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Abstract—An alternative to current mainstream preprocessing
methods is proposed: Value Selection (VS). Unlike the existing
methods such as feature selection that removes features and
instance selection that eliminates instances, value selection elim-
inates the values (with respect to each feature) in the dataset
with two purposes: reducing the model size and preserving its
accuracy. Two probabilistic methods based on information the-
ory’s metric are proposed: PVS and P+VS. Extensive experiments
on the benchmark datasets with various sizes are elaborated.
Those results are compared with the existing preprocessing
methods such as feature selection, feature transformation, and
instance selection methods. Experiment results show that value
selection can achieve the balance between accuracy and model
size reduction.

Index Terms—preprocessing, data mining, value selection,
model size reduction, entropy, information theory

I. INTRODUCTION

Machine Learning is revolutionizing the Mobile App industry.
For example, only 2% of iPhone users have never used Siri and
just 4% of Android users have never used Google Assistant,
as reported by Creative Strategies [1]. In other words, 97%
of mobile users are using AI-powered voice assistants. Apple
has launched Siri SDK and Core ML and now all developers
can incorporate this feature into their apps. Similarly, Google
has launched TensorFlow for Mobile. Many signals from the
major mobile device manufacturers have also confirmed this [2].
Lenovo is working on its new smartphone that also performs
without an internet connection and executes indoor geolocation
and augmented reality; many mobile chip makers (including
Apple, Huawei, Qualcomm, and Samsung) are working on
hardware dedicated to accelerating machine learning on mobile
devices.

There are many desirable advantages of enabling mobile
devices to perform machine learning tasks without connecting
to the servers, including but not limited to increased security
and privacy, no internet connection required, lower latency
and so on. However, many machine learning tasks, originally
designed to run in computers, require a lot of computational
power; and some model files could be huge, which incur an
expensive space overhead. On the other hand, mobile devices
have significantly less powerful computation capability and
smaller storage space, as compared with servers or computers.

How to adapt the machine learning algorithms/models to
resource-limited mobile devices is a challenging issue.

In this paper, we focus on classification, one of the most
common machine learning tasks. To be more specific, we study
compact classification methods such as Decision Tree [3], rule-
based method [4], and Naive Bayesian [5] but not complex
classification models such as support vector machine (SVM) [6]
or neural network [7]. This is because storage spaces and
computational power are still considered as limited resources in
many low-end smartphones. In addition, compact classification
methods are able to achieve certain accuracy and are easy
to implement/interpret. For example, decision trees have been
extensively used for bank loan approvals owing to their extreme
transparency of rule-based decision-making. In summary, we
dedicate this paper to the study of ways that could reduce the
complexity of compact classification methods to cut down the
storage overhead without losing much accuracy.

Reducing the storage overhead is a common requirement of
many tasks. For example, in data mining, dimension reduction
and instance selection are two preprocessing methods that
are generally used to reduce the complexity of the data.
The former is to reduce the dimensional complexity of the
data/model by removing unproductive features/dimensions via
feature selection or projecting the original feature space into a
different feature space with lower dimensionality via feature
transformation. The latter is to reduce the number of training
instances to speed-up the training process, under the assumption
that the whole dataset can be represented by a number of core
instances without suffering much information loss.

Motivated by the strengths of both feature selection and
instance selection, we explore a new preprocessing method
called “value selection” in this paper. For better understanding,
let’s assume the data are recorded by a two-dimensional table,
with the columns referring to different features and each row
(or a record) corresponding to the detailed feature values of
one instance. Removing a feature is equivalent to delete a
complete column from the table, and removing an instance is
equivalent to delete a complete row from the table. Instead of
removing a complete row or a complete column, value selection
adopts a finer granularity, i.e., the intersection between them,
which is the values. It evaluates the importance of individual
values, but not that of complete rows/columns when selecting



Fig. 1. Illustration of the Value Selection and how it reduces the model size.
Left: original data representation. Right: filtered data representation.

data for deletion. We hypothesize that values have different
importance in the training process. Value Selection enables the
measurement of importance at the finest granularity (i.e., at the
value level) and can remove those values that do not improve
the classification accuracy. Consequently, it is expected to be
able to achieve a better trade-off between the model size and
accuracy.

Here, for illustration purpose, value selection is applied to
the Decision Tree algorithm [3] since the rules built in the
Decision Tree model are conjunctions of values, which makes
value selection relevant to improve the model’s performance
and to reduce the model’s complexity. Moreover, Decision Tree
is one of the predictive models that is often used in data mining
to solve both the classification task and the regression task [8].
Without losing the generality, value selection can also be
implemented on other classification methods that share similar
properties with Decision Tree, such as rule-based classifier [4].
In conclusion, Figure 1 shows the concept of the proposed
Value Selection and illustrates how the model size could be
reduced.

The contributions of this work is summarized as follows.
• A new preprocessing method called Value Selection (VS)

is proposed. Its primary goal is to reduce the model’s
size without sacrificing the accuracy of the classification
model.

• Two value selection methods, namely PVS and P+VS, are
formulated based on the information theory’s metrics.

• A comprehensive experimental study has been performed
to compare the proposed methods with nine baselines
using 10 benchmark datasets [9], [10]. The experimental
results show that our methods can reduce the model size
substantially and maintain acceptable accuracy.

II. RELATED WORKS

In this section, we review existing works related to instance
selection in Section II-A and those related to dimension
reduction in Section II-B respectively.

A. Instance Selection

Instance selection is often elaborated to minimize the number
of training instances when the training computation cost is
high, especially with the usage of computationally expensive
classifiers such as nearest neighbor and SVM. Prior research on
the instance selection mostly focuses on the classifier-specific
instance selection, while the latest instance selection methods

deal with more advanced topics (e.g., unsupervised learning,
online learning, and active learning).
Classifier-specific instance selection. Often, instance selection
methods are tailored toward a specific classification model
that requires high computational costs such as nearest neigh-
bor, SVM, and neural network. Whereas, despite their high
computational costs, those classifiers often produce satisfying
results in terms of the prediction power. For the nearest
neighbor method, the authors in [11] proposed a generalized
CNN (Condensed Nearest Neighbor) method to shrink the
training set. The generalization of CNN is performed by adding
different absorption criteria: using a threshold multiplied by the
minimum norm between arbitrary points. For SVM, the authors
in [12] proposed two instance selection methods based on the
firefly algorithm [13], [14] and edge detection method in image
processing, respectively. Another work related to SVM [15]
used a geometry-based approach to perform instance selection
on SVM. It assumes a spherical class distribution and distributes
a decision plane between spheres. Accordingly, it removes the
vector points that are not distributed in the adjacent of the two
hemispheres, as they are non-support vectors. For the neural
network, the authors in [16] proposed an entropy-based method
to perform an unsupervised instance selection. They use entropy
to evaluate the information contained in each instance, i.e.,
instances with higher entropy tend to have more information
compared to others.
General-purpose instance selection. Various general purpose
instance selection methods have been proposed in the past,
including randomized approach, clustering the instances, etc.
The authors in [17] reported a fast randomized approach for
instance selection, by using the reservoir concept. A reservoir
with a predefined size is used to store the instances. The
first batch of data is stored immediately on the reservoir and
others are processed using a probabilistic approach. However,
this method makes a strong assumption, that is each instance
contains the same amount of information, and the more
important instances occupy a larger part of the dataset. The
authors in [18] presented three instance selection methods based
on the reverse nearest neighbor (RNN) concept. The authors
in [19] proposed an instance selection method using hyper-
rectangle clustering [20]. Hyper-rectangles are generated for
each class, and the mean of its interior instances is used as the
representative instance. Recently, the authors in [21] proposed
an instance selection with linear time complexity for larger
dataset based on the concept of locality-sensitive hashing [22]
to quickly identify the similarity between instances.
Instance selection for specific topics. Most recent efforts on
the instance selection methods are more related to specific
problems related to unsupervised learning, online learning,
and active learning. The authors in [23] proposed a data
structure called data sphere to summarize the data and to
speed up hierarchical clustering methods. The proposed method,
namely summarized single-link method, extends the previous
work called single-link [24] to scale it for larger datasets
and outperforms the original single-link by two orders of
magnitude. The authors in [25] studied the problem of online



active learning, by using a binary classification to perform
selective labeling in the data streams.
Discussion. The difference between existing instance selection
methods and the proposed value selection methods lies in
their goals: instance selection methods reduce the number of
the training instances to ease the training process, whereas
value selection methods reduce the classification model size.
Undoubtedly, a value selection method can also be generalized
as an instance selection method if all the values in an instance
are removed.

B. Dimension Reduction

As stated in Section I, we can perform either feature selection
or feature transformation to reduce the dimensionality of the
feature space.
Feature selection. Selecting relevant features could help
classification models to be more accurate and concise. Feature
selection methods remove unnecessary features by using
various selection criteria. In general, feature selection can be
categorized into filter and wrapper approaches based on the
inclusion of the classification model in the process. In the light
of filter approaches, the authors in [26] built a probabilistic
model according to the inconsistency criterion to eliminate
the features. Differently, correlation feature selection (CFS)
[27] performs feature selection on the dataset by evaluating
the correlation between features and observing the predictive
power of each feature. Using entropy in mind, the authors
in [28] devised a feature selection method on the text data.
A term distribution on different categories determines the
discriminative power of the term; a term that appears in multiple
categories is less discriminative than a term that appears only in
one category. In the light of natural computing, the authors in
[29] utilize particle swarm optimization which is often applied
in a continuous search space problem to find the optimal feature
subset. Wrapper feature selection is often used to increase the
performance of feature selection, even though it requires longer
running time (e.g., [30], [31]). The authors in [31] presented
a wrapper approach with two objective functions: minimizing
the number of selected features and minimizing the root mean
squared error (RMSE) of the model learned by Random Forest
(RF). A ten-fold cross-validation is used to minimize the risk
of overfitting to certain features. Finally, a hybrid approach is
presented in [30] by adapting an incremental wrapper where
the features are ranked first using a filter measure and further
evaluated using the wrapper approach.
Feature transformation. Feature transformation could reduce
the feature complexity too. Instead of removing the feature
directly as feature selection does, it projects the dataset into
a different data space to reduce the dimensional complexity.
Principal component analysis (PCA) [32] is one of the most
famous data analysis tools that could reduce the complexity of
the dataset. PCA is calculated by eigenvalue decomposition of a
data covariance (or correlation) matrix or singular value decom-
position of a data matrix. Random projection [33] provides an
alternate solution to PCA, using a random matrix to transform
the original dataset into another data space. The concept is

TABLE I
SUMMARY OF NOTATIONS

Notation Meaning
D Dataset matrix of |F | × |I|
F Feature set with |F |indicating the number of features
I Instance set with |I|indicating the number of instances
f x The x-th feature / column / dimension
iy The y-th instance / row / record
V x Collection of all values of x-th feature
vx

z The z-th value of x-th feature
|V x| Number of possible values of x-th feature
V ′x Filtered value set of x-th feature
L Class label set
l A class label ∈ L
|M| Classification’s model size
|Mo| Original model’s size
|Mp| Preprocessed model’s size
Acco Original model’s accuracy
Accp Preprocessed model’s accuracy
MR Model size reduction
AR Accuracy ratio
H(D) Entropy of dataset D
H(D|vx

z ) Conditional entropy of dataset D given value vx
z

IG(D, vx
z ) Information gain in the dataset given the value vx

z
X Harmonic mean of accuracy ratio and model size reduction

built on top of Johnson-Lindenstrauss lemma [34]. That is,
the distance between the projected points, which are projected
onto a randomly selected subspace, is an approximation of
the distance between the points in the original space. In terms
of the computation time, random projection is significantly
less expensive than PCA, while random projection could yield
results comparable to PCA [33].
Discussion. While most feature selection methods aim to
address the curse of dimensionality, they do not consider
reducing the model size. Consequently, the classification
model built on top of feature selection is only expected
to have higher accuracy [35]. On the other hand, feature
transformation methods can reduce the model size and maintain
acceptable accuracy. However, they produce obscure rules and
in general require a long time to compute due to the complex
computation.

III. PRELIMINARIES

In this section, we first define in Section III-A the terms
and notations that are frequently used in this paper, and then
formulate the value selection problem in Section III-B.

A. Terms and Notations

Table I summarizes the notations used throughout this paper.
Each instance iy ∈ I is a list of values and has a class label l
∈ L. It is important to note that an instance might have values
corresponding to certain features missing. Value vx

z is a distinct
value that corresponds to a feature f x ∈ F , which might appear
once or multiple times in any instance iy ∈ I. The values vx

zs in
each feature f x are non-overlapping and independent to each
other. Finally, to simplify the value removal process and to
reduce the search space, we discretize all the continuous values
into discretized values.

As our main objective is to reduce the model size without
losing the accuracy, we adopt the model size reduction and the



accuracy ratio as the major performance metrics. For the sake
of simplicity and consistency, the model size |M| is measured by
the total number of leaves/internal nodes throughout the paper.
In other words, |M| refers to the total number of rules that are
used to represent the model. Without losing the generality, a
rule is a path from the root to a leaf in a decision tree. The
reduction of the tree size in the model represents the reduction
of the model’s complexity, which ultimately reduces the size
of the classification model. Subsequently, model size reduction
MR is the normalized difference between the original model
size |Mo| and the preprocessed model size |Mp|, as shown in
Equation (1).

MR =
|Mo|− |Mp|
|Mo|

(1)

The range of model size reduction is −∞ < MR < 1 but
the typical value range is between 0 and 1. A positive MR
value indicates that the preprocessing has successfully reduced
the size of the model; a zero MR value indicates that the
preprocessing does not reduce the size of the model; and
a negative MR value reflects that the preprocessing actually
enlarges the model size, which is not desirable. In general, a
larger MR value is more preferable.

Similarly, accuracy of a classification model might be
changed when the data is preprocessed, whether it is an
improvement or a deterioration. To evaluate the effectiveness
of the preprocessing methods, one could evaluate the difference
between the accuracy of the model built on the original data
(denoted by Acco) and the accuracy of the model built on the
preprocessed data (denoted by Accp). However, the absolute
accuracy difference mentioned above cannot reflect the gain
or the loss relatively to the original model’s accuracy. Thus,
a metric called accuracy ratio (AR) is introduced to quantify
the ratio between the preprocessed model’s and the original
model’s accuracy, as explained in Equation (2).

AR =
Accp

Acco
(2)

The range of accuracy ratio is 0≤ AR < ∞, in which AR = 1
means no accuracy changes, AR <1 reflects accuracy deterio-
ration, and AR >1 expresses accuracy improvement. Again, a
higher AR is more desirable than a lower AR.

B. Problem Definition

Figure 2 explains how the value selection is performed in a
data processing pipeline. The original dataset D needs to be
discretized before the value selection stage. Two value selection
methods are proposed in this paper: PVS and P+VS. Both
methods take advantage of the information metric of each value
and apply a probabilistic approach based on the information
metric’s value. Details of both methods are explained in
Sections IV-B and IV-C, respectively.

IV. METHODOLOGY

In this section, we first introduce an approach to evaluate
the important of values for the task of classification; we then
present the two proposed value selection approaches, namely

Fig. 2. Value selection in the general classification process.

PVS and P+VS. Finally, we explain the effectiveness proof
and intuition behind the proposed solution.

A. The Importance of Values

As explained in Section III-A, a value is the intersection
of a feature and an instance. For a given feature, it might
have values that are relevant to the classification and values
that are irrelevant. Thus, simply removing a feature results in
losing all the good values that might hurt the classification
accuracy. Therefore, the proposed value selection methods aim
to preserve those good values in each feature. By doing so,
value selection ultimately can maintain accuracy and reduce
the model size (and hence the model complexity). Naively,
to perform value selection, one can simply remove values
randomly. However, removal of values does not necessarily
induce model size reduction in all cases, as it might introduce
the overfitting problem. Thus, we introduce new metrics based
on information theory to quantify the importance of each value.

The importance of each value is determined by its predictive
power to deduce the class label. However, each value might
possess different class distribution, which would complicate
the model building process. Accordingly, we propose two
types of information metrics, i.e., entropy and information
gain, to discern the predictive power of each value. To ease
the explanation, information metric ι is denoted to be either
entropy or information gain for the values’ goodness metric.

Firstly, Shannon entropy [36] is adapted to measure the val-
ues’ goodness; values with lower entropy (i.e., less confusion)
tend to be more useful than values that have higher entropy.
The adaptation of the Shannon entropy is stated in Equation (3).

H(D|vx
z) =− ∑

∀l∈L
px

l,z log|L| p
x
l,z (3)

Here, probability px
l,z expresses the probability of class label l,

given the value vx
z observed corresponding to the feature f x.

To be more specific, given a feature f x, there are in total |V x|
different values. For each value vx

z observed in this feature, we
can count the probability of this value observed for a given
class l ∈ L; and the sum of px

l,z corresponding to different vx
z

values in feature f x is one, i.e., ∑vx
z∈V x

z
px

i,z = 1. The entropy
of any value H(D|vx

z) is in the range of 0 and 1.
Take the sample instance set listed in Table II as an

example. We assume there are in total two classes, i.e.,
L = {0,1}. For feature f 3, there are in total three distinct
feature values, with v3

1 = 2, v3
2 = 1, and v3

3 = −1 (i.e.,
V 3 = {2,1,−1}). Now, let’s derive the entropy of three different
values. H(D|v3

1) = −p3
l=0,1 log2 p3

l=0,1− p3
l=1,1 log2 p3

l=1,1. As
there is no instance iy in the class l = 0 having its feature
value in the feature f 3 being 2, p3

l=0,1 = 0; similarly, one



TABLE II
SAMPLE INSTANCES WITH THEIR CORRESPONDING FEATURE VALUES AND

CLASS LABELS

instances class label f 1 f 2 f 3 f 4

i1 1 - 1 2 1
i2 1 1 - 1 1
i3 0 −1 −2 −1 −1
i4 0 −1 - 1 −2
i5 1 1 1 −1 -

instance among three instances belonging to class l = 1 has
its value corresponding to feature f 3 being 2, i.e., p3

l=1,1 =
1
3 .

Accordingly, H(D|v3
1) =−

1
3 log2

1
3 = log23

3 . Following the same
logic, we have H(D|v3

2) = H(D|v3
3) =

1
2 +

log23
3 . In other words,

v3
1 is more useful in predicting the classes of instances in feature

f 3, as compared with other values.
In addition to entropy, information gain [37], which is widely

used in the decision tree, is applied to serve as the other
goodness metric for the values. The adaptation of information
gain for value selection is presented in Equation (4). Note that
H(D) = ∑vx

z∈D H(D|vx
z).

IG(D,vx
z) = H(D)−H(D|vx

z) (4)

In order to ensure the values of information gain are also in
the range of 0 and 1, we introduce the normalized information
gain in Equation (5). Different from the entropy, a larger
information gain indicates a value with a stronger predictive
power and hence is expected to be more important than a value
with smaller information gain, for the task of classification.

IGN(D,vx
z) =

IG(D,vx
z)

max
∀vx

z∈V x
IG(D,vx

z)
(5)

B. Probabilistic Value Selection

The most straightforward way to perform value selection
using an information metric ι (i.e., either the entropy or the
information gain) is to discriminate less useful values from the
dataset by using a user-defined threshold τ , i.e., removing all
the values vx

z with entropy H(D|vx
z) > τ or with information

gain IGN(D,vx
z) < τ . However, determining a threshold for

an information metric ι is not a trivial task [38]. Therefore,
we adopt a probabilistic approach, instead of the threshold-
based removal approach, to select the values by using ι as the
probability for a value removal, e.g., values with larger entropy
(smaller information gain) are more likely than those with
smaller entropy (larger information gain) to be removed. This
avoids the threshold selection process and eases the application
of value selection in other domains. In addition, an amplifier
hyperparameter ε (with 0< ε ≤ 1) is used to intensify the value
removal probability, where a small ε amplifies value selection’s
impact. In summary, Equation (6) defines the probability of
a value vx

z to be removed from the value set V x. It is worth
highlighting that Equation (6) unifies the two types of metrics,
and a higher probability indicates a higher chance to be removed

as the underlying value has either larger entropy or smaller
information gain.

P(V x \ vx
z) =

{
H(D|vx

z)
ε

if ι is entropy
1−IG(D,vx

z)
ε

if ι is information gain
(6)

The first algorithm, PVS, is guided by the above defined
removal probability. We visualize the complete process of PVS
in Figure 3 to ease the understanding. We represent the original
dataset using a table format, with columns corresponding to
features, rows representing instances, and symbol “v” standing
for a value (which could be missing). We then extract distinct
values vx

z for each feature f x to form the respective value set
V x and then derive their probability P(V x \ vx

z) corresponding
to the given information metric ι . Next, we use the probability
to guide the value selection process. To be more specific, for
each unique value vx

z corresponding to a feature, we utilize a
random generator to produce a score r′ between 0 and ε−1.
If r is smaller than the probability of vx

z , value vx
z will be

removed from the respective value set V x. As shown in the
third process in Figure 3 (refer this as “Filtered Values”), the
number of values in each feature might be reduced due to the
value removal. Finally, we represent the dataset again using a
table format, as shown in the last process of Figure 3. Each
symbol “x” indicates that the value originally located at this
field has been removed.

Please note that the proposed method can mimic the “feature
selection” or “instance selection” process, as shown in the
last step in Figure 3. To generalize value selection as an
instance selection method, the number of missing value in
an instance is evaluated. Note a missing value in an instance
could be originally missing or removed via value selection.
It is assumed that instances with more missing values are
more irrelevant toward the training process, and thus, can
be eliminated. Ultimately, an instance without any value is
meaningless (i.e., all of the values are missing values) and can
be removed without any reduction on the model’s performance.
Similarly, value selection can act as a feature selection when
the values in a feature are completely removed, as the predictive
power of that feature becomes null and thus, the feature can be
safely removed. Finally, the time complexity of the PVS method
is bounded by O(n+ x), where n and x are the number of
instances and the number of values in the dataset, respectively.

C. Extension of the Probabilistic Value Selection

P+VS is an extension of PVS by performing the value
selection per instance (locally), instead of applying the selection
on all instances (globally). It is motivated by the following
observation. Given a value vx

z with non-zero information gain, it
is expected to have a positive impact on the model’s prediction
power in some cases. If it is removed, we also lose its positive
impact on those cases. That is to say if we select values at
feature level, removing an actually useful value has an negative
impact. In order to reduce these types of negative impact, we
want to enable the value selection at the instance level but not
the feature level.



Fig. 3. Flowchart of the Probabilistic Value Selection process. The blue ’v’ characters in the dataset represent the original values and the red ’x’ characters
denote the removed values. The horizontal red line implies that the entire row is removed (i.e., instance selection) and the vertical red line removes the column
(i.e., feature selection).

The complete process of P+VS is presented in Algorithm 1. It
scans through all the instances in the database. For each instance
i′y, it checks all the non-missing values vx

zs and decides whether
to remove the value. The decision is purely dependent on the
importance of this value (via either entropy or information gain
metric) and a random score r′ generated by a random process
(Line 4). We simply compare the importance of this value with
the generated random number, which is the same as what PVS
does. However, the real removal action is different. P+VS only
removes the value from the current instance, and this removal
will NOT affect other instances (Lines 5 - 8).

In addition to removing values at instance-level, P+VS also
introduces the action of eliminating instances. For a given
instance i′y, it derives the ratio of the number of features
that instance i′y does not have values (either removed by the
previous value selection process or originally missing) to the
total number of features, namely missRate in Line 9. Take
instance i1 in Table II as an example. Assume its values
corresponding to both features f 2 and f 4 are removed; its value
corresponding to feature f 1 is originally missing. Accordingly,
its missRate is 3/4 = 0.75. P+VS generates a new random
number r′ and removes the whole instance i′y if its missRate is
larger than the random number (Lines 10 - 12). When many
values of an instance is missing, it is more likely that this
instance has many high-uncertain/less-informative values. In
other words, this instance has a higher chance to be noisy. We
expect this instance-level removal could improve the capability
of value selection to remove unproductive instances and hence
contributes to a more accurate classification performance.

D. Value Selection effectiveness proof

Hypothesis. Value selection will reduce, but will not increase,
the confusion of the dataset by removing confusing values.
We assume the proportion of each value vx

z before and after
the value selection in feature f x is represented by wx

z and
w̃x

z , respectively, and the entropy of each respective value is
described by H(D|vx

z).
Proposition. Total confusion (i.e., weighted sum of the entropy)
post-value selection is no greater than that of the original data.
In other words, we need to prove the following inequality is

Algorithm 1: P+VS method.
Input: Original instances: I, value set: V , amplifier ε , information

metric ι

Output: Filtered instances: I′

1 Define I′← I;
2 foreach i′y in I′ do
3 foreach vx

z in i′y do
4 r′← random(0,1);
5 if ι=infoGain and IGN(D,vx

z)< r′ ∗ ε then
6 i′y.remove(v);
7 else if ι=entropy and H(D|vx

z)> r′ ∗ ε then
8 i′y.remove(vx

z );
9 missRate← countMiss(i′y);

10 r′← random(0,1);
11 if missRate > r′ then
12 I′.remove(i′y);
13 return I′

correct.
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Proof.

w̃x
z =

{
0 if H(D|vx

z) = 1
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z)) otherwise

Since, wx
z× (1−H(D|vx

z)) is always larger than 0, we have
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Accordingly, we can restate Inequality (7) as follows.
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Our proof completes.
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V. EXPERIMENTS AND DISCUSSIONS

In order to evaluate the performance of proposed approaches,
we have conducted a comprehensive experimental study. In the
following, we present the experiment setups, study the impact
of hyper-parameters before we determine the exact setups, and
then report our major findings.

A. Experiment Settings

Datasets. In our study, we use 10 benchmark datasets from
various domains [9], [10] with varying size in terms of the
number of features, the number of instances, the possibility
of missing values in the data, and the number of class labels.
Table III reports the basic statistics of the datasets.
Algorithms. In order to evaluate the performance and effective-
ness of proposed PVS and P+VS, we implement in total nine
representatives of feature selection (FS), feature transformation
(FT), and instance selection (IS) as competitors/baselines. They
are i) FS CFS [27], a feature selection method that picks a
set of useful features based on an evaluation formula with an
appropriate correlation measure and a heuristic search strategy;
ii) FS Consistency [26], a filter solution for feature selection
using inconsistency metric and a probabilistic approach; iii)
FS IWSS [30], an incremental wrapper feature selection that
first sorts features using a filter approach and evaluates them
using a wrapper approach; iv) FS MOEA [31], a wrapper
feature selection that employ genetic algorithm with two
objectives: minimizing number of features and RMSE of
Random Forests; v) FS PSO [29], a feature selection that
uses particle swarm optimization to find the optimal subset;
vi) FT RandomProjection or FT RP for short [33], a method
that reduces the dimensionality of data by using a random
projection from the original data space; vii) FT PCA [32], a
data transformation method that projects the original dataset
into a set of values of linearly uncorrelated label called principal
components; viii) IS Misclassified [39], an instance selection
method implemented in Weka1 that filters out instances that
often mis-classify the class labels; and ix) IS Reservoir [17],
a fast instance selection method that selects the instances
using random sampling without replacement method (i.e., each
instance in the dataset is stored into a set with a limited size
using a probabilistic approach). Note the prefix (i.e., FS or FT
or IS) indicates the category of the baseline
Parameters. The parameter settings of different algorithms
are explained as follows. The number of principal components
in the FT PCA is 1/2 of the number of features in the dataset
and 95% of variance is ensured to be in the original data.
Similarly, the number of projected dimensions in the FT RP
is 1/2 of the number of features in the dataset. It is assumed
that by reducing the number of features into a half of the
original number of features, both the model size reduction and
accuracy can be simultaneously high. The size of reservoir
in IS Reservoir is set to be 1/20 of the number of instances
in the dataset. By sampling more instances from the dataset,
the accuracy ratio is not necessarily higher than the case with

1http://www.cs.waikato.ac.nz/ml/weka/

Fig. 4. Value selection (P+VS) performances under different information
metric ι settings. Each point represents the performance on each dataset.

fewer instances. Additionally, the original instances set in Weka
consists of only 100 instances, which does not favor bigger
datasets. Therefore, proportionally sampling 5% of the dataset
is more effective than fixing the size of the reservoir as it
is difficult to determine a magic number that works for all
datasets. The other preprocessing methods are implemented
using the default settings in Weka.
Setups. All the experiments are conducted on a server with
Intel Core i7-4790 running at 3.60GHz, 28 GB RAM, Windows
7, Java 9.0.1, and Weka 3.8.1. Value selection is implemented
as a Weka’s Filter class and Weka’s classification methods are
utilized to run the experiments. Our experiments can be divided
into three stages namely discretization, value selection, and
classification, as shown in Figure 2. We evaluate three different
discretization methods throughout our experiments to observe
the robustness of the proposed methods under both unsuper-
vised and supervised discretization methods, including equal-
width binning (Binning), equal-frequency binning (Frequency),
and minimum description length (MDL) discretization [40]. For
the sake of consistency, we implement all three discretization
methods in Weka. Subsequently, we produce filtered data from
the preprocessing of the discretized data. To cope with the
randomness of produced results in value selection, we repeat
the experiments at random for five times. Finally, we construct
the classification model using the filtered data and apply the
10-fold cross-validation scheme to evaluate the model.

B. Parameter Analysis

The performance of both PVS and P+VS is dependent on
several hyper-parameters, including the selected information
metric ι , the discretization method, and an amplifier ε . In
our last set of experiments, we study their impact on the
performance of newly proposed algorithms. Table IV reports
the settings of these three hyper-parameters, with values in bold
indicating the default values. When we evaluate the impact of
one hyper-parameter, we set the other two hyper-parameters to
their defaults. Because of the space limitation, we only report
their impacts on P+VS, as those hyper-parameters have similar
impacts on PVS. Also, borrowing the idea of F1 score that
summarizes precision and recall, we define a harmonic mean
X of MR and AR as X = 2

1
AR+

1
MR

= 2×AR×MR
AR+MR .

First, the impact of the information metric on P+VS is
reported in Figure 4. While both entropy and information



TABLE III
THE BASIC STATISTICS OF THE 10 BENCHMARK DATASETS USED IN THIS PAPER.

ID Dataset name #Instances #Features #Numerical #Categorical #Class Missing values
d1 credit 1,000 20 7 13 2 NO
d2 hypothyroid 3,772 29 7 22 4 YES
d3 mfeat-zernike 2,000 47 47 0 10 NO
d4 segment-challenge 1,500 19 19 0 7 NO
d5 letter 20,000 16 16 0 26 NO
d6 adult 48,855 14 6 8 2 NO
d7 census-income 199,504 41 13 28 2 NO
d8 dota2 92,641 116 0 116 2 YES
d9 cifar10-small 10,000 1,024 1,024 0 10 NO
d10 cifar10-big 60,000 1,024 1,024 0 10 NO

TABLE IV
HYPERPARAMETERS

information metric ι entropy, information gain
discretization method Binning, Frequency, MDL
amplifier ε 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Fig. 5. Value selection (P+VS) performances under different discretization
settings. Each point represents the performance on each dataset.

gain are commonly employed as measurements to evaluate
the importance of data in the field of information theory, it
seems that entropy is more useful to depict the usefulness
of each value vx

z than information gain in our study. Second,
we evaluate the impact of discretization methods and report
the results in Figure 5. There are no significant differences
among three discretization methods, which demonstrates the
robustness of the proposed value selection methods on particular
discretization methods. Last but not least, we report the impact
of amplifier ε in Figure 6. As observed, it has opposite impacts
on MR and AR. A small ε favors MR but not AR, while the
increase of ε improves AR but not MR. The best trade-off
between MR and AR is achieved when ε = 0.5 (i.e., highest
harmonic mean X).

C. Overall Results

Our algorithms are designed to reduce the model sizes with-
out hurting the accuracy achieved by the models. Consequently,
we care both model size reduction (MR) and accuracy ratio
(AR). The results in terms of X of all the algorithms are
reported in Figure 7. Table V and Table VI report the detailed
accuracy ratio and model size reduction of different algorithms
on each dataset, respectively. To ease the understanding of
the data, we underline the best performers corresponding to
each dataset. Note that for both PVS and P+VS, we report
their performance with hyper-parameters set to their default
(as listed in Table IV).

Fig. 6. The impact of parameter ε on the value selection methods (average
performance on 10 datasets).

We observe that our algorithms achieve good performance.
To be more specific, P+VS achieves the best trade-off between
AR and MR. If we take a closer look at its performance in
different datasets, P+VS achieves the best AR performance in
2 out of 10 datasets. In the other 8 datasets, its AR performance
is also comparable with the best performer, on average 6%
lower than the best performer. Its MR performance is even
better. It tops in 6 out of 10 datasets.

In terms of the comparison among nine competitors, we
have several observations. Feature selection algorithms (i.e.,
FS CFS, FS Consistency, FS IWSS, FS MOEA, FS PSO) are
designed to reduce the dimensionality of data and meanwhile
to improve the model’s performance. They indeed maintain
impressive accuracy ratio. They are the best performer in terms
of accuracy in 8 out of 10 datasets. However, they are not
good in overall model size reduction, especially when the
number of features is extremely large (e.g., d9, d10). On
the other hand, IS Reservoir reduces the model size most
but it suffers from unstable accuracy. It is worth noting that
IS Reservoir drops its accuracy significantly in several datasets
(e.g., d3, d4, d5, and d9). Meanwhile, we also observe that
IS Misclassified, although being a representative of instance
selection, performs more similarly to feature selection, because
its priority is to remove mis-classified instances and hence
focuses more on model’s classification accuracy. FT PCA, as
a feature transformation algorithm, tries to achieve a balance
between accuracy ratio and model size reduction through the
dataset transformation. Although it has not been the best
performer in terms of AR or MR in any of the datasets, it does
outperform many of the competitors in terms of the harmonic
mean X . Note we do not report the performance of FT PCA



Fig. 7. Harmonic mean of accuracy ratio and model size reduction of the proposed methods along with the baselines.

TABLE V
SUMMARY OF ACCURACY RATIO ON EACH DATASET

Algorithms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 Average
FS CFS 1.07 0.99 1.02 1.00 1.00 1.01 1.01 1.07 1.01 1.01 1.02
FS Consistency 1.07 1.00 0.96 1.00 0.99 1.02 1.01 1.02 1.03 1.03 1.01
FS IWSS 1.10 1.00 1.03 0.99 1.00 1.01 1.01 1.07 1.03 1.03 1.03
FS MOEA 1.07 1.00 1.03 1.00 1.00 1.02 1.01 1.07 1.03 N/A 1.03
FS PSO 1.09 1.00 1.01 1.00 1.01 1.02 1.01 1.07 1.00 1.02 1.02
FT PCA 1.04 0.98 0.98 0.91 0.71 1.00 1.00 1.02 N/A N/A 0.95
FT RandomProjection 0.98 0.98 0.42 0.72 0.39 0.96 0.99 0.98 0.77 0.70 0.79
IS Misclassified 1.07 1.00 1.02 1.00 0.99 1.02 1.01 1.04 1.07 1.07 1.03
IS Reservoir 1.02 0.97 0.52 0.73 0.68 1.01 1.00 1.01 0.79 0.83 0.86
PVS 1.06 0.97 0.96 0.94 0.84 0.95 1.01 1.02 0.96 0.97 0.97
P+VS 1.06 0.96 0.90 0.92 0.91 0.97 1.00 1.00 1.07 1.08 0.99

TABLE VI
SUMMARY OF MODEL SIZE REDUCTION ON EACH DATASET

Algorithms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 Average
FS CFS 0.96 0.81 0.4 0.46 0.34 0.99 0.99 0.96 0.12 0.14 0.62
FS Consistency 0.93 0.71 0.5 0.39 0.32 0.96 0.98 0.64 0.51 0.58 0.65
FS IWSS 0.94 0.75 0.42 0.43 0.34 0.95 0.99 0.96 0.28 0.22 0.63
FS MOEA 0.89 0.7 0.48 0.39 0.32 0.95 0.97 0.99 0.23 N/A 0.66
FS PSO 0.9 0.7 0.44 0.4 0.32 0.94 0.98 0.95 0.14 0.15 0.59
FT PCA 0.97 0.44 0.67 0.65 0.53 0.98 0.98 0.99 N/A N/A 0.78
FT RandomProjection 0.75 0.24 0.36 0.14 0.28 0.9 0.89 0.59 0.59 0.64 0.54
IS Misclassified 0.86 0.71 0.47 0.38 0.4 0.95 0.98 0.81 0.48 0.4 0.64
IS Reservoir 0.98 0.96 0.93 0.85 0.92 0.99 0.99 0.97 0.94 0.95 0.95
PVS 0.99 0.92 0.53 0.47 0.46 0.99 0.99 0.98 0.52 0.52 0.74
P+VS 0.99 0.95 0.8 0.59 0.72 0.99 0.99 0.99 0.97 0.99 0.90

under datasets d9 and d10 (and FS MOEA on d10). This
is because, under those two datasets, the memory usage of
FT PCA (and FS MOEA) exceeds the capacity and its running
time is extremely long. Finally, another feature transformation
algorithm, FT RandomProjection, is faster than FT PCA and
presents acceptable results in certain datasets but it fails to
achieve overall good results because unlike FT PCA, it is not
optimized and solely relies on randomization.

VI. CONCLUSIONS AND FUTURE WORKS

A new alternative to the preprocessing methods in data
mining is proposed by removing irrelevant values on the
dataset. The purpose of the proposed method, value selection, is
reducing the model size and maintaining an acceptable accuracy
ratio. Two probabilistic methods are presented to solve the value
selection problem: PVS and P+VS. The former removes the
values globally over all instances while the latter applies the
removal locally on each instance. Moreover, P+VS can act as
an instance selection by using the ratio of missing values in an
instance. Experiment results show that the proposed methods

are effective in reducing the model size (59%-99% reduction)
and simultaneously maintaining the accuracy ratio above 90%
on average. Furthermore, the proposed methods perform in a
linear time complexity.

The direction of the future works is given as follows. Firstly,
different heuristic metrics could be explored to generate the
value subset. In addition, combining value selection with other
data reduction methods could also be a good direction for
inventing a better space efficient model. Tackling on more
sophisticated problems, value selection methods designed for
online learning and semi-supervised learning are also an
interesting direction.

ACKNOWLEDGEMENTS

This research / project is supported by the National Research
Foundation, Singapore under its International Research Centres
in Singapore Funding Initiative. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of National
Research Foundation, Singapore.



REFERENCES

[1] C. Milanesi, “Voice assistant anyone? yes please, but not in
public!” 2016. [Online]. Available: https://creativestrategies.com/
voice-assistant-anyone-yes-please-but-not-in-public

[2] S. Relevant!, “Why use machine learning on mobile
devices?” 2019. [Online]. Available: https://www.codementor.io/packt/
why-use-machine-learning-on-mobile-devices-tiopoukck

[3] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[4] W. W. Cohen, “Fast effective rule induction,” in Proceedings of
the Twelfth International Conference on International Conference on
Machine Learning, ser. ICML’95. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1995, pp. 115–123. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3091622.3091637

[5] D. J. Hand and K. Yu, “Idiot’s bayes—not so stupid after all?”
International statistical review, vol. 69, no. 3, pp. 385–398, 2001.

[6] J. C. Platt, “Advances in kernel methods,” B. Schölkopf, C. J. C.
Burges, and A. J. Smola, Eds. Cambridge, MA, USA: MIT
Press, 1999, ch. Fast Training of Support Vector Machines Using
Sequential Minimal Optimization, pp. 185–208. [Online]. Available:
http://dl.acm.org/citation.cfm?id=299094.299105

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1,”
D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group,
Eds. Cambridge, MA, USA: MIT Press, 1986, ch. Learning Internal
Representations by Error Propagation, pp. 318–362. [Online]. Available:
http://dl.acm.org/citation.cfm?id=104279.104293

[8] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

[9] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

[10] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Master’s thesis, Department of Computer Science,
University of Toronto, 2009.

[11] C.-H. Chou, B.-H. Kuo, and F. Chang, “The generalized condensed
nearest neighbor rule as a data reduction method,” in Proceedings of the
18th International Conference on Pattern Recognition - Volume 02, ser.
ICPR ’06. Washington, DC, USA: IEEE Computer Society, 2006, pp.
556–559. [Online]. Available: http://dx.doi.org/10.1109/ICPR.2006.1119

[12] A. A. Akinyelu and A. O. Adewumi, “Improved instance selection
methods for support vector machine speed optimization,” Security and
Communication Networks, vol. 2017, 2017.

[13] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms. Luniver Press,
2008.

[14] X.-S. Yang and X. He, “Firefly algorithm: recent advances and appli-
cations,” International Journal of Swarm Intelligence, vol. 1, no. 1, pp.
36–50, 2013.

[15] C. Liu, W. Wang, M. Wang, F. Lv, and M. Konan, “An efficient
instance selection algorithm to reconstruct training set for support
vector machine,” Knowledge-Based Systems, vol. 116, pp. 58 – 73,
2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0950705116304257

[16] P. M. Ferreira, “Unsupervised entropy-based selection of data sets for
improved model fitting,” in 2016 International Joint Conference on
Neural Networks (IJCNN), July 2016, pp. 3330–3337.

[17] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math.
Softw., vol. 11, no. 1, pp. 37–57, Mar. 1985. [Online]. Available:
http://doi.acm.org/10.1145/3147.3165

[18] B.-R. Dai and S.-M. Hsu, “An instance selection algorithm based on
reverse nearest neighbor,” Advances in Knowledge Discovery and Data
Mining, pp. 1–12, 2011.

[19] J. Hamidzadeh, R. Monsefi, and H. S. Yazdi, “Irahc: Instance reduction
algorithm using hyperrectangle clustering,” Pattern Recognition,
vol. 48, no. 5, pp. 1878 – 1889, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320314004555

[20] S. Salzberg, “A nearest hyperrectangle learning method,” Mach.
Learn., vol. 6, no. 3, pp. 251–276, May 1991. [Online]. Available:
http://dx.doi.org/10.1023/A:1022661727670
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