This is a preprint of: “Limit cycles of piecewise polynomial perturbations of higher dimensional
lineal differential systems”, Jaume Llibre, Douglas D. Novaes, Iris O. Zeli, Rev. Mat. Iberoam.,
vol. 36(1), 2020.

DOI: [10.4171/rmi/1131]

Limit cycles of piecewise polynomial perturbations
of higher dimensional linear differential systems

Jaume Llibre, Douglas D. Novaes and Iris O. Zeli

Abstract. The averaging theory has been extensively employed for study-
ing periodic solutions of smooth and nonsmooth differential systems. Here,
we extend the averaging theory for studying periodic solutions a class of
regularly perturbed non—autonomous n-dimensional discontinuous piece-
wise smooth differential system. As a fundamental hypothesis, it is as-
sumed that the unperturbed system has a manifold Z C R" of periodic
solutions satisfying dim(Z) < n. Then, we apply this result to study limit
cycles bifurcating from periodic solutions of linear differential systems,
2’ = Mz, when they are perturbed inside a class of discontinuous piece-
wise polynomial differential systems with two zones. More precisely, we
study the periodic solutions of the following differential system

' = Mz +eF]'(z) + 2 F3' (x),

in R%*2 where ¢ is a small parameter, M is a (d+2) x (d+2) matrix having
one pair of pure imaginary conjugate eigenvalues, m zeros eigenvalues, and
d — m non—zero real eigenvalues.

1. Introduction

The analysis of discontinuous piecewise smooth differential systems has recently
had a large and fast growth due to its applications in several areas of the knowl-
edge. Such systems model many phenomena in control systems (see [1]), impact
on mechanical systems (see [2]), economy (see [17]), biology (see [18]), nonlinear
oscillations (see [27]), neuroscience (see [8,13,28]), and other fields of science.
Establishing the existence of limit cycles is one of the major problem in the
theory of differential systems. The interest in detecting such objects is due to the
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fact that they are non-local invariant sets providing information on the qualita-
tive behavior of the system. The first studies on this subject considered smooth
differential systems and, since then, many contributions have been made in this di-
rection (see [15] and the references therein). The study of limit cycles has also been
considered for continuous (see, for instance, [4,23,25]) and discontinuous piecewise
smooth differential systems (see, for instance, [11,14,19,20,26]). Most of them are
concentrated on planar piecewise differential systems.

The averaging theory is one of the main tools for studying periodic solutions in
regularly perturbed differential systems of the form

k
(1.1) &= Fo(t,x) + ZaiFi(t,x) + " R(t,x,¢), (t,x,6) € R x D x (—&9,€0),

i=1

where D is an open bounded subset of R™ and the functions F;, i = 0,1,...,k,
and R are T-periodic in the first variable. Here, k is called order of perturbation
in €. As a fundamental hypothesis, it is assumed that the unperturbed system,

(12) T = FO(t7X)a

has a manifold Z C R"™ of periodic solutions. Roughly speaking, this theory
provides a sequence of functions, called averaged functions, which have their simple
zeros associated with limit cycles of system (1.1).

The averaging theory has been extensively employed for studying periodic so-
lutions of smooth and nonsmooth differential systems. First, considering Fy = 0
(consequently, dim(Z) = n) one can find in [31, 32] results providing sufficient
condition on F; ensuring the existence of periodic solutions of system (1.1) under
smoothness and boundedness conditions. Topological methods were used in [4]
to generalize these results for Lipschitz continuous differential systems. In [23],
assuming the weaker hypothesis dim(Z) = n, the averaging theory was developed
at any order for Lipschitz continuous differential systems. Then, in [20,24], the
averaging theory was extended up to order 2 for detecting periodic orbits of discon-
tinuous piecewise smooth differential systems. Some applications of these results
can be found in [26,29]. Finally, in [16,22], the averaging theory was developed at
any order for a class of discontinuous piecewise smooth systems.

When dim(Z) < n, the averaging theory has to be combined with other tech-
niques, for instance Lyapunov-Schmidt reduction method, to provide sufficient con-
ditions for the existence of periodic solutions. Here, we also obtain a sequence of
function, now called bifurcation functions, which have their simple zeros associated
with limit cycles of system (1.1). In the smooth case, the averaging theory is de-
veloped at any order [3,5,10]. For the nonsmooth case, the first order averaging
theory has been addressed in [30], however it is lacking in a higher order analysis.

In this paper, our first main goal is to develop the averaging theory up to order
2 in ¢ for a class of discontinuous piecewise smooth differential systems assuming
dim(Z) = d < n. The study of any finite order in ¢ could be performed in a similar
way, however the general expression for higher order bifurcation functions would
be more complex because it involves higher derivatives of composite functions. As



our second main goal, we apply this result to study the number of limit cycles
bifurcating from the periodic orbits of a linear differential system 2’ = Mz, where
M is a (d + 2) x (d + 2) matrix having one pair of pure imaginary conjugate
eigenvalues, m zeros eigenvalues, and d—m real eigenvalues. We focus our attention
when this system is perturbed up to order 2 in the small parameter ¢ inside a class
of discontinuous piecewise polynomial functions having two zones.

This paper is organized as follows. In Section 2, we state our main results: The-
orem 1, improving the averaging theory for nonsmooth systems; and Theorems 3-5,
regarding piecewise polynomial perturbations of higher dimensional linear systems.
In Section 3, we provide some preliminary results. The remainder Sections 4-7 are
devoted to the proofs of Theorem 1 and Theorems 3-5.

2. Statements of the main results

2.1. Advances on averaging theory

In this subsection we improve the averaging theory of first and second order to
study the limit cycles of a class of discontinuous piecewise smooth differential
systems.

Let D be an open bounded subset of R! and for a positive real number T'
we consider the C3 differentiable functions Fii : St x D — R for 4 = 0,1, 2,
and RT : S! x D x (—¢gg,e0) — R4 where S = R/(ZT). Thus, we define the
following T-periodic discontinuous piecewise smooth differential system

(2.1) o) FrOxe) if 0<0<0,
F~(0,x,e) if ¢<O6<T,

where the prime denotes derivative with respect to the variable § € S!, and
FE(0,%,¢) = F£(0,%) + eFE(0,%) + 2F55 (0, %) + 3R (6, %, ¢),

with x € D. The set of discontinuity of system (2.1) is given by ¥ = {# = 0}U{6 =

¢}
For z € D, let ¢(6,2z) be the solution of the unperturbed system

(2.2) x' = Fy(0,x),
such that ¢(0,2) = z, where

Ff(0,x) if 0<0<g¢,
Fy(0,x) if ¢<6<T.

F()(G,X) =

Clearly,
T0,z) if 0<0<g,
“(0,2) if ¢9<O<T,

p(0,2)=4 ¥
2
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where ¢*(6,z) are the solutions of the systems
(2.3) x' = F(0,x),

such that ¢*(0,z) = z.

We assume that there exists a manifold Z embedded in D such that the solu-
tions starting in Z are all T-periodic. More precisely, for p=d+ 1, ¢ < p and V
an open bounded subset of R, let o : V — RP~? be a C? function and define

(2.4) Z=A{z,= o) veV}hL

We shall assume that

(H) Z C D and for each z, the unique solution ¢(0,z,) such that ¢(0,z,) = z,
is T-periodic.
For z € D we consider the first order variational equations of systems (2.3)
along the solution p*(6,z), that is

(2.5) Y’ = Dy Fi(0, 9% (0,2))Y.

Denote by Y*(6,z) a fundamental matrix of the differential system (2.5).

Let £ : R? x RP~7 — RY and &1 : R? x RP~7 — RP~9 be the orthogonal projec-
tions onto the first g coordinates and onto the last p — ¢ coordinates, respectively.
For a point z € D denote z = (u,v) € R? x RP~%. Before defining the bifurcation
functions we have to define some auxiliar functions. Let

ys (0,2) = p*(0,2),

0
yE(60,2) = Y*(0,2) / Y (s,2) "\ FE (s, o= (s,2))ds,
0

(2.6) 0
v> (6,2) = Yi(ﬁZ)/O Yi(&Z)_l<2F§(57¢i(8,Z))+

OFFE O*F
2 8)1 (37@i(57z))y1i(s,z)+ axg (57@i(s,z))yf(s,z)2>ds.
QFOi

(s, % (s,2)) is a bilinear

In the formula of y3 (0,z), the second derivative 9
X
form defined on RP x RP which is applied to a “product” of two vectors, in our
case yi(s,2z)2.
Now, consider

(27) gl(z) = y,j_((ls,z) - yz_(d) - T7 Z)) for i = 07 17 2.

The functions ¢g; and go are usually called averaged functions of order 1 and 2,
respectively. Finally, assuming that the lower right corner (p — q) x (p — ¢) matrix
of YT (p,v) — Y~ (¢ — T, v), denoted by A,, is invertible, we define

(2.8) (V) = A gi(z).
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Hence, the bifurcation functions fi, fo : V. — RY of order 1 and 2 are given,
respectively, by

Hi(v) =&g1(z),

2
f2(v) = 26551 (z)y(v) + 36520 (20)7()? + 292(2,).-

(2.9)

82
Again, in the formula of f5, the second derivative %(zy) is a bilinear form
v

defined on R®~9 x R(P=9) . Thus, as before, we say that it is applied to a “product”
of two vectors, in our case, v(v)2.
Our main result on the periodic solutions of system (2.1) is the following.

Theorem 1. In addition to hypothesis (H), we assume that for any v € V the
matriz Y (¢, v) — Y~ (¢ — T, v) has in the upper right corner the null ¢ X (p — q)
matriz, and in the lower right corner has the (p — q) X (p — q) matriz A, with
det(A,) # 0. Then, the following statements hold.

(a) If there exists v* € V such that f1(v*) = 0 and det(f](v*)) # 0, then for
le] > 0 sufficiently small there exists a T—periodic solution x(0,¢) of system
(2.1) such that x(0,e) — z,« ase — 0.

(b) Assume that f; = 0. If there exists v* € V such that fo(v*) = 0 and
det(f5(v*)) # 0, then for |e| > 0 sufficiently small there exists a T—periodic
solution x(0,€) of system (2.1) such that x(0,¢) = z,- as e — 0.

Theorem 1 is proved in Section 4. The following result is an immediate conse-
quence of Theorem 1.

Corollary 2. Assume the hypothesis (H) and that ¢ = p, in this case Z =V C D
is a compact bounded p—dimensional manifold. Then, statements (a) and (b) of
Theorem 1 hold by taking f1 = g1 and fo = 2gs.

2.2. Perturbations of higher dimensional linear systems

Consider a (d 4+ 2) x (d + 2) matrix M given by

0 —1  Oixaq

M = 1 0 O1%q | >

0d><1 Ocl><1 M

where 0;; denotes a null ¢ X j matrix. When 0 < m < d assume that M is
the diagonal matrix diag(uy, pa, ..., pg) with g1 = ... = py, = 0 and piy1 #
0,...,uq #0. If m =0, then M is a diagonal matrix with all entries distinct from
zero, and if m = d we assume that M is the null matrix.



Let L1 = {(2,0,2) : >0,z € R%} and Ly = {(Acos¢,Asing,2): A >0,z €
R?} be two half-hyperplanes of R?*? sharing the boundary {0,0,z) : z € R?}.
The set ¥ = L; U Ly splits D € R%2 in 2 disjoint open sectors, namely C+ and
C~ (see Figure 1).

AZ

<Y

Figure 1: Set of discontinuity .

We will denote by X, and Y, two polynomials of degree n in the variables
z,y€Rand z=(z1,...,2q) € R?, more precisely

n

i ik k
Xa(z,y,2) = Z Nijky kg £y 27 . 25", and
it+j+ki+...+kq=0

n

P ik k
Yi(z,y,2) = E Nijky kg ZY 27" o 27,
it+j+ki+...+kq=0

for Aiji,..k, € Rand 4,j,k1,...,kq € N. Then, take

(2.10) X+ = (X, Xy, Xy o, X ), Yyt = (Yo, Yps,You, ..., Y 2),

Caq
and let X(x,y,z) and Y(z,y,2z) be polynomial vector fields defined by

X(z,y,2) = XE(x,y,2) if (z,y,2) € CF,

Now, consider the discontinuous piecewise polynomial differential systems
(2.11) (&,9,2) = M (2,y,2) + X (2,y,2) +°Y (2,y,2),

where z,y € R and z = (z1,22,...,24) € R%. The dot denotes derivative with
respect to the time ¢, and ¥ denotes the set of discontinuity for system (2.11).
Also, M (z,y,2) is an abuse of notation and denotes the matrix M applied to the
vector (z,y,z), which is defined as the product between the matrix M with the
column matrix associated with the vector (z,y,z). This abuse of notation will be
recurrent throughout the paper.
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Denote by N;(m,n,¢) the maximum number of limit cycles of system (2.11)
that can be detected using averaging theory of order ¢« when || # 0 is sufficiently
small.

Theorem 3. Assume 0 <m <d,n €N, and ¢ € (0,27) \ {7}. Then,

(@) Ni(m,n,¢)=n""t and

(b) 2n(2n — 1)™ < No(m,n,¢) < (2n)m*1.

Theorem 3 generalizes the particular case m = d of [26]. Comparing itens (a)
and (b) of Theorem 3, we can easily check that Na(m,n, ¢) > Ni(m,n, ¢) for every
0<m<d,neN,and ¢ € (0,27) \ {r}.

Notice that, the lower and upper bounds given in statement (b) of Theorem 3
coincide for m = 0. In this case, N3(0,n,¢) = 2n. In general, the lower bound of
statement (b) of Theorem 3 is not optimal and can be improved in some cases (see
Proposition 5.1).

Theorems 3 is proved in section 5.

If = m we note that the maximum number of limit cycles eventually decreases
as stated in the following result.

Theorem 4. Assume 0 <m < d and ¢ = . Then,

(a) Ny(m,n,n)=n""" and

(b)) N < Na(m,n, ) < (2n)™*! where N = (2n — 1)™™ if n is odd, and
N =02n-2)2n—1)"™ if n is even.
Theorem 4 is proved in Section 6.
Comparing itens (a) and (b) of Theorem 4, we can check that No(m,n,7) >
Ni(m,n,n) for every 0 < m < d and n € N, with strictly inequality for n # 1.
When ¢ = 27, system (2.11) is continuous. In this case X (z,y,2z) = X (z,y,2)
and Y(x,y,2) = Y (z,9,2). So, we get the following result.

Theorem 5. Assume that 0 < m < d and ¢ = 2w. Then,

(a) Ni(m,n,2m) =n"(n—1)/2 for allm # 0, and

n—1

if n is odd,
Ny (0,n,2m) =

if n is even.

(b) n < N3(0,n,2m) < 2n.

Theorem 5 generalizes the particular cases m =d =0 and m = d = 1 of [7]
(see Theorems 2 and 3). Moreover, statement (a) of Theorem 5 also generalizes
Theorem 1 of [26] when m = d. We prove Theorem 5 in Section 7.
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3. Preliminary results

In this section we present some preliminaries results that we shall need in Sections
5,6 and 7. In Section 3.1, we present a change of coordinates so that system (2.11)
reads in the standard form (2.1) to apply the averaging method. In Section 3.2,
we construct the averaging functions f; and fo for system (2.11), defined in (2.9).
Finally, in Section 3.3 we present some trigonometric relations that will be used in
the calculus of the zeros of the functions f; and fs.

3.1. Standard form

Let 7,y € Rand z = (z1,...,24) € R%. Using the change of variables

(3.1) x=rcosf and y=rsinb,

with r € Ry and § € S' = R/(27Z), system (2.11) becomes
(3.2) (9,7’“,2) = (1,0, Mz) +eA(0,r,2) +*B(9,r,2),

where A, B : S' x Ry x R — R9+2 are piecewise smooth functions given by

A AT if 0<6< ¢, and B — Bt if 0<60<¢,
A- if 9 <0< 2T, B~ if ¢<6<2m,
where
A%(0,7,2) = (Ali(ﬁ,r,z)7 . 7AdiJrz(H, 7,2)),
B*(0,r,2) = (BY(0,7,2),..., By ,(0,1,2)),
with
AljE = %(Xb:t (rcosf,rsinf,z)cosf — X + (rcosf,rsind, z) sin@),
Bf[ = %(Ygi (rcosf,rsiné,z) cos — Y+ (rcosf,rsin,z)sin 9),
(3.3) AQjE = Xux (rcosf,rsinf, z)cosd + Xp+ (rcos,rsinf, z)sin 6,
32i = Y,x (rcosf,rsinf,z)cosf + Yg= (rcosf,rsinf,z)sin6,
AZQ = XC; (rcosf,rsinb,z),
Btiz = ny (rcosf,rsinb,z),

for 1 < ¢ < d. Clearly the discontinuity Y is now given by

Y ={(0,rz2):r€R,,ze R} U{(},7,2) : 7 € R,z € R},



Taking the angle 0 as the new time, system (3.2) reads

o eAs(0,7r,2) + 2By (0,7, 7)

6 1+cAi(0,r,2)+e2B.(0,r,2)

(3.4)
o — ﬁ . HeZe + €A£+2(9, r, Z) + €2B£+2(9, T, Z)
L 14+¢eA(0,r,2) +e2B1(0,7,2)

for 1 < ¢ < d. Note that now the prime denotes derivative with respect to the
independent variable 6.

Expanding system (3.4) in Taylor series around ¢ = 0, it can be written as
system (2.1) by taking x = (r,z) € D C Ry x R% and

(3.5) F(0,r,2) = (Fi(0,7r,2),..., Fig(6,7,2)), for j=0,1,2,

where

F(0,r,2) = 0,
Fou(0,7,2) = po2,
Ffé(@,r,z): A}+2(0,r,z),
(3.6) FE(0,r,2) = AX ,(0,7,2) — pozuAE(0,7,72),
Fy(0,1,2) = Bi,(0,r,2) — AT (0,7,2) A, ,(0,7,2),
FE(0,r,2) = BE,,(0,7,2) + poze (AL (0,7,2))°
—Ali(&nz)Aerz(&nz) — ,uwszli(G, r,7),

for0</<mand m+1<w<d.
When m = d the functions Fji, for 7 = 0,1, 2, do not be considered.
3.2. Construction of the averaging functions

Now, we shall use the notations introduced in subSection 2.1. Since the unper-
turbed system (2.2) is continuous, we have o™ (0,2) = ¢~ (0,2z). Therefore, when
0 < 'm < d the solution of system (2.2) is given by

w(0,z) = (r,z1,..., Zm, ehm+ly ,e”d‘gzd),
for z = (r,z) = (r,21,...,24). Note that if z, = (r,21,...,2m,0,...,0) then
©(0,2,) = z, for every § € S!. Then, taking an open bounded subset V C R™*!

and the zero function o : V — R4 the manifold Z, defined in (2.4), becomes

Z={z, =0 eR™ v =(rz2,...,20,) €V}
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For z € D a fundamental matrix of system (2.5) is

Y(0,z) = Idiem 0 ,

0 A

where Idy 4., is the (14+m) x (1+m) identity matrix, and A is the diagonal matrix
diag(erm+19. ... eta?). Since Y (6,z) does not depend of z we denote Y (,z) =
Y (6). Then, we have

0
0 A,
where
(3.7) A, = diag(e“’”'+1¢(1 — e THmZm) e (] — e_“d%)).

According to the notation introduced in Theorem 1 we have p = d + 1 and
p—q=d—m, with ¢ = m+ 1. Since Z has dimension m + 1, we consider the
projections & : R™M+1 x Ré=m — R™F1 and ¢4 : RMHL x R&™ — R4~ with
u=(r,21,-..,2m) ER™ L and v = (241, ..,2q) € RS™.

From (2.6) and (3.6) we have y;(6,2z) = (y10(6,2), . ..,y14(6,2)) where

)
yi(G,z) = / Airz(s,go(s,z))ds,
(3.8) 09

yi,(0,2) = /6”“(9_8)(/1&2(87@(8#))—uwzwAli(&w(s,Z)))dSa
0

for0</<mandm+1<w<d.
Moreover, from (2.7) we have g1(z,) = (910(2v), - - -, g14(2,)) with

(3.9)

27

]
gre(z) = / Afa(sp(s.m)) ds+ [ Appa(s o(s,2)) ds,
0 )

@ 27
() = /euww_s)AL-z(SMO(Sva))dS+ / @20 A= (s (s, 7)) ds
0 ]

for0</<mandm+1<w<d. -
Therefore, the bifurcation function f; : V' — R™*1 defined in (2.9), is given
by

(3.10) fi(v) =€g1(z0) = (frov), ., fim(V)),

with f1o(v) = g1¢(2,), where g1 is given in (3.9) for 0 < £ < m.
Now, we compute the bifurcation function f defined also in (2.9).
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62590
502 (z,) =0.

Moreover, as {-91(2y) = (91m4+1(20), - - -, g14(20)), it follows from (2.8), (3.7)
and (3.9) that

Since g is linear (see (2.6) and (2.7)) we have

W(V) = (7m+1(y)7 SR 7’Yd(y))7
where
(3.11)

-1 () B 27 _ B
Yo (V) = m(/ e ”W'QALz(s,zu)dH/ e ““”‘*‘”sz(s,zu)ds),
0 ]

for m + 1 < w < d. Furthermore, for v = (2,41, ...,2q4) wWe have
9 - -
S 03 (0) = (Gao(9), -, Grm(0),
with
d 9910
~ 1
(3.12) Gu)= Y. 5 (@)
w=m-+1 w

where gy is given in (3.9) for 0 < ¢ < m. Additionally from (2.7) and (2.6) we
obtain

£92(2,) = 5(y;r(¢azl/)> —&(ys (¢ — 2m,2,)),

where

0 +
€y (0,2) =2 /0 §(F5 (s, )) +§<8§;§ (s,z»y%(s,zy))ds,

because Foi is linear.
On the other hand

§F2i(s, Z,) = (FQiO(s7 Zy)ye ey FQim(s, z,,)), and

OFf -
(G m i (58 ) = (Fsm)oen (s,

being
~ OFZ OF%

(3.13) Flﬂ;(s, z,) = 1 (s, z,,)ylio(s, z,)+ ...+ 1 (s, zl,)ylid(s7 Zy),

or 0zq
for Fljé and F;é defined in (3.6) for 0 < ¢ < m. Hence

_ 9Eg1 o

(314) f2<l/) =2 W(ZV)V(V> + 2592(ZV> - (f20(y)7 teey me(V))7
where

- ¢ -

foe(v) = 2G1(v) + 4/ (Fy (s z) + Fiy(s,z,))ds

(3.15) 0

27
+ 4/ (FQZ(S,ZV) + Fy, (s, z,,))ds7
¢
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for 0 < £ < m. See the explicit expression of all functions that appear in (3.15) in
the Appendix. B

If m = d, then the functions G1¢(v) are not considered because fo = 2g, (see
Corollary 2).

3.3. Some trigonometric integrals

In order to study the zeros of the averaging functions f; and f5, we need to know
some results about trigonometric integrals. Then, we shall state Lemma 6. The
proof of this lemma will be omitted here, but it can easily be proven using some
trigonometric relations found in Chapter 2 of [12].

For p,q € N and ¢ € (0, 27] consider the functions

2m

¢
(3.16) Ipge) = / cos? ssin? sds,  J(pq.0) :/ cos? ssin? s ds.
0 ¢

Lemma 6. Let I, 4 4y and Jp, 4.4) be the functions defined in (3.16) for ¢ € (0, 27].
Then, the following statements hold.

O 4
(a) If ¢ # m and ¢ # 27 then Iy q.6), Jp.a.e) / cos' ssin? s I, 4 ») ds, and
0

27
/ cos' ssin’ s1(, 4 4) ds are non-zero;
¢

(b) If ¢ =7 then I, qx) =0 or Jipq.x) = 0 if and only if p is odd.

Moreover
T ) ] 27 ) )
/ cos' ssin? s [, 4 5y ds =0 or / cos' ssin’ s [, 4y ds =0
0 T

if and only if one of the following statements hold:

(i) i, j, p and q are odd;

)
(i4) i, p and q are odd, and j is even;
(#i1) i and p are odd, and q and j are even;
)

(iv) i, p and j are odd, and q is even.

(c) If ¢ =27 then Iy g 2x) 7 0 if and only if p and q are simultaneously even.

4. Proof of Theorem 1

The proof of Theorem 1 is based on the next lemma which is a particular case of the
Lyapunov-Schmidt reduction for a finite dimensional function (see for instance [6]).
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Lemma 7. Assuming q < p are positive integers, let D and V be open bounded
subsets of RP and RY, respectively. Let g : D x (—eg,0) — RP and o : V — RP™4
be C3 functions such that g(z,) = go(z) +eg1(2z) +£292(z) + O(e3) and Z = {z, =
(v,0(v)): v €V} C D. We denote by T, the upper right corner q x (p— q) matriz
of D go(z,), and by A, the lower right corner (p —q) x (p — q) matriz of D go(z,).
Assume that for each z, € Z, det(A,) # 0 and go(z,) = 0. We consider the
functions fi, fo : V — R? defined in (2.9). Then, the following statements hold.
(a) If there exists v* € V with fi(v*) = 0 and det(D f1(v*)) # 0, then there
exists ve such that g(z,_,€) =0 and z,, — z,~ when € — 0.

(b) Assume that f1 = 0. If there exists v* € V with fo(v*) = 0 and det(D fo(v*))
# 0, then there exists ve such that g(z,_,) =0 and 2z, — 2z,~ when € — 0.

The proof of this lemma can be found in [21].
Note that in Lemma 7 the functions g; for ¢ = 0,1,2 which appears in the
expression of (2.9) and (2.8) are the ones of the function

(4.1) 9(z,€) = go(2) +egu(2) + 2g2(2) + O(?),
instead of the functions which appear in (2.7).

Proof of Theorem 1. Let 1(0,z,¢) be a periodic solution of system (2.1) such
that (0,z,e) = z. Similarly let ¥*(0,2,¢) be the solutions of the systems
x' = F*(0,x,¢) such that ¢*(0,2z,¢) = z. So

+ :
b(8,2,) = VF(0,2,6) if 0<60< o,
v (0,2z,e) if ¢<O<LT.

Since the vector field (2.1) is T—periodic, it may also read

v (0,z,e) if ¢—T <6<0.

¥(0,2,¢) =

Now, we consider the function g(z,¢) = ¥+ (¢, 2,e) =~ (¢ — T, z,¢). It is easy
to see that the solution ¢(0,z,¢) is T-periodic in 6 if and only if g(z,) = 0. So,
from hypothesis (H) we have that g(z, ) = 0 for every z, . € Z.

Using Taylor series to expand the functions 1% (6, z, €) in powers of £ we obtain

+
0
62y2( ,Z)

(4.2) Y (0,2,¢) = yy (6.2) +eyi (6.2) + 2

+0(),

where y;(0,2) is given in (2.6). We shall omit the computations for obtaining
(4.2), nevertheless they can be found in [23]. Therefore, g(z,¢) = go(z) +c91(z) +
£2g2(z) + O(e?), where g;(z) = y; (¢,2) — y; (¢ — T, z) for i = 0,1,2. Moreover

_ Op”

Doote) =5,

(6.2)— S (60— T,0) = V¥ (6,2) =Y (6~ T.7),
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So, from hypothesis of Theorem 1 we have that the matrix Dgo(z) has in the
upper right corner the zero ¢ x (d — ¢) matrix, and in the lower right corner has
the (p — ¢) x (p — ¢) matrix A, with det(A,) # 0.

We conclude the proof of this theorem by applying Lemma 7 to the function
g(z,¢) defined in (4.1). O

5. Proof of Theorem 3

In order to prove Theorem 3 we shall study the zeros of the averaging functions f
and fy, given in (3.10) and (3.14), respectively, when ¢ € (0,27) \ {7 }.

Remark 8. For sake of simplicity we shall denote by A\ijk,.. k.0 the coefficient
of xiyjzfl . 2Emand by Nijo the coefficient of x'y’ of system (2.11), when A =

tYmo

ai,bimf forall1 <€ <m.
From statement (a) of Lemma 6 we have fi(v) = (fio(v),..., fim(v)) where
(5.1)
Jio(v) = Z Tiﬂzfl .. ~Zi€r{n (a;;'kl...kmol(i+1,j,¢)

it jtk14 . Akm =0

+ _ _
+bz’jkl.“kmol(ivjﬂLl,é) + aijk14..km0‘](i+1,j,¢) + bijkl...kmoJ(i,jJrl,qb))v

n
— it+j k1 k + -
fre(v) = Z TR 2, (Cé,ijkl.“kmoj(i,jafﬁ) + Cé,ijkl...lcm,o‘](iyj@))’
ititkrto AR, =0
with v = (r,21,...,2m) and 1 < £ < m.

Proposition 9. Assume 0 < m < d and ¢ # 7. Then fi has at most n™1 simple
zeros and this number can be reached.

Proof. Foreach 0 <{<mandv = (r,21,...,2m), f1e(v) is a complete polynomial
of degree n. Recall that a complete polynomial of degree k means a polynomial
that appears all its monomials. By Bezout Theorem (see [9]), fi(v) can be at
most n™T! simple zeros. Since all the coefficients of fi(v) are independent, we
can choose them in order that fi(v) has exactly n™*! zeros with r > 0, and
det f1(v*) # 0 for each zero v* of fi(v) (that is, v* is a simple zero). O

Proposition 10. Take 0 < m < d and ¢ # w. If f1 = 0 then fo has at most
(2n)™*L simple zeros, and a lower bound for the mazimum number of simple zeros
is (2n)(2n — 1)™.

Proof. Assume that f; = 0. From (5.1) it follows that

+ +
Z @ikt L+ 1,5,0) T O35k k0 LG +1,0)
i+j=s
(5:2) + ik k0 J41,5.0) T 0k k0 Ji+1,6) = 05

+ —_ —
Z Ctijky...kem0 I jg) + Ctijky...kem0 J.j.0) = 0,
i+j=s
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for1</<m,0<s<n,0<k <nwith0<ki+...+k, <n-—s.
Moreover, fo(v) = (fo0(v), ..., fom(v)) with v = (r, 21, ..., 2;n). In particular,
if m = 0 then f5(v) = fa0(r). Considering the expression for for(v), given in (3.15)

2

~ b
for 0 < ¢ < m, we conclude that G1,(v) and / Fb(s,z,)ds +/ Fl,(s,2,)ds
0 ¢

are complete polynomials of degree 2n — 1 in the variables (r, z1,. .., 2zy,), and

¢ 2 1 2n
/ Fﬂ(s,zy)ds—k/ F;,(s,2,)ds = ;ZQk(zl,...,zm)rk,
0 4 k=0

where z, = (7,21,...,2m,0,...,0) € R¥TY Qp(21,...,2,) is a complete polyno-
mial of degree 2n — k in the variables (z1,...,2,,) if m # 0, and Qg(21,-..,2m)
is constant if m = 0. The above equality is evident if we take into account state-
ment (a) of Lemma 6 and conditions (5.2). Therefore, each r fop(v) is a complete
polynomial of degree 2n in the variables (r, z1,...,2y). Since r > 0, it is known
that 7 fop(v) = 0 if and only if fop(v) = 0 for each 0 < ¢ < m. Then, by Bezout
Theorem, f>(v) has at most (2n)™*! simple zeros for all 0 < m < d.

In order to show that the maximum number is greater than or equal to (2n)(2n—
1)™ we provide a particular example. So, take az%o #£0, Czoo...omo # 0, and we take
zero all the other coefficients for 1 < ¢ < m. From (3.15) we obtain foq(v) = fa0(r)
and fop(v) = fau(r, z¢), where

— P + _+ - =
fao(r) = p Z Z r a3000p00 L (i+p+1,1,6) + Ci00@p00J (i4p+1,1,6)
i=0 p=0

[0} 27
S o4+ 4 i+1 .- - i+1
+7’ai00ap00/ cos SI(p+1,Oﬁs)d5+mmo%oo/ cos 3](p+1,0,s)d5)7
0 ¢

n n

4 ik
— e(,+ .t - =
Sae(r, ze) = - E E Tz (aiOOce,o.uokgoI(i,I@) + aiOOCZ,OH.OkgO‘](i,L@)
i=0 k;=0
n n 5
ke+Ly—1 [ ¢2 + T

+4 Z Z o ( 5 K0 €0, 0k €2,0..0L,0

ky=1 Ly,=0

@m3?-¢?; - -
+3 kéce,o...ozc[oce,o...ouo )

where a0 1(11+1,0.6) = ~Gi00/(i+1.0.6) a0 J00 _ok,07(0.0.0) = ~Cr00...0k,0(0.0.) for
1 <4< m(see (5.2)).

From statement (a) of Lemma 6, r fo(r) is a complete polynomial of degree 2n
in the variable r, whose coefficients are independent. Furthermore, if foo(r*) = 0
with 7* > 0, then for(r*, z¢) is a polynomial of degree 2n — 1 in the variable zy,
and all their coefficients are independent for 1 < ¢ < m. Therefore, By Bezout
Theorem, fo(v) has at most (2n)(2n — 1)™ simple zeros, and this number can be
reached due to the independence of coefficients. O

Proof of Theorem 3. We apply Theorem 1 to the function f; of Proposition 9 and
we conclude statement (a). Statement (b) is proved applying Theorem 1 to the
functions f; and f; given in Proposition 10. O
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5.1. Improving the lower bound

As mentioned in the introduction, the lower bound of statement (b) of Theorem 3 is
not optimal and can be improved. From Theorem 1 we need to solve the equation
f2(v) =0, assuming f; = 0. This can be a hard task due to the complexity of f.
In what follows, we provide a simpler polynomial system for which their simple
zeros imply the existence of simple zeros of fs.

_ From (3.14) we have fo(v) = (f20(v),..., fam(v)). In (3.15) we can take
G1e(v) = 0 and, since 1/r appears as a common factor in the expression of AT
(3.3), we define AljE = rAli. Finally, for 1 < ¢ < m, we assume that A;t+2 = 5A2t+2

and BEEFQ = 5§2t+2 for § > 0 sufficiently small. Notice that, the assumption is

equivalent to ask that the coefficients of the perturbation (2.10) for 1 < £ < m are
of order J.

Now, for 1 < ¢ < m, we define

¢ 27
Py(v) = / BLQ(S,ZV) ds +/ By, ,(s,2,) ds,
(5.3) 0 ¢

1) _ - 2m _
Qu(v) = / AT(S,ZV)A;H(S,ZV)CJH/ Ay (5.20) A7, (5. 2,) ds.
0 ¢

Thus, from (3.3), (3.6), (3.8) and (3.13) we have /ﬁf;(s,zl,)ds = 03(9) and,

therefore,

%f%(u) = rP(v) — Qu(v) + O®), for 1< < m.
Hence, taking § > 0 sufficiently small, we obtain the following proposition.
Proposition 11. If the polynomial system
(5.4) foo(v) =0 and r Py(v) — Qe(v) =0, for 1<{<m,

has N isolated solutions, then No(m,n,$) > N.

6. Proof of Theorem 4

In this section we study the zeros of the functions f; and fa, given in (3.10) and
(3.14), respectively, when ¢ = 7. Then, we conclude Theorem 4 applying Theorem
2.1.
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From statement (b) of Lemma 6 we have f1(v) = (fio(v), ..., fie(v)) where
(6.1)

n

_ i k1 km [+ -
Jio(v) = E P (aijkl..kmof(wl,j,w) + aijk14.4km0‘](i+1qjq‘fr))

i odd, P=0

n
it+j k1 km [ 1+ -
+ E T2 2y (bijkl...kmol(i,jﬂ,fr) + bijkl...kMOJ(i,j+1,ﬂ))v

1even, P=0
n

_ i+j k1 k + —
Jre(v) = E T2 2y cé,ijk1.4.km01(i7jy77)+cé,ijk1.4.km0‘](i,jx7f) )

ieven, P=0

where v = (r,21,...,2m), 1 <l <mand P=i+j+ ki + ...+ km.

Proposition 12. Take 0 < m < d and ¢ = 7. Then, fi has at most n™ ! simple
zeros and this number can be reached.

Proof. This proof is analogously to the proof of Proposition 9, noticing that for
each 0 < ¢ < m, fi1¢(v) is a complete polynomial of degree n in the variables
(r,z1,...,2m) and all their coefficients are independent. O

Proposition 13. Assume 0 < m < d and ¢ = w. If fi = 0 then fo has at
most (2n)™ L simple zeros, and the lower bound for the number of simple zeros is
(2n — 1)™*L if n is odd, and (2n — 2)(2n — 1)™ if n is even.

Proof. Assume that f; = 0. From (6.1) it follows that

+ —
E : Wik om0 L+1,5,m) + iy k0 JGi41,5,m)
iodd,i+j=s
+ - _
(6.2) + § : bijkl.,.kmo I(i,j+1,7r) + bijkl...kmo J(i,j+177r) =0,
ieven,i+j=s
+ - _
E , Clijky...km0 Liijmy + Ctijky...km0 Jiijm) =0,

1even,i+j=s

for1<l<m,0<s<n, 0<ky,<nwith0O<ki+...+k,<n-—s.

Moreover, fa(v) = (fa0(v), ..., fom(v)) with v = (7,21, ..., zm). If m = 0 then
f2(v) = fao(r). Analogously to the proof of Proposition 10 we conclude that fa(v)
has at most (2n)™*! simple zeros for all 0 < m < d.

Now, we provide a particular example to exhibit the lower bound for the max-
imum number of simple zeros. So, take az%o #0, C;too...omo # 0, and take zero all

the other coefficients for 1 < ¢ < m. From (3.15) we obtain fao(v) = faoo(r) and
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fae(v) = fau(r, 20), where

R

n n
_ i+p( + _+ - =
Jao(r) = < E E r (a’iOOapOOI(i-FP‘FLLW) + @;000p00J (i4+p+1,1,7)

ieven, i=0 podd, p=0
T 27
o+ o+ L1 s o= = L+l
+1 @000 p00 / €08 8 1(p+1,0,5)@8 + 1 A400ap00 / cos s [(p+1,0,8)d5)
0

™

n n
itp( o+ + - -
+ Z Z r (aiOO%OOI(HpH,l,w) + @;000p00J (i4+p+1,1,7)
i odd, i=0 peven, p=0

27

K
Cot o i+1 Lo i+l
+zai00ap00/ cos’ 51ipi1,0,5)ds + Za’iOOapUO/ cos" ™ s I(pi1,0,5)ds)
0

™

n n
itp( + -
+ E E 7 (a500@p00 (i 4 p11.1,7) T Q00800 (itpt1,1,m)
1 odd,1=0 podd, p=0

27

us
Lo+t i1 L
+1 aiOOapOO/ cos SI(F+1»015>dS+(LaiOOG’pOO/
0

™

cos' ! sI(pH,O,S)ds)) ,

and

4 n n ik
_ e(,+ Tt - -
Jae(r, ze) = o § E L) (aiOOCZ,OMOIc(OI(iJ@) + aiooce,ou.owoj(iylycﬁ))
i=0 k; =0

n n
ke+Le—1 % + +
+§ E 2y ke(7%,0.4.01@406@,0.4.0@0

ky=1Ly=0

@m?-¢> — —
T C00...08,0€2,0...0L,0 | >

for 1 < £ < m, where ajhol(it1,0x) = —a00J(i+1,0,x) if i is odd and CZOO‘..OIWO
T0,07) = —00...0k,07(0,0,m) (see (6.2)). Therefore, from statement (b) of Lemma
6, 7 f20(r) is a complete polynomial in the variable r of degree 2n—1 if n is odd, and
2n—2 if n is even, and its coefficients are independent. Furthermore, if fo0(r*) = 0
with 7* > 0, then fo,(r*, z¢) is a polynomial of degree 2n — 1 in the variable z, for
each 1 < ¢ < m. Then, the number of simple zeros with r > 0 of f2(r) can be
(2n —1)™*1 if n is odd, and (2n — 2)(2n — 1)™ if n is even. By the independence
of all coefficients these numbers can be reached. ]

Proof of Theorem 4. From Theorem 1 and Proposition 12, statement (a) holds,

and applying Theorem 1 to the functions f; and f> given in Proposition 13 we
conclude statement (b). O

7. Proof of Theorem 5

When ¢ = 27 system (2.11) is continuous. Then, considering the cylindrical
coordinates given in (3.1), and taking 6 as the new time, system (2.11) can be
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written as system (2.1) that is,
x' = F(0,x,¢), for0 <0 <2m,
where
FT(0,x,e) = F) (0,x) + cF (0, x) + €°F; (0,x) + e’ R (0, x, ),

for x = (r,z) and z = (21, ..., 24), With F; given in (3.5) and (3.6) for j =0,1,2.
From statement (c¢) of Lemma 6 we have f1(v) = (fio(v), ..., fim(v) with

n

— itk .

folv) = E R Al N Y ((RE P!
iodd, j even, P=0
n
it+j k1 km pt .
(7.1) + E 2 b koG 12m)
ieven, j odd, P=0
n

_ i+j k1 k +

Jr(v) = E T 2 ik 0 (05,27 5

i, j even, P=0

where v = (r,21,...,2m), L <l <mand P=i+j+ ki +...+ kpn.

Proposition 14. Assume 0 < m < d and ¢ = 2xw. If m # 0 then fi1 has at most
n™(n — 1)/2 simple zeros and this number can be reached. If m = 0 then f1 has
at most (n —1)/2 simple zeros if n is odd, and (n — 2)/2 if n is even, and these
numbers can be reached.

Proof. We have fio(v) = rfio(v) with

r"~Lh, if n is odd,

fio(v) = hy + r?hs + r*hs +1hy + ...+
" 2h,_1 if n is even,

where

n—k
_ k1 km +
hy, = E 212, ( E aijkl..‘kmOI(i+Lj;27T)

ki+...+kmn=0 iodd, jeven,i+j=k

+
+ Z bz’jkl...kmo I(i,j+1,27r))'

ieven, jodd,i+j=k

If i # 0 then fio(v) and f1,(v) are polynomials in the variables (7, z1,. . ., zm)
of degree n — 1 and n, respectively, for 1 < ¢ < m. From Bezout Theorem the
maximum number of simple zeros of fi(v) is n(n — 1). Since the exponents of r
in the function ﬁo(y) are always even numbers, the maximum number of simple
zeros of f1(v) is n™(n —1)/2. In what follows we provide a particular example to
prove that this number is reached.



20

et f + + + +
First if n is even we take ajy, o # 0, bgp,0 # 0, ¢ 450 # 0, €4 00k,0 # 0 and

take zero all the other coefficients in other that fio(v) = fio(21), fii(v) = fi1(r),
and f1¢(v) = f11(z¢), where

n—1
Fro(z1) = > 21" (afor0l2.0.2m) + biiry0l(0.2:2m) 5
k1=0
fu(r) = Z it Ciijo L j2m),

i,J even, i+5=0
n

_ ke A+
fre(ze) = E , zZp"* C¢,00k,0 T10,0,27),
ke=0

for 2 < £ < m. Thus, ﬁo(zl) is a complete polynomial of degree n — 1 in the
variable z1, f11(r) is an even polynomial of degree n in the variable r, and f1,(z¢)
is a complete polynomial of degree n in the variable z, for all 2 < ¢ < m. Since
the exponents of  in f11(r) is even, then f;(v) can have n™(n — 1)/2 simple zeros
with r > 0.

On the other hand, if n is odd we take aj'jo # 0, bj'jo # 0, CZOOMO # 0 and

we take zero all the other coefficients and then we obtain fio(v) = fio(r) and
f1e(v) = f1e(2ze), where

fvw(r) = hi+rhy+72hs+ ...+ 7" h,,

n
k
Jre(v) = E 20" €0,00k,0 L(0,0,27)>
ke=0

for 1 < £ < m. Then, flo(r) is a polynomial of degree n—1 in the variable r, whose
exponents are always even. In a similar way f14(z¢) is a polynomial of degree n in
the variable z; for 1 < £ <m. Therefore, f1(v) can have n"(n — 1)/2 simple zeros
with r > 0.

If m =0 then v = 7 and f1(v) = rfio(r). So the number of simple zeros can
be n —1if n is odd, and n — 2 if n is even. Since the exponent of r in flo is even,
the maximum number of simple zeros with » > 0 of f1(v) is (n — 1)/2 if n is odd,
and (n —2)/2 if n is even.

Now, we exhibit a particular example where the maximum number of simple
zeros of f1(v) can be reached. Take a;;o # 0, b;;o # 0 and we take zero all the
other coefficients so that ]?10(7“) is an even polynomial in the variable r of degree
n—1if n is odd, and n — 2 is n if even. So, the number of simple zeros of fi(v)
with 7 > 0 can be (n — 1)/2 if n is odd, and (n — 2)/2 if n is even.

In both particular cases, m # 0 and m = 0, the coefficients of fi(v) are
independent. Therefore, the maximum number of simple zeros with r > 0 of f; (v)
can be reached. O
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Now, we emphasize that the averaging function fo of the continuous system
(2.11), for ¢ = 27, is given by fa(v) = (fgo(y), ce fgm(l/)) being

~ 271— ~
(7.2 Ful) = 2Gulw)+4 [ (Filsm) + Fisn)) ds

for 0 < ¢ <m, F), G and ﬁfé given in (3.6), (3.12) and (3.13), respectively.

Proposition 15. Assume m = 0 and ¢ = 2w. If f1 = 0 then fa has at most 2n
simple zeros. Moreover, the lower bound for the number of simple zeros is n.

Proof. If m = 0 then v = r and f1(v) = fio(r). Assume that f; = 0. From (7.1)
we obtain

n n
+ + _
(7.3) > agjol(i+1,5.2m) + > bijol(ij+1,2m) =0,
io0dd, j even, P=s ieven, jodd, P=s

where P =i+ j and 0 < s < n.

Furthermore, by (7.2) we have fo(v) = fa0(r). Therefore, from statement (c) of
2

Lemma 6 and (7.3), we conclude that G1o(v) and Fio(s,z,) ds are complete

0
polynomials of degree 2n — 1 in the variable r, and

2m Ny 1
Ffi(s,2,)ds =Y Rer® T4 =% " Qpr?,

n—a, .
where z, = (r,0,...,0) € R¥*! R, and Q). are constants, Ny = if n is even,
27

-1
n if n is odd. Therefore, r Fy(s,2,) ds is an even polynomial

and N, =
0
in the variable r. Since r > 0 it follows that rf2(v) = 0 if and only if fo(v) = 0.
By Bezout Theorem the maximum number of simple zeros of fa(v) is 2n.
In order to exhibit the lower bound for the number of simple zeros of fa(v),
we provide a particular example. Then, take aio £ 0, bf;o £ 0, aiijo # 0, and
+
i50

# 0 and we take zero all the other coefficients in such a way that fao(r) =
2
4 Fy5(r,2,)df. Therefore, rfao(r) is a polynomial in 7 of degree 2n. Since

0
rfao(r) is an even polynomial in r, then the number of simple zeros of f2(v) with
r > 0 can be n, and this number can be reached due to the independence of all
coeflicients. O

Proof of Theorem 5. Applying Theorem 2.1 to the function f; given in Proposi-
tion 14, statement (a) holds. We apply Theorem 2.1 to the function fy given in
Proposition 15 and we conclude statement (b). O
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Appendix

In this appendix we shall exhibit some general expression of functions that appears
in subSection 3.2.

We denote by \ijk, . k,.1,, the coefficient of x?y 28" ... 2Em 2, and by Aijk, . k.0

the coefficient of z’y/2}" ... zkm in system (2.11) when \ = a*,b* oF, % cF vF

forall 0 < ¢ < mand m+ 1 < w < d. Recall that v = (r,21,...,2y,) and
z, = (1,21, 2m,0,...,0) € RIHL,

For the next expressions, take P=i+j+ki1+...+kpand Q =p+qg+ L1 +
.+ L.

From (3.3) and (3.9) we obtain

ag n—1 1)
10 o i+ k1 Km + oo S i+1 i0J
o (z,) = g R A KT et cos' s sin’ sds
w P=0 0
¢ ) .
ST / et® cos’ s sin’t! s ds
0
21 )
+ Ay kot / eMes costl s sin? s ds
¢
27 )
4—1)2_],61 kmlw/ elwd cos’ s sinjﬂsds),
@
-1
g1 i o ¢ . _
_ i+j k1 km + LS % 7
D (z,) = E R A N T et“?cos’ ssin’ sds
w P=0 0

27 )
+ iy ko1 / el“dcos’ s sin’ sds)7
[

forl</{<mandm+1<w<d.
From (3.11) we get

-1 L ¢ _ o
Yo (v) = [pp—r E pitigk L gk CI,ijkl...kmo e Hdcos’ s sin’ sds
P=0 0
2m ) )
+ € ijkr k0 / e He(2m45) oogl g gin s ds),

form+1<w<d.
From the above equalities and (3.12) we obtain for 1 < ¢ < m that
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d n—1 1)
~ _ i+j k1 km + Hew S S o SR |
Gio(v) = g g RS A W AR | et cos"™ " s sin? sds

w=m-+1 L P=0

¢ 2w
s 1 Hos gogitl g gin
+bwk1 kmlw/ eles cos® s sin? Tl s ds + Ak . kmlw/ et cos'tl s sin? s ds
0 ¢
27
Mo S ( inJ+1
+ by k1 /¢ el«® cos’ s sin sds)

¢
it+j k1 km, + — e S i 0
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0
27 ) .
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d

n—1 1)
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27
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Q=0 0

27
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Now, from (3.6) we compute

OF= 1< .
10 = E( ) it gk Ko
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8F1if 1 - Z+j k1 k + 7 . J
a—(s,cp(s,z =— g (C+g)r gz Cloijhy .. ky,0C08" s8I 8,
r rE=
OF=< n o ) )
1¢ i+j k1 k,—1 km £ 7 7
5 (s, (s, 2, kpr' ™20t 2T ey gy g, 0€0S" s8I S,
Zp
P=0
1
OF=< L . ,
14 i+j k1 km i s g
52 (s,0(s,2,)) = T 2 ik k1, COS” SSIDY 8,
w
P=0

forl1</l/<m,1<p<mand m+1<w<d.

+ 6Fi
Note that when m = d we do not consider the functions 10 and =1,
0z, 0z,
Now, from (3.3) and (3.8) we get
) g
+ _ i+j k Em (£ +
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v (0,2z,) = Z AR AL Cw,ijkl...kmO/O e (5=T) cost T sind s d,
for1<p<mand m+1<w <d. Therefore
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Moreover, from (3.6) we get
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for 1 </ <m.

On the other hand when the perturbation is continuous that is, ¢ = 2w, we
have
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