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Abstract. This paper reports our comparative evaluation of three machine learning methods, namely k Nearest
Neighbor (kNN), Support Vector Machines (SVM), and Adaptive Resonance Associative Map (ARAM) for Chinese
document categorization. Based on two Chinese corpora, a series of controlled experiments evaluated their learning
capabilities and efficiency in mining text classification knowledge. Benchmark experiments showed that their
predictive performance were roughly comparable, especially on clean and well organized data sets. While kNN
and ARAM yield better performances than SVM on small and clean data sets, SVM and ARAM significantly
outperformed kNN on noisy data. Comparing efficiency, kNN was notably more costly in terms of time and
memory than the other two methods. SVM is highly efficient in learning from well organized samples of moderate
size, although on relatively large and noisy data the efficiency of SVM and ARAM are comparable.

Keywords: text categorization, machine learning, comparative experiments

1. Introduction

Text categorization refers to the task of automatically
assigning one or multiple predefined category labels
to free text documents. Whereas an extensive range
of methods have been applied to English text catego-
rization, relatively few benchmarks have been done
for Chinese text. Typical approaches to Chinese text
categorization, such as Naive Bayes (NB) [1], Vector
Space Model (VSM) [2, 3] and Linear List Square
Fit (LLSF) [4, 5], have well studied theoretical ba-
sis derived from the information retrieval research, but
are not known to be the best classifiers [6, 7]. In ad-
dition, there is a lack of publicly available Chinese
corpus for evaluating Chinese text categorization
systems.

This paper reports our comparative evaluation of
three machine learning methods, namely k Nearest
Neighbor (kNN) [8], Support Vector Machines (SVM)
[9], and Associative Resonance Associative Map
(ARAM) [10] for Chinese text categorization. kNN
and SVM have been reported as the top performing
methods for English text categorization [7]. ARAM
belongs to a popularly known family of predictive self-
organizing neural networks [11] but until recently, has
not been used for text categorization. Our comparative
experiments employed two Chinese corpora, namely
the TREC People’s Daily news corpus (TREC) and
the Chinese web corpus (WEB). Based on the bench-
mark experiments on these two corpora, we examined
and compared the predictive accuracy as well as the
efficiency of the three classifiers.



312 He, Tan and Tan

The rest of this paper is organized as follows.
Section 2 describes our choice of the feature selec-
tion and extraction methods. Section 3 gives a sum-
mary of kNN and SVM, and reviews the less familiar
ARAM algorithm in more details. Section 4 presents
our evaluation paradigm and reports the experimental
results. Section 5 discusses the results and compares
the three classifiers in terms of predictive accuracy and
efficiency. The last section summarizes our findings of
the comparative experiments.

2. Feature Selection and Extraction

A pre-requisite of text categorization is to extract a
suitable feature representation of the documents. Typ-
ically, word stems are suggested as the representa-
tion units by information retrieval research. However,
unlike English and other Indo-European languages,
Chinese text does not have a natural delimiter between
words. As a consequence, word segmentation is a ma-
jor issue in Chinese text processing. Chinese word seg-
mentation methods have been extensively discussed in
the literature. Unfortunately, perfect precision and dis-
ambiguation cannot be reached. As a result, the inher-
ent errors caused by word segmentation always remain
as a problem in Chinese information processing.

In our experiments, a word-class bi-gram model is
adopted to segment each training document into a set
of tokens. The lexicon used by the segmentation model
contains over 64,000 words in 1,006 classes. High pre-
cision segmentation is not the focus of our work. In-
stead we aim to compare the various classifiers as long
as the noises in the documents sets caused by word
segmentation are reasonably low.

To select keyword features for classification,
CHI (χ ) statistics is adopted as the ranking metric in
our experiments. A prior study on several well-known
corpora including Reuters-21578 and OHSUMED has
showed that CHI statistics generally outperforms other
feature ranking measures, such as term strength (TS),
document frequency (DF), mutual information (MI),
and information gain (IG) [12]. For a token t , its CHI
measure is defined by

χ (t) =
√

(nct + nc̄t + nct̄ + nc̄t̄ )(nct nc̄t̄ − nc̄t nct̄ )2

(nct + nct̄ )(nc̄t + nc̄t̄ )(nct + nc̄t )(nct̄ + nc̄t̄ )

(1)

where nct and nc̄t are the number of documents
in the positive category and the negative category

respectively1 in which the token t appears at least once;
and nct̄ and nc̄t̄ are the number of documents in the pos-
itive category and the negative category respectively in
which the token t doesn’t appear. A set of tokens with
the highest CHI measures are then selected as keyword
features {wi | i = 1, 2, . . . , M}, where M is the number
of keywords in the feature set.

During feature extraction, the document is first seg-
mented and converted into a keyword frequency vector
(t f1, t f2, . . . , t fM ), where t fi is the in-document term
frequency of keyword wi . A term weighting method
based on inverse document frequency (IDF) [13] and
L1-normalization are then applied on the frequency
vector to produce the keyword feature vector

x = (x1, x2, . . . , xM )

max{xi } , (2)

in which xi is computed by

xi = (1 + log2 t fi ) log2
n

ni
, (3)

where n is the number of documents in the whole train-
ing set and ni is the number of training documents in
which the keyword wi appears at least once.

3. Classifiers

3.1. K Nearest Neighbor

k Nearest Neighbor (kNN) is a traditional statistical
pattern recognition algorithm [8]. It has been studied
extensively for text categorization [7]. In essence, kNN
makes prediction based on the k training patterns that
are closest to the unseen (testing) pattern, according to a
distance metric. The commonly used distance metrics
that measure the similarity between two normalized
patterns include the Euclidean distance

D(p, q) =
√∑

i

(pi − qi )2, (4)

the inner product

D(p, q) =
∑

i

pi qi , (5)

and the cosine similarity

D(p, q) =
∑

i pi qi√∑
i p2

i

√∑
i q2

i

. (6)
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The class assignment to the test pattern is based on
the class(es) of the closest k training patterns. A com-
monly used method is to label the test pattern with the
class that has the most instances among the k nearest
neighbors. Specifically, the class index y(x) assigned
to the test pattern x is given by

y(x) = argmax
i

{n(x j , ci ) | x j ∈ kNN}, (7)

where n(x j , ci ) is the number of training patterns x j

in the k nearest neighbor set that are associated with
class ci .

3.2. Support Vector Machines

Support Vector Machine (SVM) is a relatively new
class of machine learning techniques first introduced by
Vapnik [9]. Based on the structural risk minimization
principle of the computational learning theory, SVM
seeks a decision surface to separate the training data
points into two classes and makes decisions based on
the support vectors that are selected as the only effec-
tive elements from the training set.

Given a set of linearly separable points S = {xi |
i = 1, 2, . . . , N }, each point xi belonging to one of
the two classes labelled as yi ∈ {−1, +1}, a separating
hyper-plane divides S into two sides, each containing
points with the same class label only. The separating
hyper-plane can be identified by the pair (w, b) that
satisfies

w · x + b = 0 (8)

for any data point x on the hyper-plane and

yi (w · xi + b) ≥ 1 (9)

for any training sample xi ∈ S. The goal of the SVM
learning is to find the optimal separating hyper-plane
(OSH) that has the maximal margin to both sides. This
can be formularized as:

minimize
1

2
‖w‖2

subject to yi (w · xi + b) ≥ 1
(10)

The points that are closest to the OSH are termed sup-
port vectors (Fig. 1).

During classification, SVM makes decision based
on the globally optimized separating hyper-plane. It
simply finds out on which side of the OSH the test

Figure 1. Separating hyper-planes (the set of solid lines), optimal
separating hyper-plane (the bold solid line), and support vectors (data
points on the dashed lines). The dashed lines identify the maximum
margin.

pattern is located. This property makes SVM highly
competitive, compared with other traditional pattern
recognition methods, in terms of predictive accuracy
and efficiency [7].

The SVM problem can be extended to non-linear
case using non-linear hyper-plane based on convolution
function, such as the polynomial function

K (p, q) = (γ (p · q) + c)d (11)

and the radial basis function (RBF)

K (p, q) = e−γ ‖p−q‖2
(12)

for vectors p and q.
Various quadratic programming algorithms have

been proposed and extensively studied to solve the
SVM problem. In recent years, Joachims has done
much research on the application of SVM to text cate-
gorization. His SVMlight system2 based on the decom-
position idea of Osuna et al. [14] has been proven to be
practical in learning from relatively high dimensional
and large-scale training set [15].

3.3. Adaptive Resonance Associative Map

Adaptive Resonance Associative Map (ARAM) is a
class of predictive self-organizing neural networks
[11] that performs incremental supervised learning of
recognition categories (pattern classes) and multidi-
mensional maps of patterns. An ARAM system can
be visualized as two overlapping Adaptive Resonance
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Figure 2. The Adaptive Resonance Associative Map architecture.

Theory (ART) modules consisting of two input fields
Fa

1 and Fb
1 with an F2 category field [10, 16] (Fig. 2).

For classification problems, the Fa
1 field serves as the

input field containing the feature vector and the Fb
1

field serves as the output field containing the class pre-
diction vector. The F2 field contains the activities of
the recognition categories that are used to encode the
patterns.

When performing classification tasks, ARAM for-
mulates recognition categories of input patterns and
associates each category with its respective prediction.
During learning, given an input pattern (document fea-
tures) presented at the Fa

1 input layer and an output
pattern (class label) presented at the Fb

1 output field,
the category field F2 selects a winner that receives the
largest overall input. The winning node selected in F2

then triggers a top-down priming on Fa
1 and Fb

1 , mon-
itored by separate reset mechanisms. Code stabiliza-
tion is ensured by restricting encoding to states where
resonance are reached in both modules. By synchro-
nizing the unsupervised categorization of two pattern
sets, ARAM learns supervised mapping between the
pattern sets. Due to the code stabilization mechanism,
fast learning in a real-time environment is feasible.

The ART modules used in ARAM can be ART 1,
which categorizes binary patterns, or analog ART mod-
ules such as ART 2, ART 2-A, and fuzzy ART, which
categorize both binary and analog patterns. The fuzzy
ARAM [10] algorithm based on fuzzy ART [11] is
summarized below.

Parameters: The fuzzy ARAM dynamics are deter-
mined by the choice parameters αa > 0 and αb > 0; the
learning rates βa ∈ [0, 1] and βb ∈ [0, 1]; the vigilance

parameters ρa ∈ [0, 1] and ρb ∈ [0, 1]; the contribu-
tion parameter γ ∈ [0, 1]; and the k-max decision
parameter k.

Input vectors: Normalization of fuzzy ART inputs
prevents category proliferation. The Fa

1 and Fb
1 in-

put vectors are normalized by complement coding that
preserves amplitude information. Complement coding
represents both the on-response and the off-response
to an input vector a. The complement coded Fa

1 input
vector A is a 2M-dimensional vector

A = (a, ac) ≡ (
a1, . . . , aM , ac

1, . . . , ac
M

)
(13)

where ac
i ≡ 1 − ai . Similarly, the complement coded

Fb
1 input vector B is a 2N-dimensional vector

B = (b, bc) ≡ (
b1, . . . , bN , bc

1, . . . , bc
N

)
(14)

where bc
i ≡ 1 − bi .

Weight vectors: Each F2 category node j is associ-
ated with two adaptive weight templates wa

j and wb
j .

Initially, all category nodes are uncommitted and all
weights equal ones. After a category node is selected
for encoding, it becomes committed.

Category choice: Given the Fa
1 and Fb

1 input vectors
A and B, for each F2 node j , the choice function Tj is
defined by

Tj = γ

∣∣A ∧ wa
j

∣∣
αa + ∣∣wa

j

∣∣ + (1 − γ )

∣∣B ∧ wb
j

∣∣
αb + ∣∣wb

j

∣∣ , (15)
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where the fuzzy AND operation ∧ is defined by

(p ∧ q)i ≡ min(pi , qi ), (16)

and where the norm |·| is defined by

|p| ≡
∑

i

pi (17)

for vectors p and q.
The system is said to make a choice when at most

one F2 node can become active. The choice is indexed
at J where

TJ = max{Tj : for all F2 node j}. (18)

When a category choice is made at node J , yJ = 1;
and y j = 0 for all j �= J .

Resonance or reset: Resonance occurs if the match
functions, ma

J and mb
J , meet the vigilance criteria in

their respective modules:

ma
J =

∣∣A ∧ wa
J

∣∣
|A| ≥ ρa (19)

and

mb
J =

∣∣B ∧ wb
J

∣∣
|B| ≥ ρb. (20)

Learning then ensues, as defined below. If any of
the vigilance constraints is violated, mismatch reset
occurs in which the value of the choice function TJ is
set to 0 for the duration of the input presentation. The
search process repeats to select another new index J
until resonance is achieved.

Learning: Once the search ends, the weight vectors wa
J

and wb
J are updated according to the equations

wa(new)
J = (1 − βa)wa(old)

J + βa
(
A ∧ wa(old)

J

)
(21)

and

wb(new)
J = (1 − βb)wb(old)

J + βb
(
B ∧ wb(old)

J

)
(22)

respectively. Fast learning corresponds to setting βa =
βb = 1 for committed nodes.

K-max decision rule: During classification, ARAM
works in the spirit of kNN system. Using a k-max rule,

the output is predicted by a set of k F2 nodes with the
largest Fa

1 → F2 input Tj . The F2 activity values y j

first normalized by

y j =
{

Tj
/ ∑

k∈π Tk if j in π

0 otherwise,
(23)

where π is the set of k category nodes with the largest
input Tj . The Fb

1 activity vector xb is computed by

xb =
∑

j

wb
j y j . (24)

The output prediction vector B is then given by

B ≡ (b1, b2, . . . , bN ) = xb, (25)

where bi indicates the likelihood or confidence of as-
signing a pattern to category i .

Voting strategy: As a drawback inherited from ART,
ARAM is sensitive to the input order of the training
samples. To tackle this problem, multiple ARAM clas-
sifiers can be trained using the same set of patterns in
different orders of presentation. During classification,
the output vectors of multiple ARAM are combined to
yield a final output vector

B =
∑

Bv

V
, (26)

where V is the number of voting ARAMs and Bv is the
output vector produced by voter v.

4. Evaluation Experiments

4.1. Performance Measures

Our experiments adopted the commonly used perfor-
mance measures, including recall, precision, and F1

measures. Given a testing set A containing documents
pre-labelled with category c and a prediction set B
labelled with category c by the classifier, the recall (R)
and precision (P) measures are defined by

R = |A ∩ B|
|A| (27)

and

P = |A ∩ B|
|B| (28)
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respectively, where the norm |·| denotes the size of the
document set [17]. It is a common practice to com-
bine recall and precision in some way so that classi-
fiers can be compared in terms of a single rating. Our
experiments used F1 rating, a measure that gave equal
weights to R and P . The F1 measure, first introduced
by Rijsbergen [17] and subsequently used in Yang’s
relative comparison experiments [7], is defined by

F1 = 2|A ∩ B|
|A| + |B| . (29)

In terms of P and R, the F1 value is

F1 = 2RP

R + P
. (30)

We notice in the information retrieval literatures,
break-even point [18], defined as the value where
R = P , was more widely used than F1 measure. How-
ever, our experiments showed that for a given classifier,
its break-even point was relatively difficult to reach in a
limited number of experiments using a fixed set of pa-
rameters. Our empirical experiments also showed that
if R was reasonably close to P, F1 had approximately
the same distribution as break-even point.

The benchmark on each corpus was simplified into
multiple binary classification experiments. In each
experiment, a chosen category was tagged as the
positive category and the other categories in the same
corpus were combined as the negative category. Micro-
averaged scores and macro-averaged on the whole cor-
pus were then produced across the experiments. With
micro-averaging, the performance measures were com-
puted across the documents by adding all the docu-
ment counts across the different tests and calculating
using these summed values. With macro-averaging,
each category was assigned with the same weight and
the performance measures were calculated across the
categories. It is understandable that micro-averaged
scores and macro-averaged scores reflect a classifier’s
performance on large categories and small categories
respectively [7].

4.2. Significance Test

To compare the performance between two systems, we
employed the combined 5x2cv F test [19] as the signif-
icance test measure based on the micro-averaged and
macro-averaged F1 values. The combined 5x2cv F test
is a variance of the 5x2cv paired t test introduced by

Ditterich [20], which in turn is a slight improvement to
the k-fold cross-validated paired t test. The combined
5x2cv F test can be summarized as follow.

The null hypothesis for the significance test states
that on a randomly drawn training set, two learning
algorithms A and B will have the same performance
measure (in this case the micro-averaged and macro-
averaged F1 scores) on the testing set. A 5x2cv test
contains five replications of two-fold cross-validation.
In each replication, samples are randomly partitioned
into two disjoint sets S1 and S2. Both sets contain equal-
sized positive samples as well as negative samples.
Algorithms A and B are then trained on each set and
tested on the other set. Each replication produces four
predictive scores, namely p(1)

A and p(1)
B by training on S1

and testing on S2; and p(2)
A and p(2)

B by training on S2 and
testing on S1. Based on these four scores, two estimated
differences p(1) = p(1)

A − p(1)
B and p(2) = p(2)

A − p(2)
B are

calculated. They further lead to the estimated variance
s2 = (p(1)− p̄)2+(p(2)− p̄)2, where p̄ = (p(1)+p(2))/2.
The combined 5x2cv f score is then defined by

f =
∑5

i=1

∑2
j=1

(
p( j)

i

)2

2
∑5

i=1 s2
i

, (31)

where s2
i is the variance computed from the i-th replica-

tion, and p( j)
i is the p( j) value from the i-th replication

for j = 1, 2.
Alpaydm showed that under the null hypothesis, f

approximated F distribution with 10 and 5 degrees of
freedom [19], where the significance levels 0.05 and
0.01 corresponded to the two thresholds f0 = 4.74 and
f1 = 10.05 respectively. Given a combined 5x2cv f
score computed based on the performance of a pair of
class A and B, we compared f with threshold values f0

and f1 to determine if A is superior to B at significance
levels of 0.05 and 0.01 respectively.

Alpaydm’s report showed that the combined 5x2cv
F test had lower Type I error and higher power than the
5x2cv t test. In Dietterich’s comparison experiments,
the 5x2cv t test slightly outperformed other widely used
statistical tests, such as t test based on random train/test
splits and t test based on 10-fold cross-validation [20].

4.3. TREC-5 People’s Daily News Corpus

The TREC-5 People’s Daily news corpus is a subset of
the Mandarin News Corpus announced by the Linguis-
tic Data Consortium (LDC) in 1995. 77,733 documents
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in the corpus cover a variety of topics, including inter-
national and domestic news, sports, and culture. Since
the corpus was originally intended for evaluating in-
formation retrieval systems, each document was as-
signed a class label in our experiments for the pur-
pose of text categorization. The labelling process was
based on the topic information contained in the header
field of each document, which were manually labelled
in the original newspaper and retained in the corpus
as fields cat and headline. Documents in the corpus
were first automatically clustered into 101 groups un-
der a simple rule that documents in each group con-
tained the same cat label. With manual review of each
group, groups with too general contents or containing
too few articles were discarded; small groups with sim-
ilar contents were merged. 6 top-level categories were
then generated based on the contents of the remaining
33,047 documents, namely Politics, Law and Society
(Poli), Literature and Arts (Arts), Education, Science
and Culture (Edu), Sports (Spts), Theory and Academy
(Acad), and Economics (Eco). To obtain a clean data
set for the purpose of our experiments, the corpus was
further filtered and reduced to a even smaller size that
each category contained 600 documents only.3

Our experiments compared the classifiers’ perfor-
mance based on training/testing sets of different sizes.
On a chosen category, a varying number of positive
samples (ranged from 100 to 600) and double num-
ber of negative samples evenly distributed in the other
five categories were randomly selected. They were then

50 100 150 200 250 300
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Positive Training Samples

m
iF

1

kNN
SVM
ARAM

Figure 3. Micro-averaged F1 measures of kNN, SVM, and ARAM on the TREC corpus, using 50 to 300 positive training samples for each
category. Error bars donate the standard deviation across ten tests.

evenly split into training and testing folds as in the
5x2cv tests. The document features used in each test
were fixed at the 1,500 features selected from the 600
positive samples and 1,200 negative samples for each
category.

kNN experiments used cosine distance as the sim-
ilarity measure. Optimal k values for training sets of
different sizes were determined by cross-validations
using varying k values ranging from 1 to 39 and the
best results were recorded. Preliminary experiments
showed that SVM with RBF kernel significantly out-
performed linear kernel on all categories. Hence further
experiments used RBF kernel by setting γ = 0.1. Other
SVM parameters used the default built-in values in
SVMlight. ARAM experiments employed the default pa-
rameter values: learning rates βa = βb = 1.0; contribu-
tion parameter γ = 1.0; vigilance parameter ρb = 1.0;
and k = 1 in category prediction. The vigilance param-
eter ρa was set to 0.9 for high precision. In addition,
using a voting strategy, five ARAM systems trained
using the same set of patterns in different orders of
presentation were combined to yield a final prediction
vector.

Figure 3 depicts the predictive performance of the
three classifiers in terms of micro-averaged F1 mea-
sures. Since each batch of the controlled experiments
on the TREC corpus used the same number of train-
ing/testing samples on all categories, it was under-
standable that the macro-averages scores equaled to
the micro-averaged scores.
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Table 1. Significance of cross-classifier
comparisons. P denotes the number of pos-
itive training samples. “>” denotes better
than at significance level 0.05; “∼” denotes
no significant difference.

P Statistical significance

50 ARAM > kNN > SVM

100 ARAM > {kNN, SVM}
150–300 ARAM ∼ kNN ∼ SVM

Regardless of the size of the training sets, the per-
formance produced by the three classifiers were rather
good (with F1 scores of 0.80 and above). Whereas
ARAM and kNN outperformed SVM on small training
sets (100 or less positive samples), the three classifiers
demonstrated very similar performance with training
sets of moderate size (150 and above positive samples).
Our observations were supported by the significance
test results based on the one-to-one cross-classifier
comparisons as summarized in Table 1.

4.4. Chinese Web Corpus

The Chinese web corpus (WEB) (Table 2) collected
in-house consists of over 8,436 web pages downloaded
from various Chinese web sites covering a wide variety
of topics. Compared with the TREC corpus, the docu-
ments in this corpus are much noisier due to the great
variety among web pages in terms of document length,
style, and content. In addition, a number of documents
are assigned with multiple (two or three) category la-
bels. This makes categorization task on this corpus very
challenging.

Table 2. The eight top-level categories of the WEB corpus
sorted by the category size. P and N indicate the number of
the positive and negative samples respectively.

Category Description P N

Biz Business 4,102 4,334

IT Computer and internet info 1,719 6,717

Joy Online entertainment info 1,231 7,205

Arts Literature, arts 587 7,849

Edu Education 422 8,014

Med Medical care related info 305 8,121

Blf Philosophy and religion 228 8,208

Sci Various kinds of science 211 8,325

Table 3. Cross-classifier performance comparisons
based on micro-averaged F1 and macro-averaged F1

scores. “�” denotes better than at significance level
0.01; “>” denotes better than at significance level 0.05.

Micro-ave. F1 {ARAM, SVM} > kNN

Macro-ave. F1 {ARAM, SVM} � kNN

For experiments on the WEB corpus, the number of
document features was fixed at 500 as we tended to
get very low CHI values beyond the first 500 features.
Cross-validations suggested an optimal k value of 3 for
kNN. The size of cache for SV Mlight kernel evaluations
was doubled from 40 mega bytes to 80 mega bytes in
order to improve the training speed on large training
sets. In addition, ARAM’s vigilance parameter ρa was
decreased to 0.7 to keep the number of recognition
categories manageable.

Figure 4 shows the three classifiers’ performance on
the eight categories in terms of F1 measures. Figure 5
reports their micro-averaged and macro-averaged F1

scores across all categories. The scores produced by
ARAM and SVM were roughly comparable. Their
micro-averaged F1 scores predominantly determined
by the performance on the large categories such as Biz
and IT, were significantly higher than that of kNN. The
performance difference in terms of macro-averaged F1

scores were even more significant. These observations
harmonized with the significance test results show in
Table 3.

5. Discussions

5.1. Predictive Accuracy

On relatively large and well-organized categories (such
as those from the TREC corpus), all the three clas-
sifiers demonstrated rather similar performance. This
suggests that, as long as we have a sufficient number
of clean training patterns, the three learning methods
under evaluation can produce reasonably good gener-
alization performance for Chinese text classification.
The different approaches adopted by the trio in learn-
ing categorization knowledge are best seen in the light
of the distinct learning peculiarities they exhibit on the
small and noisy training sets.

kNN is a lazy learning method in the sense that it does
not carry out any off-line learning to generate a partic-
ular category knowledge representation. Instead, kNN
performs on-line scoring to find the training patterns
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Figure 4. F1 measures of kNN, SVM, and ARAM on the eight categories of the WEB corpus. Error bars donate the standard deviation across
ten tests.
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Figure 5. Micro-averaged and macro-averaged F1 measures of kNN, SVM, and ARAM on the WEB corpus. Error bars donate the standard
deviation across ten tests.

that are nearest to a test pattern and makes the decision
based on the statistical presumption that patterns in the
same category have similar feature representation. The
presumption is generally true for most well-organized
pattern sets. Thus kNN exhibits a relatively satisfactory
predictive accuracy across small and large categories
from the TREC corpus. However, due to the inherent
noises of the individual nearest neighbors, kNN per-
formed significantly worse than SVM and ARAM on
noisy training sets from the WEB corpus. In addition,
since kNN prediction is strictly localized to the testing
pattern’s neighbors, it is difficult to decide an optimal k

value without empirical experiments. Our experiments
showed that optimal k was affected by the size and
quality of the training samples as well as the ratio of
the positive sample size over the negative sample size.
Typically optimal k values have to be determined via a
number of cross-validations.

SVM identifies global optimal separating hyper-
planes (OSH) across the training data points and makes
classification decisions based on representative data in-
stances (known as support vectors). Because the deci-
sion boundary is globally optimized, SVM shows very
accurate prediction with training sets of reasonable
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size. However, in the absence of sufficient and clean
training instances, the OSH generated may not be very
representative. Thus on small training sets of the TREC
corpus, SVM’s performance was slightly lower than
that of kNN. In addition, the use of different SVM
kernel could give great impact to SVM’s predictive ac-
curacy. Our experiments showed that SVM with lin-
ear kernel performed significantly worse than RBF
kernel on the two Chinese corpora. With preliminary
knowledge to decide a kernel that best fits the train-
ing sample distribution, SVM can produce rather good
performance.

ARAM follows the spirits of nearest-rectangle based
algorithms by generating recognition categories from
the training patterns. The incrementally learned rules
abstract the key attributes of the training patterns and
eliminate minor inconsistencies in the data patterns.
During classifying, it works in a fashion similar to that
of kNN. The major difference is that ARAM uses the
learned recognition categories as the similarity scoring
unit whereas kNN uses the raw in-processed training
patterns. It follows that ARAM exhibits similar pre-
dictive accuracy as kNN but is more robust in learning
from relatively noisy data set.

Our experimental results on kNN and SVM are
slightly different from those reported in the English
categorization literatures. Joachims showed that RBF
SVM significantly outperformed kNN [21]. Our ex-
periments however did not produce noticeable differ-
ence between these two classifiers’ performance on the
TREC corpus. This may be that we optimized k val-
ues for kNN according to the size of the training set
while Joachims used a single k value across all cate-
gories. For WEB corpus that utilized a fixed k value,
our comparative results harmonized with Joachims’ re-
ports. Yang and Liu mentioned that in their experi-
ments, linear SVM produced slightly better results than
the non-linear models [7]. Our experiments, however,
showed that RBF SVM consistently performed better
than linear SVM on the two Chinese corpora.

5.2. Efficiency

Besides predictive accuracy, we are interested in the
efficiency of the classifiers. An analysis of the mem-
ory and time complexity of the classifiers used in our
experiments is given below.

Let P and Q be the numbers of training and testing
instances respectively and M be the number of the doc-
ument features. Using a naive implementation, the time

complexity of kNN learning is O(PM), in the sense that
it simply stores the features of all the input training
samples. During testing, it is O(PQM). The memory
complexity of kNN’s learning and prediction can be
estimated to be O(PM). When P is large, kNN predic-
tion can be rather slow and costly in terms of time as
well as memory.

The time complexity of SVM learning is domi-
nated by the constraint solving algorithm. SVM learn-
ing is generally rather costly. Algorithms applied in
SVMlight to save memory resource and increase learn-
ing speed includes sparse vector representation (storing
non-zero document features only), learning task shrink-
ing (reducing a high-dimensional learning task into
several low-dimensional sub tasks), and kernel eval-
uation buffering. Hence SVMlight turned out to be very
efficient in our experiments. Let D be the dimension
of the sub learning tasks, F be the maximum num-
ber of non-zero features in any of the training exam-
ples, E be the number of kernel evaluations, and V
be the number of support vectors. The time complex-
ity of SVMlight learning is estimated to be O(EDPF)
[15]. During testing it is O(VQM). The memory com-
plexity of SVMlight, during learning and testing, can be
estimated to be O(PD + D2) and O(VM) respectively.
Compared with kNN, SVM shows a significantly bet-
ter predictive efficiency as V is generally much smaller
than P . However, shrinking a P-dimensional learning
task into several D-dimensional sub tasks increases the
number of kernel evaluations E . On large and noisy
training sets, the time cost of SVM learning may be
noticeably higher.

The time complexity of ARAM learning is affected
by the number of recognition categories C and the
number of learning iterations I . It can be estimated
as O(IPCM). During testing, the time complexity is
O(CQM). The memory cost during learning or predic-
tion can be estimated as O(CM). Compared with SVM,
ARAM learning is significantly less resource intensive
due to its incremental learning property. In addition, it
is more efficient than kNN during prediction since C
is much smaller than P .

Table 4 compares the efficiency of the three classi-
fiers on several selected categories in terms of the CPU
times used during training and testing. Figures for the
TREC corpus were based on experiments using 300
positive training samples. Training time for kNN was
not reported as the time cost in storing training features
was effectively zero after the I/O operation time was
excluded.
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Table 4. Efficiency of kNN, SVM, and ARAM on selected categories of the TREC and WEB corpora.
Categories are presented in increasing order of size and decreasing order of quality. Ttrn and Ttst indicate
the training and testing time (in seconds) respectively. E indicates the number of kernel evaluations. SV
indicates the number of support vectors. I indicates the number of learning iterations. RC indicates the
number of recognition categories.

kNN SVM ARAM

Category Ttst E SV Ttrn Ttst I RC Ttrn Ttst

TREC-Poli 80.0 360,066 519 1.19 0.80 2 62 13.5 7.3

TREC-Edu 80.0 398,380 573 1.70 0.96 2 65 14.3 8.6

WEB-Arts 308.0 2,077,688 540 10.53 1.66 3 27 6.3 2.7

WEB-IT 314.0 5,046,739 1,894 41.79 19.96 3 137 53.9 21.1

The time cost of kNN was fairly consistent across
categories containing approximately the same number
of training and testing samples, despite of the varying
k values and the characteristics of the document sets.
As the number of training or testing samples increased,
the time cost of kNN increased linearly. On clean cat-
egories of moderate scale such as those in the TREC
corpus, SVM demonstrated outstanding efficiency over
ARAM and kNN. ARAM in turn was noticeably faster
than kNN. This suggests that as long as the document
set is clean and the category is well defined, SVM is the
clear winner. On relatively large and noisy categories
such as those in the WEB corpus, however, the effi-
ciency of SVM and ARAM were roughly comparable
and significantly higher than that of kNN. This shows
that SVM and ARAM would be better choices for large
document set.

6. Conclusions

We have presented extensive experimental results on
the evaluation of the three machine learning methods,
namely kNN, SVM, and ARAM, based on the two
Chinese corpora. The key findings of our empirical ex-
periments are summarized as follows.

• Given sufficient number of training patterns of
good quality, all three methods can produce satis-
factory generalization performance on unseen test
documents.

• On small and well-organized training sets, kNN and
ARAM produce similar performance superior to that
of SVM. In other words, kNN and ARAM seem to be
more capable than SVM in extracting categorization
knowledge from relatively small and clean training
sets. ARAM and SVM however are more robust than
kNN on large and noisy training sets.

• Comparing efficiency, kNN is perhaps the most in-
efficient classifier among the trio. On clean training
sets of moderate scale, SVM shows an efficiency un-
matched by kNN and ARAM. On large scale or noisy
training sets, however, the efficiency of ARAM and
SVM are roughly comparable.

Acknowledgments

We would like to thank our colleagues, J. Su and G.-D.
Zhou, for providing the Chinese segmentation software
and F.-L. Lai for valuable suggestions in designing
the experiments. We thank T. Joachims for making
SVMlight available. In addition, we are very grateful
to the anonymous referees for the useful comments to
a previous version of the manuscript.

Notes

1. Without loss of generalization, our experiments refer to binary
classification tasks.

2. SVMlight is available via http://ais.gmd.de/thorsten/smv--light/
3. The TREC corpus mentioned in the following refers to the re-

constructed document subset associated with category labels.
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