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Abstract 
 
The scheduling of an Agile Earth Observation Satellite (AEOS) consists of selecting and scheduling a subset of 
possible targets for observation in order to maximize the collected profit related to the images while satisfying 
its operational constraints. In this problem, a set of candidate targets for observation is given, each with a time-
dependent profit and a visible time window. The exact profit of a target depends on the start time of its 
observation, reaching its maximum at the midpoint of its visible time window. This time dependency stems 
from the fact that the image quality is determined by the look angle between the satellite and the target to be 
observed. We present an exact algorithm for the single-orbit scheduling for an AEOS considering the time-
dependent profits. The algorithm is called Adaptive-directional Dynamic Programming with Decremental State 
Space Relaxation (ADP-DSSR). This algorithm is based on the dynamic programming approach for the 
Orienteering Problem with Time Windows (OPTW). Several algorithmic improvements are proposed to address 
the time-dependent profits. The proposed algorithm is evaluated based on extensive computational tests. The 
experimental results show that the algorithmic improvements significantly reduce the required computational 
time. The comparison between the proposed exact algorithm and a state-of-the-art heuristic illustrates that our 
algorithm can find the optimal solutions for sufficiently large instances within limited computational time. The 
results also show that our algorithm is capable of efficiently solving benchmark OPTW instances. 
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1. Introduction 

The Agile Earth Observation Satellite (AEOS) belongs to a new generation of imaging platforms to acquire images 
of targets on the Earth surface in response to observation requests, playing an increasingly important role in 
resource exploration, disaster alerts, climate change analysis, and other applications Liu et al. (2017). The 
scheduling of an AEOS corresponds to scheduling a set of weighted observations with the objective of maximizing 
the total collected profit associated with each observation, while satisfying the operational constraints. 

The AEOS can be mobile on three axes (roll, pitch and yaw), thus allowing maneuverability for image acquisitions 
and transitions between every two consecutive observations. The maneuverability of the roll angle allows the 
observations of targets located at two sides of the sub-satellite point in a certain range. The mobility of the pitch 
angle enables the satellite to observe targets before or after the upright pass (called the “nadir point”), as can be 
seen in Figure 1. The agility associates each target with a long time window, called the Visible Time Window 
(VTW). Note that observing a target at different moments during its VTW corresponds to different pitch angles, 
and observing different targets corresponds to different roll angles. For example, in Figure 1, observation 1 and 2 
have different pitch angles towards target 1, and observing target 1 and 2 at their own nadir points corresponds to 
different roll angles. For each pair of consecutive observations, a transition time is required to finish the 
maneuverability process. The length of the transition time is proportional to the angular changes on the three axes, 
and therefore the transition time depends on the start times of these two consecutive observations. The regular 
AEOS scheduling consists of the selection and sequencing of possible targets to be observed, satisfying the VTW 
constraints and the time-dependent transition time constraints. 

https://doi.org/10.1016/j.cor.2020.104946
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Fig. 1. An agile satellite images a target at different start times on orbit 1. 

In this paper, we consider an additional time-dependency fea- 

ture for the AEOS scheduling, which is the time-dependent profits. 

It is due to the fact that a satellite image acquired at the nadir 

point has a higher image quality than those taken at the side of 

the VTW. The time-dependent profits significantly increase the so- 

lution space since the exact start time of each observation be- 

comes important. This makes the problem much more difficult to 

solve. The AEOS scheduling can be classified into two categories: 

the single-orbit scheduling and the multiple-orbit scheduling prob- 

lems. An orbit is defined as the time interval that the satellite 

flies in the sunshine while circling the earth once. Thus, a satel- 

lite can orbit the Earth many times during a long-term period 

and thereby each target may have multiple VTWs during multi- 

ple orbits. Scheduling multiple orbits directly is needed in prac- 

tice, but a very complex problem due to the huge solution space. 

A simplification can be made by using a two-stage model: firstly, 

the targets are allocated to different orbits; secondly, the single- 

orbit scheduling is conducted for each orbit. Some previous work 

He et al. (2018) ; Xiaolu et al. (2014) proposed to use this two- 

stage model in order to address multiple-orbit or multiple satel- 

lite scheduling, but none of them can solve the problem exactly or 

even provide the optimality gap. In order to obtain optimal solu- 

tions (or provide an optimality gap), a branch and price framework 

coupled with a column generation technique could be applied, us- 

ing a similar idea of the two-stage model. The implementation of 

this exact framework requires an efficient and exact algorithm for 

solving its pricing subproblem, namely the single-orbit scheduling. 

Thus, an exact and efficient method for the single-orbit scheduling 

is crucial for multiple-orbit scheduling. Additionally, the algorithm 

for the single-orbit scheduling can also be applied in the schedul- 

ing with meteorological uncertainty where multiple observations 

for each target are allowed Wang et al. (2019) . Given these crucial 

methodological and practical values, this work focuses on develop- 

ing an efficient and exact algorithm for the single-orbit scheduling. 

The main contributions of this paper are threefold: (1) we 

present the first exact algorithm for the single-orbit AEOS schedul- 

ing with time-dependent profits based on a Dynamic Programming 

(DP) approach; (2) several algorithmic improvements for the DP 

are proposed to address the time-dependent profits and reduce the 

computational time; (3) extensive experimental results prove the 

effectiveness of the proposed algorithm, and offer benchmark in- 

stances and solutions for future researchers. 

The remainder of this paper is structured as follows. 

In Section 2 , we provide an extensive literature review. 

Section 3 presents the problem description and mathematical 

formulation. In Section 4 , a novel labeling algorithm based on 

Dynamic Programming (DP) and Decremental State Space Relax- 

ation (DSSR) is proposed to tackle this problem. Section 5 gives 

the experimental results, and concluding remarks are provided in 

Section 6 . 

2. Literature Review 

Due to the computational difficulty of the AEOS scheduling, 

most of the previous works focuses on developing heuristics for 

this problem, but very few of them compare the performance 

of their algorithms with each other. Differences in physical de- 

sign and ability parameters lead to large differences between the 

AEOS instances in different countries regarding capability, con- 

straints and management. Furthermore, plenty of constraints and 

features in the AEOS scheduling make the different models dif- 

ficult to compare. For instance, some research may ignore the 

time dependency of the transition time by using a fixed length of 

time Bianchessi et al. (2007) ; Wang et al. (2011) ; Wei-Cheng Lin 

et al. (2003) , and some work uses a so-called semi-agile satel- 

lite whose look angles remain fixed during image acquisition 

Gabrel et al. (1997) . 

A variety of meta-heuristics and heuristics has been pro- 

posed for various AEOS scheduling problems. Lemaître et al. 

Lemaître et al. (2002) design four heuristic algorithms including 

a greedy algorithm, a local search algorithm, a dynamic program- 

ming algorithm and a constraint programming approach. Note that 

the latter two algorithms only solve a simplified version of the 

problem with fixed transition times. Some meta-heuristic meth- 

ods are proposed, including tabu search Bianchessi et al. (2007) ; 

Cordeau and Laporte (2005) ; Habet et al. (2010) ; Lin et al. (2003) , 

simulated annealing Dilkina and Havens (2005) ; Li et al. (2007) , 

genetic algorithms Li et al. (2007) ; Wolfe and Sorensen (2000) , 

a priority-based constructive algorithm Wang et al. (2011) ; 

Wolfe and Sorensen (20 0 0) ; Xu et al. (2016) and an adaptive large 

neighborhood search algorithm He et al. (2018) ; Liu et al. (2017) . 

Until now, very few exact algorithms have been proposed 

in the literature for these kinds of problems. Bianchessi et al. 

Bianchessi et al. (2007) present a column generation algorithm 

to solve a linear relaxation of the problem and give the upper 

bound. However, the authors do not mention how to model the 

time-dependent transition time in the pricing problem. Wang et al. 

Wang et al. (2011) propose a mixed integer programming (MIP) 

model, where each VTW is split into only three fixed observa- 

tions with each a specific pitch angle. As a result of this oversim- 

plified approximation, the transition times can be pre-computed 

and thus the solution space is significantly reduced. This model 

is then solved by CPLEX, but only for very small instances. Chen 

et al. Chen et al. (2019) build a MIP model for multiple satellite 

scheduling. In their model, the transition times are displaced by 

their upper bounds, i.e., the maximum possible transition times. 

Thus, the time-dependency of transition times is ignored. In this 

work, the time-dependent transition times are taken into account 

in our proposed exact algorithm. 

Moreover, very limited attention has been paid to the AEOS 

scheduling with time-dependent profits. The time-dependent prof- 

its feature arises from the fact that the profit of an observa- 

tion, i.e., the image quality, highly depends on the start time. 

Wolfe and Sorensen Wolfe and Sorensen (20 0 0) associate each 
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VTW with a particular quality function, where the duration of 

an observation is not fixed and can influence its profit. Liu et al. 

Liu et al. (2017) model the image quality on a ten-level scale 

over its VTW. The profit of each observation is fixed but can only 

be awarded when it satisfies the minimum quality requirement. 

This minimum quality requirement, however, is irrelevant to the 

scheduling, since the VTWs can be reduced beforehand to the part 

that guarantees enough quality. Peng et al. Peng et al. (2019) model 

the time-dependent profits in a form where for each observation, 

the maximal profit is collected in the middle of its VTW, and half 

of the maximal profit is collected at the edge. They propose an it- 

erative local search heuristic coupled with a bidirectional dynamic 

programming approach to address the problem. However, since no 

exact algorithms have been presented for this problem before, no 

guarantee for their solution quality can be provided. In the current 

paper we develop an exact optimization technique to find the op- 

timal solutions for the scheduling problem with time-dependent 

profits. To evaluate the performance, we utilize the same time- 

dependent profit model and benchmark instances proposed in 

Peng et al. (2019) (the instances are available at https://www. 

mech.kuleuven.be/en/cib/op/opmainpage#section-32 ). It should be 

noted that we focus on single-orbit scheduling, while the work in 

Peng et al. (2019) addresses multiple orbits. 

In the Vehicle Routing Problem with Time-Dependent Rewards 

Yi (2003) and the Orienteering Problem with Time-Dependent Re- 

wards Ekic et al. (2009) ; Erkut and Zhang (1996) , the profit of 

each vertex monotonously decreases over time, which arises from 

some real-life applications. For example, the blood transportation 

problem searches the best route to visit blood collection points 

while keeping the collected blood as fresh as possible. In this case, 

the vertex can be naturally scheduled as early as possible. This 

monotonous model also corresponds to a special case of “soft time 

windows” where a penalty for a late visit is imposed, and visits 

during a certain time window have no impact on the collected 

profit. However, our work considers a non-monotonic profit func- 

tion according to the practical need for satellite images. To the best 

of our knowledge, no exact techniques have been proposed to ad- 

dress the time-dependent profits with non-monotonic profit func- 

tion. 

When the time-dependent profits are not considered, the prob- 

lem considered is very similar to that of the Orienteering Prob- 

lem with Time Windows (OPTW) Duque et al. (2015) ; Righini and 

Salani (2009) , where an observation of a satellite can be regarded 

as a visit to a vertex and the transition time corresponds to the 

travel time between each pair of vertices. The objective of the 

OPTW is to maximize the collected profits associated with the vis- 

ited vertices, while satisfying the time window constraints and the 

elementary path constraint (i.e., each vertex can be visited at most 

once). It can also be formulated as a special case of an Elementary 

Shortest Path Problem with Resource Constraints (ESPPRC) where 

the travel time is regarded as a resource consumption. The ESPPRC 

is a general and fundamental NP-hard network optimization prob- 

lem, often encountered as a subproblem of more complicated rout- 

ing problems such as the Vehicle Routing Problem (VRP) and the 

Team Orienteering Problem (TOP). Several exact techniques have 

been proposed to solve these problems to optimality. Given the 

similarities between the OPTW and the ESPPRC, we exploit the 

same exact methodology as in Righini and Salani (2009) to solve 

the AEOS scheduling problem without time-dependent profits. Sev- 

eral algorithmic improvements are presented to address the time- 

dependent profits, and tested on the AEOS instances developed in 

Peng et al. (2019) . Based on the similarities with the OPTW and 

given the availability of experimental results for exact techniques 

on the OPTW, these instances and results will also be used to eval- 

uate the performance of our exact algorithm, when it is applied to 

instances without time-dependent profits. 

3. Problem description 

As the inputs of the scheduling, a set of possible targets T with 

each a given geographic position and a maximum profit, based on 

requests by different users. A visibility analysis based on the geo- 

graphic position and the satellite’s track is pre-processed to gener- 

ate a set of VTWs for the possible targets. During each orbit, each 

visible target i corresponds to a VTW, denoted by [ st i , et i ] where 

st i and et i are the window start time and the window end time. 

The visibility analysis provides for each VTW the required look an- 

gles (roll, pitch and yaw angles) for observation per second. The 

roll angle describes the rotation of the camera (or the satellite) to- 

wards the associated target around the satellite’s centerline while 

the pitch angle controls the nose of the satellite to move up or 

down, as can be seen in Figure 1 . The yaw angle determines the 

circular (clockwise or counter clockwise) movement around the 

axis vertical to the Earth surface. The duration of observing tar- 

get i is also given by users, denoted by d i . Notations of this study 

are summarized in Table 1 . 

The objective of this problem is to maximize the total profit 

collected by observing a subset of the possible targets. The higher 

the image quality, the higher profit the observation has. In prac- 

tice, the best image quality is obtained at the nadir point where 

the satellite observes a target directly below and its pitch angle 

is equal to zero. In general, the image quality is negatively cor- 

related to the absolute value of the pitch angle. Figure 2 (a) illus- 

trates that the pitch angle nonlinearly decreases over time during 

a VTW. Thus, for a complete VTW, the maximum profit of the cor- 

responding target is collected at the midpoint and the least profit 

is collected at the edge. We use the same profit function as pro- 

posed in Peng et al. (2019) . We define a discrete decision vari- 

able t i (t i ∈ { st i , st i + 1 , ..., et i } ) to represent the start time of target 

i . Then the exact profit of a target i scheduled at moment t i is cal- 

culated as follows: 

p i (t i ) = P i · (1 − | π(t i ) | 
90 

) , (1) 

where π ( t i ) is the pitch angle at moment t i , and P i is the maxi- 

mal profit of target i that can be collected. Here we assume the 

maximal pitch angle of the satellite used is 45 ◦. Figure 2 (b) shows 

the ratio of the exact profits over the maximum profit for differ- 

ent moments. According to this, observations with the worst image 

quality at the edge of the VTW can still have half of the maximal 

profit. Note that this accumulated profit function is a non-linear 

function and cannot be explicitly expressed since the input data of 

the pitch angle is given in a discrete form (per second) and it also 

changes nonlinearly, as shown in Figure 2 (a). 

This problem mainly considers two specific constraints: first, 

each observation of a target should be scheduled during its VTW 

(called visible time window constraint); second, for each pair of 

consecutive observations, a transition time is required to maneu- 

ver the look angle of the camera from the previous observation to 

the next observation. However, this transition time cannot be eas- 

ily pre-computed, since its duration depends on the total change 

of the look angles between these two consecutive observations. 

The calculation equation of the transition time is given as follows 

Peng et al. (2019) : 

trans (�g) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

11 . 66 , �g ≤ 10 

5 + �g/ v 1 , 10 < �g ≤ 30 

10 + �g/ v 2 , 30 < �g ≤ 60 

16 + �g/ v 3 , 60 < �g ≤ 90 

22 + �g/ v 4 , �g > 90 

, (2) 

where v 1 , v 2 , v 3 , v 4 are four different angular transition velocities, 

which are given as the parameters of the satellite. For the satel- 

lite we consider, the angular velocity values are v 1 = 1 . 5 ◦/s, v 2 = 

2 ◦/s, v 3 = 2 . 5 ◦/s, v 4 = 3 ◦/s . �g represents the total change of the 

https://www.mech.kuleuven.be/en/cib/op/opmainpage#section-32
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Table 1 
Notations 

T set of possible targets 
i, j target index, i, j ∈ T ∪ { s, e }, in which s, e are virtual source target and sink target 
[ st i , et i ] visible time window for target i 
P i maximum profit of target i 
t i start time of the observation for target i , decision variable 
p i ( t i ) exact profit collected at moment t i for target i 
d i duration of observing target i 
γ , π , ψ roll, pitch and yaw angles 
�g total change of the look angles for a transition of the camera 
trans ( �g ) transition time with respect to the total change of the look angles 
mintrans ij ( t i ) minimal transition time between the observations of target i and j while observing target i at moment t i 

Fig. 2. The change of pitch angle (a) and the profit function (b) for a VTW. 

look angles between two consecutive observations and calculated 

by �g = | �γ | + | �π | + | �ψ | , where �γ , �π and �ψ are the 

change of the roll angle, the pitch angle and the yaw angle. The 

roll angle only depends on the geographical locations of targets 

relative to the satellite track and thereby the change of the roll an- 

gle between each pair of targets is fixed and can be pre-computed. 

The agile satellite used in this study is a semi-agile satellite which 

has no mobility on the yaw axes. Thus, the yaw angle is fixed 

to zero. As discussed above, the pitch angle nonlinearly decreases 

during a VTW (see Figure 2 (a)), which indicates that the transition 

time between two consecutive observations depends on their start 

times. Peng et al. Peng et al. (2019) illustrate this time-dependency 

in detail. They present the “minimal transition time” (denoted by 

mintrans ij ( t i )) to replace the actual transition time, only depend- 

ing on the start time of the previous observation. The minimal 

transition time for each pair of VTWs at each possible start time 

can be efficiently pre-computed based on a dichotomy algorithm 

Peng et al. (2019) . Another issue is that either the transition time 

or the minimal transition time follow the First-In-First-Out (FIFO) 

principle, regardless their time-dependency. It means that the later 

the previous observation takes place, the later the next observation 

can start. Furthermore, the triangle inequality is satisfied in this 

study, indicating that executing an additional observation between 

two observations consumes more transition time in total. 

3.1. Assumptions 

Since the AEOS scheduling problem has lots of constraints that 

could be considered, two assumptions are made to ignore some 

non-significant issues: 

1) The satellite has sufficient on-board power and memory for 

each orbit. 

2) The targets considered are all spot targets which can be ob- 

served in one pass. This assumes that larger Polygon targets 

are transferred into several independent spot targets with 

each a duration. 

3.2. Integer Linear Programming Model 

Considering the time-dependent profits, two decisions should 

be made in the model: first, the selection and sequence of the 

possible targets; second, the start times of all the scheduled tar- 

gets. Since the profit function of each target is given in a discrete 

form (per second), we define a binary variable y it (t ∈ { st i , st i + 

1 , ..., et i } ) to indicate at which moment the observation of target 

i starts. When target i is scheduled at moment t , then y it = 1 ; 

otherwise, y it = 0 . Thus, the decision variable t i can be written as 

t i = 
∑ t= et i 

t= st i 
t · y it with 

∑ t= et i 
t= st i 

y it = 1 . The profit function of target i 

can be expressed as 
∑ t= et i 

t= st i 
p it · y it , where parameter p it equals to 

p i (t) (t ∈ { st i , st i + 1 , ..., et i } ) . In addition, we define another deci- 

sion variable x ij which takes the value one when target j is ob- 

served immediately after target i and zero otherwise. The integer 

linear formulation of the single-orbit AEOS scheduling can be ex- 

pressed as follows: 

Maximize 
∑ 

i ∈ V 

t= et i ∑ 

t= st i 

p it · y it (3) 

∑ 

j∈ V ∪ e 
j � = i 

x i j = 
∑ 

j∈ V ∪ s 
j � = i 

x ji = 

t= et i ∑ 

t= st i 

y it , ∀ i ∈ V (4) 

∑ 

j∈ V 
x s j = 1 (5) 

∑ 

j∈ V 
x je = 1 (6) 
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t= et i ∑ 

t= st i 

t · y it + d i + mintrans i j ( 

t= et i ∑ 

t= st i 

t · y it ) 

−
t= et j ∑ 

t= st j 

t · y jt ≤ M(1 − x i j ) , ∀ i, j ∈ V (7) 

t= et i ∑ 

t= st i 

y it ≤ 1 , ∀ i ∈ V (8) 

x i j ∈ { 0 , 1 } , y it ∈ { 0 , 1 } , ∀ i, j ∈ V ∪ { s, e } . (9) 

The objective function (3) aims to maximize the total profit of 

the scheduled targets. Constraints (4) are the flow balance con- 

straints and the elementary path constraints, and build the con- 

nection between variable x ij and y it , meaning that once a target is 

selected for observation, its start time should be determined. Con- 

straints (5) and (6) express that the solution starts from the virtual 

source target s and ends at the virtual sink target e . Constraints 

(7) and (8) impose the transition time constraints and the visible 

time window constraints. Constraints (8) stipulate that at most one 

start time should be determined for each target. The domains of 

decision variables are defined in constraints (9) . 

4. Adaptive-directional Dynamic Programming with 

Decremental State Space Relaxation 

When the time-dependent profits are not considered, our prob- 

lem can be formulated as the OPTW or the ESPPRC which have 

been identified to be NP-hard in the strong sense Dror (1994) . 

The time-dependent profits create an additional difficulty since the 

start times of observations can also influence the objective value. 

Therefore, our AEOS scheduling problem with time-dependent 

profits is also strongly NP-hard. 

Due to the similarity between our satellite scheduling prob- 

lem and the ESPPRC or the OPTW, some existing exact solution 

techniques for the ESPPRC and the OPTW can also be applied 

to our problem. The most commonly used exact method is Dy- 

namic Programming (DP), based on the work by Desrochers et al. 

Desrochers et al. (1990) . The DP, using a labeling algorithm, builds 

new paths (encoded by “labels”) starting from the virtual source 

vertex, by extending paths one-by-one into all feasible directions. 

A dominance rule is applied for each pair of labels associated with 

the same vertex to fathom unpromising labels that cannot lead to 

the optimal solution. The elementary path constraint is imposed 

by adding a dummy vertex resource to each vertex which can be 

consumed by the visitation of labels. However, the introduction 

of dummy vertex resources increases the dimension of the state- 

space, which results in the low efficiency of DP. 

The DP technique for the OPTW is improved by the work of 

Righini and Salani Righini and Salani (2009) . They propose a Bidi- 

rectional Dynamic Programming with Decremental State Space Re- 

laxation (BDP-DSSR) to tackle the OPTW efficiently. The labels are 

extended simultaneously in both the forward and backward direc- 

tion, and stopped at the “half-way” of the path. This corresponds 

to half of the latest allowed arrival time to the depot. Afterwards, 

the forward and backward sub-paths are matched to produce com- 

plete paths, guaranteeing their feasibility. To speed up the search, 

a so-called Decremental State Space Relaxation (DSSR) technique 

is employed to repeatedly solve a relaxation of the OPTW through 

DP, ignoring the elementary path constraint. In particular, a “criti- 

cal vertex set” is introduced and augmented at each iteration with 

the vertices visited more than once in the optimal solution of the 

relaxed problem. Multiple visits are forbidden on these critical ver- 

tices at the current iteration. The procedure terminates when the 

optimal path of the relaxed problem turns out to be elementary. 

In this paper, we present an Adaptive-directional Dynamic Pro- 

gramming with Decremental State Space Relaxation (ADP-DSSR) al- 

gorithm to tackle our satellite scheduling problem, including the 

time-dependent profits. The ADP-DSSR algorithm is derived from 

the BDP-DSSR, but several improvements are made in order to ad- 

dress the time-dependent profits feature and accelerate the search. 

The four improvements are partial dominance, merging labels, de- 

tour pruning and the adaptive-directional extension. The adaptive- 

directional extension means that both the forward and backward 

extensions of labels are considered, but the direction processed is 

adaptively determined according to the intermediate results. 

Hereafter we give the details on the extension rule, the domi- 

nance test and the matching procedure. Then, the DSSR technique 

is illustrated. Afterward, the four improvements are discussed in 

detail. 

4.1. Dynamic Programming 

The Bidirectional DP algorithm consists of three parts: the def- 

inition of states, labels and their extension rules, the dominance 

rule and the matching procedure. 

4.1.1. States, labels and extension 

The single-orbit scheduling problem without time-dependent 

profits can be regarded as solving an OPTW in an undirected graph 

G = (V, E) with a set of vertices V and a set of edges E , where 

each target with its VTW corresponds to a vertex with its time 

window and the minimal transition time corresponds to the travel 

time. Two virtual targets are introduced as source vertex s and 

sink vertex e . Due to the time dependency of the minimal tran- 

sition time, the travel time for each pair of vertices depends on 

the start time of the previous vertex. This time-dependent travel 

time has been defined in a variant of the OPTW, namely the Time- 

Dependent Orienteering Problem with Time Windows (TD-OPTW). 

However, since the FIFO principle and the triangle inequality are 

satisfied for this time-dependency, solving this TD-OPTW is equiv- 

alent to solving an OPTW while using the DP method except for 

one difference: when extending labels (paths) between the same 

pair of vertices with different leaving times, the travel times are 

different. To avoid the confusion, we adopt the definitions and con- 

cepts of the DP methology for the OPTW in the remainder, which 

can be referred in Righini and Salani (2009) . 

For each vertex i ∈ V , we associate a group of forward labels 

and backward labels. A forward label L represents a path starting 

from source vertex s and ending at the current associated vertex. 

A backward label represents a path starting from the sink vertex 

e and ending at its associated vertex. A forward label can be ex- 

pressed as a tuple L = (R L , i, es L , P L (t) , path (L )) where R L represents 

a binary vector to indicate which vertices cannot be visited any- 

more, i is the associated vertex, es L is the earliest possible start 

time of L on vertex i, P L ( t ) represents its accumulated profit func- 

tion, and path ( L ) is the path corresponding to label L , composed 

by a sequence of visited vertices. The backward label has the same 

components as the forward one except the earliest start time es L . 

It uses ls L to indicate its latest possible start time on its associated 

vertex. The DP algorithm extends the forward labels from source 

vertex s to its successors and the backward labels from sink vertex 

e to its predecessors. In what follows, we explain the components 

in the tuple and their updating rules for a forward extension from 

label L associated with vertex i to label L ′ associated with vertex j . 

Considering the time-dependent profits, for a given path, choos- 

ing different start times of the visited vertices may correspond 

to different collected profits. Thus, we define a group of states 
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for each label. Each state represents the path of the associated 

label, arriving at a possible start time and collecting a maxi- 

mal accumulated profit along the path up to that start time. 

A state ω associated with L can be indicated by a tuple ω = 

(R ω , i, t(ω) , p ω , path (ω )) where t ( ω ) represents the start time of 

the state, R ω is same to R L and p ω is equal to P L ( t ( ω)) indicating 

the accumulated profit of the state, and path ( ω) is the correspond- 

ing path. In our algorithm, the states are recorded by a discrete 

“accumulated profit function” P L ( t ), where t ∈ { es L , es L + 1 , ..., et i } 
for a forward label and t ∈ { st i , st i + 1 , ..., ls L } for a backward label. 

Each state corresponds to a certain data point in the accumulated 

profit function. The accumulated profit describes the trade-off be- 

tween the collected profits and the consumed time, using a se- 

ries of data points (also called “trade-off” curve). A similar appli- 

cation of this “trade-off” curve in the DP for the Time-Dependent 

Vehicle Routing Problem with Time Windows (TD-VRPTW) is the 

ready time function which describes the time consumption of the 

associated path with respect to the departure time at the depot 

Dabia et al. (2013) . 

For a forward extension from label L on vertex i to label L ′ to 

vertex j , the accumulated profit function is updated according to 

the formula 

P L ′ (t j ) = max t i { P L (t i ) | Ear liestStar tT ime i j (t i ) ≤ t j , es L ≤ t i ≤ et i } 
+ p j (t j ) , (10) 

where EarliestStartTime ij ( t i ) represents the earliest start time on 

vertex j when leaving vertex i at moment t i . The calculation of 

the earliest start times between each pair of vertices can be pre- 

processed, referring to the work by Peng et al. Peng et al. (2019) . 

This extension is feasible only if EarliestStartTime ij ( es L ) ≤ et j . 

Then the earliest start time es L ′ of label L ′ is updated to 

EarliestStartTime ij ( es L ). An improved update method of the accumu- 

lated profit function is presented by Peng et al. Peng et al. (2019) . 

According to this update equation, the accumulated profit function 

of a forward label may not be a non-decreasing function. However, 

the states with lower profits and more consumed time are dom- 

inated by the states of the same label with the higher (or same) 

profits and less consumed time. Hence, these dominated states are 

replaced by the dominating ones, resulting in a non-decreasing ac- 

cumulated profit function. Once a state is chosen for a given label, 

the start times of other visited vertices can be easily determined 

by applying a backtracking algorithm. 

To avoid a cyclic visit, a dummy vertex resource is associated 

with each vertex i in the graph: each vertex only has one unit 

of the resource and it is consumed when the vertex is visited. 

The consumption of the dummy vertex resources is indicated by 

a vector S (visitation resources vector) with | V | entries initialized 

at 0. Note that S does not keep any information about the order of 

the visited vertices. With this definition of vector S , a label cannot 

dominate another label if the label has visited more vertices. Feillet 

et al. Feillet et al. (2004) present an “unreachable vertex vector” to 

replace the visitation vector. Vertices that either has been visited 

or cannot be visited due to resource limitations are identified to 

be unreachable. In our problem, a vertex j is unreachable from a 

label L = (R L , i, es L , P L (t)) when path ( L ) includes vertex j or when 

its time window would be violated by any visit starting from L , 

that is es L + d i + mintrans i j (es L ) > et j . If label L cannot reach vertex 

j directly, no other paths extended from path ( L ) can reach vertex j 

since the triangle inequality holds for the time-dependent transi- 

tion time. We denote the unreachable vertex set by a binary vector 

R with | V | entries. The update rule of vector R for a forward exten- 

sion from L to L ′ is 

R k L ′ = 

{
R k L + 1 , k = j 

R k L , k � = j 
(11) 

Afterwards, for each unvisited vertex, we check whether the cur- 

rent label can visit that vertex and update the corresponding ele- 

ment in vector R L ′ . 
The extension rules for backward labels are symmetrical to 

what has been presented before. We define the time window 

[ st bw 
i , et bw 

i ] as the backward time window of vertex i : it is ob- 

tained by adding the duration of service d i to the forward time 

window [ st i , et i ]. The backward extension is feasible only if 

LatestStartT ime i j (ls L ) ≥ st bw 
j where ls L is the latest start time of L 

and LatestStartTime ij ( ls L ) calculates the latest start time on vertex j 

when leaving vertex i at moment ls L . 

To illustrate how the extension rules work, a small example of 

the forward extension with 3 vertices and 2 labels is presented 

in Figure 3 . The number in the circle is the vertex index and the 

number on the line is its travel time. The orange directed lines 

represent label L 1 starting from vertex 1 and reaching vertex 3 

through vertex 2. The blue directed line represents label L 2 reach- 

ing vertex 3 directly from vertex 1. The time windows and the ex- 

act profits during the VTWs of these three vertices are shown in 

the table (a). The accumulated profit functions of the two labels 

are reported in table (b). Each cell in table (b) represents a state 

of its corresponding label. When generating label L 2 from vertex 

1 to vertex 3, the accumulated profit of label L 2 at t 3 = 5 is cal- 

culated by P L 2 (5) = max { p 1 (1) , p 1 (2) } + p 3 (5) = 2 + 3 = 5 , where 

L 2 arrives at t 3 = 5 only when it visits vertex 1 with t 1 ≤ 2. Like- 

wise, the accumulated profit of label L 2 at t 3 = 7 can be calculated: 

P L 2 (7) = max { p 1 (1) , p 1 (2) , p 1 (3) , p 1 (4) } + p 3 (7) = 3 + 1 = 4 . Since 

it can be dominated by its previous states, its accumulated profit 

is replaced by 5. When we compare label L 1 and L 2 , the states of 

these two labels with the same value of start time are compared. 

Dominance rules are applied for this comparison and will be dis- 

cussed in the next subsection. If the rules are satisfied, the dom- 

inated states will be discarded and the non-dominated states are 

stored. In this example, the numbers in table (b) displayed in bold 

correspond to the non-dominated states. 

4.1.2. Dominance rules 

Dominance tests are performed to reduce the number of states 

and labels generated by extending paths to other vertices. It is ex- 

ecuted between a newly generated label and each stored label as- 

sociated with the same vertex. The labels that cannot lead to the 

optimal path will be dominated and removed during the search. In 

our case, for a given label, different start times (states) correspond 

to different profits. Thus, the dominance test will delete parts of 

the accumulated profit function (a group of states) according to 

the dominance rules. If all the states of a label are deleted, the 

label will be removed from the label list to be extended. 

We assume that label L 1 and label L 2 associated with the 

same vertex i are compared for dominance testing. Let ω L 1 = 

(R L 1 , i, P L 1 (t 1 ) , t 1 ) be a state of label L 1 at moment t 1 and ω L 2 = 

(R L 2 , i, P L 2 (t 2 ) , t 2 ) be a state of label L 2 at moment t 2 . The former 

state dominates the latter state only if { 
R L 1 ≤ R L 2 , 

P L 1 (t 1 ) ≥ P L 2 (t 2 ) , 
t 1 ≤ t 2 

(12) 

and at least one of the inequalities is strict. Due to the first rule 

(called “unreachable vector condition”), this dominance test needs 

to enumerate and compare each element of the unreachable vec- 

tor R , which consumes a large computational time. An efficient im- 

provement is adding a variable q L = 
∑ | V | 

k =1 R 
k 
L to record the number 

of unreachable vertices. If q L 1 ≥ q L 2 , label L 1 is impossible to dom- 

inate label L 2 . Once the dominance test succeeds, the dominated 

states are discarded and the corresponding data points in the ac- 

cumulated profit function are removed. If there exists some states 

surviving the test, the newly generated label will be stored into the 
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Fig. 3. An illustration for states, labels and their forward extensions. 

unextended label list. Meanwhile, the unextended labels associated 

with the corresponding vertex will be checked by the new label to 

delete their dominated states in the similar way. 

4.1.3. Matching procedure 

In this procedure, forward and backward labels are matched 

together to yield a complete path from vertex 0 to vertex 

| V | + 1 . Let L f = (R L f , i, es L f , P L f (t)) be a forward label and L b = 

(R L b , i, ls L b , P L b (t)) be a backward label. Both these two labels are 

associated with vertex i . The matching operation can be accepted 

only if it satisfies the following feasibility conditions: {
R k L f 

+ R k L b 
≤ 1 , ∀ k ∈ V 

es L f + d i ≤ ls L b 
(13) 

If feasible, the maximal collected profit of the newly matched 

path can be calculated by: 

P max = max { P L f (t) + P L b (t) − p i (t) , es L f ≤ t ≤ ls L b } (14) 

After matching all the forward and backward labels, the opti- 

mal solution is the feasible and complete path with the highest 

collected profit. This process requires to enumerate all the combi- 

nations of the forward and backward labels. Note that if we only 

performs the forward (backward) extension, only the sink (source) 

vertex needs to be checked for the matching procedure. 

4.2. Decremental State Space Relaxation 

The Decremental State Space Relaxation (DSSR) is proposed by 

Righini and Salani Righini and Salani (20 08, 20 09) , with the idea 

of iteratively reducing the relaxation of the state space of the prob- 

lem. Boland et al. Boland et al. (2006) present a similar idea, but 

refer to it as the State Space Augmenting algorithm. The basic idea 

of this technique is to solve a relaxation of the primal problem 

with DP where the elementary path constraints are ignored for all 

the vertices. Then this relaxation is iteratively tightened by impos- 

ing the elementary path constraints on a subset of vertices step by 

step. To be specific, we define � as the critical vertex set in which 

vertices can be visited at most once and are considered in the un- 

reachable vector condition in the DP. � is initialized to be empty, 

allowing multiple visits to all the vertices. If the optimal solution 

of this relaxation is elementary, then it is also the optimal solu- 

tion for the original problem; otherwise, some vertices that appear 

more than once in the solution should be inserted into � to re- 

duce the relaxation. This procedure is repeated until the obtained 

solution is elementary. 

Righini and Salani Righini and Salani (2008) present three dif- 

ferent strategies of inserting vertices into � and find that there is 

no clear dominance between these strategies. Our preliminary ex- 

periments found that the MO-ALL strategy, which inserts all the 

duplicate vertices appearing in the optimal solution, is most effec- 

tive, since it can greatly reduce the number of iterations with only 

adding very few “unnecessary” vertices into �. Righini and Salani 

also present some initialization heuristics for the critical vertex set 

� in order to reduce the number of iterations and the computa- 

tional time. However, these heuristics do not perform very well in 

our instances, probably because of some special characteristics of 

our instances such as the time-dependent transition time and the 

highly overlapping time windows. Therefore, we do not use any 

initialization heuristic in our algorithm. 

4.3. Algorithmic improvements 

In this section, we introduce four algorithmic improvements to 

accelerate the solution procedure. 

4.3.1. Partial Dominance rule 

A full and strict dominance rule is introduced in Section 4.2 , 

where the dominance test can be passed only if all the conditions 

are satisfied. For instance, when checking if label L 2 is dominated 

by label L 1 associated with vertex i , the condition R L 1 ≤ R L 2 should 

be reached; otherwise, the states of L 1 can not be dominated even 

though the other two conditions are reached. The unreachable vec- 

tor is associated with its label and does not depend on the start 

times (or the states) of that label. This full dominance rule is com- 

monly used in some approaches proposed for variants of rout- 

ing problems such as the TD-VRPTW Dabia et al. (2013) and the 

Vehicle Routing Problem with Soft Time Windows (TD-VRPSTW) 

Liberatore et al. (2011) . However, even if the unreachable vector 

condition is not satisfied, some states can still possibly be com- 

pared. 

Suppose that there are two labels L 1 and L 2 associated with ver- 

tex i. L 1 has visited vertex k but L 2 has not, and thus their un- 

reachable vectors satisfy R k 
L 1 

> R k 
L 2 

. We further assume that for any 

m ∈ V \ { k }, R m 
L 1 

≤ R m 
L 2 

. When checking if L 2 is dominated by L 1 , the 

full dominance test fails because R L 1 ≤ R L 2 is not satisfied. How- 

ever, label L 1 and L 2 can still be compared for the states with their 

start times satisfying t ≥ UT k 
i , where UT k 

i corresponds to the earli- 

est time when vertex i cannot visit vertex k due to the time win- 

dow constraints. With this dominance rule, the points correspond- 

ing to the dominated states in the accumulated profit function will 

be removed and will not be considered in further steps. We refer 

to this dominance rule as the Partial Dominance Rule. 

To efficiently implement this idea, we define a vector UT i with 

N entries for each vertex i . For any moment t ≥ UT k 
i , vertex i can- 

not reach vertex k due to the time windows constraints. These vec- 

tors can be pre-calculated before running the algorithm in order to 

reduce the computational time. In the dominance test of L 2 with 

L 1 , we only check the states whose start times are later than mo- 

ment ˜ UT (L 1 , L 2 ) = max { UT k 
i | R k 

L 1 
> R k 

L 2 
, ∀ k ∈ N} . While R L 1 ≤ R L 2 is 

satisfied, ˜ UT (L 1 , L 2 ) equals to es L 2 , meaning that all the states in 

L 2 can be checked by L 1 . By doing so, some states or labels which 



8 G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946 

cannot lead to an optimal path will be pruned and the total num- 

ber of generated labels in DP can be significantly reduced. 

4.3.2. Merging Labels 

In general, the effectiveness of the DP algorithm heavily de- 

pends on the number of states generated. In addition to fathom- 

ing labels with the dominance test, another approach to reduce 

this number in our algorithm is to merge labels whose unreachable 

vectors have the same values. Specifically, we assume that state ω 1 
belongs to label L 1 and state ω 2 belongs to label L 2 , and R L 1 = R L 2 . 

If ω 1 and ω 2 have the same start time, one of them will be re- 

moved due to the dominance test; otherwise, these two states can 

be stored in the same label even though they correspond to differ- 

ent paths. By grouping all the states from L 1 and L 2 in the same 

label (either L 1 or L 2 ), another label will no longer need to be ex- 

tended. This merging process requires to insert all the data points 

in the accumulated profit function from one label to the function 

in another label. In this way, the total number of the states and la- 

bels generated will be significantly reduced. For each combination 

of unreachable vector R with respect to a certain vertex, at most 

one label is recorded in memory. It should be noted that after us- 

ing this procedure, each label may corresponds to multiple labels 

since the states of the combined label come from different initial 

labels. 

When combining the merging operation with the partial domi- 

nance rule, we merge label L 2 into label L 1 only if es L 2 ≥ ˜ UT (L 1 , L 2 ) . 

This is because the states of L 2 with t < ˜ UT (L 1 , L 2 ) cannot be com- 

pared, limited by the unreachable vector condition in the dom- 

inance rule. The merging operation is processed for each unex- 

tended label with the current label after applying the partial dom- 

inance test. 

4.3.3. Detour pruning strategy 

In a recent work Duque et al. (2015) , a pruning strategy is pro- 

posed to accelerate the DP in a so-called “pulse algorithm” (simi- 

lar to branch-and-bound) for solving the OPTW. The main idea is 

that when directly extending a label L from vertex i to j satisfy- 

ing es L ≤ st j , if there exists a feasible detour path ( L ) ∪ { k } ∪ { j } and 

its arrival time to vertex j is still less than st j , then this direct ex- 

tension to vertex j can be ignored and vertex k is called a detour 

vertex for arc ( i, j ). This is because at least one path to vertex j 

can dominate the label directly extended from label L , which is 

the path path ( L ) ∪ { k } ∪ { j }. We first apply this strategy to the label- 

ing algorithm with the DSSR technique and illustrate its adaption 

on the forward extension in the reminder of this section. Note that 

in our problem, this pruning strategy is available only when the 

profits collected at different moments for each VTW are all posi- 

tive. 

To check the feasibility of detours, for each arc ( i, j ) and for 

each detour vertex k , we define the latest start time for a label 

L associated with vertex i to reach vertex j through detour ver- 

tex k , denoted by LT k 
(i, j) . This value can be calculated in the pre- 

processing phase in order to avoid duplicate calculations during 

the search. Despite the presence of the time-dependent transi- 

tion time, the triangle inequality in our problem is still satisfied 

Peng et al. (2019) . Hence, if label L starts early than LT k 
(i, j) , detour 

path ( L ) ∪ { k } ∪ { j } is feasible. Algorithm 1 demonstrates how to cal- 

culate the value LT k 
(i, j) for the forward extension. 

In Algorithm 1 , LatestStartTime jk ( st j ) calculates the latest start 

time of vertex k if vertex j is visited at its window start time st j 
(see the preprocessing procedure in Peng et al. (2019) ). Since our 

algorithm considers two directions of extending labels, the detour 

pruning can also be used in the backward extension. In this case, a 

variable ET k 
(i, j) is defined to record the earliest start time of vertex 

Algorithm 1 Pre-calculation of detours in the forward extension 

for all i ∈ V do 

for all j ∈ V do 

for all k ∈ V \{ s, e } do 

LT k 
(i, j) ← ∞ ; 

if LatestStartT ime jk (st j ) ≥ st k then 

t temp = LatestStartT ime jk (st j ) ; 

if LatestStartT ime ki (t temp ) ≥ st i then 

LT k 
(i, j) ← LatestStartT ime ki (t temp ) ; 

end if 

end if 

end for 

end for 

end for 

i to reach vertex j through the detour vertex k . The calculation of 

ET k 
(i, j) is symmetrical to LT k 

(i, j) . 

In the pulse algorithm from Duque et al. (2015) , every time an 

unvisited vertex is added to the current path, other unvisited ver- 

tices will be checked for the detour pruning. This process requires 

to traverse all the unvisited vertices until a feasible detour vertex is 

found. It is worth mentioning that compared with the pulse algo- 

rithm, the labeling algorithm usually visits vertices (or arcs) much 

more times, which implies that the adaption of the detour prun- 

ing in our algorithm may consume large computational time. We 

improve this pruning strategy by ordering the detour vertices k for 

each arc ( i, j ) in the forward extension by non-increasing LT k 
(i, j) . 

This ordering operation can also be pre-processed. The algorithm 

only needs to check the feasibility of the first detour in the or- 

dered list for each pruning. If the first detour vertex k 1 satisfies 

es L ≤ LT 
k 1 
(i, j) , then the states of label L with their start times smaller 

than LT 
k 1 
(i, j) can be pruned. Otherwise, no states can be pruned by 

any other detour vertices, since vertex k 1 has the largest value 

of LT 
k 1 
(i, j) . Obviously, this process performs more efficiently than 

traversing all the detour vertices until a feasible one is found, as 

presented in Duque et al. (2015) . 

Another adaption of this pruning strategy is to combine it with 

the DSSR technique. Since the DSSR allows multiple visits for any 

vertices not belonging to �, any vertex k ∈ V \ ({ i, j } ∪ �) can be 

checked as a detour vertex for arc ( i, j ) no matter it has been vis- 

ited or not. It is important to note that if detour vertex k is a criti- 

cal vertex, vertex k cannot be checked even though it has not been 

visited, due to the time-dependent profits feature. The following 

proposition supports this conclusion. 

Proposition 4.1. When extending a label L from i to j with the time- 

dependent profits considered, for any detour vertex k, the detour prun- 

ing can be successfully applied to the extension only if vertex k is not 

a critical vertex (called “non-critical condition”) and satisfies the fea- 

sibility condition, i.e., es L ≤ LT k 
(i, j) . 

Proof. In Figure 4 , given a critical vertex set �, let path ∗ be the 

optimal path (solid lines) at the current DSSR iteration, consist- 

ing of a sequence of states (blue rectangle), each indicating a vis- 

ited vertex at its corresponding moment. Suppose path ∗ contains 

a sub-path (ω 0 
i − ω 0 

j − ω 0 
k ) where i, j and k are three visited ver- 

tices. First, we assume that vertex k is a critical vertex and satis- 

fies t(ω 0 
i ) ≤ LT k 

(i, j) , where t(ω 0 
i ) represents the start time of state 

ω 0 
i . If the extension of ω 0 

i from vertex i to j is pruned by de- 

tour path (ω 0 
i ) ∪ { k } ∪ { j} , then it is impossible to obtain sub-path 

(ω 0 
i − ω 0 

j − ω 0 
k ) , as well as the optimal path path ∗. Second, we 

assume that vertex k is not a critical vertex. If t(ω 0 
i ) ≤ LT k 

(i, j) is 
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Fig. 4. An example of incorrect detour pruning. 

satisfied, there must exists another sub-path (ω 0 
i − ω 1 

k − ω 0 
j − ω 0 

k ) 

dominating sub-path (ω 0 
i − ω 0 

j − ω 0 
k ) , where t(ω 1 

k ) < t(ω 0 
k ) . Then, 

a new path which has a higher profit than path ∗ can be obtained 

by replacing sub-path (ω 0 
i − ω 0 

j − ω 0 
k ) by (ω 0 

i − ω 1 
k − ω 0 

j − ω 0 
k ) in 

path ∗. This is a contradiction to the hypothesis of the optimal path 

and thus the vertex k should not satisfy the feasibility condition. 

Thus, the detour pruning can work only if the non-critical and the 

feasibility conditions are satisfied simultaneously �

In Figure 4 , if the non-critical and the feasibility conditions are 

satisfied, and sub-path (ω 0 
i − ω 1 

k − ω 0 
j − ω 0 

k ) appears in the opti- 

mal path at the current iteration, vertex k will become a criti- 

cal vertex at the next iteration. It is noteworthy that if the time- 

dependent profits are not taken into account, this non-critical con- 

dition can be omitted. This is because, in Figure 4 , any paths ex- 

tended from (ω 0 
i − ω 0 

j ) can be dominated by the paths extended 

from sub-path (ω 0 
i − ω 1 

k − ω 0 
j ) , since these two sub-paths have the 

same collected profit, and the visits starting from ω 0 
j to any other 

vertices always arrives earlier than those starting from ω 0 
k , due to 

the triangle inequality considered in this work. 

Algorithm 2 shows how we apply the detour pruning strategy 

Algorithm 2 DetourPruning ( L, j ) 

for all k ∈ V do 

if k ∈ � then 

continue; 

end if 

if es L ≤ LT k 
(i, j) then 

return LT k 
(i, j) ; 

else 

break; 

end if 

end for 

return et i ; 

with the DSSR technique when extending label L associated with 

vertex i and vertex j to be extended. We check the feasiblity of 

the first vertex not belonging to � in the ordered detour list. If it 

is feasible, the algorithm will return LT ( i,j ) and only the states that 

start later than LT ( i,j ) need to be extended to vertex j . Otherwise, 

the window end time of vertex i will be returned, meaning that 

all states should be considered in the extension. If all the states 

start earlier than LT ( i,j ) , the extension from label L to vertex j will 

be discarded. 

4.3.4. Adaptive-directional extension 

Previous studies have shown that the Bidirectional DP algo- 

rithm with an effective bounding criterion is usually superior to 

its mono-directional counterpart. This is because in general, the 

Fig. 5. An example instance showing the total number of labels generated versus 
the stop times at different iterations of DSSR. 

number of labels generated grows exponentially with the num- 

ber of arcs visited, which intuitively implies that exploiting two 

smaller sets of space states is faster than exploiting a large set 

of the whole space states. Tilk et al. Tilk et al. (2017) claim that 

the bidirectional search works particularly well if the sizes of the 

forward and backward labels are similar. In order to balance the 

forward and backward workload, they present a dynamic half-way 

point as the stop time of the forward and backward extensions. 

However, our experimental results show that the bidirectional la- 

beling usually spends more time than the mono-directional ones 

for our problem, as can be seen in Figure 5 . This figure shows how 

the total number of labels (sum of forward and backward ones) 

changes with the stop time varied from zero to 20 �T for a certain 

instance, where 20 �T equals to the maximum window end time 

among all the vertices. If the stop time is set to zero or 20 �T , 

a mono-directional labeling is applied; otherwise, a bidirectional 

search is performed. The different colored curves account for the 

fluctuation at different iterations of the DSSR. Clearly, the bidirec- 

tional labeling creates more labels than the forward or backward 

one, possibly due to the unavoidable duplication of paths in the bi- 

directional search. The ‘trade-off” curve, i.e., the accumulated profit 

function, which requires to keep a large number of non-dominated 

states for both directions of labels within their time windows, may 

account for the duplication. A similar conclusion can be found in 

Desaulniers et al. (2016) . Another experiment (not shown here) 

demonstrates that the duplication also becomes worse when the 

length of the time windows or the degree of overlap increases. 

Other interesting preliminary results of this example show that 

the forward labeling runs faster than the backward labeling, and 

the difference becomes much larger when the number of DSSR it- 

erations increases. The reason can be twofold: firstly, the asymmet- 

ric instances data, e.g., time windows being unevenly spread, give 

rise to the unbalanced forward and backward extensions; secondly, 

the presence of critical vertices dramatically increases the number 

of non-dominated labels, which exacerbates the imbalance. The re- 

sults reveal a regularity that if most of the critical vertices are dis- 

tributed closely to the source vertex and greatly overlap with each 

other, the number of non-dominated labels increases rapidly when 

extending labels from the part of critical vertices to other vertices. 

From our analysis, a mono-directional labeling algorithm is 

preferable for our problem. However, it is unclear which direction 

of the labeling extension is the most efficient. This can be strongly 

instance-dependent. One possible approach is to determine the di- 
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rection according to the distribution structure of the time windows 

and the current states of the critical vertex set for each iteration. 

Hereby we present an Adaptive-directional Dynamic Programming 

(ADP) algorithm to address this imbalance issue. Algorithm 3 ex- 

Algorithm 3 GetExtensionDirection ( �) 

if � = ∅ then 

return Bidirection ; 

end if 

ET Amount ← 0 , LT Amount ← 0 ; 

for all k ∈ � do 

for all i ∈ V do 

E T Amount ← E T Amount + max { min { et i , et k } − st i , 0 } ; 
LT Amount ← LT Amount + max { et i − max { st i , st k } , 0 } ; 

end for 

end for 

if ET Amount ≤ LT Amount then 

return Backward; 

else 

return F orward; 

end if 

plains how we determine the efficient direction, given a group of 

vertices and a critical vertex set �. 

In Algorithm 3 , ETAmount counts, for all the time windows, the 

amount of time before the start time of each critical vertex at the 

current iteration. Likewise, LTAmount counts the amount of time 

which starts later than the end time of each critical vertex. Af- 

terwards, these two statistics are compared in order to determine 

which direction will be used at that iteration. The setting of the al- 

gorithm is based on the idea that the labeling extension between 

the critical vertices may produce many non-dominated labels, and 

the more vertices that can be extended by these labels, the more 

the total number of labels at the end. At the first iteration when 

no critical vertices exist, a bidirectional extension is performed. 

4.4. Adaptive-directional dynamic programming with decremental 

state space relaxation 

Algorithm 4 outlines the framework of our ADP-DSSR algorithm. 

Algorithm 4 Adaptive-directional DP with DSSR. 

� ← ∅ ; 

while true do 

Direction ← GetExtensionDirection (�) ; 

if Direction = F orward then 

S ∗ ← F orwardDP () ; 

else if Direction = Backward then 

S ∗ ← BackwardDP () ; 

else 

S f ← F orwardDP () ; 

S b ← BackwardDP () ; 

S ∗ ← Matching(S f , S b ) ; 

end if 

if S ∗ is non-elementary then 

� ← � ∪ �new ; 

else 

The optimal solution S ∗ is obtained; 

Return; 

end if 

end while 

At first, the critical vertex set � is initialized to be empty. Then, 

the algorithm enters a WHILE loop and its condition equals to true. 

At each iteration, a GetExtensionDirection ( �) procedure is executed 

to determine which direction should be used to extend labels with 

respect to the current critical vertex set �. If � is empty, the bidi- 

rectional DP is performed and a matching procedure is required to 

connect the forward labels S f and the backward labels S b ; other- 

wise, a forward or a backward extension is processed. Afterwards, 

the solution S ∗ with the highest collected profit among all the gen- 

erated paths is obtained. If S ∗ is non-elementary, the set of du- 

plicate vertices �new is added into �, and the algorithm goes to 

the next iteration. Otherwise, S ∗ is the optimal elementary solu- 

tion and the algorithm terminates. 

5. Computational results 

In this section, the performance of the proposed algorithm will 

be discussed. We are the first to solve the AEOS scheduling prob- 

lem to optimality, hence, no existing algorithm or known optimal 

solutions can be compared with. Therefore, we design three ex- 

periments to evaluate the performance: the first experiment eval- 

uates the four algorithmic improvements by comparing different 

settings where these improvements are included or not; secondly, 

we compare the performance of our ADP-DSSR algorithm with 

the performance of a state-of-the-art heuristic Peng et al. (2019) ; 

lastly, our algorithm is tested on OPTW benchmark instances, and 

compared with two reference exact algorithms in the literature 

Duque et al. (2015) ; Righini and Salani (2009) when the time- 

dependent profits are not taken into account. We coded our algo- 

rithm in C#, using Visual Studio 2010, and performed our experi- 

ments on a laptop with a 2.5 GHz Intel Core i5-7300HQ and 8 GB 

RAM. 

5.1. Evaluating the four algorithmic improvements 

We test our ADP-DSSR algorithm on the Chinese instances pro- 

posed by Liu et al. Liu et al. (2017) . Targets for observation are ran- 

domly generated with a uniform distribution in the Chinese area 

(3 ◦N-53 ◦N and 74 ◦E-133 ◦E). A visibility analysis is processed to 

generate the visible time windows and the look angles per sec- 

ond for each target. The time step is defined to evenly discretize 

the time windows in order to simplify the calculation. The maxi- 

mum profit and the service time of each target are uniformly gen- 

erated respectively from [1,10] and [15,30] in seconds. The schedul- 

ing horizon is 24 hours, meaning that the satellite can pass by a 

certain target multiple times during different orbits. Thus, for an 

instance with a given number of targets (called “multi-orbit in- 

stance”), the scheduling horizon is divided in multiple orbits, each 

called a ”single-orbit instance”. Our algorithm is designed to solve 

these single-orbit instances. Each single-orbit instance has a spe- 

cific number of targets to be scheduled. The larger the number of 

targets in a single-orbit instance, the higher overlap between their 

VTWs. The time-dependent profits of each target are distributed 

in its visible time window following the model proposed by Peng 

et al. Peng et al. (2019) and explained in Section 3 . More details on 

the test instances and the satellite parameters can be found in the 

paper of Liu et al. Liu et al. (2017) . The instances are available at 

https://www.mech.kuleuven.be/en/cib/op#section-32 . 

To evaluate the performance of our ADP-DSSR algorithm, two 

comparative experiments are carried out. The first experiment 

compares the proposed algorithm with three variants to investi- 

gate the impact of the proposed algorithmic improvements. These 

variants are generated by respectively removing the partial domi- 

nance rule, the merging process of labels and the detour pruning 

strategy. The comparative results for the multi-orbit instances from 

30 0 to 60 0 targets with the time step equals to five seconds are 

presented in Table 2 . Each row presents the average results over 

https://www.mech.kuleuven.be/en/cib/op#section-32
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Table 2 
Comparative results of the algorithms without the proposed improvements. 

Instance Name VTWs ADP-DSSR No Partial Dominance No Merging Labels No Detour Pruning 

CPU time(s) CPU time(s) T dif CPU time(s) T dif CPU time(s) T dif 

300_A 65.38 1.98 2.89 -0.60 13.35 -4.97 2.56 -0.47 
400_A 89.50 1.52 2.62 -0.88 11.95 -7.63 2.36 -0.41 
500_A 115.00 2.33 3.39 -0.58 21.55 -8.42 3.58 -0.39 
600_A 137.38 2.83 5.36 -0.72 30.35 -10.78 4.24 -0.37 
Average -0.70 -7.87 -0.41 

eight single-orbit instances from one multi-orbit instance. The in- 

dividual results, for each single-orbit instance are available here: 

https://www.mech.kuleuven.be/en/cib/op#section-32 . The column 

VTWs represents the average number of targets visible during a 

single orbit. The CPU time (in seconds) of each algorithm is shown, 

followed by the difference ratio compared with the complete ADP- 

DSSR algorithm. This ratio is calculated by: 

T di f = 
t ime prop − t ime v ar 

time prop 
, (15) 

where time prop represents the CPU time of the proposed ADP-DSSR 

algorithm and time var is the CPU time of the corresponding vari- 

ant of the algorithm. The negative value of this ratio means the 

proposed algorithm is faster, while the positive value means the 

variant algorithm is faster. 

The results show that the complete version of the proposed al- 

gorithm is the fastest among these algorithms for all the instances, 

implying that these three improvements presented are all very ef- 

fective. The most crucial improvement is the merging of the la- 

bels, which reduces the computational time almost eight times on 

average. The reason is that considering a trade-off curve, the la- 

beling algorithm usually generates a large number of labels that 

are mergeable but cannot dominate each other since the states 

of these labels have different start times. Compared with the full 

dominance rule, our proposed partial dominance rule considerably 

speeds up the search, because there exists a large number of un- 

promising states which can be detected and removed by the partial 

dominance test. Even though the detour pruning is originally de- 

veloped as a component of the pulse algorithm, the results prove 

that it can still work very well when adapting it in the labeling 

algorithm by sorting the detour vertices. 

In the second experiment, we compare the DP algorithms with 

different directions: the proposed adaptive-directional DP, the for- 

ward DP, the backward DP and the bidirectional DP where its stop 

time equals half of the scheduling horizon. All algorithms consider 

the DSSR technique and the three improvements mentioned above. 

As can be seen in Table 2 , most of the instances presented there 

can be solved within three seconds by our algorithm. To obtain a 

clear difference for different directions, we use instances with a 

higher density of targets generated in only a quarter part of China 

(28 ◦N-53 ◦N and 103 ◦E-133 ◦E). Furthermore, the time step is set 

to one second. Table 3 reports the results on the high-density in- 

stances with 500 and 600 targets. Each row presents the CPU time 

for each single-orbit instance. The single-orbit instance name is de- 

noted by “| V | _ | K| ”, where | V | is the number of targets in the corre- 

sponding multi-orbit instance and | K | is the number of VTWs dur- 

ing that orbit. 

As discussed in Section 4.3.4 , the bidirectional DP performs 

worst in this comparison due to the presence of a large number 

of duplicated paths produced. The results show a large difference 

between the forward DP and the backward DP in terms of the 

CPU time for some instances. For example, the backward DP can 

solve the instance “500_117” in 22.31 seconds but the forward one 

needs 279.09 seconds, while solving the instance “600_62” with 

the backward DP takes 232.80 seconds but the forward DP only 

takes 18.03 seconds. This implies that choosing a wrong direction 

for the extension may lead to a very high computational time. 

Moreover, from the comparative results, there is no clear domi- 

nance between these two approaches, and thus the efficient direc- 

tion depends on the instance tested. We observe that the computa- 

tional time of our adaptive-directional DP is typically not less than 

but close to the best of the forward DP and the backward DP for 

most of the instances. Specifically, the forward DP is on average 

45% slower than our algorithm for the 500-target instances and 

56% slower for the 600-target instances. Similarly, for the back- 

ward DP, the number reaches 32% for the 500-target instances 

and 58% for the 600-target instances. In a few cases, the adaptive- 

directional DP performs worse than both the forward and back- 

ward DP (instance “50 0_391”, “60 0_71” and “60 0_144”), but the 

differences are rather limited. From these comparison, it is clear 

that the adaptive-directional DP can be regarded as a conservative 

but efficient choice to run the DP approach for our problem. It cer- 

tainly avoids the very long computation times that sometimes ap- 

pear with the forward and backward DP. We further compare the 

results of our algorithm with the best and worst CPU time among 

the forward and backward DP for each individual instance. The av- 

erage results (not displayed in Table 3 ) show that our algorithm 

is only 15% slower than when the best direction would be known 

beforehand for each individual instance, but it is 120% faster than 

when we select the opposite direction. 

5.2. Comparison with a state-of-the-art heuristic 

In previous studies, only one heuristic approach has been pro- 

posed to tackle the AEOS scheduling with time-dependent profits, 

called the Bidirectional Dynamic Programming based Iterated Lo- 

cal Search (BDP-ILS) algorithm Peng et al. (2019) . We compare the 

performance of our exact approach with the performance of this 

heuristic in terms of the solution quality and the CPU time. Note 

that the BDP-ILS is originally developed to solve multiple-orbit in- 

stances, but we apply this algorithm here on single-orbit instances. 

The single-orbit instances used in this comparison are based on 

multiple-orbit instances with 30 0, 40 0, 50 0 and 600 targets. For 

each multi-orbit instance, the four single-orbit instances with the 

most visible targets are solved. The results are reported in Table 4 . 

The time step is set to five seconds. We keep the best settings of 

the parameters for the heuristic in Peng et al. (2019) , i.e., the re- 

move ratio is 0.1 and the iteration number is 200. The last column 

presents the gap between the best known solution of the heuris- 

tic and the optimal value obtained by our algorithm. A detailed 

solution for each instance is available here: https://www.mech. 

kuleuven.be/en/cib/op#section-32 . Both these two algorithms are 

run on the same computer as mentioned before. 

From Table 4 , we can observe that our exact algorithm is al- 

most as fast as the state-of-the-art heuristic for most of the in- 

stances, while this heuristic only obtains the optimal solution of 

one instance (instance “300_102”). For some instances, our exact 

algorithm is even slightly faster than the heuristic. For instances 

“30 0_10 0”, “40 0_156” and “50 0_186” and “60 0_209”, our exact al- 

gorithm has a shorter computational time than the heuristic while 

https://www.mech.kuleuven.be/en/cib/op#section-32
https://www.mech.kuleuven.be/en/cib/op#section-32
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Table 3 
Comparative results of different direction of labeling extension. 

Instance Name Adaptive-directional DP Forward DP Backward DP Bidirectional DP 

CPU time(s) CPU time(s) T dif CPU time(s) T dif CPU time(s) T dif 

500_38 2.17 7.39 -2.41 1.76 0.19 3.18 -0.47 
500_391 149.35 135.02 0.10 139.04 0.07 243.32 -0.63 
500_60 64.66 13.96 0.78 163.98 -1.54 49.73 0.23 
500_117 25.62 279.09 -9.89 22.31 0.13 440.84 -16.21 
500_385 133.50 108.46 0.19 168.63 -0.26 261.29 -0.96 
Average 75.06 108.79 -0.45 99.14 -0.32 199.67 -1.66 
600_71 12.18 10.76 0.12 5.67 0.53 12.65 -0.04 
600_476 686.17 1464.24 -1.13 709.65 -0.03 2244.74 -2.27 
600_62 29.33 18.03 0.39 232.80 -6.94 139.44 -3.75 
600_144 141.15 57.35 0.59 136.50 0.03 208.94 -0.48 
600_441 251.82 193.06 0.23 682.44 -1.71 968.23 -2.85 
Average 224.13 348.69 -0.56 353.41 -0.58 714.80 -2.19 

Table 4 
Comparative results of the proposed exact algorithm with a state-of-the-art heuristic. 

Instance Name Exact algorithm (ADP-DSSR) Heuristic (BDP-ILS) Gap (%) 

Optimal value CPU time(s) Best solution value CPU time(s) 

300_100 157.47 0.91 151.75 1.32 3.63 
300_102 179.18 2.47 179.18 1.52 0.00 
300_106 165.59 1.83 165.39 1.36 0.12 
300_120 181.53 1.79 177.92 1.56 1.99 
400_136 193.81 3.19 188.79 2.27 2.59 
400_143 198.95 1.59 193.27 2.68 2.85 
400_152 195.98 2.48 195.07 2.52 0.46 
400_156 194.01 1.46 185.28 2.97 4.50 
500_183 206.22 4.54 201.87 3.85 2.11 
500_186 191.97 2.66 184.50 4.13 3.89 
500_191 220.61 4.00 219.05 4.29 0.71 
500_197 224.34 4.51 222.20 4.36 0.95 
600_209 217.64 1.42 209.24 4.35 3.86 
600_222 227.24 4.12 222.64 4.54 2.02 
600_229 227.63 5.57 223.76 5.88 1.70 
600_236 213.83 8.55 210.42 5.80 1.59 

the gaps of these instances exceed 3%. It is also noteworthy that 

for the multi-orbit instance with 600 targets, our algorithm only 

consumes less than 10 seconds for each single orbit, which proves 

the high performance of the developed algorithm on large-scale in- 

stances. 

This state-of-the-art heuristic has been compared with using 

the CPLEX solver directly on the mathematical formulation, for 

small instances in Peng et al. (2019) . The results show that the 

heuristic clearly outperforms CPLEX, with high-quality results and 

much smaller computation times. Since our exact algorithm out- 

performs this heuristic, we do not include a comparison with the 

CPLEX solver in this work. 

5.3. Results for OPTW 

For the OPTW, there are two existing exact algorithms in 

the state of the art: the Bidirectional DP with DSSR (BDP- 

DSSR) Righini and Salani (2009) and the pulse algorithm 

Duque et al. (2015) . These two algorithms are tested on two classes 

of instances derived from the well-known Solomon’s data-set of 

VRPTW instances Solomon (1987) and from the Cordeau et al. 

Cordeau et al. (1997) for the Multi-Depot Periodic Vehicle Rout- 

ing Problem (MDPVRP). Solomon’s instances contains 29 instances 

with 100 vertices classified into three categories: the R-instances 

where vertices are randomly located, the C-instances where ver- 

tices are clustered and the RC-instances where some vertices are 

located randomly and others are clustered. The number of vertices 

in Cordeau’s instances varies from 48 to 288 vertices. These in- 

stances are considered to be harder than those of Solomon due to 

their larger time windows. These two sets of instances are avail- 

able at https://www.mech.kuleuven.be/en/cib/op . 

For these instances without time-dependent profits, the 

adaptive-directional extension and the merging process is no 

longer efficient. Thus, we use the same BDP-DSSR framework as in 

Righini and Salani (2009) while still maintaining the detour prun- 

ing strategy. Besides, at each iteration of DSSR, we delete the non- 

dominated labels which visit the current critical vertices more than 

once but preserve the rest of the non-dominated labels to the next 

iteration. These preserved labels can be used to dominate inferior 

labels in the next run of the DP and thereby reduce the num- 

ber of unpromising labels generated. To avoid confusion, we call 

our algorithm for the OPTW the “improved BDP-DSSR” and the al- 

gorithm in Righini and Salani (2009) is called the “original BDP- 

DSSR”. To ensure fair comparisons due to different experimental 

environments, a LINPACK benchmark is used to scale the compu- 

tational time of the pulse algorithm to compare with the original 

BDP-DSSR Duque et al. (2015) . However, we found that the coef- 

ficients used to scale the time of our hardware towards the ones 

used for the original BDP-DSSR and the pulse algorithm are incon- 

sistent with the coefficient of 4.3 used to compare these two refer- 

ence algorithms in Duque et al. (2015) , probably due to the parallel 

search used in the pulse algorithm. To avoid the inconsistency, we 

keep the comparative results in Duque et al. (2015) but we rerun 

the code of the pulse algorithm provided by the authors. After that, 

https://www.mech.kuleuven.be/en/cib/op
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Table 5 
Computational times (in seconds) of the proposed algorithms and the state-of-the-art for the OPTW over Solomon’s 
instances. 

Instance Optimal value Improved BDP-DSSR Original BDP-DSSR T dif (Original) Pulse T dif (Pulse) 
(s) (s) (-) (s) (-) 

C101 320 0.00 0.06 -49.85 0.00 -2.39 
C102 360 0.48 3.81 -6.90 0.54 -0.12 
C103 400 60.28 1081.04 -16.93 8.94 0.85 
C104 420 44.31 1856.39 -40.89 8.94 0.80 
C105 340 0.33 0.12 0.63 0.07 0.79 
C106 340 0.18 0.14 0.22 0.07 0.61 
C107 370 0.12 0.2 -0.68 0.07 0.41 
C108 370 0.74 1.43 -0.94 0.14 0.81 
C109 380 1.88 10.57 -4.64 0.34 0.82 
R101 198 0.05 0.03 0.39 0.07 -0.43 
R102 286 9.61 233.2 -23.26 7.51 0.22 
R103 293 130.21 5498.81 -41.23 31.29 0.76 
R104 303 1826.33 > 7200 -2.94 80.04 0.96 
R105 247 0.44 0.23 0.48 0.07 0.84 
R106 293 14.93 334.49 -21.41 12.66 0.15 
R107 299 150.12 2979.94 -18.85 35.49 0.76 
R108 308 547.00 > 7200 -12.16 75.64 0.86 
R109 277 2.15 3.09 -0.44 0.2 0.91 
R110 284 3.47 30.83 -7.89 0.75 0.78 
R111 297 46.62 1408.8 -29.22 14.56 0.69 
R112 298 87.44 2508.17 -27.68 9.41 0.89 
RC101 219 0.05 0.23 -3.37 0.07 -0.33 
RC102 266 0.57 6.11 -9.74 0.13 0.77 
RC103 266 6.50 88.12 -12.56 0.47 0.93 
RC104 301 5.47 264.84 -47.38 1.56 0.72 
RC105 244 0.64 2.86 -3.48 0.07 0.89 
RC106 252 1.08 2.08 -0.92 0.13 0.88 
RC107 277 3.18 49.19 -14.48 0.41 0.87 
RC108 298 2.39 68.95 -27.85 0.81 0.66 
Average -14.62 0.53 

Table 6 
Computational times (in seconds) of the proposed algorithms and the state-of-the-art for the OPTW over Cordeau’s 
instances. 

Instance Optimal value Improved BDP-DSSR Original BDP-DSSR T dif (Original) Pulse T dif (Pulse) 
(s) (s) (-) (s) (-) 

pr01_48 308 0.17 1.19 -6.09 0.14 0.17 
pr02_96 404 3.46 37.52 -9.85 1.22 0.65 
pr03_144 394 7.63 151.73 -18.89 2.30 0.70 
pr04_192 489 24.68 648.82 -25.29 4.06 0.84 
pr05_240 595 128.00 6815.82 -52.25 36.57 0.71 
pr06_288 591 171.02 > 7200 -41.10 78.23 0.54 
pr07_72 298 0.42 3.65 -7.77 0.27 0.35 
pr08_144 463 6.65 90.71 -12.63 1.69 0.75 
pr09_216 493 127.39 3270.88 -24.68 81.01 0.36 
pr10_288 594 106.88 > 7200 -66.37 64.26 0.40 
Average -26.49 0.55 

we scale the computational time of our algorithm according to the 

ratio of the results obtained by running the pulse algorithm in a 

different hardware environment. 

Table 5 and 6 report on the experimental comparison between 

the original BDP-DSSR, our improved BDP-DSSR and the pulse al- 

gorithm. The first two columns report the instance name and the 

optimal value; column 3 presents the scaled computational time 

of the improved BDP-DSSR; column 4 and column 6 respectively 

show the (scaled) CPU times of the original BDP-DSSR and the 

pulse algorithm in seconds as reported in Duque et al. (2015) , fol- 

lowed by their difference ratios of the computational time com- 

pared with the improved BDP-DSSR. The average value of these ra- 

tios are given at the end of the table. 

Results in Table 5 and 6 show that our improved BDP-DSSR 

outperforms the original BDP-DSSR while the pulse algorithm is 

still the fastest algorithm. For Solomon’s instances, the difference 

ratio between our algorithm and the orginal algorithm is -14.62. 

The results on Cordeau’s instances exhibit a larger difference with 

a difference ratio of -26.49. These numbers show that compared 

with the original BDP-DSSR, our algorithm can solve the OPTW in- 

stances more efficiently, despite that the pulse algorithm still per- 

forms the best among these algorithms. It should be noted that the 

main purpose of this comparison is not to compete with the pulse 

algorithm in terms of the computational time, but rather to show 

that our algorithm has sufficient capability to also solve the OPTW, 

without time-dependent profits, in an efficient way. On the other 

hand, the pulse algorithm cannot be easily applied for the time- 

dependent case. For instance, the pulse algorithm uses a so-called 

“soft dominance test”. It swaps two chosen visited vertices (except 

the source vertex and the last visited vertex) in a path, and the 

path is dominated and discarded if after the swapping operation a 

new path with less consumed time is found. The test is available 

only when swapping the visited vertices will not change the total 

profits. However, when time-dependent profits would be consid- 
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ered, the ordering of the visited vertices will greatly influence the 

total profit. 

6. Conclusions 

In this paper, we have presented an exact optimization algo- 

rithm for the single-orbit scheduling problem of an Agile Earth Ob- 

servation Satellite (AEOS) considering time-dependent profits. The 

algorithm is developed based on the bidirectional dynamic pro- 

gramming with decremental state space relaxation which is origi- 

nally designed for the ESPPRC or the OPTW. To address the time- 

dependent profits feature, a “trade-off” curve, namely the accumu- 

lated profit function, is associated with each path to be extended. 

We have described the corresponding dominance rule, the decre- 

mental state space relaxation and other algorithmic details. In ad- 

dition, we have proposed four algorithmic improvements to speed 

up the algorithm, including the partial dominance rule, the pro- 

cess of the merging labels, the detour pruning strategy and the 

adaptive-direction extension. The experimental results of our real- 

world instances prove that each improvement can effectively re- 

duce the computational time for our instances. Furthermore, we 

compared the performance of our exact algorithm and a state-of- 

the-art heuristic. The results showed that the computation times of 

these two algorithms are similar while the heuristic algorithm fails 

to find the optimal solutions for most of the instances. Since there 

is no previous work solving the AEOS scheduling problem to opti- 

mality, we also tested our algorithm on the OPTW instances with- 

out considering the time-dependent profits and compared it with 

two algorithms in the state of the art. Our algorithm performs bet- 

ter than the original BDP-DSSR algorithm but slightly worse than 

the state-of-the-art pulse algorithm. However, we conclude that 

our algorithm is capable of solving the OPTW efficiently and we 

argue that the pulse algorithm cannot be easily adapted for ad- 

dressing time-dependent profits due to its algorithmic mechanism. 

Further research could focus on the AEOS scheduling problem 

with multiple orbits. This rather interesting extension of the prob- 

lem allows optimizing the schedule on multiple orbits, satisfying 

the practical needs. A column generation technique can be utilized 

to solve this problem while its pricing problem can be regarded 

as the single-orbit scheduling problem and this can be solved ef- 

ficiently by our ADP-DSSR problem. To the best of our knowledge, 

this problem has not yet been addressed with an exact solution 

technique. In addition to the time-dependent profits, the time- 

dependent energy resource can also be considered in the model 

since the transition of look angles requires the consumption of the 

on-board energy. In this case, the trade-off between the resources 

and profits should be made and the design of the exact solution 

will become more complicated. 
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