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Abstract

Gene expression data generated by DNA microarray experiments have provided a vast resource for medical diagnosis and disease

understanding. Most prior work in analyzing gene expression data, however, focuses on predictive performance but not so much on deriving

human understandable knowledge. This paper presents a systematic approach for learning and extracting rule-based knowledge from gene

expression data. A class of predictive self-organizing networks known as Adaptive Resonance Associative Map (ARAM) is used for

modelling gene expression data, whose learned knowledge can be transformed into a set of symbolic IF-THEN rules for interpretation. For

dimensionality reduction, we illustrate how the system can work with a variety of feature selection methods. Benchmark experiments

conducted on two gene expression data sets from acute leukemia and colon tumor patients show that the proposed system consistently

produces predictive performance comparable, if not superior, to all previously published results. More importantly, very simple rules can be

discovered that have extremely high diagnostic power. The proposed methodology, consisting of dimensionality reduction, predictive

modelling, and rule extraction, provides a promising approach to gene expression analysis and disease understanding.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Knowledge discovery; Gene expression analysis; Predictive modelling; Rule extraction; Feature selection

1. Introduction

Measurements of gene expression activities have provided

a vast resource for medical diagnosis and disease under-

standing. Specifically, gene expression may provide the

additional information needed to improve cancer classification

and diagnosis (Slonim, Tamayo, Mesirov, Golub, & Lander,

2000). Many machine learning methods, such as Support

Vector Machines (SVMs) (Furey et al., 2000), clustering

(Alon et al., 1999), Self-Organizing Map (SOM), and a

weighted correlation method (Golub et al., 1999), have been

successfully applied to gene expression data. Although fairly

high predictive performance accuracy has been obtained, most

methods focus on diagnostic accuracy rather than extracting

comprehensible knowledge. More recently, a method called

Emerging Patterns has been proposed to identify gene groups

characterizing specific disease classes from gene expression

data (Li & Wong, 2002). To tackle the high feature

dimensionality issue, a feature discretization algorithm

based on entropy was used to identify the most discriminative

genes before pattern discovery.

The main motivation of our work, similar to that of Li

and Wong (2002), is to extract accurate as well as

comprehensible knowledge from gene expression data.

Specifically, we present a systematic and robust three-stage

procedure for learning and extracting diagnostic knowledge

from gene expression data (Fig. 1). First, feature selection is

applied to the raw expression data so as to reduce the feature

dimensionality to a manageable scale in accord with the

number of samples available. Next, a predictive model of

the gene data is learned based on the expression data in the

reduced feature space. Finally, comprehensible knowledge

in the form of rules are extracted from the predictive model

for interpretation.

To build predictive models, we explore a class of self-

organizing neural networks, known as predictive Adaptive

Resonance Theory (predictive ART) networks (Carpenter,

Grossberg, & Reynolds, 1991; Tan, 1995), for learning the

linkages between gene expression data and diseases.

Predictive ART networks are designed for fast and incre-

mental learning of multidimensional pattern mappings.

Members of predictive ART networks, such as fuzzy
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ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds, &

Rosen, 1992), ART-EMAP (Carpenter & Ross, 1993), and

Gaussian ARTMAP (Williamson, 1996), have been

successfully applied to a wide range of pattern analysis and

recognition problems. However, to the best of our

knowledge, there has been no attempt to date to use

predictive ART networks for analyzing gene expression data.

In this paper, we adopt a simplified predictive ART

architecture, known as fuzzy Adaptive Resonance Associ-

ative Map (fuzzy ARAM) (Tan, 1995), that produces

classification performance equivalent to those of standard

fuzzy ARTMAP. Fuzzy ARAM has been successfully

applied to several machine learning tasks, including DNA

promotor recognition (Tan, 1997), personal profiling (Tan &

Soon, 2000), document classification (He, Tan, & Tan,

2003; Tan, 2001), and personalized content management

(Tan, Ong, Pan, Ng, & Li, 2004). It has shown predictive

performance comparable, if not superior, to those of many

state-of-the-art learning-based systems, including

C4.5 (Quinlan, 1993), Backpropagation Neural

Network (Rumelhart, Hinton, & Williams, 1986), K Nearest

Neighbour, and Support Vector Machines (Joachims, 1998).

When performing classification tasks, fuzzy ARAM

formulates recognition categories of input patterns and

associates each category with a prediction. The knowledge

that fuzzy ARAM discovers is compatible with IF-THEN

rule-based representation. This enables the system archi-

tecture to be readily translated into a compact set of rules.

Two data sets, namely the ALL/AML data set (Golub

et al., 1999) and the colon tumor data set (Alon et al., 1999),

were used in our experiments. Identifying acute lympho-

blastic leukemia (ALL) cases from acute myeloid leukemia

(AML) cases is critical for the successful treatment of

leukemia disease. Likewise, improvements in colon tumor

classification have been central to advances in cancer

treatment. One unique challenge of analyzing these gene

expression data is the high feature dimensionality coupled

with the small number of data samples. We illustrate fuzzy

ARAM’s predictive performance using features selected by

two feature extraction methods, one statistical based (Furey

et al., 2000) and the other entropy based (Fayyad & Irani,

1993). Our experiments show that fuzzy ARAM produces

predictive performance comparable, if not superior, to those

of all prior systems. More importantly, the rules extracted

from fuzzy ARAM can be interpreted readily and used in

disease understanding.

The rest of the paper is organized as follows. Section 2

presents two feature selection algorithms for reducing the

dimensionality of the gene feature spaces. Section 3

presents the learning and prediction algorithms of the

predictive model based on fuzzy ARAM. Section 4

illustrates how knowledge in the form of IF-THEN rules

can be extracted from the predictive model. Section 5

reports our classification results and the knowledge

extracted from the AML/ALL and the colon tumor data

sets. The final section concludes and provides a discussion

of our findings.

2. Dimensionality reduction

The first stage of our knowledge discovery process

involves dimensionality reduction, in which the dimension-

ality of the gene expression data is reduced to a manageable

number. We illustrate how predictive neural networks can

work with two very distinct feature selection algorithms.

The first algorithm, that computes a variant of the Fisher

criterion scores, has been used by many statisticians and

biologists. The Fisher method (Bishop, 1995) evaluates and

selects each feature based on its own merits and preserves

continuous gene expression values. The other algorithm,

known as Entropy-based discretization (Fayyad & Irani,

1993), was proposed by computer scientists in the field of

data mining. It employs a greedy method to select gene

features, one at a time, which separate patterns into

partitions with the minimum level of entropy. Both

algorithms have been used in many prior experiments in

extracting key features from gene expression data, including

the two data sets that we investigate. Adopting the two

algorithms enable us to compare the performance of the

predictive neural networks in a more equal standing with

those of alternative machine learning systems.

2.1. Fisher feature selection

The feature selection method based on a variant of the

Fisher criterion (Furey et al., 2000; Golub et al., 1999) is

summarized as follows. Consider a data set S with m

expression vectors xiZ ðxi
1;.; xi

nÞ, 1%i%m where m is

Fig. 1. The proposed methodology for gene expression analysis, consisting

of feature selection, predictive modelling using neural networks, and rule

extraction.
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the number of samples and n is the number of gene

expression readings. Each sample is labelled with a class

Y2{C1,K1} (eg. cancer vs. normal, AML vs. ALL). For

each feature j, the Fisher score is calculated by

FðxjÞ Z
mC

j KmK
j

rC
j CrK

j

�����
����� (1)

where mC
j and mK

j are the means and rC
j and rK

j are the

standard deviations of the feature values in the positive and

negative classes respectively. The formula gives an

advantage to genes with densely distributed and distinct

expression levels on average in the two classes. The

rationale is that such genes tend to have a higher

discriminative power in classifying the samples into the

two classes. The Fisher method is used merely as a criterion

for selecting features. The gene feature values have to be

normalized before presenting to our predictive modelling

system for learning.

2.2. Entropy-based discretization

The entropy-based discretization method (Fayyad &

Irani, 1993) couples an entropy based splitting criterion as

used in the C4.5 decision tree (Quinlan, 1993) and a

minimum description length stopping criterion. Working in

a recursive manner, the method determines an optimal

cutting point for each feature dimension to maximize the

separation of the classes. Features that have no cutting

points are deemed as not important and can be discarded.

Suppose a cutting point T for a feature A partitions the set S

of examples into two subsets S1 and S2 and there are k

classes C1,., Ck. The class entropy of a subset Sj, jZ1,2 is

defined by

EntðSjÞ ZK
Xk

iZ1

PðCi; SjÞlogðPðCi; SjÞÞ (2)

where P(Ci,Sj) is the proportion of examples in Sj that have

class Ci. The class information entropy of the partition

E(A,T;S) is then given by

EðA;T; SÞ Z
jS1j

jSj
EntðS1ÞC

jS2j

jSj
EntðS2Þ: (3)

A binary discretization for A is determined by selecting

the cutting point TA for which E(A,T;S) is minimal amongst

all the candidate cutting points. The same process can then

be applied recursively to S1 and S2 until the stated stopping

condition is satisfied. Whereas the Fisher method does not

modify the feature values, the entropy-based method

involves the identification of cutting points along each

feature dimension and the conversion of continuous gene

activity values into discrete features.

3. Predictive modelling

For building the predictive model, each training sample

of a data set is first converted into a feature vector A and a

class vector B. The feature vectors are derived based on the

features selected by either the Fisher criterion or the

entropy-based discretization method described in

the previous section. For competitive learning systems,

such as Adaptive Resonance Associative Map (ARAM), it is

typically assumed that the feature values are bounded

between 0 and 1. In other words, we have 0%Ai%1 for each

feature i.

Using the Fisher feature selection method, the real-

valued expression reading of a feature i in a pattern sample x

is normalized by

ai Z
xi Kminpðx

p
i Þ

maxpðx
p
i ÞKminpðx

p
i Þ

(4)

where minpðx
p
i Þ and maxpðx

p
i Þ denote the minimum and

maximum values of the feature i across all patterns p. To

prevent the code proliferation problem (Carpenter et al.,

1992), complement coding is applied to preserve the

magnitude of the feature vectors. Specifically, the normal-

ized feature vector a is augmented with a complement

vector ac to form the complement coded input vector

AZ(a,ac), where ac
i Z1Kai for each feature i. Given a total

of N features selected by the Fisher method, we derive an

input vector A for each gene sample with a feature

dimension of 2N and a norm (jAj) of N.

Alternatively, if the entropy-based discretization method

is used, the cutting point of each feature dimension creates a

pair of binary features. For example, if the cutting point of

the gene feature Zyxin is 994, a pair of binary features

ZyxinR994 and Zyxin!994 will be included in the feature

vector. Therefore, if a total of N gene features with cutting

points are selected, we derive a binary input vector A for

each gene sample with a feature dimension of 2N.

Complement coding is not needed here as the binary feature

vectors already have a uniform norm of N.

The class vectors are typically binary (on-off) represen-

tation of the pattern classes or diagnostic categories of

interests. Although the problems we investigate in this paper

consist of only two classes, our predictive model, namely

fuzzy ARAM, is capable of learning multidimensional

mappings involving multiple pattern classes.

An ARAM system consists of an input field Fa
1 , an output

field Fb
1, and a category field F2 (Fig. 2). Given a set of

feature vectors presented at Fa
1 with their corresponding

class vectors presented at Fb
1, ARAM learns a predictive

model (encoded by the recognition nodes in F2) that

associates combinations of key features to their respective

classes. A simplified version of the fuzzy ARAM learning

and prediction algorithms (Tan, 1995) is summarized as

follows. The ARAM software is available at http://www.

ntu.edu.sg/home/asahtan/downloads.
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Weight vectors. Each F2 node j is associated with two

adaptive weight templates wa
j and wb

j . A F2 node is said to

be uncommitted if its weight templates have not encoded

any input patterns. In fuzzy ARAM, the weight values of an

uncommitted node are initialized to 1’s. At the beginning of

learning, there is no committed node and the F2 field

contains only one uncommitted node.

Parameters. ARAM dynamics are determined by the

choice parameters aO0; the learning rates ba2[0,1] and

bb2[0,1]; and the vigilance parameters ra2[0,1] and

rb2[0,1].

3.1. Learning

Learning in fuzzy ARAM consists of four key steps,

namely bottom-up propagation, code competition and

selection, top-down priming, and template learning,

described as follows.

Bottom-up propagation. A bottom-up propagation pro-

cess first takes place in which the activities (known as

choice function values) of the nodes in the F2 field are

computed (Fig. 3). Specifically, given a feature vector A,

for each F2 node j, ARAM computes a choice function

Tj Z
jAowa

j j

a C jwa
j j

(5)

where the fuzzy AND operation o is defined by

ðpoqÞi hminðpi; qiÞ; (6)

and the norm j$j is defined by

jpjh
X

i

pi (7)

for vectors p and q. In essence, the choice function Tj

computes the match of the feature vector A with the ARTa

weight vector wa
j of the F2 node j with respect to the norm of

the weight vector.

Code competition and selection. A code competition

process follows under which the F2 node with the highest

choice function value is identified. The process thus identifies

the F2 node that encodes an ARTa weight template wa
j closest

to the feature vector A. The system is said to make a choice

when at most one F2 node can become active after the code

competition process. The winner is indexed at J where

Tc
J Z maxfTc

j : for all Fc
2 node jg: (8)

Top-down priming. Before node J can be used for learning,

a template matching process checks that its weight templates

are sufficiently close to their respective feature and class

vectors (Fig. 4). Specifically, resonance occurs if the match

functions (ma
J and mb

J) meet the vigilance criteria in their

respective modules:

ma
J Z

jAowa
J j

jAj
Rra and mb

J Z
jBowb

Jj

jBj
Rrb: (9)

Whereas the choice function computes the similarity

between the input and weight template vectors with respect

to the norm of the weight template vectors, the match function

computes the similarity with respect to the norm of the input

Fig. 3. During bottom-up propagation, a choice function value is computed

for each F2 node. The F2 node with the highest choice function value is then

selected.

Fig. 4. During top-down priming, the match function values of the selected

F2 node are evaluated. If each match value satisfies the match criterion in

the respective module, resonance occurs and template learning follows

under which the selected node learns to encode the feature and class

vectors.

+

–

+

y

xa

+ +

– xb

F2

A

F
b
1F1

a

aw bw

ba

category field

feature field feature field

ARTa ARTbB

Fig. 2. The Adaptive Resonance Associative Map architecture.
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feature and class vectors. In conjunction, the choice and match

functions work cooperatively to achieve stable coding and

maximize code compression.

Once resonance occurs, learning ensues, as defined

below. If any of the vigilance constraints is violated,

mismatch reset occurs in which the value of the choice

function Tc
J is set to 0 for the duration of the input

presentation. With a match tracking process, at the

beginning of each input presentation, the vigilance

parameter ra equals a baseline vigilance �ra. If a mismatch

reset occurs, ra is increased until it is slightly larger than the

match function ma
J . The search process then selects another

F2 node J under the revised vigilance criterion until a

resonance is achieved. This search and test process is

guaranteed to end as ARAM will either find a committed

node that satisfies the vigilance criterion or activate an

uncommitted node which would definitely satisfy the

criterion due to its initial weight values of 1’ s.

Template learning. Once the search ends, the weight

vectors wa
J and wb

J of the chosen node J are updated

according to

waðnewÞ
J Z ð1 KbaÞw

aðoldÞ
J CbaðAowaðoldÞ

J Þ (10)

and

wbðnewÞ
J Z ð1 KbbÞw

bðoldÞ
J CbbðBowbðoldÞ

J Þ (11)

respectively. The learning rule adjusts the weight vectors

towards the fuzzy AND of their original weight vectors and

the respective input feature and class vectors. The rationale

is to learn by encoding the common attribute values of the

input vectors and the weight vectors. For an uncommitted

node J, the learning rates ba and bb are typically set to 1. For

committed nodes, the learning rates can remain as 1 for fast

learning or below 1 for slow learning in noisy environment.

When an uncommitted F2 node is selected for learning a

pattern, it becomes committed immediately and a new

uncommitted node is added to the F2 field. The network thus

creates a dynamic number of F2 nodes in response to the

incoming patterns. Quick commitment is a key character-

istic of predictive self-organizing neural networks as part of

the real time online learning. Despite that the learning is

instantaneous, it is also stable due to the top down priming

mechanism.

3.2. Prediction

During prediction, only the feature vector is presented.

The system is supposed to predict the class vector based on

its learned knowledge. In ARAM systems with category

choice, only the F2 node J that receives maximal Fa
1 /F2

input Tj predicts ARTb output. Typically, the activity value

of a F2 node j is given by

yj Z
1 if j Z J where TJ OTk for all k sJ

0 otherwise:

(
(12)

To cater for tasks where probabilistic likelihood predic-

tion scores are desired, a new variant of choice is proposed

here to preserve the activation value of the chosen F2 node J

after code competition. In other words,

yj Z
TJ if j Z J where TJ OTk for all k sJ

0 otherwise:

(
(13)

The output class vector C is then computed by

C Z wb
JyJ (14)

where Ci indicates the estimated likelihood of the input

feature vector belonging to class i.

4. Rule extraction

In an ARAM network, each node in the F2 field learns to

encode a group of input patterns and associate them with an

output prediction. Learned weight vectors, one for each F2

node, constitute a set of rules that link antecedents to

consequences. Specifically, given a committed F2 node j

with the weight template vectors wa
j and wb

j , we derive an

IF-THEN rule of the form

C : KA1;A2;.;An (15)

where C is the class indicated by the (typically only one)

non-zero attribute value in wb
j and A1,A2,.,An are the

antecedents or conditions corresponding to the non-zero

feature values in wa
j . For analyzing gene expression data, C

typically corresponds to an outcome or a class of the

diagnosis (such as tumor or normal cells), whereas

A1,A2,.,An denote the conditions of the expression

levels at the gene sites g1,g2,.,gn respectively.

Using the Fisher feature selection method, a pair of

complement coded weight values (wa
ji, �wa

ji) for a feature i

translates into a value range of [wa
ji, 1K �wa

ji]. For example, a

pair of weight values (0.7, 0.0) for feature i indicates a value

range of [0.7,1.0], i.e. the normalized feature value aiR0.7.

For more details, please refer to Carpenter et al. (1992) for a

discussion of complement coded weight values. The value

ranges obtained may subsequently be mapped back to the

original scale of the expression values for human interpret-

ation. For example, the normalized feature value range of

aiR0.7 may correspond to the gene expression range of

xiR334 in absolute terms.

Using the entropy-based discretization method, a pair of

weight values for a feature i indicates the truth values of the

conditions xiRci and xi!ci respectively, where ci is the

cutting point for the feature i. A weight value pair of (1,0)

indicates that the condition xiRci is true. A weight value

pair of (0,1) indicates that the condition xi!ci is true. For

example, a weight value pair of (0,1) for the feature Zyxin

with a cutting point at 994 translates into the condition of

Zyxin!994. A weight value pair of (0,0) indicates that both

conditions are not relevant and can be omitted from the rule.
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An ARAM rule can be interpreted individually but

most often functions as a member of a rule ensemble.

During prediction, ARAM rules compete in accordance

with the category choice process (Eq. (8)). Similar to

typical conjunctive rules, an ARAM rule is activated

when all of its conditions are satisfied. However, to

maximize generalization, ARAM rules typically operate

in a fuzzy and nearest match manner. In other words, a

rule can be activated as long as a sufficient number of its

conditions are satisfied and it is the closest match for the

given input. Given two rules with all of their antecedents

satisfied, the choice function gives an advantage to the

rule with a larger number of antecedents. For

example, consider a rule set consisting of the two

following rules,

ðRule 1Þ C1 : KA1 (16)

and

ðRule 2Þ C1 : KA1;A2: (17)

If both A1 and A2 are satisfied, Rule 2 will have a

choice function value of 2/(aC2) which is higher than 1/

(aC1) of Rule 1. It follows that Rule 2 will be chosen

over Rule 1. In fact, Rule 2 can be viewed as an

exception rule for Rule 1. When A2 is not present, Rule

1 is used to predict C1 given A1. When both A1 and A2

are present, Rule 2 kicks in to make the decision.

To reduce the complexity of ARAM rules, a rule pruning

procedure (Carpenter & Tan, 1995) is used here to select a

concise set of rules from trained ARAM networks based on

their confidence factors. For large data sets, the rule pruning

algorithm derives a confidence factor for each F2 node in

terms of its usage frequency in a training set and its

predictive accuracy on a predicting set. For small data sets,

we compute confidence factors solely based on usage in the

training set. The confidence factor identifies good rules with

nodes that are frequently and/or correctly used.

Specifically, the pruning algorithm evaluates each F2

node j in terms of a confidence factor CFj:

CFj Z gUsagej C ð1 KgÞAccuracyj; (18)

where Usagej is the usage of node j, Accuracyj is its

accuracy, and g2[0,1] is a weighting factor.

For a F2 node j that predicts class c, its usage equals the

fraction of the training set patterns of class c encoded by the

node j (Sj), divided by the maximum fraction of training

patterns of class c encoded by any node J (SJ):

Usagej Z Sj=maxfSJ : node J predicts class cg: (19)

As usage is normalized across nodes with the same class,

for each class c, there is at least one node predicting class c

with a usage value of 1.

For a F2 category j that predicts class c, its accuracy

equals the percent of the predicting set patterns predicted

correctly by node j (Pj), divided by the maximum percent

of patterns predicted correctly by any node J (PJ) that

predicts class c:

Accuracyj Z Pj=maxfPJ : node J predicts class cg: (20)

As accuracy is also normalized across nodes predict-

ing the same class, for each class c, there is always at

least one F2 node (or rule) with an accuracy of 1.

After confidence factors are determined, F2 nodes can be

pruned from the network using one of following strategies:

Threshold pruning. This is the simplest type of pruning

where the F2 nodes with confidence factors below a given

threshold t are removed from the network. A typical setting

for t is 0.1 for small data sets. This method is fast and

provides an initial elimination of unwanted nodes. To avoid

over-pruning, it is sometimes useful to specify a minimum

number of recognition categories to be preserved in the

system.

Local pruning. Local pruning removes recognition cat-

egories one at a time from an ARAM network. The baseline

system performance on the training and the predicting sets is

first determined. Then the algorithm deletes the recognition

category with the lowest confidence factor. The category is

replaced, however, if its removal degrades system perform-

ance on the training and predicting sets.

A variant of the local pruning strategy updates

baseline performance each time a category is removed.

This option, called hill-climbing, gives slightly larger

rule sets but better predictive accuracy. A hybrid

strategy first prunes the ARAM systems using threshold

pruning and then applies local pruning on the remaining

smaller set of rules.

5. Experiments

5.1. The AML/ALL data set

The ALL/AML data set (Golub et al., 1999), available at

http://www-genome.wi.mit.edu/cgi-bin/cancer, is provided

for the classification of acute leukemia cases into those

arising from lymphoid precursors (acute lymphoblastic

leukemia, ALL) or from myeloid precursors (acute myeloid

leukemia, AML). The training set consists of 38 bone

marrow samples (27 ALL and 11 AML cases) over 7129

probes from 6817 human genes. In addition, 34 testing

samples are provided, with 20 ALL and 14 AML cases. In

order to compare with previously published results, we used

this original data partition for our experiments.

To determine an appropriate feature set, we performed

leave-one-out cross validation on the training set based on a

varying number of features selected based on the Fisher

selection criterion. Each experiment was repeated for 10

times for statistical stability. In all experiments, ARAM

model used a standard set of parameter values: choice
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parameter aZ1.0; learning rates baZbbZ1.0 for fast

learning; and baseline vigilance parameter �raZ0:0. Soft

category choice is used in the F2 layer to provide

probabilistic prediction scores.

Our experiment results indicated that the Fisher feature

selection method was effective in deriving small gene sets

with good prediction accuracy. Specifically, perfect cross

validation result on the training set was achieved by using

the top 10 and top 15 features (Fig. 5). Based on the top

10 genes, we trained ARAM model using the training set

and evaluated its performance on the test data. Among the

34 test samples, an average of 3.4 samples (typically

belonging to the 57, 60 and 66th patients) were misclassified

over 10 experiments using different input presentation

orders. The three misclassified samples were among the five

common misclassifications reported previously (Gloub

et al., 1999).

We repeated the experiments using the entropy-based

feature selection and discretization method. Only 866 of the

7129 genes in the training data were partitioned into two or

three intervals, while there were no cutting points for the

rest of the features. We examined the 866 genes and sorted

them by increasing order of entropy values. Applying leave-

one-out cross validation using the same ARAM parameter

setting, perfect predication on training set was readily

achieved by using the top one, top five, and top 10 genes.

Based on just the top one gene, only three samples in the test

set were misclassified. This result was similar to that

obtained using Emerging Patterns (Li & Wong, 2002).

Among the top 10 genes (Table 1), we found that Zyxin,

FAH Fumarylacetoacetate, and CST3 Cystatin C were

among the biologically instructive genes identified earlier

(Golub et al., 1999). Specifically, Zyxin was reported to

encode a LIM domain protein important in cell adhesion in

fibroblasts. Note that only three out of the 10 genes

were among the top 10 genes (Table 2) picked up based on

the Fisher scores. Whereas the Fisher criterion evaluates

each gene individually, the entropy-based method selects

the features one after another. This strategy helps to create

compact gene combinations in which the features comp-

lement each other. Based on the top 10 genes selected by

entropy-based discretization, the number of misclassified

test samples decreased to two (typically, the 66 and 67th

patients). The predictive performance of ARAM, compared

with those obtained by SVM (Furey et al., 2000), Weighted

Voting (Golub et al., 1999), and Emerging Patterns (Li &

Wong, 2002), are summarized in Table 3.

Ben-Dor et al. have also conducted experiments on the

AML/ALL data set using a myriad of methods, including

Nearest Neighbor, Support Vector Machines, and AdaBoost

algorithm. Their results however, were based on a leave-

one-out benchmark paradigm on the entire set of

Table 1

The top 10 genes selected for the AML/ALL data set through entropy-based

discretization

Gene Entropy Cutting

point

Description

X95735 0.0000 994.0 Zyxin

M55150 0.0393 1346.0 FAH Fumarylacetoacetate

M31166 0.0493 83.5 PTX3 Pentaxin-related gene,

rapidly induced by IL-1 beta

(PTX3)

M27891 0.0493 1419.5 CST3 Cystatin C (amyloid

angiopathy and cerebral

hemorrhage)

X70297 0.0638 339.0 CHRNA7 Cholinergic receptor,

nicotinic, alpha polypeptide 7

P31483 0.0638 80.5 Nucleolysin TIA-1

L09209 0.0638 992.5 APLP2 Amyloid beta (A4)

precursor-like protein 2

U46499 0.0638 156.5 Glutathione S-transferase,

microsomal

M16038 0.0831 651.5 LYN V-yes-1 Yamaguchi

sarcoma viral related oncogene

homolog

M92287 0.0831 1869.5 CCND3 Cyclin D3
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Fig. 5. The cross validation performance of fuzzy ARAM on the AML/ALL

training data using a varying number of features.

Table 2

The top 10 genes selected for the AML/ALL data set based on Fisher scores

Gene Fisher

score

Description

M55150 1.518 FAH Fumarylacetoacetate

U50136 1.479 Leukotriene C4 synthase (LTC4S) gene

X95735 1.465 Zyxin

U22376 1.371 C-myb gene extracted from Human (c-myb) gene,

complete primary cds, and five complete alter-

natively spliced cds

M16038 1.254 LYN V-yes-1 Yamaguchi sarcoma viral related

oncogene Homolog

M23197 1.248 CD33 CD33 antigen (differentiation antigen)

M84526 1.247 DF D component of complement (adipsin)

P48357 1.232 LEPR Leptin receptor

P31269 1.205 GB DEF, Homeodomain protein HoxA9 mRNA

D49950 1.183 Liver mRNA for interferon-gamma inducing

factor(IGIF)
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the 72 samples. Also using a feature selection method, the

best result of 1 classification error was obtained by SVM

with a quadratic kernel. To compare with their results, we

repeated ARAM evaluation using the leave-one-out cross

validation and found only 1 error out of the 72 experiments.

This is equivalent to the best results reported by Ben-Dor et

al. To put this level of performance into perspectives, the

recent leave-one-out experiments conducted by Zhang et al.

on the AML/ALL data set, that involved growing decision

trees by recursive partitioning and combining them into

forests (Zhang, Yu, & Burton, 2003), produced 3–4 errors

using deterministic forests and 9–10 errors using single

trees.

Although Ben-Dor et al. and other prior studies have also

made use of feature selection, their systems can only

identify individual ‘informative’ genes that have high

predictive power for the various cancer classes. In our

experiments, we were able to go further to derive

‘informative combinations’ of genes with an AND relation-

ship. Table 4 illustrates a sample set of two ARAM rules

extracted that classifies correctly all 72 cases of the AML/

ALL data set. In this case, the combination of Zyxin and

CST3 Cystatin C has proven to be a very reliable predictor

for ALL cases.

5.2. The colon tumor data set

The colon tumor data set (Alon et al., 1999) contains 40

tumor and 22 normal colon tissue samples. The data are

processed with an Affymetrix oligonucleotide array comp-

lementary to more than 6500 human genes. Of these genes,

the 2000 with the highest minimal intensity across the

tissues are selected for classification purpose. These scores

are publicly available via http://microarray.princeton.edu/

oncology/affydata.

Based on the Fisher criterion, the top 1,5,10,.,500 genes

with the highest F(xj) score were chosen from the data set.

To enable comparison with prior results, we performed

leave-one-out cross validation directly on the entire set of

Table 3

The classification performance of ARAM on the AML/ALL data set based

on the 34 test samples, compared with SVM, Weighted Voting, and

Emerging Patterns (EP)

Method Number of features Number of

misclassifications

SVM 25–1000 2–4

Weighted Voting 50 5

EP (Entropy) 1 3

vARAM (Fisher) 10 3.4

vARAM (Entropy) 10 2.0

Table 4

A sample set of two ARAM rules based on features derived by entropy-

based discretization that correctly classifies all 72 samples in the

ALL/AML data set

AML Glutathione s-transferase, MicrosomalO156.5

ALL Syxin!994.0 and CST!383.5
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Fig. 6. The classification performance of fuzzy ARAM on the colon tumor data set using a varying number of features selected by Fisher (top) and entropy-

based discretization (bottom).
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62 samples available. As shown in Fig. 6 (top), at least seven

samples were misclassified no matter how many genes were

used. This performance was similar to those reported using

SVM and clustering. Using 25 features, the system

produced an average of 8.1 misclassifications across

10 runs of leave-one-out cross validation.

Based on the discretization method, only 135 of the 2000

genes were partitioned into two intervals. We sorted the 135

genes according to increasing entropy values and conducted

leave-one-out cross validation using a varying number of

features from 1 to 135. As shown in Fig. 6 (bottom), the

number of misclassifications decreased to around four with

50 or more features. The best result, an average of 2.4

misclassifications, was obtained using all 135 features over

10 runs of leave-one-out cross validation. The most

common misclassification samples were T2 and T33,1 one

of which was among the six misclassified samples (T30,

T33, T36, N8, N34, N36) previously reported (Alon et al.,

1999; Furey et al., 2000). Based on the 135 genes, a set of

rules (Table 5) were extracted which collectively misclassi-

fied only two samples (N39 and N40) in the entire data set.

The predictive performance of ARAM for the colon tumor

data set, compared with those obtained by SVM (Ben-Dor

et al., 2000; Furey et al., 2000), clustering (Alon et al.,

1999), and Emerging Patterns (Li & Wong, 2002) are

summarized in Table 6.

6. Discussion

We have presented a systematic approach for learning

and extracting knowledge from gene expression data based

on a class of predictive self-organizing network models.

Experiments based on the two gene data sets showed that

fuzzy ARAM was able to produce interpretable rules with

very high predictive power. The use of the feature selection

methods enables us to reduce the number of features

drastically before presenting the feature vectors for learning

by the predictive neural networks. The effectiveness of the

feature selection methods have been supported by our

empirical experimental results. Specifically, the leave-one-

out cross validation conducted on the AML/ALL data set

produced perfect accuracy using just the top 10 and

15 features selected by the Fisher method. Whereas Furey

et al. found that dimensionality reduction did not signifi-

cantly improve the SVM’s classification performance, our

experiments showed that feature selection played an

important role in deriving good prediction performance

and concise rules for ARAM. While entropy-based

discretization appears to outperform Fisher feature selec-

tion, we reckon that, for some problems, it may still be

necessary to preserve real-valued features for the predictive

modelling stage. It is thus advantageous that a predictive

system can work with both discretized as well as

continuous-valued features.

Even after feature selection, sometimes we still need to

deal with a large number of features. The best prediction

results for the colon tumor data set, for example, were

achieved by using all 135 features provided by the entropy-

based discretization method. Compared with slow learning,

iterative optimizing, and search-based methods, the ARAM

learning and rule extraction approach is extremely efficient.

As an illustration, a complete set of leave-one-out cross

validation experiments for all 62 samples of the colon tumor

data set using 135 features took just one second on a SUN

Ultra-10 machine.

The IF-THEN rules extracted from our system are similar

in form to those produced by C4.5 decision tree system

(Quinlan, 1993). However, ARAM rules and C4.5 rules

function very differently. A C4.5 rule operates in isolation. A

conclusion/prediction is made by a single rule as long as all of

its conditions are satisfied. On the other hand, ARAM rules

operate as an ensemble governed by a fuzzy choice principle

under which each rule produces a real-valued choice function

score and competes with each other to make a prediction.

Although it may seem easier to interpret the ‘precise’ rules as

in typical decision tree systems, it is in fact quite unnatural to

make hard decisions by imposing exact boundaries on the

gene expression values. The ARAM fuzzy choice function

enables a rule to be partially activated even when not all of its

conditions are satisfied. For real-valued features, the choice

function enables a rule to be fully activated when the inputs

fall into the specified ranges and partially activated with a

degree of confidence that decreases gradually as the inputs

deviate away from the specified ranges. The fuzzy choice

function and the winner-take-all rule competition paradigm

provide the nonlinearity necessary for modelling the gene

expression complexity and serve to maximize

generalization.

Our experimental results have been based on the two

well-known and publicly available data sets that allow us to

Table 5

A sample set of two ARAM rules that correctly classifies 60 out of 62

samples in the colon tumor data set

Normal X61118!189.2

tumor M26383R59.8 and M76378!842.3 and D14812R155.5

and K03460R123.6

Table 6

The classification performance of fuzzy ARAM on the colon tumor data set

compared with SVM, clustering, and Emerging Patterns (EP)

Method Number of features Number of

misclassifications

SVM 2000 6

Clustering 2000 8

EP 35 5

vARAM (Fisher) 25 8.1

vARAM (Entropy) 135 2.4

1 T, represents tumor tissue and N, represents normal tissue.

A.-H. Tan, H. Pan / Neural Networks 18 (2005) 297–306 305



make comparison with the numerous results obtained by

a wide range of the state-of-the-art methods. In our future

work, we hope to work with much larger and complex data

sets when they become available. As we have adopted a

systematic approach and used a standard set of ARAM

parameter values throughout all experiments, we expect to

carry over the good performance to bigger and more

challenging problems.

Predictive accuracy aside, we contend that the key

strength of our approach lies in its ability to generate

interpretable knowledge in an efficient manner. Having a

systematic approach to extract interpretable rules, our next

step would be to work with biologists and medical experts

and refer to the rich medical literatures for interpreting and

validating the knowledge discovered by the system. This

will form the core of our future work.
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