-scale environmen-
tal variation, whereas our models make predictions at a coarser resolu-
tion (55 km × 55 km). Our results thus support the deviating responses 
of LNC to environmental variables at the species level (Maire et al., 
2015; Ordoñez et al., 2009; Reich & Oleksyn, 2004; Reich et al., 1996). 
Additionally, LNC might be highly variable in relationship to multiple 
environmental factors, leading to non-universal adaptations to the 
predictors in our model (Bloomfield et al., 2018; Reich & Oleksyn, 
2004). This variability makes it difficult to interpret LNC responses to 
large-scale environmental gradients biologically, especially given that 
they will vary depending on whether intraspecific variation is consid-
ered or not (Albert et al., 2010). We conclude that it is not possible to 
predict LNC distributions reliably at this extent and resolution.

Our results confirmed the expected relationships between aver-
age community height and Tmin and PrecDryQ (Table 1; Figure 4). 
However, we found mean plant height to decrease with HumInd 
(Table 1; Figure 4). This might indicate that shorter vegetation (e.g., 
grasses, herbs and shrubs) is more abundant in more humid environ-
ments (i.e., higher annual rainfall and/or lower potential evapotrans-
piration). The unexpected increase in height with PrecSeas (Table 1; 

Figure  4) can be explained by the fact that many species in areas 
with seasonal rainfall can shed leaves, which makes the deciduous 
vegetation less vulnerable to cavitation compared with evergreen 
vegetation, allowing it to grow taller than expected. Furthermore, 
taller plants are better able to reach soil water reserves owing to 
deeper root systems (Borchert, 1998; Canadell et al., 1996).

Our results confirmed the expected relationships between wood 
density and Tmin, HumInd and soil CEC (Table 1; Figure 4). Both the 
increase in wood density with increasing Tmin and the unexpected 
flat response with PrecSeas might reflect that colder areas with less 
seasonal precipitation are dominated by soft-wooded gymnosperms, 
whereas warmer areas with higher seasonal precipitation are dom-
inated by angiosperms with generally denser wood (Swenson & 
Enquist, 2007), although xylem vulnerability for frost-induced cav-
itation decreases with wood density (Reich, 2014). We expected a 
decrease in wood density with soil CEC and soil pH because higher 
soil fertility is expected to sustain higher growth rates. Although the 
overall trend confirmed our expectation, the response to pH was 
very limited, and at the lower end of the CEC gradient, wood den-
sity showed a small increase. This might indicate that extreme lim-
itation to accessible soil nutrients cannot sustain high wood density, 
whereas low fertility but not nutrient-limited environments promote 
slow growth, resulting in high wood density (Table 1). Given that no 
global trait–environment relationship has been described for wood 
density (Moles, 2018), these patterns should be investigated further.

Literature reports that some relationships between traits and en-
vironmental variables may vary with leaf habit, plant growth forms 
and photosynthetic pathway at the local scale (e.g., Šímová et al., 
2018). Additionally, trait–environment relationships are affected by 
factors other than climate and soil properties, such as land-use type 

F I G U R E  6   Locations of trait observations (black dots) and the environmental coverage of trait observations, that is, the multivariate 
environmental similarity surface (Elith et al., 2010), where blue represents interpolation and red represents extrapolation. More intense 
shades indicate greater similarities (blue) or differences (red) in environmental conditions of the location compared to the environmental 
conditions covered by the training dataset. Though values indicate percentages, each griddcell might be restrained by a different 
environmental variable, which is why the actual values are difficult to interpret. Abbreviations: LNC = leaf nitrogen concentration; SLA = 
specific leaf area [Colour figure can be viewed at wileyonlinelibrary.com]
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and disturbance (e.g., Chen et al., 2018). However, we expect that 
these factors are of limited relevance at the biological scale (com-
munities instead of species), spatial resolution and extent consid-
ered, where environmental filtering effects are expected to be much 
less confounded by biotic interactions and fine-grain disturbances 
(Pearson & Dawson, 2003).

4.3 | Evaluation of uncertainty

4.3.1 | Data quality

We found that including intraspecific trait variation contributed to 
improve the predictability of traits (Figure 5; Supporting Information 
Table S7). This improvement in trait predictions at the global scale 
highlights the importance of considering intraspecific trait variation 
over and above the conclusion from small-scale studies that intraspe-
cific trait variation contributes greatly to community trait variation 
(Albert et al., 2010; Bloomfield et al., 2018; Poorter, Castilho, Schietti, 
Oliveira, & Costa, 2018; Siefert et al., 2015). This indicates that wide-
spread species are likely to show adaptability in their traits, changing 
them in order to optimize performance for different environments. 
Additionally, our results emphasize the need to build community trait 
models on a representative sample of species (Figure 5; Supporting 
Information Table S7). Moreover, high-quality data not only improve 
models statistically, but also theoretically lead to different results 
(Poorter et al., 2018). Thus, the inclusion of intraspecific trait varia-
tion of species representative of the local vegetation should be pre-
ferred when the aim is to predict plant community mean trait values.

4.3.2 | Applicability domain

The strict selection criteria we set greatly reduced the amount of 
available community trait data (Supporting Information Table S2). 
Nevertheless, our dataset covered the major part of the global ter-
restrial environmental space, indicating a wide applicability domain 
of our models (Figure 6). However, trait predictions should be inter-
preted carefully for deserts, the Arctic and tropical islands because 
of the high variation in predictions between models, and for moun-
tainous areas because of the high environmental variation within a 
grid cell. Furthermore, predictions for wood density are extrapo-
lated to a larger extent in comparison to other traits. A reason for the 
fewer community mean data points for wood density is that species 
mean values are generally considered appropriate because interspe-
cific variation in wood density is larger than the intraspecific varia-
tion; therefore, new wood density data are rarely collected (Siefert 
et al., 2015). Additionally, most wood density measures available 
were collected before 1980, meaning that taking global species aver-
ages of wood density does not consider any evolutionary responses 
to changes in the local environment. Finally, wood density is rarely 
reported because of the challenges of measuring it in small shrubs 
and low vegetation (Perez-Harguindeguy et al., 2013).

4.3.3 | Model selection

The selection of a specific modelling technique greatly affected the 
ability to predict traits, and no single “best” model could be identified 
(Figure 1). Nevertheless, the ensemble forecasting approach as used 
here is equal to or better at predicting each trait than any individual 
model. Additionally, this ensemble approach can be used to retrieve a 
single prediction relying mostly on the best-performing models, while 
considering the variation in predictions between models with similar 
support. Furthermore, large variation in values predicted by different 
models, such as for plant height in the Sahara and the North of India, 
can be used as an indication of uncertainty. Thus, ensemble forecast-
ing is not only better in predicting traits compared with single mod-
els, it also reduces the uncertainty attributable to subjective model 
technique selection and it enables the quantification and mapping of 
the uncertainty attributable to divergent model predictions. Finally, 
it allows for one general modelling approach for multiple traits.

4.4 | Reliability of global plant trait predictions

Our results suggest that plant community traits can be predicted 
reliably at the global scale when using an ensemble approach with 
high-quality data (i.e., including intraspecific trait variation and 
a representative species sample). We show that intraspecific trait 
variation and the representativeness of species considered in a com-
munity are important factors to consider, even at the global scale, 
and that an ensemble forecasting approach helps to deal with and 
quantify multiple types of uncertainty. Based on these results, we 
recommend the systematic and careful selection of data and model-
ling techniques for trait–environment models, and more routine as-
sessment of their reliability based on model predictive performance, 
applicability domain, model uncertainty and realism of predicted 
trait combinations. Such systematic presentation of validation re-
sults and applicability domain in studies presenting predictions of 
spatial patterns of community mean traits will enhance our ability 
to build upon previous modelling attempts and improve our under-
standing of trait–environment relationships.

Our approach also led to new insights, such as the unexpected 
increase of community height with the seasonality of precipitation, 
but the lack of proper model assessment by previous studies limits 
our ability to draw any objective conclusions on the observed dif-
ferences in trait responses. We suggest that higher predictive accu-
racy can be achieved for traits that respond primarily to large-scale 
environmental factors, such as specific leaf area, whereas predictive 
accuracy at this extent and resolution would be lower for traits such 
as LNC that might respond primarily to small-scale environmental 
variation. Nevertheless, the results of our trait models can improve 
the mechanistic understanding of global plant trait–environment 
relationships and contribute to answering the central question in 
functional ecology of the predictability of traits by the environ-
ment. Our assessment opens a new avenue to test impacts of global 
change on trait distributions and, eventually, on plant communities. 
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Ultimately, the results of our global trait models are contingent on 
the quality and distributions of the trait data. Modelling efforts will 
be enriched greatly by improving data collection or data availability 
in areas where no or few data are available and for locations char-
acterized by unique environmental conditions.
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