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ABSTRACT 

Copper-based chalcogenides, comprising abundant, low-cost, and environmental friendly elements, are 

excellent materials for several energy conversion applications, including photocatalysis, 

electrocatalysis, photovoltaics and thermoelectrics. In such applications, the production of either 

crystalline thin films or bulk nanomaterials with high surface area or high relative density by solution-

processed nanocrystals (NCs) provides several potential advantages, such as high material yield and 

throughput and composition control with unmatched spatial resolution and low cost. Here we report on 

the production of Cu3SbSe4 (CASe) NCs with tuned amounts of Sn4+ and Bi5+ dopants. After proper 

ligand removal, as monitored by nuclear magnetic resonance and infrared spectroscopies, these NCs 

were used as building blocks to produce dense CASe bulk nanomaterials for solid state thermoelectric 

(TE) energy conversion. By adjusting the amount of extrinsic dopants, dimensionless TE figures of 

merit (ZT) up to 1.26 at 673 K were obtained. Such high ZT values are related to an optimized carrier 

concentration by proper doping, a minimized lattice thermal conductivity due to efficient phonon 
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scattering at point defects and grain boundaries, and to an increase of the Seebeck coefficient obtained 

by a modification of the band structure with the Bi doping. These materials were further employed to 

fabricate ring-shaped TE generators to be coupled to hot pipes and which provide 20 mV and 1 mW per 

TE element when exposed to a 160 ºC temperature gradient.  

 

1.  INTRODUCTION 

Tetrahedrally coordinated copper-based chalcogenides have emerged as a realistic alternative material 

for a number of energy conversion applications, including photovoltaics, photocatalysis and 

thermoelectricity.1-7 Beyond the best studied ternary and quaternary Cu-Ga-In,8-10 Cu-Zn-Sn,11-15 Cu-

Zn-Ge16,17 chalcogenides, I−V−VI tetrahedrally coordinated semiconductors remain largely 

underexplored. In particular, CASe is a semiconductor with a relatively small direct band gap of 0.3 eV 

and a defect-related carrier density on the order of 1018 cm-3 at ambient temperatures.18 It crystallizes in 

a zinc blende-type tetragonal superstructure that can be considered as a three-dimensional Cu-Se 

framework of distorted [CuSe4] tetrahedra with inserted one dimensional array of [SbSe4] tetrahedra. It 

features two Cu sites with different Cu-Se bond lengths. The valence band maximum is mainly formed 

by a hybridization of Cu-3d and Se-4p states, while the conduction band minimum is dominated by Sb-

5s and Se-4p hybridization. Therefore, the Cu-Se framework provides avenues for hole transport with 

relatively high mobility, up to 135 cm2V-1s-1 for undoped and 49 cm2V-1s-1 for highly doped 

materials.19-21 Furthermore, such a complex lattice structure is prohibits the phonon propagation, 

resulting in advantageously low thermal conductivities. The high hole mobility and the low phonon 

mean free path, combined with an appropriate electronic band structure (including a large degeneracy 

at the valence band maximum19, 20) render CASe an excellent TE material. However, to maximize its 

TE performance, it is strictly necessary to optimize its charge carrier concentration. Either the density 

of intrinsic defects that control hole concentration is adjusted or an extrinsic p-type dopant is 

introduced, preferably in the non-conducting sub-lattice to minimize the adverse effects on the hole 

mobility. 

Nanocrystal-based, bottom-up strategies offer several advantages to produce thin films, porous or dense 

nanostructured materials for semiconductor-based, energy conversion applications. From an 

engineering viewpoint, the unmatched compositional and interfacial control makes this route very 

robust and versatile, allowing to establish structure-property relationships and subsequently enabling 

the rational design of superior materials. From a practical viewpoint, facile and inexpensive solution 

synthesis and processing allows for a low-cost and high throughput production with high material 

yield.22-27 However, two major challenges with colloidal nanomaterials are (i) the incorporation of 

controlled amounts of electronic dopants and (ii) the removal of organics. Both of them are critical for 

optimizing the semiconductive properties of the final nanostructured material.26  

Thus far, colloidal Cu3SbS4
28-30 and Cu12Sb4S13

29-31 NCs have been primarily used for 

photoelectrochemical studies and a few attempts to produce nanostructured bulk CASe have been 

reported. However, bottom-up strategies to efficiently and cost-effectively produce CASe materials and 

CASe-based devices remains to be demonstrated. 32, 33 Here, we report a solution-based, scalable 
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synthesis approach to produce several grams of monodisperse CASe NCs, doped with controlled 

amounts of Sn and Bi. We demonstrate their bottom-up processing into high density bulk 

nanostructured materials with high TE performances. We further use this material to fabricate TE rings, 

which potentially provide improved thermal contact for heat recovery from pipes. 

 

2. MATERIALS AND METHODS 

Chemicals and solvents. Copper (I) chloride (CuCl, ≥99%), antimony (III) chloride (SbCl3, 99%), 

bismuth (III) acetate (Bi(CH3CO2)3, >99.99%), selenium powder (99.5%), ammonium thiocyanate 

(NH4SCN,  ≥99%), dodecanethiol (DDT, 98%), 1-octadecene (ODE, technical grade 90%), oleic acid 

(OA,  technical grade 99%), decanoic acid (DDAc, ≥98%), and oleylamine (OLA, technical grade 

70%) were purchased from Sigma Aldrich. Tin (II) chloride (SnCl2, 98%) was purchased from Strem. 

Analytical grade methanol, ethanol and chloroform were obtained from various sources. All chemicals 

were used as received without further purification. 

Selenium precursor solution. Selenium powder (23.688 g, 300 mmol) was dissolved in 300 ml OLA 

and 300 ml DDT at room temperature, cycled between vacuum and argon to remove the oxygen in the 

flask, and then stirred under argon atmosphere until Se powder was completely dissolved. 

Synthesis of Cu3SbSe4 NCs. In a typical synthesis, 10.0 mmol CuCl, 4.0 mmol SbCl3,15 ml OLA, 10 

ml OA and 100 ml ODE were mixed in a 500 ml three-neck flask and stirred for 20 min at room 

temperature . The solution was kept at 130 ºC under vacuum and vigorous stirring for 30 min, and then 

heated to 180 ºC. The color of the solution changed from light green to yellowish-brown at the 

temperature of over 170 ºC. 50 ml of selenium precursor solution was swiftly injected into the reaction 

under magnetic stirring and the color of the solution changed immediately from brown to dark green, 

indicating that the nucleation and subsequent growth of CASe NCs occurred. After injection, the 

temperature of the reaction mixture dropped to ~165 °C, and it was allowed to recover to the pre-

injection temperature (180 °C). The overall reaction time after recovering to 180 °C was 30 min, and 

then the sample was rapidly cooled to room temperature through water bath. NCs were collected by 

precipitation with ethanol. The final product could be well dispersed in non-polar solvents such as 

toluene or chloroform, forming a stable, dark-green dispersion (inset of Fig S1b). For subsequent 

chemical, structural and functional characterization, NCs were purified by multiple precipitation (6000 

rpm for 5 min) and redispersion steps using chloroform as solvent and ethanol as non-solvent. The 

resulting powder was re-suspended in chloroform and stored for subsequent characterization and use. 

This synthesis protocol was optimized to produce more than 2.0 g of NCs per batch (Figure S1a), 

which was the amount of material required for a complete characterization of the material at the 

laboratory scale, including the fabrication of a ring-shaped device. 

Synthesis of Cu3Sb1-xSnxSe4, Cu3Sb1-xBixSe4 and Cu3Sb1-x-ySnxBiySe4 NCs. Sn and Bi-doped CASe 

NCs were produced following the above procedure, but replacing the desired amount of SbCl3 by SnCl2 

and/or Bi(CH3CO2)3. 

Ligand removal. The Cu3Sb1-xSnxSe4, Cu3Sb1-xBixSe4 and Cu3Sb1-x-ySnxBiySe4 NCs produced in each 
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batch were divided into 6 centrifuge tubes (~350 mg in 10 ml of chloroform in each tube). In each of 

the tubes, 2 ml of a 50 mM NH4SCN solution in acetone was added. Then the solution was shaked 

during 1~2 min to displace the organic ligands attached to the NC surface, followed by precipitation of 

the NCs by centrifugation. This process was repeated several times, adding chloroform and NH4SCN in 

each step. Finally, NCs were precipitated and dried under vacuum to obtain a fine powder.  

Bulk nanomaterial consolidation. The dried NCs were loaded into a graphite die and compacted into 

pellets (Ø10 mm×~1.5 mm). The process was carried out in Ar atmosphere, using a custom-made hot 

press to simultaneously apply a pressure of 70 MPa and a temperature of 643-653 K during 30 min. In 

this system, the heat is provided by an induction coil operated at 30-80 KHz and it is applied directly to 

a graphite die acting as a susceptor. Fast heating ramps of 20 ºC/second are reached by this method 

with a 25 kW induction heater. The relative densities of the pressed pellets were measured by the 

Archimedes’ method and found to be always higher than 87% of the theoretical values. 

Ring thermoelectric generators. TE rings with an internal diameter of 28 mm and an external 

diameter of 39 mm were fabricated by placing the nanopowder between two concentrically placed 

copper rings and hot-pressing the material at a temperature of 643-653 K during 30 min and 20 MPa of 

pressure using an especially designed detachable die. 

Structural and chemical characterization. Crystallographic phases were characterized by powder X-

ray diffraction (XRD, 2θ angle: 20° to 80°; scanning rate: 1°/min) on a Bruker AXS D8 ADVANCE X-

ray diffractometer with Cu–Kα radiation (λ= 0.15406 Å). X-ray photoelectron spectroscopy (XPS) was 

performed on a VG ESCA scientific theta probe spectrometer in constant analyzer energy mode with a 

pass energy of 28 eV and Al K α (1486.6 eV) radiation as the excitation source. Size and shape of 

initial NCs were examined by transmission electron microscopy (TEM) using a ZEISS LIBRA 120, 

operating at 120 kV. High resolution TEM (HRTEM) images were obtained using a Jeol 2010F field-

emission gun microscope with a 0.19 nm point-to-point resolution at 200 keV with an embedded Gatan 

image filter for EELS analyses. The morphology of the hot-pressed pellets was characterized using 

field-emission scanning electron microscopy (SEM, Auriga Zeiss) at 5.0 kV. The NC composition was 

analyzed by inductive plasma spectroscopy (ICP, Elementar Analysensyteme Gmbh, Germany) and an 

Oxford energy dispersive X ray spectrometer (EDX) attached to Zeiss Auriga SEM. Fourier-transform 

infrared spectroscopy (FTIR) were acquired by using an Alpha Bruker FTIR spectrometer with the 

platinum attenuated total reflectance (ATR) single reflection module. 

NMR. Nuclear Magnetic Resonance (NMR) measurements were recorded on a Bruker Avance III 

Spectrometer operating at a 1H frequency of 500.13 MHz and equipped with a BBI-Z probe. The 

sample temperature was set to 298.2 K. One dimensional (1D) 1H and 2D NOESY (Nuclear 

Overhauser Effect Spectroscopy) spectra were acquired using standard pulse sequences from the 

Bruker library; zg and noesygpphpp respectively. For the quantitative 1D 1H measurements, 64k data 

points were sampled with the spectral width set to 16 ppm and a relaxation delay of 30 sec. The 

NOESY mixing time was set to 300 ms, with 2048 data points sampled in the direct dimension for 512 

data points in the indirect dimension, with the spectral width set to 11.5 ppm. For 2D processing, the 

spectra were zero filled to a 40962048 real data matrix, followed by multiplication with squared 
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cosine bell function in both dimensions prior to Fourier transformation. The 1D spectra were apodized 

with an exponential window function. Concentrations were obtained using the Digital ERETIC method. 

Diffusion measurements (2D DOSY) were performed using a double stimulated echo sequence 

(dstegp2s)34 for convection compensation and with monopolar gradient pulses.34 Smoothed rectangle 

gradient pulse shapes were used throughout. The gradient strength was varied linearly from 2-95% of 

the probe’s maximum value (calibrated at 50.2 G/cm) in 64 steps, with the gradient pulse duration and 

diffusion delay optimized to ensure a final attenuation of the signal in the final increment of less than 

10% relative to the first increment. The diffusion coefficients were obtained by fitting the Stejskal-

Tanner (ST) equation to the signal intensity decay. For the pulse sequence at hand, the appropriate ST 

equation is: 35 

  𝐼 = 𝐼0𝑒
−(𝛾𝛿𝑔𝜉)2𝐷(Δ−0.6𝛿) (0) 

with the gyromagnetic ratio of the observed 1H nucleus γ, the gradient pulse length δ, the gradient 

strength g, the diffusion time ∆ and the diffusion coefficient D. The shape factor ξ depends on the 

gradient shape but this is usually already corrected for in the gradient strength value by the Bruker 

software, TOPSPIN. The ST equation for other pulse programs is only slightly different and the impact 

on the diffusion coefficient is very small in the case of long diffusion times (Δ>250 ms). In a real 

DOSY experiment, values of ∆ and δ are set while varying g to derive the decay curve.35 

Thermoelectric property measurement. Seebeck coefficients were measured by using a static DC 

method. Electrical resistivity data was obtained by a standard four-probe method. Both the Seebeck 

coefficient and the electrical resistivity were measured simultaneously in a LSR-3 LINSEIS system in 

the temperature range between room temperature and 673 K, under helium atmosphere. The thermal 

conductivity was calculated by κ= λCpρ, where λ is the thermal diffusivity, Cp is the heat capacity, and 

ρ is the mass density of the specimen. A XFA 600 Xenon Flash Apparatus was used to determine the 

thermal diffusivities of the samples. The specific heat (Cp) was measured by means of the differential 

scanning calorimeter method (DSC model T2000 TA Instruments), and the density (ρ) values used here 

were calculated using the Archimedes’ method.  

Hall measurement. The carrier concentration and mobility were measured using the Hall measurement 

system (PPMS-9T, Quantum Design Inc., USA) at room temperature under a magnetic field of 2 T. 

Values provided correspond to an average of 5 consecutive measurements 

Device test. TE rings were tested in a custom-made test station. Temperature was monitored by two 

thermocouples attached at the copper electrodes and the open circuit voltage was measured by a 

Keithley 2400. A heating cartridge was used to rise the temperature of the internal part of the ring, 

while the external part of the ring was kept at low temperature by means of TE coolers. The maximum 

temperature reached at the hot side was 250 ºC. At this point the temperature at the cold side was 90 ºC, 

what provided a maximum temperature gradient of 160 ºC. 

Density Functional Theory (DFT). Since traditional Generalized Gradient Approximation (GGA) 

methods always underestimate semiconductors band gaps, in this work, the electronic structures were 

calculated by a mBJ method44-46 implemented in the Vienna ab initio Simulation Package (VASP), and 
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adopting an effective Coulomb U (Ueff = U- J) of 4 eV for the Cu-3d states.47 Because the doping level 

was small, the defect system was modeled by creating a 2*2*2 supercell. The calculations were done 

starting from a 64 atom (24 Cu, 12 Sb and 32 Se for pure system and 24 Cu, 11 Sb, 1 Bi, 32 Se for 

doping system). 

3. RESULTS AND DISCUSSION 

CASe NCs were produced from copper chloride, antimony chlorides and selenium powder dissolved in 

OLA and DDT, as detailed in the experimental part. This synthesis protocol possesses a high batch-to-

batch reproducibility and a 94% material yield. Figure 1 and S2 shows representative TEM and 

HRTEM micrographs with the respective indexed power spectrum of the 182 nm CASe NCs 

produced following the procedure here described. The NC crystallographic phase was identified as 

tetragonal CASe (space group mI 24  (121), Table S1) with lattice constants a=b=0.566 nm and c=1.128 

nm, which is in agreement with XRD data (Figure 2a, JCPDS card No. 85-0003). No secondary phases 

were detected by HRTEM and XRD analysis. Within their experimental error, ICP and EDX showed 

the metal and chalcogenide ratios to match that of stoichiometric CASe (Cu3SbSe4, Figure S4). 

Electron Energy Loss Spectroscopy (EELS) was used for compositional analysis within each particle 

using Sb M4,5, Cu L2,3 and Se L2,3 edges. In the central region of the NC, elemental quantification 

showed the presence of around 12% Sb, 30% Cu and 48% Se, which is compatible with the CASe 

stoichiometry. In the outer part of the NCs, the relative composition of Sb and Cu were found to be 

higher than in the core and that of Se was slightly lower: 17 % Sb, 40% Cu and 43% Se (Figure S3). 

 

Figure 1. (a) Representative TEM micrograph of the CASe NCs. The inset shows the histogram for the 

measured particle size distribution (182 nm). (b) A higher-magnification TEM micrograph; (c) 
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HRTEM image of a single CASe NCs. (d) Its respective power spectrum fitting with CASe tetragonal 

phase. (e) the detail of the squared regions of the single CASe NCs. (f) High-angle annular dark field 

scanning TEM (HAADF-STEM) image of some CASe NCs and (g)-(i) areal density of the three 

elements. 

Similar to CASe NCs, Cu3Sb1-xSnxSe4 (Figure S6), Cu3Sb1-xBixSe4 (Figure S7) and Cu3Sb1-x-ySnxBiySe4 

(Figure S8) NCs showed quasi-spherical morphologies with an average size of around 18 nm. However, 

increasingly broader size and shape distributions were obtained as the amount of doping was increased 

(Figures S6 and S7). Doped CASe NCs were characterized by larger a and c lattice parameters, as 

evidenced by a slight XRD peak shift toward lower angles in the XRD patterns displayed in Figure 2b, 

c and d. The lattice expansion is attributed to the substitution of Sb5+ (0.6 Å) by the larger Sn4+ (0.69 Å) 

and/or Bi5+ (0.76 Å) cations.20 Figure S9 and Table S2-S4 display the elemental composition of Sn and 

Bi-doped CASe as obtained by EDX.  

 

Figure 2. (a) XRD pattern of CASe NCs including the reference pattern JCPDS 85-0003. The inset 

shows a unit cell of tetragonal CASe. (b) XRD patterns of Cu3Sb1−xSnxSe4 (x=0.00, 0.01, 0.02, 0.05, 

0.10) NCs. (c) XRD patterns of Cu3Sb1−xBixSe4 (x=0.00, 0.01, 0.02, 0.04, 0.10) NCs. (d) XRD patterns 
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of Cu3Sb1-x-ySnxBiySe4 (x=0.02, 0.05, 0.10 and y=0.02) NCs. Insets in graphs b)-c) show a detail of the 

(112) peak, at around 2θ =27.5°.  

CASe NCs were synthesized in the presence of OLA, OA and DDT. In order to identify which 

surfactants were present on the NC surface and establish their bonding nature, NMR analysis was 

performed. Figure 3a shows a 1H NMR spectrum of the as synthetized NCs (unpurified) and the 1H 

NMR spectrum of NCs purified four times by precipitation/redispersion with acetonitrile as non-

solvent and toluene as solvent. In the spectrum of unpurified NCs we observe the characteristic 

resonances of a terminal alkene at 5.0 and 5.8 ppm, associated to ODE. The resonance around 5.5 ppm 

is associated with an internal alkene, from OLA and/or OA. The ODE resonances possess fine 

structure, indicating the unbound nature of ODE. In contrast, the alkene resonance is a superposition of 

sharp and broad resonances, associated with free and bound ligands respectively.36 After purification, 

the ODE features disappear completely together with the majority of the sharp resonance 

corresponding to the free molecules OLA or OA, indicating a successful purification of the NCs 

solution. Further purification to remove the remaining free ligand in solution render the NCs 

completely insoluble in any solvent. The NOESY spectrum (Figure S10) contains negative (black) nOe 

cross peaks confirming the interaction of OLA/OA with the surface. 36 To discriminate whether OLA or 

OA (or both) is stabilizing the NC surface, we reproduced the exact same synthesis described above but 

instead of OA we used dodecanoic acid (DDAc). Although DDAc and OA are both fatty acids and are 

expected to interact identically with NC surfaces, DDAc has no alkene group and this allows us to 

distinguish OLA from OA. Figure 3b shows the NMR spectra of CASe NPs synthetized with DDAc. 

Since the 1H NMR spectra are almost identical to spectra of the dispersions prepared with OA and 

because OLA is now the only molecule with an alkene resonance, we identify OLA as a ligand. 

Additionally, the intensity of the alkene resonance and CH3 resonance features a 2:3 ratio. This 

excludes any other (fully saturated) ligands such as DDT or DDAc, proving that OLA is the only ligand 

present. Since OLA is an L-type ligand and the NCs were found to be stoichiometric (vide supra), this 

NC system belongs to the earlier established class of binding motifs; NC(L). To assess the dynamics of 

interaction, Diffusion Ordered NMR Spectroscopy (DOSY) experiments were performed. A good 

fitting of the CH3 signal decay was only obtained with two exponentials, indicating two populations 

(Figure S11). The small fraction with a high diffusion coefficient (552 µm²/s) is attributed to free OLA 

while the fraction with a low diffusion coefficient (45 m2/s) is associated with bound OLA.  Using the 

Stokes-Einstein equation, a solvodynamic diameter of 16.5 nm is calculated from the diffusion 

coefficient. Since this is close to the diameter from TEM (16-20 nm), we conclude that OLA is firmly 

attached to the NC surface and diffuses together with the NC. Considering the L-type nature of OLA,37 

it is usually involved in a more dynamic stabilization of the NC surface.38 However, it was repeatedly 

reported that Cu-based NCs typically have tightly bound amines bound to the surface.13, 39 It should 

however be noted that OLA is quite easily desorbed during purification suggesting only a moderate 

binding affinity for the NC surface, in line with L-type ligand behavior. 
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Figure 3. 1H NMR spectrum of CASe 18±2 nm NPs synthesized with a) OA and b) DDAc shown 

before (bottom) and after (top) purification. 

To facilitate charge transport/transfer, CASe NCs were thoroughly purified by multiple precipitation/re-

dispersion steps and subsequently treated with NH4SCN to completely displace remaining organic 

ligands. Figure S12 shows FTIR spectra of dried CASe NCs before (CASe–OL) and after 

(CASe–LD) organic ligand displacement with a 50 mM NH4SCN solution. CASe–OL spectrum 

showed the characteristic features of OLA: C–H vibration modes have a strong band in the 

high-frequency region (2850–3000 cm-1) and various peaks in the lower frequency region, 

between 700 cm-1 and 1650 cm-1. These features completely disappeared from the CASe–LD 

spectrum, proving the effective organic ligand displacement.  

Nanocrystalline disk-shaped CASe pellets (Ø10 mm×~1.5 mm) were prepared under Ar atmosphere 

by hot-pressing around 700 mg of ligand-displaced NCs at 650 K, 70 MPa and for 30 min. The pellets 

had a metallic luster and were mechanically robust enough to endure a polishing process. Relative 

densities above 87% of the theoretical value were measured for all samples. XRD analysis of the 

undoped and doped CASe pellets showed no crystallographic or related compositional change after the 

hot-press process, nor the appearance of secondary phases (Figure S13). During the hot-press 

treatment, CASe NCs coalesced to form larger crystalline domains with sizes ranging from tens to few 

hundred nanometers (Figure S14). 

The electrical conductivity (σ), Seebeck coefficient (S), thermal conductivity (κ), and the 

dimensionless TE figure or merit ZT= σS2T/κ of undoped and Sn- and Bi-doped CASe pellets 

are displayed in Figures 4, 5 and 7. Undoped CASe nanomaterials were characterized by 

relatively low σ, which increased with temperature up to 6.2×103 Sm-1, and positive S in the 
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whole temperature range measured. Significantly higher σ, up to 9.0×104 Sm-1 at room 

temperature, were obtained for Sn-doped CASe, which showed a degenerated semiconductor 

behavior with a decrease of σ with temperature. On the contrary, S decreased with the Sn 

introduction. The observed increase of σ and decrease of S with the amount of Sn indicate Sn 

ions to play a p-type doping electronic role within CASe. This electronic role was confirmed by 

a one order of magnitude increase in the measured Hall charge carrier concentration with the Sn 

introduction, from p=5x1018 cm-3 in CASe to p=9x1019 cm-3 in Cu3Sb0.98Sn0.02Se4. Overall, 

higher power factors (PF =σS2) were obtained for the doped samples, with a maximum PF of 

1.14 mWm-1K-2 at 673 K for the sample containing a 2% replacement of Sb by Sn, 

Cu3Sb0.98Sn0.02Se4 (Figure S15a). Relatively low thermal conductivities, which as expected 

decreased with temperature, were obtained for all the analyzed materials. For undoped CASe, in 

the temperature range from 327 K to 653 K, κ dropped from 1.60 Wm−1K−1 to 0.81 Wm−1K−1, 

which are lower values than those previously reported for bulk CASe,19, 20, 40, 41 but slightly 

higher than those reported for nanostructured CASe produced by co-precipitation,32 and much 

higher than the estimated minimum κ (0.26 Wm−1K−1).42, 43 Lower lattice thermal conductivities 

(κL) were obtained with the incorporation of Sn due to the introduced lattice distortion and the 

increased density of point defects (Figure S15b). However, the associated increase of the 

electronic contribution to the thermal conductivity (κe) resulted in an overall increase of κ for 

most of the Sn-doped CASe (Figure 4c). Overall, ZT significantly increased with the 

introduction of relatively small amounts of Sn, reaching ZT=0.97 at 673 K for 

Cu3Sb0.98Sn0.02Se4, which represents more than a 2-fold increase over undoped CASe.  

The CASe nanocrystalline material showed a good stability even when heated and maintained 

at relatively high temperatures for long periods of time. Figure S20 shows the results obtained 

from 5 consecutive heating-cooling cycles. Minor differences can be observed from cycle to 

cycle and mainly from the first cycle to the following ones. To account for the minor variations 

obtained from the first to the following cycles, all samples were measured at least 3 consecutive 

times and results from the first cycle were discarded. Figure 4e shows the results obtained from 

Cu3Sb0.9Sn0.1Se4 during a 55 h test involving the heating of the sample from 323 to 626 K at a 

rate of 10 K/min and then maintaining the sample at 656 K for 54 h. During this time, the 

electrical conductivity and Seebeck coefficient changed by just ~1% and ~3%, respectively. 
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Figure 4.  a-d) Temperature dependence of (a) electric conductivity (σ), (b) Seebeck coefficient 

(S), (c) thermal conductivity (κ), and (d) The figure of merit (ZT) of Cu3Sb1-xSnxSe4 (x=0.01, 

0.02, 0.05 and 0.10). e) Time evolution of the electrical conductivity (σ, ), Seebeck 

coefficient (S, ) and temperature (T, ) of Cu3Sb0.9Sn0.1Se4 during a 55 h test. 

When replacing part of the Sb5+ by isovalent Bi5+, slightly lower σ were obtained (Figure 5a). 

Hall charge carrier concentration measurements provided slightly lower hole concentrations for Bi-

CASe samples when compared with CASe, but always on the same order of magnitude. A slight 

decrease in the charge carrier concentration could be associated to an indirect diminution of the 
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concentration of an intrinsic defect that acts as a p-type dopant, e.g. the presence of Cu1+ at Sb5+ sites, 

Cu or Sb vacancies or an overall excess of Se. However, significantly larger S values were 

measured for all Bi-CASe samples (Figure 5b), which did not correlated well with the small decrease 

in electrical conductivity when just taking into account a slight modification of the charge carrier 

concentration.   

To further determine the possible influence of Bi in the electron energy band structure of CASe, 

DFT calculations were carried out. Figure 6 shows the band structure of pure CASe and Bi-doped 

compounds. Results indicate that pure CASe is a semiconductor with a direct band gap of 0.238 eV, 

which is consistent with previous data.47 Both the valence band maximum (VBM) and the conduction 

band minimum (CBM), which mainly determines electronic transport properties in a p-type 

semiconductor such as CASe, are mainly composed of Cu d and Se p electrons (Figure S18 and S19). 

While the substitution of Bi atoms for Sb had little effect on the band structure at the CBM, it 

significantly affected the VBM decreasing the band gap and resulting in a divergence of the multi-

valleys bands, which could result in a reduction of a bipolar effect on the Seebeck coefficient. 

Additional modelling is being carried out to further discern the origin of this Seebeck coefficient 

increase and to determine the optimum composition to maximize it. 

Combining σ with S, the highest PF values for Bi-CASe were obtained with a composition 

Cu3Sb0.98Bi0.02Se4 (~0.77 mWm-1K-2 at 608 K, Figure S16). Bi-doped CASe were characterized by 

lower κ than CASe due to slightly lower κe and κL contributions. Overall, higher ZT values, up to 0.81 

for Cu3Sb0.98Bi0.02Se4 at 648 K, were obtained for Bi-CASe when compared with CASe. However, 

lower PF and overall ZT were calculated for Bi-CASe than for Sn-CASe mainly due to the lower 

electrical conductivities of the former. While Bi doping was demonstrated to result in a modification of 

the energy band structure that resulted in higher Seebeck coefficients, Sn-doping allowed optimizing 

the charge carrier concentration, which is key to maximize ZT. 
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Figure 5.  Temperature dependence of (a) electric conductivity (σ), (b) Seebeck coefficient (S), 

(c) thermal conductivity (κ), and (d) the figure of merit (ZT) of Cu3Sb1-xBixSe4 (x=0.01, 0.02, 

0.04 and 0.10).  

 

300 360 420 480 540 600 660
250

300

350

400

450

500

Temperature (K)

 

 

 
S

 (

V

 K
-1
)

300 360 420 480 540 600 660

10
3

10
4

 

 

 

Temperature (K)


 (

S
 m

-1
)

300 360 420 480 540 600 660
0.0

0.3

0.6

0.9

1.2

1.5

1.8

 

 

 

Temperature (K)


(
W

 m
K

-1
)

300 360 420 480 540 600 660
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Z
T

Temperature (K)

 

 

 x=0.00

 x=0.01

 x=0.02

 x=0.04

 x=0.10

Cu
3
Sb

1-x
Bi

x
Se

4

a) b)

d)c)



14 

 

 

Figure 6. Electronic band structure of pristine CASe and Bi-CASe. 

To take advantage of the carrier concentration control that a p-type dopant such as Sn provides and of 

the convenient increase of S resulting from the Bi presence, we prepared a series of CASe samples 

simultaneously doped with both elements. Figure 7 shows the temperature dependence of the electrical 

and thermal transport properties of Cu3Sb0.98-xSnxBi0.02Se4 (x = 0.02, 0.05 and 0.10). These samples 

showed a degenerated electrical conductivity behavior, associated to a large level of doping. σ 

increased with the Sn content as with Sn-CASe. Surprisingly, σ of co-doped Sn,Bi-CASe was actually 

larger than that of Sn-CASe samples with the same amount of Sn, which Hall measurements associated 

to a slight increase of the charge carrier concentration, up to p=1x1020 cm-3. On the other hand, S 

decreased for all Sn,Bi-CASe co-doped samples when compared with plain CASe due to the large 

increase of charge carrier concentration. However, S values of co-doped materials slightly increased 

when compared with Sn-doped CASe with equivalent electrical conductivities, proving the positive 

effect of the Bi addition. Overall, the PFs of co-doped Sn,Bi-CASe were significantly higher than those 

of Sn- or Bi-CASe, and reached up to ~1.81 mWm-1K-2 at 654 K for Cu3Sb0.88Sn0.10Bi0.02Se4 (Figure 

S17a). Like in the case of Sn-CASe, in Sn,Bi-CASe the dependence of κ with the dopant concentration 

showed a competition between the decrease of κL associated with the increased lattice defects and the 

increase of κe associated to the much higher electrical conductivities (Figures 7c and S17d). Overall, 

ZT values up to 1.26 at 673K were obtained for Cu3Sb0.88Sn0.10Bi0.02Se4, which is among the best ZT 

values obtained with a Pb- and Te-free material in this middle temperature range (Table S5).  
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Figure 7.  Temperature dependence of (a) electric conductivity (σ), (b) Seebeck coefficient (S), 

(c) thermal conductivity (κ), and (d) The figure of merit (ZT) of Cu3Sb0.98-xSnxBi0.02Se4 (x = 

0.02, 0.05 and 0.10). 

These materials were further employed to fabricate simple TE generator prototypes with a ring 

architecture (Figure 8). Such design optimizes the thermal contact between the TE generator and the 

walls of a hot or cold pipe, and at the same time minimizes the module form factor and provides 
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thickness of 3 mm were assembled and tested in a custom made set-up as detailed in the experimental 
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ring as a function of the temperature gradient. Open circuit voltages close to 20 mV were obtained for a 

single TE element exposed to a temperature gradient of 160 ºC. Being the electrical resistance of the 

ring 0.4 , this voltage translates into a 1 mW of generated electric power for each single TE element. 

The combination of several TE p-n pairs in each ring (Figure 8d) and of several rings into a module 

(Figures 8e) could provide electric powers on the order of 100 W for 200-300 ºC temperature gradients 

as those available among other in exhaust gas pipes of vehicles with combustion engines. 

 

Figure 8. a) Scheme of a basic ring-based TE module, b) Cu3Sb0.88Sn0.10Bi0.02Se4-based ring, c) Voltage 

obtained from a single Cu3Sb0.88Sn0.10Bi0.02Se4 ring as a function of the temperature gradient when 

increasing the temperature at the hot side and maintaining the cold side at around ambient temperature. 

The hot side temperature is also displayed on the top axis. Red open circles display the apparent 

Seebeck coefficient of the ring. d) Scheme of a ring with multiple p and n type elements (in black and 

red). e) Scheme of a multi-ring system to be coupled to a hot pipe including a jacket for cooling fluid 

circulation. 

 

4.  CONCLUSION 
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ring-shaped TE generators produced provided 1 mW of electric power per TE element with a 160 ºC 
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temperature gradient. The simple design and good thermal contact provided by the ring design and the 

low cost of the material and processes used potentially results in TE systems with short payback times. 
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