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Abstract. The averaging theory has been extensively employed for study-
ing periodic solutions of smooth and nonsmooth differential systems. Here,
we extend the averaging theory for studying periodic solutions a class of
regularly perturbed non–autonomous n-dimensional discontinuous piece-
wise smooth differential system. As a fundamental hypothesis, it is as-
sumed that the unperturbed system has a manifold Z ⊂ Rn of periodic
solutions satisfying dim(Z) < n. Then, we apply this result to study limit
cycles bifurcating from periodic solutions of linear differential systems,
x′ = Mx, when they are perturbed inside a class of discontinuous piece-
wise polynomial differential systems with two zones. More precisely, we
study the periodic solutions of the following differential system

x′ = Mx+ εFn1 (x) + ε2Fn2 (x),

in Rd+2 where ε is a small parameter, M is a (d+2)×(d+2) matrix having
one pair of pure imaginary conjugate eigenvalues, m zeros eigenvalues, and
d−m non–zero real eigenvalues.

1. Introduction

The analysis of discontinuous piecewise smooth differential systems has recently
had a large and fast growth due to its applications in several areas of the knowl-
edge. Such systems model many phenomena in control systems (see [1]), impact
on mechanical systems (see [2]), economy (see [17]), biology (see [18]), nonlinear
oscillations (see [27]), neuroscience (see [8, 13,28]), and other fields of science.

Establishing the existence of limit cycles is one of the major problem in the
theory of differential systems. The interest in detecting such objects is due to the
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fact that they are non-local invariant sets providing information on the qualita-
tive behavior of the system. The first studies on this subject considered smooth
differential systems and, since then, many contributions have been made in this di-
rection (see [15] and the references therein). The study of limit cycles has also been
considered for continuous (see, for instance, [4,23,25]) and discontinuous piecewise
smooth differential systems (see, for instance, [11,14,19,20,26]). Most of them are
concentrated on planar piecewise differential systems.

The averaging theory is one of the main tools for studying periodic solutions in
regularly perturbed differential systems of the form

(1.1) ẋ = F0(t,x) +

k∑

i=1

εiFi(t,x) + εk+1R(t,x, ε), (t,x, ε) ∈ R×D × (−ε0, ε0),

where D is an open bounded subset of Rn and the functions Fi, i = 0, 1, . . . , k,
and R are T -periodic in the first variable. Here, k is called order of perturbation
in ε. As a fundamental hypothesis, it is assumed that the unperturbed system,

(1.2) ẋ = F0(t,x),

has a manifold Z ⊂ Rn of periodic solutions. Roughly speaking, this theory
provides a sequence of functions, called averaged functions, which have their simple
zeros associated with limit cycles of system (1.1).

The averaging theory has been extensively employed for studying periodic so-
lutions of smooth and nonsmooth differential systems. First, considering F0 = 0
(consequently, dim(Z) = n) one can find in [31, 32] results providing sufficient
condition on F1 ensuring the existence of periodic solutions of system (1.1) under
smoothness and boundedness conditions. Topological methods were used in [4]
to generalize these results for Lipschitz continuous differential systems. In [23],
assuming the weaker hypothesis dim(Z) = n, the averaging theory was developed
at any order for Lipschitz continuous differential systems. Then, in [20, 24], the
averaging theory was extended up to order 2 for detecting periodic orbits of discon-
tinuous piecewise smooth differential systems. Some applications of these results
can be found in [26,29]. Finally, in [16,22], the averaging theory was developed at
any order for a class of discontinuous piecewise smooth systems.

When dim(Z) < n, the averaging theory has to be combined with other tech-
niques, for instance Lyapunov-Schmidt reduction method, to provide sufficient con-
ditions for the existence of periodic solutions. Here, we also obtain a sequence of
function, now called bifurcation functions, which have their simple zeros associated
with limit cycles of system (1.1). In the smooth case, the averaging theory is de-
veloped at any order [3, 5, 10]. For the nonsmooth case, the first order averaging
theory has been addressed in [30], however it is lacking in a higher order analysis.

In this paper, our first main goal is to develop the averaging theory up to order
2 in ε for a class of discontinuous piecewise smooth differential systems assuming
dim(Z) = d < n. The study of any finite order in ε could be performed in a similar
way, however the general expression for higher order bifurcation functions would
be more complex because it involves higher derivatives of composite functions. As
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our second main goal, we apply this result to study the number of limit cycles
bifurcating from the periodic orbits of a linear differential system x′ = Mx, where
M is a (d + 2) × (d + 2) matrix having one pair of pure imaginary conjugate
eigenvalues, m zeros eigenvalues, and d−m real eigenvalues. We focus our attention
when this system is perturbed up to order 2 in the small parameter ε inside a class
of discontinuous piecewise polynomial functions having two zones.

This paper is organized as follows. In Section 2, we state our main results: The-
orem 1, improving the averaging theory for nonsmooth systems; and Theorems 3-5,
regarding piecewise polynomial perturbations of higher dimensional linear systems.
In Section 3, we provide some preliminary results. The remainder Sections 4-7 are
devoted to the proofs of Theorem 1 and Theorems 3-5.

2. Statements of the main results

2.1. Advances on averaging theory

In this subsection we improve the averaging theory of first and second order to
study the limit cycles of a class of discontinuous piecewise smooth differential
systems.

Let D be an open bounded subset of Rd+1 and for a positive real number T
we consider the C3 differentiable functions F±i : S1 × D → Rd+1 for i = 0, 1, 2,
and R± : S1 × D × (−ε0, ε0) → Rd+1 where S1 ≡ R/(ZT ). Thus, we define the
following T -periodic discontinuous piecewise smooth differential system

(2.1) x′ =





F+(θ,x, ε) if 0 ≤ θ ≤ φ,
F−(θ,x, ε) if φ ≤ θ ≤ T,

where the prime denotes derivative with respect to the variable θ ∈ S1, and

F±(θ,x, ε) = F±0 (θ,x) + εF±1 (θ,x) + ε2F±2 (θ,x) + ε3R±(θ,x, ε),

with x ∈ D. The set of discontinuity of system (2.1) is given by Σ = {θ = 0}∪{θ =
φ}.

For z ∈ D, let ϕ(θ, z) be the solution of the unperturbed system

(2.2) x′ = F0(θ,x),

such that ϕ(0, z) = z, where

F0(θ,x) =





F+
0 (θ,x) if 0 ≤ θ ≤ φ,
F−0 (θ,x) if φ ≤ θ ≤ T.

Clearly,

ϕ(θ, z) =





ϕ+(θ, z) if 0 ≤ θ ≤ φ,
ϕ−(θ, z) if φ ≤ θ ≤ T,
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where ϕ±(θ, z) are the solutions of the systems

(2.3) x′ = F±0 (θ,x),

such that ϕ±(0, z) = z.
We assume that there exists a manifold Z embedded in D such that the solu-

tions starting in Z are all T -periodic. More precisely, for p = d + 1, q ≤ p and V
an open bounded subset of Rq, let σ : V → Rp−q be a C3 function and define

(2.4) Z = {zν = (ν, σ(ν)) : ν ∈ V }.

We shall assume that

(H) Z ⊂ D and for each zν the unique solution ϕ(θ, zν) such that ϕ(0, zν) = zν
is T -periodic.

For z ∈ D we consider the first order variational equations of systems (2.3)
along the solution ϕ±(θ, z), that is

(2.5) Y ′ = DxF
±
0 (θ, ϕ±(θ, z))Y.

Denote by Y ±(θ, z) a fundamental matrix of the differential system (2.5).
Let ξ : Rq ×Rp−q → Rq and ξ⊥ : Rq ×Rp−q → Rp−q be the orthogonal projec-

tions onto the first q coordinates and onto the last p− q coordinates, respectively.
For a point z ∈ D denote z = (u, v) ∈ Rq × Rp−q. Before defining the bifurcation
functions we have to define some auxiliar functions. Let

(2.6)

y±0 (θ, z) = ϕ±(θ, z),

y±1 (θ, z) = Y ±(θ, z)

∫ θ

0

Y ±(s, z)−1F±1 (s, ϕ±(s, z))ds,

y±2 (θ, z) = Y ±(θ, z)

∫ θ

0

Y ±(s, z)−1
(

2F±2 (s, ϕ±(s, z))+

2
∂F±1
∂x

(s, ϕ±(s, z))y±1 (s, z) +
∂2F±0
∂x2

(s, ϕ±(s, z))y±1 (s, z)2

)
ds.

In the formula of y±2 (θ, z), the second derivative
∂2F±0
∂x2

(s, ϕ±(s, z)) is a bilinear

form defined on Rp × Rp which is applied to a “product” of two vectors, in our
case y±1 (s, z)2.

Now, consider

(2.7) gi(z) = y+i (φ, z)− y−i (φ− T, z), for i = 0, 1, 2.

The functions g1 and g2 are usually called averaged functions of order 1 and 2,
respectively. Finally, assuming that the lower right corner (p− q)× (p− q) matrix
of Y +(φ, ν)− Y −(φ− T, ν), denoted by ∆ν , is invertible, we define

(2.8) γ(ν) = −∆−1ν ξ⊥g1(zν).
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Hence, the bifurcation functions f1, f2 : V → Rq of order 1 and 2 are given,
respectively, by

f1(ν) = ξg1(zν),

f2(ν) = 2
∂ξg1
∂v

(zν)γ(ν) +
∂2ξg0
∂v2

(zν)γ(ν)2 + 2ξg2(zν).
(2.9)

Again, in the formula of f2, the second derivative
∂2ξg0
∂v2

(zν) is a bilinear form

defined on R(p−q)×R(p−q). Thus, as before, we say that it is applied to a “product”
of two vectors, in our case, γ(ν)2.

Our main result on the periodic solutions of system (2.1) is the following.

Theorem 1. In addition to hypothesis (H), we assume that for any ν ∈ V the
matrix Y +(φ, ν)− Y −(φ− T, ν) has in the upper right corner the null q × (p− q)
matrix, and in the lower right corner has the (p − q) × (p − q) matrix ∆ν with
det(∆ν) 6= 0. Then, the following statements hold.

(a) If there exists ν∗ ∈ V such that f1(ν∗) = 0 and det(f ′1(ν∗)) 6= 0, then for
|ε| > 0 sufficiently small there exists a T–periodic solution x(θ, ε) of system
(2.1) such that x(0, ε)→ zν∗ as ε→ 0.

(b) Assume that f1 ≡ 0. If there exists ν∗ ∈ V such that f2(ν∗) = 0 and
det(f ′2(ν∗)) 6= 0, then for |ε| > 0 sufficiently small there exists a T–periodic
solution x(θ, ε) of system (2.1) such that x(0, ε)→ zν∗ as ε→ 0.

Theorem 1 is proved in Section 4. The following result is an immediate conse-
quence of Theorem 1.

Corollary 2. Assume the hypothesis (H) and that q = p, in this case Z = V ⊂ D
is a compact bounded p–dimensional manifold. Then, statements (a) and (b) of
Theorem 1 hold by taking f1 = g1 and f2 = 2g2.

2.2. Perturbations of higher dimensional linear systems

Consider a (d+ 2)× (d+ 2) matrix M given by

M =




0 −1 01×d

1 0 01×d

0d×1 0d×1 M̃



,

where 0i×j denotes a null i × j matrix. When 0 < m < d assume that M̃ is
the diagonal matrix diag(µ1, µ2, . . ., µd) with µ1 = . . . = µm = 0 and µm+1 6=
0, . . . , µd 6= 0. If m = 0, then M̃ is a diagonal matrix with all entries distinct from
zero, and if m = d we assume that M̃ is the null matrix.
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Let L1 = {(x, 0, z) : x ≥ 0, z ∈ Rd} and L2 = {(λ cosφ, λ sinφ, z) : λ ≥ 0, z ∈
Rd} be two half–hyperplanes of Rd+2 sharing the boundary {0, 0, z) : z ∈ Rd}.
The set Σ = L1 ∪ L2 splits D ⊂ Rd+2 in 2 disjoint open sectors, namely C+ and
C− (see Figure 1).

φ

x

y

z

L1

L2Σ

Figure 1: Set of discontinuity Σ.

We will denote by Xλ and Yλ two polynomials of degree n in the variables
x, y ∈ R and z = (z1, . . . , zd) ∈ Rd, more precisely

Xλ(x, y, z) =
n∑

i+j+k1+...+kd=0

λijk1...kd x
iyjzk11 . . . zkdd , and

Yλ(x, y, z) =

n∑

i+j+k1+...+kd=0

λijk1...kd x
iyjzk11 . . . zkdd ,

for λijk1...kd ∈ R and i, j, k1, . . . , kd ∈ N. Then, take

(2.10) X± = (Xa± , Xb± , Xc±1
, . . . , Xc±d

), Y ± = (Yα± , Yβ± , Yγ±
1
, . . . , Yγ±

d
),

and let X (x, y, z) and Y(x, y, z) be polynomial vector fields defined by

X (x, y, z) = X±(x, y, z) if (x, y, z) ∈ C±,
Y(x, y, z) = Y ±(x, y, z) if (x, y, z) ∈ C±.

Now, consider the discontinuous piecewise polynomial differential systems

(2.11) (ẋ, ẏ, ż) = M (x, y, z) + εX (x, y, z) + ε2Y (x, y, z) ,

where x, y ∈ R and z = (z1, z2, . . . , zd) ∈ Rd. The dot denotes derivative with
respect to the time t, and Σ denotes the set of discontinuity for system (2.11).
Also, M (x, y, z) is an abuse of notation and denotes the matrix M applied to the
vector (x, y, z), which is defined as the product between the matrix M with the
column matrix associated with the vector (x, y, z). This abuse of notation will be
recurrent throughout the paper.
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Denote by Ni(m,n, φ) the maximum number of limit cycles of system (2.11)
that can be detected using averaging theory of order i when |ε| 6= 0 is sufficiently
small.

Theorem 3. Assume 0 ≤ m ≤ d, n ∈ N, and φ ∈ (0, 2π) \ {π}. Then,

(a) N1(m,n, φ) = nm+1 and

(b) 2n(2n− 1)m ≤ N2(m,n, φ) ≤ (2n)m+1.

Theorem 3 generalizes the particular case m = d of [26]. Comparing itens (a)
and (b) of Theorem 3, we can easily check that N2(m,n, φ) > N1(m,n, φ) for every
0 ≤ m ≤ d, n ∈ N, and φ ∈ (0, 2π) \ {π}.

Notice that, the lower and upper bounds given in statement (b) of Theorem 3
coincide for m = 0. In this case, N2(0, n, φ) = 2n. In general, the lower bound of
statement (b) of Theorem 3 is not optimal and can be improved in some cases (see
Proposition 5.1).

Theorems 3 is proved in section 5.

If φ = π we note that the maximum number of limit cycles eventually decreases
as stated in the following result.

Theorem 4. Assume 0 ≤ m ≤ d and φ = π. Then,

(a) N1(m,n, π) = nm+1 and

(b) N ≤ N2(m,n, π) ≤ (2n)m+1 where N = (2n− 1)m+1 if n is odd, and

N = (2n− 2)(2n− 1)m if n is even.

Theorem 4 is proved in Section 6.

Comparing itens (a) and (b) of Theorem 4, we can check that N2(m,n, π) ≥
N1(m,n, π) for every 0 ≤ m ≤ d and n ∈ N, with strictly inequality for n 6= 1.

When φ = 2π, system (2.11) is continuous. In this case X (x, y, z) = X+(x, y, z)
and Y(x, y, z) = Y +(x, y, z). So, we get the following result.

Theorem 5. Assume that 0 ≤ m ≤ d and φ = 2π. Then,

(a) N1(m,n, 2π) = nm(n− 1)/2 for all m 6= 0, and

N1(0, n, 2π) =





n− 1

2
if n is odd,

n− 2

2
if n is even.

(b) n ≤ N2(0, n, 2π) ≤ 2n.

Theorem 5 generalizes the particular cases m = d = 0 and m = d = 1 of [7]
(see Theorems 2 and 3). Moreover, statement (a) of Theorem 5 also generalizes
Theorem 1 of [26] when m = d. We prove Theorem 5 in Section 7.
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3. Preliminary results

In this section we present some preliminaries results that we shall need in Sections
5, 6 and 7. In Section 3.1, we present a change of coordinates so that system (2.11)
reads in the standard form (2.1) to apply the averaging method. In Section 3.2,
we construct the averaging functions f1 and f2 for system (2.11), defined in (2.9).
Finally, in Section 3.3 we present some trigonometric relations that will be used in
the calculus of the zeros of the functions f1 and f2.

3.1. Standard form

Let x, y ∈ R and z = (z1, . . . , zd) ∈ Rd. Using the change of variables

(3.1) x = r cos θ and y = r sin θ,

with r ∈ R+ and θ ∈ S1 ≡ R/(2πZ), system (2.11) becomes

(3.2)
(
θ̇, ṙ, ż

)
= (1, 0, M̃z) + εA(θ, r, z) + ε2B(θ, r, z),

where A,B : S1 × R+ × Rd → Rd+2 are piecewise smooth functions given by

A =





A+ if 0 ≤ θ ≤ φ,
A− if φ ≤ θ ≤ 2π,

and B =





B+ if 0 ≤ θ ≤ φ,
B− if φ ≤ θ ≤ 2π,

where

A±(θ, r, z) = (A±1 (θ, r, z), . . . , A±d+2(θ, r, z)),

B±(θ, r, z) = (B±1 (θ, r, z), . . . , B±d+2(θ, r, z)),

with

(3.3)

A±1 =
1

r

(
Xb± (r cos θ, r sin θ, z) cos θ −Xa± (r cos θ, r sin θ, z) sin θ

)
,

B±1 =
1

r

(
Yβ± (r cos θ, r sin θ, z) cos θ − Yα± (r cos θ, r sin θ, z) sin θ

)
,

A±2 = Xa± (r cos θ, r sin θ, z) cos θ +Xb± (r cos θ, r sin θ, z) sin θ,

B±2 = Yα± (r cos θ, r sin θ, z) cos θ + Yβ± (r cos θ, r sin θ, z) sin θ,

A±`+2 = Xc±`
(r cos θ, r sin θ, z),

B±`+2 = Yγ±
`

(r cos θ, r sin θ, z),

for 1 ≤ ` ≤ d. Clearly the discontinuity Σ is now given by

Σ = {(0, r, z) : r ∈ R+, z ∈ Rd} ∪ {(φ, r, z) : r ∈ R+, z ∈ Rd}.
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Taking the angle θ as the new time, system (3.2) reads

(3.4)

r′ =
ṙ

θ̇
=

εA2(θ, r, z) + ε2B2(θ, r, z)

1 + εA1(θ, r, z) + ε2B1(θ, r, z)
,

z′` =
ż`

θ̇
=
µ`z` + εA`+2(θ, r, z) + ε2B`+2(θ, r, z)

1 + εA1(θ, r, z) + ε2B1(θ, r, z)
,

for 1 ≤ ` ≤ d. Note that now the prime denotes derivative with respect to the
independent variable θ.

Expanding system (3.4) in Taylor series around ε = 0, it can be written as
system (2.1) by taking x = (r, z) ∈ D ⊂ R+ × Rd and

(3.5) F±j (θ, r, z) = (F±j0(θ, r, z), . . . , F±jd(θ, r, z)), for j = 0, 1, 2,

where

(3.6)

F±0`(θ, r, z) = 0,

F±0ω(θ, r, z) = µωzω,

F±1`(θ, r, z) = A±`+2(θ, r, z),

F±1ω(θ, r, z) = A±ω+2(θ, r, z)− µωzωA±1 (θ, r, z),

F±2`(θ, r, z) = B±`+2(θ, r, z)−A±1 (θ, r, z)A±`+2(θ, r, z),

F±2ω(θ, r, z) = B±ω+2(θ, r, z) + µωzω
(
A±1 (θ, r, z)

)2

−A±1 (θ, r, z)A±ω+2(θ, r, z)− µωzωB±1 (θ, r, z),

for 0 ≤ ` ≤ m and m+ 1 ≤ ω ≤ d.
When m = d the functions F±jω, for j = 0, 1, 2, do not be considered.

3.2. Construction of the averaging functions

Now, we shall use the notations introduced in subSection 2.1. Since the unper-
turbed system (2.2) is continuous, we have ϕ+(θ, z) = ϕ−(θ, z). Therefore, when
0 ≤ m < d the solution of system (2.2) is given by

ϕ(θ, z) = (r, z1, . . . , zm, e
µm+1θzm+1, . . . , e

µdθzd),

for z = (r, z) = (r, z1, . . . , zd). Note that if zν = (r, z1, . . . , zm, 0, . . . , 0) then
ϕ(θ, zν) = zν for every θ ∈ S1. Then, taking an open bounded subset V ⊂ Rm+1

and the zero function σ : V → Rd−m, the manifold Z, defined in (2.4), becomes

Z = {zν = (ν, 0) ∈ Rd+1 : ν = (r, z1, . . . , zm) ∈ V }.
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For z ∈ D a fundamental matrix of system (2.5) is

Y (θ, z) =




Id1+m 0

0 ∆


 ,

where Id1+m is the (1+m)× (1+m) identity matrix, and ∆ is the diagonal matrix
diag(eµm+1θ, . . . , eµdθ). Since Y (θ, z) does not depend of z we denote Y (θ, z) =
Y (θ). Then, we have

Y (φ)− Y (φ− 2π) =




0 0

0 ∆ν


 ,

where

(3.7) ∆ν = diag
(
eµm+1φ(1− e−µm+12π), . . . , eµdφ(1− e−µd2π)

)
.

According to the notation introduced in Theorem 1 we have p = d + 1 and
p − q = d −m, with q = m + 1. Since Z has dimension m + 1, we consider the
projections ξ : Rm+1 × Rd−m → Rm+1 and ξ⊥ : Rm+1 × Rd−m → Rd−m, with
u = (r, z1, . . . , zm) ∈ Rm+1 and v = (zm+1, . . . , zd) ∈ Rd−m.

From (2.6) and (3.6) we have y1(θ, z) =
(
y10(θ, z), . . . , y1d(θ, z)

)
where

(3.8)

y±1`(θ, z) =

∫ θ

0

A±`+2(s, ϕ(s, z))ds,

y±1ω(θ, z) =

∫ θ

0

eµω(θ−s)
(
A±ω+2(s, ϕ(s, z))− µωzωA±1 (s, ϕ(s, z))

)
ds,

for 0 ≤ ` ≤ m and m+ 1 ≤ ω ≤ d.
Moreover, from (2.7) we have g1(zν) =

(
g10(zν), . . . , g1d(zν)

)
with

(3.9)

g1`(zν) =

∫ φ

0

A+
`+2(s, ϕ(s, zν)) ds+

∫ 2π

φ

A−`+2(s, ϕ(s, zν)) ds,

g1ω(zν) =

∫ φ

0

eµω(φ−s)A+
ω+2(s, ϕ(s, zν)) ds+

∫ 2π

φ

eµω(φ−2π−s)A−ω+2(s, ϕ(s, zν)) ds

for 0 ≤ ` ≤ m and m+ 1 ≤ ω ≤ d.
Therefore, the bifurcation function f1 : V → Rm+1, defined in (2.9), is given

by

(3.10) f1(ν) = ξg1(zν) =
(
f10(ν), . . . , f1m(ν)

)
,

with f1`(ν) = g1`(zν), where g1` is given in (3.9) for 0 ≤ ` ≤ m.
Now, we compute the bifurcation function f2 defined also in (2.9).
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Since g0 is linear (see (2.6) and (2.7)) we have
∂2ξg0
∂v2

(zν) = 0.

Moreover, as ξ⊥g1(zν) =
(
g1m+1(zν), . . . , g1 d(zν)

)
, it follows from (2.8), (3.7)

and (3.9) that
γ(ν) =

(
γm+1(ν), . . . , γd(ν)

)
,

where
(3.11)

γω(ν) =
−1

1− e−µω2π

(∫ φ

0

e−µωsA+
ω+2(s, zν)ds+

∫ 2π

φ

e−µω(2π+s)A−ω+2(s, zν)ds

)
,

for m+ 1 ≤ ω ≤ d. Furthermore, for v = (zm+1, . . . , zd) we have

∂ξg1
∂v

(zν)γ(ν) =
(
G̃10(ν), . . . , G̃1m(ν)

)
,

with

(3.12) G̃1`(ν) =

d∑

ω=m+1

∂g1`
∂zω

(zν)γω(ν),

where g1` is given in (3.9) for 0 ≤ ` ≤ m. Additionally from (2.7) and (2.6) we
obtain

ξg2(zν) = ξ(y+2 (φ, zν))− ξ(y−2 (φ− 2π, zν)),

where

ξy±2 (θ, zν) = 2

∫ θ

0

ξ
(
F±2 (s, zν)

)
+ ξ

(
∂F±1
∂x

(s, zν)y±1 (s, zν)

)
ds,

because F±0 is linear.
On the other hand

ξF±2 (s, zν) =
(
F±20(s, zν), . . . , F±2m(s, zν)

)
, and

ξ

(
∂F±1
∂x

(s, zν)y±1 (s, zν)

)
=
(
F̃±10(s, zν), . . . , F̃±1m(s, zν)

)
,

being

(3.13) F̃±1`(s, zν) =
∂F±1`
∂r

(s, zν)y±10(s, zν) + . . .+
∂F±1`
∂zd

(s, zν)y±1d(s, zν),

for F±1` and F±2` defined in (3.6) for 0 ≤ ` ≤ m. Hence

(3.14) f2(ν) = 2
∂ξg1
∂v

(zν)γ(ν) + 2 ξg2(zν) =
(
f20(ν), . . . , f2m(ν)

)
,

where

(3.15)

f2`(ν) = 2 G̃1`(ν) + 4

∫ φ

0

(
F+
2`(s, zν) + F̃+

1`(s, zν)
)
ds

+ 4

∫ 2π

φ

(
F−2`(s, zν) + F̃−1`(s, zν)

)
ds,
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for 0 ≤ ` ≤ m. See the explicit expression of all functions that appear in (3.15) in
the Appendix.

If m = d, then the functions G̃1`(ν) are not considered because f2 = 2g2 (see
Corollary 2).

3.3. Some trigonometric integrals

In order to study the zeros of the averaging functions f1 and f2, we need to know
some results about trigonometric integrals. Then, we shall state Lemma 6. The
proof of this lemma will be omitted here, but it can easily be proven using some
trigonometric relations found in Chapter 2 of [12].

For p, q ∈ N and φ ∈ (0, 2π] consider the functions

(3.16) I(p,q,φ) =

∫ φ

0

cosp s sinq s ds, J(p,q,φ) =

∫ 2π

φ

cosp s sinq s ds.

Lemma 6. Let I(p,q,φ) and J(p,q,φ) be the functions defined in (3.16) for φ ∈ (0, 2π].
Then, the following statements hold.

(a) If φ 6= π and φ 6= 2π then I(p,q,φ), J(p,q,φ),

∫ φ

0

cosi s sinj s I(p,q,φ) ds, and
∫ 2π

φ

cosi s sinj s I(p,q,φ) ds are non–zero;

(b) If φ = π then I(p,q,π) = 0 or J(p,q,π) = 0 if and only if p is odd.

Moreover

∫ π

0

cosi s sinj s I(p,q,s) ds = 0 or

∫ 2π

π

cosi s sinj s I(p,q,s) ds = 0

if and only if one of the following statements hold:

(i) i, j, p and q are odd;

(ii) i, p and q are odd, and j is even;

(iii) i and p are odd, and q and j are even;

(iv) i, p and j are odd, and q is even.

(c) If φ = 2π then I(p,q,2π) 6= 0 if and only if p and q are simultaneously even.

4. Proof of Theorem 1

The proof of Theorem 1 is based on the next lemma which is a particular case of the
Lyapunov-Schmidt reduction for a finite dimensional function (see for instance [6]).
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Lemma 7. Assuming q ≤ p are positive integers, let D and V be open bounded
subsets of Rp and Rq, respectively. Let g : D × (−ε0, ε0)→ Rp and σ : V → Rp−q
be C3 functions such that g(z, ε) = g0(z)+εg1(z)+ε2g2(z)+O(ε3) and Z = {zν =
(ν, σ(ν)) : ν ∈ V } ⊂ D. We denote by Γν the upper right corner q× (p− q) matrix
of Dg0(zν), and by ∆ν the lower right corner (p− q)× (p− q) matrix of Dg0(zν).
Assume that for each zν ∈ Z, det(∆ν) 6= 0 and g0(zν) = 0. We consider the
functions f1, f2 : V → Rq defined in (2.9). Then, the following statements hold.

(a) If there exists ν∗ ∈ V with f1(ν∗) = 0 and det(Df1(ν∗)) 6= 0, then there
exists νε such that g(zνε , ε) = 0 and zνε → zν∗ when ε→ 0.

(b) Assume that f1 = 0. If there exists ν∗ ∈ V with f2(ν∗) = 0 and det(Df2(ν∗))
6= 0, then there exists νε such that g(zνε , ε) = 0 and zνε → zν∗ when ε→ 0.

The proof of this lemma can be found in [21].
Note that in Lemma 7 the functions gi for i = 0, 1, 2 which appears in the

expression of (2.9) and (2.8) are the ones of the function

(4.1) g(z, ε) = g0(z) + εg1(z) + ε2g2(z) +O(ε3),

instead of the functions which appear in (2.7).

Proof of Theorem 1. Let ψ(θ, z, ε) be a periodic solution of system (2.1) such
that ψ(0, z, ε) = z. Similarly let ψ±(θ, z, ε) be the solutions of the systems
x′ = F±(θ,x, ε) such that ψ±(0, z, ε) = z. So

ψ(θ, z, ε) =





ψ+(θ, z, ε) if 0 ≤ θ ≤ φ,

ψ−(θ, z, ε) if φ ≤ θ ≤ T.

Since the vector field (2.1) is T–periodic, it may also read

ψ(θ, z, ε) =





ψ+(θ, z, ε) if 0 ≤ θ ≤ φ,

ψ−(θ, z, ε) if φ− T ≤ θ ≤ 0.

Now, we consider the function g(z, ε) = ψ+(φ, z, ε)−ψ−(φ−T, z, ε). It is easy
to see that the solution ψ(θ, z, ε) is T–periodic in θ if and only if g(z, ε) = 0. So,
from hypothesis (H) we have that g(zν,ε) = 0 for every zν,ε ∈ Z.

Using Taylor series to expand the functions ψ±(θ, z, ε) in powers of ε we obtain

(4.2) ψ±(θ, z, ε) = y±0 (θ, z) + εy±1 (θ, z) + ε2
y±2 (θ, z)

2
+O(ε2),

where yi(θ, z) is given in (2.6). We shall omit the computations for obtaining
(4.2), nevertheless they can be found in [23]. Therefore, g(z, ε) = g0(z) + εg1(z) +
ε2g2(z) +O(ε2), where gi(z) = y+i (φ, z)− y−i (φ− T, z) for i = 0, 1, 2. Moreover

Dg0(z) =
∂ϕ+

∂z
(φ, z)− ∂ϕ−

∂z
(φ− T, z) = Y +(φ, z)− Y −(φ− T, z).
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So, from hypothesis of Theorem 1 we have that the matrix Dg0(z) has in the
upper right corner the zero q × (d − q) matrix, and in the lower right corner has
the (p− q)× (p− q) matrix ∆ν with det(∆ν) 6= 0.

We conclude the proof of this theorem by applying Lemma 7 to the function
g(z, ε) defined in (4.1). 2

5. Proof of Theorem 3

In order to prove Theorem 3 we shall study the zeros of the averaging functions f1
and f2, given in (3.10) and (3.14), respectively, when φ ∈ (0, 2π) \ {π}.
Remark 8. For sake of simplicity we shall denote by λijk1...km0 the coefficient

of xiyjzk11 . . . zkmm , and by λij0 the coefficient of xiyj of system (2.11), when λ =
a±, b±, c±` for all 1 ≤ ` ≤ m.

From statement (a) of Lemma 6 we have f1(ν) = (f10(ν), . . . , f1m(ν)) where
(5.1)

f10(ν) =
n∑

i+j+k1+...+km=0

ri+jzk11 . . . zkmm

(
a+ijk1...km0I(i+1,j,φ)

+ b+ijk1...km0I(i,j+1,φ) + a−ijk1...km0J(i+1,j,φ) + b−ijk1...km0J(i,j+1,φ)

)
,

f1`(ν) =

n∑

i+j+k1+...+km=0

ri+jzk11 . . . zkmm

(
c+`,ijk1...km0I(i,j,φ) + c−`,ijk1...km0J(i,j,φ)

)
,

with ν = (r, z1, . . . , zm) and 1 ≤ ` ≤ m.

Proposition 9. Assume 0 ≤ m ≤ d and φ 6= π. Then f1 has at most nm+1 simple
zeros and this number can be reached.

Proof. For each 0 ≤ ` ≤ m and ν = (r, z1, . . . , zm), f1`(ν) is a complete polynomial
of degree n. Recall that a complete polynomial of degree k means a polynomial
that appears all its monomials. By Bezout Theorem (see [9]), f1(ν) can be at
most nm+1 simple zeros. Since all the coefficients of f1(ν) are independent, we
can choose them in order that f1(ν) has exactly nm+1 zeros with r > 0, and
det f ′1(ν∗) 6= 0 for each zero ν∗ of f1(ν) (that is, ν∗ is a simple zero). 2

Proposition 10. Take 0 ≤ m ≤ d and φ 6= π. If f1 ≡ 0 then f2 has at most
(2n)m+1 simple zeros, and a lower bound for the maximum number of simple zeros
is (2n)(2n− 1)m.

Proof. Assume that f1 ≡ 0. From (5.1) it follows that

(5.2)

∑

i+j=s

a+ijk1...km0 I(i+1,j,φ) + b+ijk1...km0 I(i,j+1,φ)

+ a−ijk1...km0 J(i+1,j,φ) + b−ijk1...km0 J(i,j+1,φ) = 0,

∑

i+j=s

c+`,ijk1...km0 I(i,j,φ) + c−`,ijk1...km0 J(i,j,φ) = 0,
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for 1 ≤ ` ≤ m, 0 ≤ s ≤ n, 0 ≤ k` ≤ n with 0 ≤ k1 + . . .+ km ≤ n− s.
Moreover, f2(ν) = (f20(ν), . . . , f2m(ν)) with ν = (r, z1, . . . , zm). In particular,

if m = 0 then f2(ν) = f20(r). Considering the expression for f2`(ν), given in (3.15)

for 0 ≤ ` ≤ m, we conclude that G̃1`(ν) and

∫ φ

0

F̃+
1`(s, zν) ds +

∫ 2π

φ

F̃−1`(s, zν) ds

are complete polynomials of degree 2n− 1 in the variables (r, z1, . . . , zm), and

∫ φ

0

F+
2`(s, zν) ds+

∫ 2π

φ

F−2`(s, zν) ds =
1

r

2n∑

k=0

Qk(z1, . . . , zm) rk,

where zν = (r, z1, . . . , zm, 0, . . . , 0) ∈ Rd+1, Qk(z1, . . . , zm) is a complete polyno-
mial of degree 2n − k in the variables (z1, . . . , zm) if m 6= 0, and Qk(z1, . . . , zm)
is constant if m = 0. The above equality is evident if we take into account state-
ment (a) of Lemma 6 and conditions (5.2). Therefore, each rf2`(ν) is a complete
polynomial of degree 2n in the variables (r, z1, . . . , zm). Since r > 0, it is known
that rf2`(ν) = 0 if and only if f2`(ν) = 0 for each 0 ≤ ` ≤ m. Then, by Bezout
Theorem, f2(ν) has at most (2n)m+1 simple zeros for all 0 ≤ m ≤ d.

In order to show that the maximum number is greater than or equal to (2n)(2n−
1)m we provide a particular example. So, take a±i00 6= 0, c±`,00...0k`0 6= 0, and we take

zero all the other coefficients for 1 ≤ ` ≤ m. From (3.15) we obtain f20(ν) = f20(r)
and f2`(ν) = f2`(r, z`), where

f20(r) =
4

r

n∑

i=0

n∑

p=0

ri+p
(
a+i00a

+
p00I(i+p+1,1,φ) + a−i00a

−
p00J(i+p+1,1,φ)

+i a+i00a
+
p00

∫ φ

0

cosi+1 s I(p+1,0,s)ds+ ia−i00a
−
p00

∫ 2π

φ

cosi+1 sI(p+1,0,s)ds

)
,

f2`(r, z`) =
4

r

n∑

i=0

n∑

kl=0

riz
k`
`

(
a+i00c

+
`,0...0k`0

I(i,1,φ) + a−i00c
−
`,0...0k`0

J(i,1,φ)
)

+4
n∑

k`=1

n∑

L`=0

z
k`+L`−1
`

(
φ2

2
k` c

+
`,0...0k`0

c+`,0...0L`0

+ (2π)2−φ2

2
k` c
−
`,0...0k`0

c−`,0...0L`0

)
,

where a+i00I(i+1,0,φ) = −a−i00J(i+1,0,φ) and c+`,00...0k`0I(0,0,φ) = −c−`,00...0k`0J(0,0,φ) for
1 ≤ ` ≤ m (see (5.2)).

From statement (a) of Lemma 6, rf20(r) is a complete polynomial of degree 2n
in the variable r, whose coefficients are independent. Furthermore, if f20(r∗) = 0
with r∗ > 0, then f2`(r

∗, z`) is a polynomial of degree 2n − 1 in the variable z`,
and all their coefficients are independent for 1 ≤ ` ≤ m. Therefore, By Bezout
Theorem, f2(ν) has at most (2n)(2n − 1)m simple zeros, and this number can be
reached due to the independence of coefficients. 2

Proof of Theorem 3. We apply Theorem 1 to the function f1 of Proposition 9 and
we conclude statement (a). Statement (b) is proved applying Theorem 1 to the
functions f1 and f2 given in Proposition 10. 2
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5.1. Improving the lower bound

As mentioned in the introduction, the lower bound of statement (b) of Theorem 3 is
not optimal and can be improved. From Theorem 1 we need to solve the equation
f2(ν) = 0, assuming f1 ≡ 0. This can be a hard task due to the complexity of f2.
In what follows, we provide a simpler polynomial system for which their simple
zeros imply the existence of simple zeros of f2.

From (3.14) we have f2(ν) = (f20(ν), . . . , f2m(ν)). In (3.15) we can take

G̃1`(ν) = 0 and, since 1/r appears as a common factor in the expression of A±1
(3.3), we define Ã±1 = rA±1 . Finally, for 1 ≤ ` ≤ m, we assume that A±`+2 = δÃ±`+2

and B±`+2 = δB̃±`+2 for δ > 0 sufficiently small. Notice that, the assumption is
equivalent to ask that the coefficients of the perturbation (2.10) for 1 ≤ ` ≤ m are
of order δ.

Now, for 1 ≤ ` ≤ m, we define

(5.3)

P`(ν) =

∫ φ

0

B̃+
`+2(s, zν) ds+

∫ 2π

φ

B̃−`+2(s, zν) ds,

Q`(ν) =

∫ φ

0

Ã+
1 (s, zν)Ã+

`+2(s, zν) ds+

∫ 2π

φ

Ã−1 (s, zν)Ã−`+2(s, zν) ds.

Thus, from (3.3), (3.6), (3.8) and (3.13) we have

∫
F̃±1`(s, zν)ds = O2(δ) and,

therefore,

r

4δ
f2`(ν) = rP`(ν)−Q`(ν) +O(δ), for 1 ≤ ` ≤ m.

Hence, taking δ > 0 sufficiently small, we obtain the following proposition.

Proposition 11. If the polynomial system

(5.4) f20(ν) = 0 and r P`(ν)−Q`(ν) = 0, for 1 ≤ ` ≤ m,

has N isolated solutions, then N2(m,n, φ) ≥ N .

6. Proof of Theorem 4

In this section we study the zeros of the functions f1 and f2, given in (3.10) and
(3.14), respectively, when φ = π. Then, we conclude Theorem 4 applying Theorem
2.1.
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From statement (b) of Lemma 6 we have f1(ν) = (f10(ν), . . . , f1`(ν)) where
(6.1)

f10(ν) =
n∑

i odd, P=0

ri+jzk11 . . . zkmm

(
a+ijk1...km0I(i+1,j,π) + a−ijk1...km0J(i+1,j,π)

)

+
n∑

i even, P=0

ri+jzk11 . . . zkmm

(
b+ijk1...km0I(i,j+1,π) + b−ijk1...km0J(i,j+1,π)

)
,

f1`(ν) =
n∑

i even, P=0

ri+jzk11 . . . zkmm

(
c+`,ijk1...km0I(i,j,π) + c−`,ijk1...km0J(i,j,π)

)
,

where ν = (r, z1, . . . , zm), 1 ≤ ` ≤ m and P = i+ j + k1 + . . .+ km.

Proposition 12. Take 0 ≤ m ≤ d and φ = π. Then, f1 has at most nm+1 simple
zeros and this number can be reached.

Proof. This proof is analogously to the proof of Proposition 9, noticing that for
each 0 ≤ ` ≤ m, f1`(ν) is a complete polynomial of degree n in the variables
(r, z1, . . . , zm) and all their coefficients are independent. 2

Proposition 13. Assume 0 ≤ m ≤ d and φ = π. If f1 ≡ 0 then f2 has at
most (2n)m+1 simple zeros, and the lower bound for the number of simple zeros is
(2n− 1)m+1 if n is odd, and (2n− 2)(2n− 1)m if n is even.

Proof. Assume that f1 ≡ 0. From (6.1) it follows that

(6.2)

∑

i odd, i+j=s

a+ijk1...km0 I(i+1,j,π) + a−ijk1...km0 J(i+1,j,π)

+
∑

i even, i+j=s

b+ijk1...km0 I(i,j+1,π) + b−ijk1...km0 J(i,j+1,π) = 0,

∑

i even, i+j=s

c+`,ijk1...km0 I(i,j,π) + c−`,ijk1...km0 J(i,j,π) = 0,

for 1 ≤ ` ≤ m, 0 ≤ s ≤ n, 0 ≤ k` ≤ n with 0 ≤ k1 + . . .+ km ≤ n− s.
Moreover, f2(ν) = (f20(ν), . . . , f2m(ν)) with ν = (r, z1, . . . , zm). If m = 0 then

f2(ν) = f20(r). Analogously to the proof of Proposition 10 we conclude that f2(ν)
has at most (2n)m+1 simple zeros for all 0 ≤ m ≤ d.

Now, we provide a particular example to exhibit the lower bound for the max-
imum number of simple zeros. So, take a±i00 6= 0, c±`,00...0k`0 6= 0, and take zero all

the other coefficients for 1 ≤ ` ≤ m. From (3.15) we obtain f20(ν) = f20(r) and
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f2`(ν) = f2`(r, z`), where

f20(r) =
4

r

(
n∑

i even, i=0

n∑

p odd, p=0

ri+p
(
a+i00a

+
p00I(i+p+1,1,π) + a−i00a

−
p00J(i+p+1,1,π)

+i a+i00a
+
p00

∫ π

0

cosi+1 s I(p+1,0,s)ds+ i a−i00a
−
p00

∫ 2π

π

cosi+1 s I(p+1,0,s)ds
)

+
n∑

i odd, i=0

n∑

p even, p=0

ri+p
(
a+i00a

+
p00I(i+p+1,1,π) + a−i00a

−
p00J(i+p+1,1,π)

+i a+i00a
+
p00

∫ π

0

cosi+1 s I(p+1,0,s)ds+ i a−i00a
−
p00

∫ 2π

π

cosi+1 s I(p+1,0,s)ds
)

+
n∑

i odd, i=0

n∑

p odd, p=0

ri+p
(
a+i00a

+
p00I(i+p+1,1,π) + a−i00a

−
p00J(i+p+1,1,π)

+i a+i00a
+
p00

∫ π

0

cosi+1 s I(p+1,0,s)ds+ ia−i00a
−
p00

∫ 2π

π

cosi+1 sI(p+1,0,s)ds
)
)
,

and

f2`(r, z`) =
4

r

n∑

i=0

n∑

kl=0

riz
k`
`

(
a+i00c

+
`,0...0k`0

I(i,1,φ) + a−i00c
−
`,0...0k`0

J(i,1,φ)
)

+
n∑

k`=1

n∑

L`=0

z
k`+L`−1
` k`

(
φ2

2
c+`,0...0k`0c

+
`,0...0L`0

+ (2π)2−φ2

2
c−`,0...0k`0c

−
`,0...0L`0

)
,

for 1 ≤ ` ≤ m, where a+i00I(i+1,0,π) = −a−i00J(i+1,0,π) if i is odd and c+`,00...0k`0
I(0,0,π) = −c−`,00...0k`0J(0,0,π) (see (6.2)). Therefore, from statement (b) of Lemma
6, rf20(r) is a complete polynomial in the variable r of degree 2n−1 if n is odd, and
2n−2 if n is even, and its coefficients are independent. Furthermore, if f20(r∗) = 0
with r∗ > 0, then f2`(r

∗, z`) is a polynomial of degree 2n− 1 in the variable z` for
each 1 ≤ ` ≤ m. Then, the number of simple zeros with r > 0 of f2(ν) can be
(2n− 1)m+1 if n is odd, and (2n− 2)(2n− 1)m if n is even. By the independence
of all coefficients these numbers can be reached. 2

Proof of Theorem 4. From Theorem 1 and Proposition 12, statement (a) holds,
and applying Theorem 1 to the functions f1 and f2 given in Proposition 13 we
conclude statement (b). 2

7. Proof of Theorem 5

When φ = 2π system (2.11) is continuous. Then, considering the cylindrical
coordinates given in (3.1), and taking θ as the new time, system (2.11) can be
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written as system (2.1) that is,

x′ = F+(θ,x, ε), for 0 ≤ θ ≤ 2π,

where

F+(θ,x, ε) = F+
0 (θ,x) + εF+

1 (θ,x) + ε2F+
2 (θ,x) + ε3R+(θ,x, ε),

for x = (r, z) and z = (z1, . . . , zd), with F+
j given in (3.5) and (3.6) for j = 0, 1, 2.

From statement (c) of Lemma 6 we have f1(ν) = (f10(ν), . . . , f1m(ν) with

(7.1)

f10(ν) =
n∑

i odd, j even, P=0

ri+jzk11 . . . zkmm a+ijk1...km0I(i+1,j,2π)

+
n∑

i even, j odd, P=0

ri+jzk11 . . . zkmm b+ijk1...km0I(i,j+1,2π),

f1`(ν) =

n∑

i, j even, P=0

ri+jzk11 . . . zkmm c+`,ijk1...km0I(i,j,2π),

where ν = (r, z1, . . . , zm), 1 ≤ ` ≤ m and P = i+ j + k1 + . . .+ km.

Proposition 14. Assume 0 ≤ m ≤ d and φ = 2π. If m 6= 0 then f1 has at most
nm(n − 1)/2 simple zeros and this number can be reached. If m = 0 then f1 has
at most (n − 1)/2 simple zeros if n is odd, and (n − 2)/2 if n is even, and these
numbers can be reached.

Proof. We have f10(ν) = rf̃10(ν) with

f̃10(ν) = h1 + r2h3 + r4h5 + r6h7 + . . .+





rn−1hn if n is odd,

rn−2hn−1 if n is even,

where

hk =
n−k∑

k1+...+km=0

zk11 . . . zkmm

( ∑

i odd, j even, i+j=k

a+ijk1...km0 I(i+1,j,2π)

+
∑

i even, j odd, i+j=k

b+ijk1...km0 I(i,j+1,2π)

)
.

If m 6= 0 then f̃10(ν) and f1`(ν) are polynomials in the variables (r, z1, . . . , zm)
of degree n − 1 and n, respectively, for 1 ≤ ` ≤ m. From Bezout Theorem the
maximum number of simple zeros of f1(ν) is nm(n− 1). Since the exponents of r

in the function f̃10(ν) are always even numbers, the maximum number of simple
zeros of f1(ν) is nm(n− 1)/2. In what follows we provide a particular example to
prove that this number is reached.
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First if n is even we take a+10k10 6= 0, b+01k10 6= 0, c+1,ij0 6= 0, c+`,00k`0 6= 0 and

take zero all the other coefficients in other that f̃10(ν) = f̃10(z1), f11(ν) = f11(r),
and f1`(ν) = f11(z`), where

f̃10(z1) =
n−1∑

k1=0

zk11
(
a+10k10I(2,0,2π) + b+01k10I(0,2,2π)

)
,

f11(r) =

n∑

i,j even, i+j=0

ri+j c+1,ij0 I(i,j,2π),

f1`(z`) =
n∑

k`=0

zk`` c+`,00k`0 I(0,0,2π),

for 2 ≤ ` ≤ m. Thus, f̃10(z1) is a complete polynomial of degree n − 1 in the
variable z1, f11(r) is an even polynomial of degree n in the variable r, and f1`(z`)
is a complete polynomial of degree n in the variable z` for all 2 ≤ ` ≤ m. Since
the exponents of r in f11(r) is even, then f1(ν) can have nm(n− 1)/2 simple zeros
with r > 0.

On the other hand, if n is odd we take a+ij0 6= 0, b+ij0 6= 0, c+`,00k`0 6= 0 and

we take zero all the other coefficients and then we obtain f̃10(ν) = f̃10(r) and
f1`(ν) = f1`(z`), where

f̃10(r) = h1 + rh2 + r2h3 + . . .+ rn−1hn,

f1`(ν) =
n∑

k`=0

z`
k` c`,00k`0 I(0,0,2π),

for 1 ≤ ` ≤ m. Then, f̃10(r) is a polynomial of degree n−1 in the variable r, whose
exponents are always even. In a similar way f1`(z`) is a polynomial of degree n in
the variable z` for 1 ≤ ` ≤ m. Therefore, f1(ν) can have nm(n− 1)/2 simple zeros
with r > 0.

If m = 0 then ν = r and f1(ν) = rf̃10(r). So the number of simple zeros can

be n− 1 if n is odd, and n− 2 if n is even. Since the exponent of r in f̃10 is even,
the maximum number of simple zeros with r > 0 of f1(ν) is (n− 1)/2 if n is odd,
and (n− 2)/2 if n is even.

Now, we exhibit a particular example where the maximum number of simple
zeros of f1(ν) can be reached. Take a+ij0 6= 0, b+ij0 6= 0 and we take zero all the

other coefficients so that f̃10(r) is an even polynomial in the variable r of degree
n − 1 if n is odd, and n − 2 is n if even. So, the number of simple zeros of f1(ν)
with r > 0 can be (n− 1)/2 if n is odd, and (n− 2)/2 if n is even.

In both particular cases, m 6= 0 and m = 0, the coefficients of f1(ν) are
independent. Therefore, the maximum number of simple zeros with r > 0 of f1(ν)
can be reached. 2
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Now, we emphasize that the averaging function f2 of the continuous system
(2.11), for φ = 2π, is given by f2(ν) =

(
f20(ν), . . . , f2m(ν)

)
being

(7.2) f2`(ν) = 2G̃1`(ν) + 4

∫ 2π

0

(
F+
2`(s, zν) + F̃+

1`(s, zν)
)
ds,

for 0 ≤ ` ≤ m, F+
2`, G̃1` and F̃+

1` given in (3.6), (3.12) and (3.13), respectively.

Proposition 15. Assume m = 0 and φ = 2π. If f1 ≡ 0 then f2 has at most 2n
simple zeros. Moreover, the lower bound for the number of simple zeros is n.

Proof. If m = 0 then ν = r and f1(ν) = f10(r). Assume that f1 ≡ 0. From (7.1)
we obtain

(7.3)

n∑

i odd, j even, P=s

a+ij0I(i+1,j,2π) +
n∑

i even, j odd, P=s

b+ij0I(i,j+1,2π) = 0,

where P = i+ j and 0 ≤ s ≤ n.

Furthermore, by (7.2) we have f2(ν) = f20(r). Therefore, from statement (c) of

Lemma 6 and (7.3), we conclude that G̃10(ν) and

∫ 2π

0

F̃10(s, zν) ds are complete

polynomials of degree 2n− 1 in the variable r, and

∫ 2π

0

F+
20(s, zν) ds =

N1∑

s=0

Rs r
2s+1 +

1

r

n∑

k=0

Qk r
2k,

where zν = (r, 0, . . . , 0) ∈ Rd+1, Rs and Qk are constants, N1 =
n− 2

2
if n is even,

and N1 =
n− 1

2
if n is odd. Therefore, r

∫ 2π

0

F+
20(s, zν) ds is an even polynomial

in the variable r. Since r > 0 it follows that rf2(ν) = 0 if and only if f2(ν) = 0.
By Bezout Theorem the maximum number of simple zeros of f2(ν) is 2n.

In order to exhibit the lower bound for the number of simple zeros of f2(ν),
we provide a particular example. Then, take a±ij0 6= 0, b±ij0 6= 0, α±ij0 6= 0, and

β±ij0 6= 0 and we take zero all the other coefficients in such a way that f20(r) =

4

∫ 2π

0

F+
20(r, zν)dθ. Therefore, rf20(r) is a polynomial in r of degree 2n. Since

rf20(r) is an even polynomial in r, then the number of simple zeros of f2(ν) with
r > 0 can be n, and this number can be reached due to the independence of all
coefficients. 2

Proof of Theorem 5. Applying Theorem 2.1 to the function f1 given in Proposi-
tion 14, statement (a) holds. We apply Theorem 2.1 to the function f2 given in
Proposition 15 and we conclude statement (b). 2
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Appendix

In this appendix we shall exhibit some general expression of functions that appears
in subSection 3.2.

We denote by λijk1...km1ω the coefficient of xiyjzk11 . . . zkmm zω, and by λijk1...km0

the coefficient of xiyjzk11 . . . zkmm in system (2.11) when λ = a±, b±, α±, β±, c±` , γ
±
`

for all 0 ≤ ` ≤ m and m + 1 ≤ ω ≤ d. Recall that ν = (r, z1, . . . , zm) and
zν = (r, z1, . . . , zm, 0, . . . , 0) ∈ Rd+1.

For the next expressions, take P = i+ j + k1 + . . .+ km and Q = p+ q +L1 +
. . .+ Lm.

From (3.3) and (3.9) we obtain

∂g10
∂zω

(zν) =
n−1∑

P=0

ri+jzk11 . . . zkmm

(
a+ijk1...km1ω

∫ φ

0

eµωs cosi+1 s sinj s ds

+ b+ijk1...km1ω

∫ φ

0

eµωs cosi s sinj+1 s ds

+ a−ijk1...km1ω

∫ 2π

φ

eµωs cosi+1 s sinj s ds

+ b−ijk1...km1ω

∫ 2π

φ

eµωs cosi s sinj+1 s ds

)
,

∂g1`
∂zω

(zν) =

n−1∑

P=0

ri+jzk11 . . . zkmm

(
c+l,ijk1...km1ω

∫ φ

0

eµωscosi s sinj s ds

+ c−`,ijk1...km1ω

∫ 2π

φ

eµωscosi s sinj s ds

)
,

for 1 ≤ ` ≤ m and m+ 1 ≤ ω ≤ d.

From (3.11) we get

γω(ν) =
−1

1− e−µω2π
n∑

P=0

ri+jzk11 . . . zkmm

(
c+ω,ijk1...km0

∫ φ

0

e−µωs cosi s sinj s ds

+ c−ω,ijk1...km0

∫ 2π

φ

e−µω(2π+s) cosi s sinj s ds

)
,

for m+ 1 ≤ ω ≤ d.

From the above equalities and (3.12) we obtain for 1 ≤ ` ≤ m that
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G̃10(ν) =

d∑

ω=m+1

[
n−1∑

P=0

ri+jzk11 . . . zkmm

(
a+ijk1...km1ω

∫ φ

0

eµωs cosi+1 s sinj s ds

+ b+ijk1...km1ω

∫ φ

0

eµωs cosi s sinj+1 s ds+ a−ijk1...km1ω

∫ 2π

φ

eµωs cosi+1 s sinj s ds

+ b−ijk1...km1ω

∫ 2π

φ

eµωs cosi s sinj+1 s ds

)]

[
−1

1− e−µω2π
n∑

Q=0

ri+jzk11 . . . zkmm

(
c+ω,ijL1...Lm0

∫ φ

0

e−µωs cosi s sinj s ds

+ c−ω,ijL1...Lm0

∫ 2π

φ

e−µω(2π+s) cosi s sinj s ds

)]
,

G̃1`(ν) =
d∑

ω=m+1

[
n−1∑

P=0

ri+jzk11 . . . zkmm

(
c+`,ijk1...km1ω

∫ φ

0

eµωscosi s sinj s ds

+ c−`,ijk1...km1ω

∫ 2π

φ

eµωscosi s sinj s ds

)]

[
−1

1− e−µω2π
n∑

Q=0

ri+jzL1
1 . . . zLmm

(
c+ω,ijL1...Lm0

∫ φ

0

e−µωs cosi s sinj s ds

+ c−ω,ijL1...Lm0

∫ 2π

φ

e−µω(2π+s) cosi s sinj s ds

)]
.

Now, from (3.6) we compute

∂F±10
∂r

(s, ϕ(s, zν)) =
1

r

n∑

P=0

(i+ j) ri+jzk11 . . . zkmm

(
a±ijk1...km0cosi+1 s sinj s+ b±ijk1...km0cosi s sinj+1 s

)
,

∂F±10
∂zρ

(s, ϕ(s, zν)) =
n∑

P=0

kρ r
i+jzk11 . . . zkρ−1ρ . . . zkmm

(
a±ijk1...km0cosi+1 s sinj s+ b±ijk1...km0cosi s sinj+1 s

)
,

∂F±10
∂zω

(s, ϕ(s, zν)) =
n−1∑

P=0

ri+jzk11 . . . zkmm

(
a±ijk1...km1ω

cosi+1 s sinj s+ b±ijk1...km1ω
cosi s sinj+1 s

)
,
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∂F±1`
∂r

(s, ϕ(s, zν)) =
1

r

n∑

P=0

(i+ j) ri+jzk11 . . . zkmm c±`,ijk1...km0cosi s sinj s,

∂F±1`
∂zρ

(s, ϕ(s, zν)) =
n∑

P=0

kρ r
i+jzk11 . . . zkρ−1p . . . zkmm c±`,ijk1...km0cosi s sinj s,

∂F±1`
∂zω

(s, ϕ(s, zν)) =

n−1∑

P=0

ri+jzk11 . . . zkmm c±`,ijk1...km1ω
cosi s sinj s,

for 1 ≤ ` ≤ m, 1 ≤ ρ ≤ m and m+ 1 ≤ ω ≤ d.

Note that when m = d we do not consider the functions
∂F±10
∂zω

and
∂F±1`
∂zω

.

Now, from (3.3) and (3.8) we get

y±10(s, zν) =
n∑

P=0

ri+jzk11 . . . zkmm
(
a±ijk1...km0I(i+1,j,s) + b±ijk1...km0I(i,j+1,s)

)
,

y±1ρ(θ, zν) =
n∑

P=0

ri+jzk11 . . . zkmm c±ρ,ijk1...km0I(i,j,s),

y±1ω(θ, zν) =
n∑

P=0

ri+jzk11 . . . zkmm c±ω,ijk1...km0

∫ s

0

eµω(s−τ) cosi τ sinj s dτ,

for 1 ≤ ρ ≤ m and m+ 1 ≤ ω ≤ d. Therefore

∫
∂F±10
∂r

(s, ϕ(s, zν))y±10(s, zν) ds =
1

r

n∑

P=0

n∑

Q=0

(i+ j) ri+j+p+q zk1+L1
1 . . . zkm+Lm

m

(
a±ijk1...km0a

±
pqL1...Lm0

∫
cosi+1 s sinj s I(p+1,q,s)ds

+ b±ijk1...km0a
±
pqL1...Lm0

∫
cosi s sinj+1 s I(p+1,q,s)ds

+ a±ijk1...km0b
±
pqL1...Lm0

∫
cosi+1 s sinj s I(p,q+1,s)ds

+ b±ijk1...km0b
±
pqL1...Lm0

∫
cosi s sinj+1 s I(p,q+1,s)ds

)
,

∫
∂F±10
∂zρ

(s, ϕ(s, zν))y±1ρ(s, zν)ds =
n∑

P=0

n∑

Q=0

kρr
i+j+p+qzk1+L1

1 . . . z
kρ+Lρ−1
ρ . . . zkm+Lm

m

(
a±ijk1...km0 c

±
ρ,pqL1...Lm0

∫
cosi+1 s sinj s I(p,q,s) ds

+ b±ijk1...km0 c
±
ρ,pqL1...Lm0

∫
cosi s sinj+1 s I(p,q,s) ds

)
,
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∫
∂F±10
∂zω

(s, ϕ(s, zν))y±1ω(s, zν)ds =

n−1∑

P=0

n∑

Q=0

ri+j+p+qzk1+L1
1 zk2+L2

2 zk3+L3
3 ... zkm+Lm

m

(
a±ijk1...km1ω

c±ω,pqL1...Lm0

∫
cosi+1 s sinj s

(∫ s

0

eµω(s−τ) cosp τ sinq τdτ

)
ds

+ b±ijk1...km1ω
c±ω,pqL1...Lm0

∫
cosi s sinj+1 s

(∫ s

0

eµω(s−τ) cosp τ sinq τdτ

)
ds

)
,

∫
∂F±1`
∂r

(s, ϕ(s, zν))y±10(s, zν)ds =
1

r

n∑

P=0

n∑

Q=0

(i+ j) ri+j+p+qzk1+L1
1 zk2+L2

2 ... zkm+Lm
m

(
c±`,ijk1...km0a

±
pqL1...Lm0

∫
cosi s sinj s I(p+1,q,s) ds

+ c±`,ijk1...km0b
±
pqL1...Lm0

∫
cosi s sinj s I(p,q+1,s) ds

)
,

∫
∂F±1`
∂zρ

(s, ϕ(s, zν))y±1ρ(s, zν)ds =
n∑

P=0

n∑

Q=0

kρ r
i+j+p+qzk1+L1

1 ... z
kρ+Lρ−1
ρ ... zkm+Lm

m

c±`,ijk1...km0 c
±
ρ,pqL1...Lm0

∫
cosi s sinj s I(p,q,s)ds,

∫
∂F±1`
∂zω

(s, ϕ(s, zν))y±1ω(s, zν)ds =

n−1∑

P=0

n∑

Q=0

ri+j+p+qzk1+L1
1 zk2+L2

2 zk3+L3
3 ... zkm+Lm

m

c±`,ijk1...km1ω
c±ω,pqL1...Lm0

∫
cosi s sinj s

(∫ s

0

eµω(s−τ) cosp τ sinq τdτ

)
ds,

for 1 ≤ ` ≤ m, 1 ≤ ρ ≤ m and m+ 1 ≤ ω ≤ d.
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Moreover, from (3.6) we get

∫ φ

0

F+
20(s, zν) ds =

n∑

P=0

α+
ijk1...km0 r

i+jzk11 . . . zkmm I(i+1,j,φ)

+

n∑

P=0

β+
ijk1...km0 r

i+jzk11 . . . zkmm I(i,j+1,φ)

−1

r

n∑

P=0

n∑

Q=0

a+ijk1...km0b
+
pqL1...Lm0 r

i+j+p+q zk1+L1
1 . . . zkm+Lm

m I(i+p+2,j+q,φ)

+
1

r

n∑

P=0

n∑

Q=0

a+ijk1...km0a
+
pqL1...Lm0 r

i+j+p+q zk1+L1
1 . . . zkm+Lm

m I(i+p+1,j+q+1,φ)

−1

r

n∑

P=0

n∑

Q=0

b+ijk1...km0b
+
pqL1...Lm0 r

i+j+p+q zk1+L1
1 . . . zkm+Lm

m I(i+p+1,j+q+1,φ)

+
1

r

n∑

P=0

n∑

Q=0

a+ijk1...km0b
+
pqL1...Lm0 r

i+j+p+q zk1+L1
1 . . . zkm+Lm

m I(i+p,j+q+2,φ),

∫ 2π

φ

F−20(s, zν) ds =

n∑

P=0

α−ijk1...km0 r
i+jzk11 . . . zkmm J(i+1,j,φ)

+
n∑

P=0

β−ijk1...km0 r
i+jzk11 . . . zkmm J(i,j+1,φ)

−1

r

n∑

P=0

n∑

Q=0

a−ijk1...km0b
−
pqL1...Lm0 r

i+j+p+q zk1+L1
1 . . . zkm+Lm

m J(i+p+2,j+q,φ)

+
1

r

n∑

P=0

n∑

Q=0

a−ijk1...km0a
−
pqL1...Lm0 r

i+j+p+q zk1+L1
1 . . . zkm+Lm

m J(i+p+1,j+q+1,φ)

−1

r

n∑

P=0

n∑

Q=0

b−ijk1...km0b
−
pqL1...Lm0 r

i+j+p+q zk1+L1
1 . . . zkm+Lm

m J(i+p+1,j+q+1,φ)

+
1

r

n∑

P=0

n∑

Q=0

a−ijk1...km0b
−
pqL1...Lm0 r

i+j+p+q zk1+L1
1 . . . zkm+Lm

m J(i+p,j+q+2,φ),

∫ φ

0

F+
2`(s, zν) ds =

n∑

P=0

γ+`,ijk1...kmr
i+jzk11 . . . zkmm I(i,j,φ)

− 1

r

n∑

P=0

n∑

Q=0

b+ijk1...km0c
+
`,pqL1...Lm0r

i+j+p+q zk1+L1
1 . . . zkm+Lm

m I(i+p+1,j+q,φ)

+
1

r

n∑

P=0

n∑

Q=0

a+ijk1...km0c
+
`,pqL1...Lm0r

i+j+p+q zk1+L1
1 . . . zkm+Lm

m I(i+p,j+q+1,φ),
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∫ 2π

φ

F−2`(s, zν) ds =
n∑

P=0

γ−`,ijk1...km0r
i+jzk11 . . . zkmm J(i,j,φ)

− 1

r

n∑

P=0

n∑

Q=0

b−ijk1...km0c
−
`,pqL1...Lm0r

i+j+p+q zk1+L1
1 . . . zkm+Lm

m J(i+p+1,j+q,φ)

+
1

r

n∑

P=0

∑

Q=0

a−ijk1...km0c
−
`,pqL1...Lm0r

i+j+p+q zk1+L1
1 . . . zkm+Lm

m J(i+p,j+q+1,φ),

for 1 ≤ ` ≤ m.

On the other hand when the perturbation is continuous that is, φ = 2π, we
have

G̃10(ν) =
d∑

ω=m+1

[
n−1∑

P=0

ri+jzk11 . . . zkmm

(
a+ijk1...km1ω

∫ 2π

0

eµωs cosi+1 s sinj s ds+ b+ijk1...km1ω

∫ 2π

0

eµωs cosi s sinj+1 s ds
)
]

[
−1

1− e−µω2π
n∑

Q=0

ri+jzL1
1 . . . zLmm c+ω,ijL1...Lm0

∫ 2π

0

e−µωs cosi s sinj s ds

]
,

and

∫ 2π

0

F+
20(s, zν) ds =

n∑

P=0, i odd, j even

α+
ijk1...km0r

i+jzk11 ... zkmm I(i+1,j,2π)

+
n∑

P=0, i even, j odd

β+
ijk1...km0r

i+jzk11 ... zkmm I(i,j+1,2π)

−1

r

n∑

i,j even,P=0

n∑

p,q even,Q=0

a+ijk1...km0b
+
pqL1...Lm0r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p+2,j+q,2π)

−1

r

n∑

i,j odd,P=0

n∑

p,q odd,Q=0

a+ijk1...km0b
+
pqL1...Lm0 r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p+2,j+q,2π)

−1

r

n∑

i even,j odd,P=0

n∑

p even,q odd,Q=0

a+ijk1...km0b
+
pqL1...Lm0 r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p+2,j+q,2π)
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−1

r

n∑

i odd,j even,P=0

n∑

p odd,q even,Q=0

a+ijk1...km0b
+
pqL1...Lm0r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p+2,j+q,2π)

+
1

r

n∑

i,j odd,P=0

n∑

p,q even,Q=0

a+ijk1...km0a
+
pqL1...Lm0 r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p+1,j+q+1,2π)

+
1

r

n∑

i,j even,P=0

n∑

p,q odd,Q=0

a+ijk1...km0a
+
pqL1...Lm0 r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p+1,j+q+1,2π)

+
1

r

n∑

i even,j odd,P=0

n∑

p odd,q even,Q=0

a+ijk1...km0a
+
pqL1...Lm0 r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p+1,j+q+1,2π)

+
1

r

n∑

i odd,j even,P=0

n∑

p even,q odd,Q=0

a+ijk1...km0a
+
pqL1...Lm0 r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p+1,j+q+1,2π)

−1

r

n∑

i,j odd,P=0

n∑

p,q even,Q=0

b+ijk1...km0b
+
pqL1...Lm0 r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p+1,j+q+1,2π)

−1

r

n∑

i,j even,P=0

n∑

p,q odd,Q=0

b+ijk1...km0b
+
pqL1...Lm0 r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p+1,j+q+1,2π)

−1

r

n∑

i even,j odd,P=0

n∑

p odd,q even,Q=0

b+ijk1...km0b
+
pqL1...Lm0 r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p+1,j+q+1,2π)

−1

r

n∑

i odd,j even,P=0

n∑

p even,q odd,Q=0

b+ijk1...km0b
+
pqL1...Lm0 r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p+1,j+q+1,2π)

+
1

r

n∑

i,j even,P=0

n∑

p,q even,Q=0

a+ijk1...km0b
+
pqL1...Lm0 r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p,j+q+2,2π)

+
1

r

n∑

i,j odd,P=0

n∑

p,q odd,Q=0

a+ijk1...km0b
+
pqL1...Lm0 r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p,j+q+2,2π)



29

+
1

r

n∑

i even,j odd,P=0

n∑

p even,q odd,Q=0

a+ijk1...km0b
+
pqL1...Lm0 r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p,j+q+2,2π)

+
1

r

n∑

i odd,j even,P=0

n∑

p odd,q even,Q=0

a+ijk1...km0b
+
pqL1...Lm0 r

i+j+p+qzk1+L1
1 ...

zkm+Lm
m I(i+p,j+q+2,2π).
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