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Abstract

The density peak clustering (DPC) algorithm was designed to identify arbitrary-
shaped clusters by finding density peaks in the underlying dataset. Due to its
aptitudes of relatively low computational complexity and a small number of con-
trol parameters in use, DPC soon became widely adopted. However, because
DPC takes the entire data space into consideration during the computation of
local density, which is then used to generate a decision graph for the identifica-
tion of cluster centroids, DPC may face difficulty in differentiating overlapping
clusters and in dealing with low-density data points. In this paper, we propose
a residual error-based density peak clustering algorithm named REDPC to bet-
ter handle datasets comprising various data distribution patterns. Specifically,
REDPC adopts the residual error computation to measure the local density
within a neighbourhood region. As such, comparing to DPC, our REDPC algo-
rithm provides a better decision graph for the identification of cluster centroids
and better handles the low-density data points. Experimental results on both
synthetic and real-world datasets show that REDPC performs better than DPC

and other algorithms.
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1. Introduction

Clustering algorithms aim to analyze data by discovering their underlying
structure and organize them into different categories according to certain char-
acteristic measures, such as internal homogeneity and external bifurcation, with-
out priori-knowledge. Successful applications of clustering techniques are evi-
dent in various domains, such as pattern recognition in general [1-4], image
understanding [5, 6], bioinformatics [7], lifestyle identification [8], disease diag-
nosis [9], cyber security [10], risk analysis [11] [12], etc. Moreover, some emerging
topics, such as big data [13], virtual reality [14], and Internet of Things (IoT)
[15], also avail from clustering methods. In general, clustering methods can
be broadly categorized into five groups based on their dynamics, namely parti-
tioning [16] [17], hierarchical [18], density-based [19] [20], model-based [21], and
grid-based [22].

Density-based clustering algorithms have been widely applied to form
arbitrary-shaped clusters by detecting high-density regions in the data space.
Basically, the region with high-density, or a set of densely connected data points,
is treated as a cluster. Density-based spatial clustering of applications with
noise (DBSCAN) [23] is probably the most well-known density-based clustering
algorithm engendered from the basic notion of local density. Recently, density-
based clustering methods have attracted more attention since Rodriguez and
Liao proposed their density peak clustering (DPC) algorithm [24] in 2014. The
desirable features of DPC include i) relatively low computational complexity,
ii) small number of control parameters in use, and iii) identification of cluster
centroids of varying cluster sizes based on the generated decision graph.

Nonetheless, the performance of DPC highly relies on the value of the cutoff

distance parameter Cy, which serves as a threshold to distinguish the level of
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Figure 1: The decision graph generated by DPC on the Iris dataset (Cy = 0.2449).

density in terms of distance between data points. Specifically, the identification
of cluster centroids in DPC is performed manually with the facilitation of a
generated decision graph, which is regulated by the value of Cy (see Section 2.2
for more technical details). For example, it is clearly shown in Figure 1 that
only two cluster centroids (indexed as ‘1’ and ‘2’ with different colors) in the
well-known 3-cluster Iris dataset are straightforwardly identified by the decision
graph generated by DPC, even if the value of Cy is assigned in a systematic man-
ner (cutoff at 1% of the sorted distances among all data points, see Section 2.2
for more technical details). As such, the performance of DPC is sometimes
limited by its way of generating decision graphs.

Moreover, DPC does not perform well on anomaly detection, which is a ben-
eficial function of clustering algorithms that the presence of anomalies indicates

possible erroneous conditions that may lead to significant performance degrada-
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Figure 2: Clusters identified by DPC with different Cj parameter values on the Flame dataset.

tion [25]. As shown in Figure 2, DPC does not well handle the uneven cluster
distribution (also pointed out in [26]) that the two anomalies (in the top left
corner) are always considered as part of a larger cluster regardless of different
Cy values in use, because there is no “noise-signal cutoff” used in DPC [24]. In
such cases, DPC faces the difficulty in identifying the outliers even with varying
Cy values and it may not be able to find clusters of small sizes or consisting of
outliers (relatively speaking) only.

Therefore, to generate better decision graphs for cluster centroid identifi-
cations by adopting more effective density measurement, and to better detect
anomalies for comprehensive clustering results by further examining the border-

line data points, in this paper, we propose a density-based clustering method
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named Residual Error-based Density Peak Clustering (REDPC). Specifically,
REDPC adopts the residual error computation to measure the local density
within a neighbourhood region so that the generated decision graphs are bet-
ter suited for cluster centroid identifications (see Section 3.1 for more technical
details). Moreover, REDPC treats low-density data points as halo points (see
Section 3.3 for more technical details) and further processes them to detect
anomalies.

The term halo was originally defined by Rodriguez and Laio in [24] as a set of
data points in certain halo regions that are “suitable to be considered as noise”
(see Section 2.2). In this paper, we adopt the similar usage that let halo points
refer to the set of low-density data points that require further analysis. Due
to the further analysis applied to halo points, REDPC is shown to be capable
of better identifying and handling various types of anomalies manifested in
different patterns in different datasets (see Section 4).

In terms of performance evaluations, we apply REDPC on four UCI datasets
and five synthetic datasets (two synthetic datasets are own-defined but publicly
available online). For comparison purposes, we also apply K-Means [27], affin-
ity propagation (AP) [18], DBSCAN [23] and DPC [24] on the same datasets.
Experimental results show that our algorithm achieves the best performance on
most datasets (specifically, best on eight out of nine datasets and the second
best on the remaining dataset).

Our main contributions in this paper are listed as follows:

1. We adopt the residual error computation to measure local density within
a neighbourhood region. As such, the generated decision graphs are better
suited for cluster centroid identifications.

2. We perform further analysis on low-density data points after obtaining
the intermediate clustering results. As such, the anomalies and borderline
data points are better distinguished.

3. We empirically show with the experimental results on nine datasets that

our proposed REDPC clustering method performs better than DPC and
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other benchmarking clustering algorithms.

The rest of the paper is organized as follows. We briefly introduce the
dynamics of DBSCAN and DPC as related work in Section 2. We present our
proposed residual error-based clustering method in Section 3. We report the
experimental results with comparisons and discussions in Section 4. We draw

the conclusion and propose future work in Section 5.

2. Related Work

In this literature review section, we present the technical concepts and dy-
namics of two density-based clustering methods, which are closely related to
ours. Specifically, we introduce the pros and cons of DBSCAN [23] and DPC

[24] in the following two subsections, respectively.

2.1. DBSCAN: Density-Based Clustering Approach with Noise

DBSCAN is probably the most well-known and widely applied density-based
clustering algorithm due to its following desirable features: i) efficient identifi-
cation of arbitrary-shaped clusters, ii) scalability to large datasets [19], iii) small
number of control parameters in use, iv) no predetermination on the number of
clusters a priori, and v) ability to identify outliers. The dynamics of DBSCAN
are based on the notion that clusters are defined as regions of considerably
higher density, wherein the density, represented by the number of data points in
the neighbourhood, exceeds a predefined threshold value. Moreover, the region
with relatively lower density is kept outside the cluster and denoted as outliers.
Definitions used in DBSCAN are given as follows:

Definition 1: Eps-neighbourhood of a data point
The Eps-neighbourhood of a data point p is defined as follows:

NEgps(p) = q € D | dist(p,q) < Eps, (1)

where ¢ denotes another data point in the dataset D and dist(-) denotes the

function used to compute distance between two data points.
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Definition 2: Directly density-reachable

A data point p is directly density-reachable from another data point ¢ with
respect to Ngps(p) and MinPts (minimum number of data points in the Eps
neighbourhood of that data point), if p € Ngps(q) and Ngps(q) > MinPts.
Definition 3: Density-reachable

A data point p is density-reachable from another data point ¢ with respect to
Ngps(p) and MinPts, if there exists a chain of data points p1, pa, ..., Pn, P1 =
q, pn = p such that p; + 1 is directly density-reachable from p;.

Definition 4: Density-connected

A data point p is density-connected to another data point ¢ with respect to
Ngps(p) and MinPts, if there exists a data point o such that both p and ¢ are
density-reachable from o with respect to Ngyps(p) and MinPts.

Definition 5: Cluster

Let D be a set of data points. A cluster C' with respect to Ngps(p) and MinPts

is a non-empty subset of D satisfying the following two conditions:

1. Vp, ¢: if p € C and q is density-reachable from p with respect to Ng,s(p)
and MinPts, then ¢ € C' (maximality).
2. Vp,q € C: pis density-connected to ¢ with respect to Ngps(p) and MinPts

(connectivity).

Definition 6: Noise

Let C1,C2,...,Ck denote the clusters identified in D with respect to Eps and
MinPts, then we can define the noise as the set of data points in D not belonging
to any cluster Ci, i = 1,...,k, i.e., noise =p € D |Vi:p ¢ Ci.

During cluster formation, direct density-reachability, density-reachability and
density-connectivity (see Definitions 2-4) are used by DBSCAN to characterize
symmetric and asymmetric relations between core points (i.e., high-density data
points within clusters) and borderline points. Based on the pre-determined den-
sity parameters Eps and MinPts, clusters are formed comprising reachable core
points and their corresponding borderline points. When there are no more data

points that can be further added into any cluster, DBSCAN terminates. Re-



s cently, an efficient distributed clustering scheme is proposed in [28], which uses
only the borderline data points identified by DBSCAN to assist the clustering
across multiple datasets that may be stored in local sites.

DBSCAN has two major advantages in identifying arbitrary-shaped clusters

with outlier detection, namely the formation of a chain structure of high-density

1w data points (i.e., core points) and the identification of outliers as low-density
data points. However, DBSCAN is sensible to the user-defined parameter values

and does not perform well on highly overlapped dense regions [29].

2.2. DPC: Density Peak Clustering

In a nutshell, DPC generates clusters by assigning data points to the same
us cluster of its nearest neighbour with higher density. Specifically, DPC uses
the decision graph approach to identify cluster centroids that have the highest
density. A decision graph is derived based on the following two fundamental
properties of each data point x;: i) local density p; and ii) individual distance

of each data point from other data points of higher density J;.
Assume a dataset comsists of Xyyxz = [v1,79,..,zy]|T, where
x; = [x1i, T24, ..., X z;] denotes a vector with Z number of attributes and Y de-

notes the total number of data points. The distance between two data points

x; and z; is computed as follows:
d(wi, xj) = [| i =z |, (2)

150 where || - || denotes Euclidean distance.

The local density of a data point x;, denoted as p;, is then defined as:

pi = Zx(d(%,fj) - Ca), (3)

1, ifa <0,
x(a) = (4)
0, otherwise,

where Cy denotes the cutoff distance that user specified to distinguish the level

of density. In DPC, the value of Cy can be autonomously determined in a
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systematic way as follows:

Ca= Dy,x 2, (5)

where Y, = (g), Dy,xr. € D= [dy,d2, ..., dy,], wherein D denotes the set of
all the distances between every pair of two data points in a dataset, sorted in
ascending order, and p denotes the user specified cutoff percentile.

On the other hand, §; is defined as the shortest distance from any other data
point that has a higher density value than ;. If ; has the highest density value,

d; is assigned to the longest distance to any other data point. Specifically, J; is

computed as follows:

min d(z;, z;), if 35 st pj > ps
5 = J:pji>pi (6)

max d(x;, x;), otherwise.
J

After the computation of p; and §; for each data point in the given dataset,
DPC autonomously generates a decision graph based on the computed p and
0 values (see Figure 3) and subsequently asks the user to determine cluster
centroids. As a rule of thumb, data points with higher p and higher § values
should be selected as cluster centroids. However, as shown previously in Figure 1
that because DPC considers all the data points during the computation of local
density (see (3)), it may not perform well on overlapping clusters.

In terms of dealing with the cluster boundaries, for each cluster, DPC defines
a border region, which is a set of data points that are assigned to the underlying
cluster but within certain distance (i.e., Cy) from any data point belonging to
another cluster. Furthermore, DPC locates the data point with the highest
density within this border region of the corresponding cluster and makes use
of its computed density p,. Subsequently, “the points of the cluster whose
density is higher than p;, are considered as part of the cluster core (robust
assignation)” and “the others are considered as part of the cluster halo (suitable
to be considered as noise)” [24]. However, according to the definition, a halo
point has to be close to at least one data point belonging to another cluster.

Therefore, DPC may not well handle certain low-density data points, especially
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Figure 3: An example of DPC’s decision graph (excerpted from [24]).

if they are not near to other identified clusters. As shown previously in Figure 2,
the two data points in the top left corner are always considered as part of a larger

cluster regardless of different Cy values in use.

3. REDPC: Residual Error-based Density Peak Clustering Algorithm

To better deal with overlapping clusters and low-density data points, we
propose Residual Error-based Density Peak Clustering (REDPC) algorithm.
Specifically, we learn from DPC in using decision graphs to identify cluster
centroids, learn from DBSCAN in determining density connectivities within a
neighbourhood, and learn from the residual error theory in measuring density.

The overall process of REDPC consists of the following four stages and each

stage is elaborated in the following four subsections, respectively:

1. Preprocessing: Firstly, the residual errors of individual data points are
computed as local density measurement and then 0 (see the following
subsection) is computed as distance measurement.

2. Initial assignment: Secondly, the decision graph is generated, cluster cen-
troids are identified, and data points are intermediately assigned to the

respective clusters.

10
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3. Halo identification: halo points (consists of both borderline points and
anomalies) are identified.
4. Anomaly refinement: Finally, anomalies are isolated from halo points and

further processed before presenting the final clustering result.

3.1. Preprocessing

To construct better decision graphs for more distinguishable cluster centroid
identifications, we adopt the residual error computation to measure the density
of each data point within its neighbourhood region. Specifically, the residual
error e;; between data point x; to its neighbour z; is computed as follows:

e — H%]—V%‘H, 7)
where N is a user-defined constant parameter denoting the neighbourhood size.
Specifically, IV is an integer used to find N number of the nearest neighbours of
x;, wherein Euclidean distance is used as the same as DPC (see (2)). Further-

more, the residual error of x; can be computed as follows:
[ zi — ;||
ei:Zeij:Z ZN] . (8)
J J

Comparing (8) to (3), it is obvious that by adopting the residual error com-
putation, when measuring the local density, REDPC only takes the data points
within the neighbourhood into consideration. In contrast, DPC takes all the
data points in the entire dataset into consideration. By only considering the
local regional density, REDPC is capable of generating better decision graphs
for cluster centroid identifications (see Section 4).

Moreover, we use d; to denote the minimum distance of data point z; to
another data point with lower residual error. Specifically, J; is computed as

follows:

min || a; —a; ||, if3jst e <ey,
61' — Jej<e; (9)
max || z; —x; ||,  otherwise.
J

11
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The dynamics of the preprocessing procedures in REDPC are summarized

in Algorithm 1.

Algorithm 1 The preprocessing procedures in REDPC

Input: Dataset D comprising n number of data points and user predefined
neighbourhood size N

Output: Euclidean distance matrix DM of size n * n, residual error vector e,
sortd_e (e sorted in ascending order), minimum distance vector ¢, and index

vector of the nearest neighbour of each data point NNeigh

Compute the Euclidean distance between data points to obtain DM,
for each data point z; in D do

find its neighbours N; based on DM and N;

for each data point z; in N; do

compute e;; (see (7));

end for
end for
aggregate e;; to obtain e and sort e in ascending order to obtain sortd_e;
compute ¢ (see (8) and (9));
obtain NNeigh based on sortd_e;

8.2. Initial Assignment

After preprocessing, REDPC then generates a decision graph based on e;
(see (8)) and §; (see (9)) computed for each data point z; in the underlying
dataset (see Figure 7(a) in Section 4). As a rule of thumb, data points with
lower e; values and higher d; values should be selected as cluster centroids. After
the identification of cluster centroids, based on the shortest distance between
any unassigned data point x; to any data point x; that has been assigned with
its corresponding cluster label, assign x; to the same cluster as x;. Repeat this
assignment procedure until all the data points have been assigned with certain

cluster labels. As such, we obtain the initial assignments of all data points.

12
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The dynamics of initial assignment procedures in REDPC are summarized in

Algorithm 2.

Algorithm 2 The initial assignment procedures in REDPC

Input: user identified cluster centroids CC, sortd_e and NNeigh obtained from
Algorithm 1
Output: cluster labels assigned to all the data points CI

assign cluster labels to all cluster centroids in C'C to obtain initial C;
while there still exists a data point with no cluster label assigned do
based on Cl, sortd_e and NNeigh, find data point x; to be assigned;
assign x; with the cluster label of its nearest neighbour;
update Cl accordingly;

end while

3.83. Halo Identification

After the initial assignment of cluster labels, we first identify the halo points
from each intermediate cluster for later anomaly detections (in the final stage).
To identify the halo points, we need to determine the value of the cutoff param-
eter Cy. In REDPC, Cy is defined as the same as that in DPC (see (5)), which
is systematically determined based on the user specified cutoff percentile p.

Subsequently, for each data point z; in cluster A, if there exists a data point
x; in cluster B and B # A that the distance between z; and z; is less than the
cutoff threshold, i.e.,

@i~ || < Ca, (10)

then we compute the mean of the residual values of the two data points as
follows:
1

5(61‘ +€5). (11)

mean_€;; =

For each identified cluster K, we use a variable named residual threshold

rtx to denote the threshold for the residual value of each corresponding cluster.

13
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Figure 4: Illustrations of identified halo points, represented with asterisks in red color.

The value of rtg is initialized to a large number. If z; is found in cluster A,
x; is found in cluster B, and they fulfil the inequality defined in (10), then the

residual thresholds for both clusters are updated as follows:

rtxg = mean_e;;, if rtg > mean_e;;, K = A, B. (12)

After updating rt for all the clusters, we can then determine the set of halo

points in each cluster, denoted as haloset, by adopting the following criterion:

halosety = halosetg U x;, iff e; > rig. (13)

The dynamics of halo identification procedures in REDPC are summarized
in Algorithm 3. The exact mechanisms adopted can be simply described as
using borderline data points to determine the level of overlap between adjacent
clusters, and subsequently identify the halo points in the border regions for
As illustrated in Figure 4, halo

further identification of possible anomalies.

points are well identified by REDPC around the cluster borders.

8.4. Anamaly Refinement

It is of great importance to distinguish the anomalies from other normal data
points in the identified clusters because anomalies highly likely represent the ab-
normal patterns or malicious activities in real-world scenarios. For example, un-

usual road traffic patterns may suggest nearby accidents or emergencies, unusual

14



Algorithm 3 The halo identification procedures in REDPC
Input: dataset D, CI obtained from Algorithm 2, C; computed according to

(5) and e;; obtained from Algorithm 1
Output: the set of halo points haloset

initialize residual threshold rt to a large value for each cluster in CI;
for each data point x; in D do
for cach data point z; in D, i # j && Cl(i) # Ci(j) do
if distance between z; and z; is within Cy (see 10) then
compute the mean residual mean_e;; (see 11);
update 7ty and rte(;) if necessary (see 12);
end if
end for
end for
initialize haloset to ¢;
for each data point z; in D do
if halo point identification criterion is met (see 13) then
update haloset accordingly;
end if

end for

credit card transactions may indicate identity theft, unusual computer network
loads should alert the cyber security division, etc. Therefore, in REDPC, we
further detect the anomalies and highlight them during visualization.

During anomaly detection, a halo point with high residual error and low
6 value is recognized as an anomaly and highlighted with a special symbol for
clearer graphical representation (e.g., see Figure 8(f) in Section 4.2). The thresh-
old values used to distinguish e and ¢ are heuristically determined. Specifically,

the threshold for residual error th,. is defined as

the = mean(e;) + %(min(ei) + mazx(e;)) (14)

15
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and the threshold ths is defined as
1,
ths = §(mm(6i) + max(d;)). (15)

Therefore, after the determination of th, and ths values, we can then identify
the set of anomalies in the dataset, denoted as anoset, by adopting the following
criterion:

anoset = anosetU x;, iff e; > the && 6; < ths. (16)

Moreover, if anoset is non-empty, we further investigate the most possible
cluster label of each detected anomaly. This refinement is also intuitively de-
signed that for each anomaly in anoset, we first find its nearest neighbours
with the neighbourhood size as the same as N defined in (7). Furthermore, if
within the neighbourhood of an anomaly, there exist other anomalies, we then
remove these anomalies from the neighbour because their cluster labels are not
yet properly assigned. At last, we assign the cluster label of each anomaly to
the majority cluster label in its neighbourhood (if the majority ties, we assign
the cluster label of the nearest data point belonging to any of the tying clus-
ters). Due to the incorporation of such refinement of the identified anomalies,
not only the clustering results may be improved, but also these anomalies are
highlighted visually for human inspections (see Section 4).

The dynamics of anomaly refinement procedures in REDPC are summarized

in Algorithm 4).

8.5. Qverall REDPC Dynamics and Its Computational Complexity

The dynamics of REDPC is depicted in Figure 5, wherein the information
flow among the underlying dataset, user inputs, and the REDPC algorithms are
explicitly shown. Moreover, the computational complexity of REDPC is shown
in Table 1, wherein n denotes the number of data points in the underlying
dataset and m denotes the number of halo points obtained from Algorithm 3.
In normal circumstances, m < n.

Comparing to other clustering algorithms benchmarked in this paper,

REDPC has a middle level of computational complexity as shown in Table 2,

16



Algorithm 4 The anomaly refinement procedures in REDPC
Input: DM, e and § obtained from Algorithm 1, Cl obtained from Algorithm 2,

haloset obtained from Algorithm 3 and user specified neighbourhood size N

Output: the set of anamalies anoset and refined CI

initialize anoset to ¢;
compute thresholds th, and ths (see (14) and (15));
for each data point x; in haloset do
if z; fulfils the anomaly criterion then
append x; to anoset (see (16));
end if
end for
for each data point x; in anoset do
find the neighbours IN; according to INV;
remove anomalies (both assigned and yet-to-be-assigned) from Nj;
assign the cluster label of z; to the majority cluster label in N;;

end for

Table 1: Computational complexity of REDPC

Stage: Algo. 1 Algo. 2 Algo. 3 Algo. 4 Overall Algo
Complexity:  O(n?)  O(nlogn) O(n?)  O(mn) O(n?)

wherein I denotes the number of iterations and K denotes the user predefined
number of clusters. Moreover, in the following experiment section, we also com-
o pare the computational time taken by all the clustering algorithms.

4. Experiments

To evaluate the performance of REDPC, we apply it on four UCI datasets,
namely Iris, Seeds, Wine and Thyroid, three widely used synthetic datasets,

17



Dataset

Inputs

Preprocessing
(see Algorithm 1)

J

) €, 9| | Decision u
DM, e, sortd_e, 5, NNeigh > -— user
- g Graph Selection

‘sortdfe, NNeigh *

A

Cluster
centroids
ccC

Initial Assignment Ccc
(see Algorithm 2)

U

Cluster labels CI

v 5

o Halo Identification
(see Algorithm 3) | |¢C¢d

J

haloset

v

Anomaly Refinement
(see Algorithm 4) N

A

DM, e, 6

vy

A

Cl

l

anoset, refined CI

v

L Final clustering results J

Figure 5: Dynamics of the overall REDPC algorithm.

Table 2: Computational complexity comparisons

Algorithm:  K-means AP DBSCAN DPC REDPC
Complexity: O(IKn) O(In?) O(nlogn) O(n?)  O(n?)
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Table 3: Properties of the UCI and synthetic datasets

Datasets Properties
# Points  # Dimensions  # Clusters

Iris 150 4 3
Seeds 210 7 3
Wine 178 13 3
Thyroid 215 5 3
Flame 240 2 2
Aggregation 788 2 7
Spiral 312 2 3
D1 87 2 3
D2 85 2 4

namely Flame, Aggression and Spiral, and two own-defined datasets D1' and
D22. The properties of these nine datasets are listed in Table 3. Moreover,
we conduct experiments using K-Means [27] (to minimize the difference caused
by randomness, averaged results of 10 independent runs are reported), AP [18§],
DBSCAN [23] and DPC [24] on the same datasets for comparisons.

In this paper, we use F-score to measure the accuracy of the clustering
results. The performance comparisons among all the benchmarking models are
reported in Table 4 and visualized in Figure 6. It is encouraging to find that
REDPC achieves the highest F-score on eight out of nine datasets. Although
REDPC only achieves the second best on Aggregation, the difference between
the winner (DPC) and REDPC’s result is as small as 1 - 0.9983 = 0.0017 or
0.17%. When we further examine the difference in terms of the number of
correctly labelled data points, we find that the difference between DPC and
REDPC is as small as 1 (out of the total number of 788 data points). As such,

IThe D1 dataset (with cluster labels) is available online: https://www.dropbox.com/s/

f3ynvm15312500u/D1_with_1abel .csv?7dl=0
2The D2 dataset (with cluster labels) is available online: https://www.dropbox.com/s/

899x1tgq3gg09bg/D2_with_label.csv?dl=0
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Table 4: Performance Comparsion

Datasets K-Means AP DBSCAN DPC REDPC

Iris 0.8149  0.3924  0.7462  0.8404 0.8404
Seeds 0.8091 02833  0.6137  0.8025 0.8106
Wine 0.5806  0.2521  0.5052  0.5699  0.5900

Thyroid 0.7251  0.1814  0.6933  0.7545  0.7890
Flame 0.7432  0.1538  0.8833 1 1
Aggregation  0.7890  0.2117  0.8885 1 0.9983
Spiral 0.3278  0.1505 1 1 1

D1 0.8352  0.5445 1 1 1

D2 0.9976  0.9332 09332  0.9756 1

although DPC achieves slightly better performance than REDPC in terms of
clustering accuracy, this small amount of difference may not be significant. In
the following subsections, we elaborate on the performance of REDPC in various
aspects, respectively.

In addition, the computational time spent by each algorithm (average of 10
runs for all models) is shown in Table 5. The comparison results are consistent
with Table 2 that DBSCAN with the lowest computational complexity achieves
the shortest computational time and REDPC with a middle level of computa-
tional complexity achieves a middle level of computational time. Comparing to
DPC, although they both have the same computational complexity of O(n?),
REDPC is always approximately 20 ms slower. This is mainly due to the addi-
tional refinement procedures taken by REDPC to better handle the anomalies
(see Algorithms 3 and 4). However, this compensation on computational time
greatly improves REDPC’s performance (see Table 4). Note that all the clus-
tering algorithms were implemented using MATLAB and the experiments were
conducted using the same 64-bit computer installed with Intel(R) Core(TM)
i3-4160 CPU at 3.60 GHz and 8 GB RAM.
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Figure 6: Visualization of performance comparison on nine datasets.

Table 5: Comparisons on computational time spent (in ms)

Datasets K-Means AP DBSCAN DPC REDPC

Iris 148.2681 67.6571 1.9672 70.6112  93.5109
Seeds 148.0411 95.5450 1.8822 71.4411 82.6917
Wine 156.5255 70.2968 1.4468 69.4427  90.1444

Thyroid 149.1138  5551.4389 3.3243 70.8240  102.1959
Flame 150.5154  119.2546 1.7628 72.8839  92.1913
Aggregation 174.6097 1853.7493  10.2566  123.0901 148.9328
Spiral 160.1743  180.8485 3.1349 89.5048  105.0130
D1 149.6506 34.3190 1.1136 67.6673  90.7307

D2 146.9794 32.2693 0.8710 68.8392  92.7008
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Figure 7: Determination of cluster centroids and the resulting cluster formation based on the

decision graph generated by REDPC on Iris dataset.

4.1. Identifying Cluster Centroids

As aforementioned that the performance of DPC is sometimes limited by its
generated decision graph. In comparison, REDPC employs the residual error
computation to measure the local density within a neighbourhood region. As
a result, REDPC generates decision graphs that are better suited for cluster
centroid identifications. As shown in Figure 7(a), the third cluster centroid in
the Iris dataset is relatively more identifiable in the decision graph generated

by REDPC comparing to that generated by DPC (see Figure 1).

4.2. Identifying Clusters with Anomalies

To illustrate the capability of REDPC in anomaly detection, we present the
clustering results of all clustering methods on the Flame and D2 datasets in
Figures 8 and 9, respectively. The two anomalies in Flame are located in the
top left corner and the five anomalies in D2 are located in the center. It is
clearly shown that K-Means and AP fail in identifying anomalous data points.
DBSCAN [23] adopts MinPts and density-connectivity to detect outliers, but
along with outliers, it detects much more borderline data points incorrectly on

Flame dataset. DPC does not perform anomaly detections as aforementioned.
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Figure 8: Cluster formation results on Flame dataset.

On the other hand, as shown in Figures 8(f) and 9(f), REDPC consistently

detects the correct possible anomalies.
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4.8. Identifying Clusters of Varying Sizes

To illustrate the performance of REDPC on datasets comprising of clusters
of varying sizes, such as Aggregation and D1, we refer you to Figures 10 and
11, respectively. It is clearly shown in these two figures that both K-means and
AP do not perform well on these datasets. The performance of DBSCAN is
much better, however, it still faces problems in a small set of borderline points
(see Figure 10(c)). In comparison, DPC correctly identifies all the clusters of
varying sizes and REDPC only mislabels one data point.

4.4. Identifying Clusters of Irreqular Shapes

Density-based clustering algorithms have been shown to perform well in
identifying arbitrary-shaped clusters in the literature. In this subsection, we
use Figures 8, 10 and 12 to show REDPC’s performance in identifying irregular
shaped clusters. K-means and AP are partition based clustering methods and
hence cannot well handle such datasets. DBSCAN performs perfectly in Spiral
(see Figure 12(c)), however, not so well in the other datasets. In comparison,
both DPC and REDPC are shown to be capable of correctly identifying the

natural clusters of irregular shapes.

4.5. Identifying Clusters of Different Densities

Among all the datasets used in this paper, our own-defined synthetic dataset
D1 best illustrates the scenario of having clusters of different densities (see
Figure 11). It is clearly shown in the figure that K-Means and AP do not well
handle a dataset of varying densities. DBSCAN only detects two clusters and
deems the third cluster as a set of outliers (i.e., the top cluster in Figure 11(c)
only consists of outliers, which is due to the relatively low density of those data
points that they do not fulfil the density-reachability definition, see Section 2.1).
In comparison, both DPC and REDPC correctly identify all the natural clusters
(the two anomalies reported by REDPC are assigned to the correct cluster after

refinement, see Algorithm 4).
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Figure 11: Cluster formation results on D1 dataset.

4.6. Overall Comparison of All Benchmarking Models
Our proposed REDPC algorithm has shown to perform better than the other
benchmarking models in identifying clusters of various properties in the previous
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(f) REDPC, N; = 5, Cq = 1% (#clusters =

3, #anomalies = 3)

s subsections, respectively. In this subsection, we summarize the performance of

all clustering algorithms on each property of the clusters in Table 6. As shown
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Table 6: Overall Performance Comparison on Different Cluster Properties

Property Algorithm
K-Means AP DBSCAN DPC REDPC
Centroid detection v X 7] v 4
Anomaly detection e} X V4 VA V4
Variable sizes e} X VA V4 Vv
Variable shapes X X Vv V4 Vv
Variable densities Vv X V4 V4 V4

Symbols ‘X’ denotes poor performance, ‘O’ denotes acceptable performance, and ‘\/’ de-
notes excellent performance, respectively. The assignment criteria are based on whether
the clustering algorithm performs well on all the datasets used when analyzing the corre-
sponding property (see Sections 4.1 to 4.5). Specifically, ‘x’ is assigned if the F-score on
any dataset is less than 0.6, ‘y/ is assigned if the F-scores on all datasets are greater than

0.8, otherwise, ‘9’ is assigned.

in the table, it is fair to say that REDPC is a well-designed algorithm working
well in various performance evaluation aspects.

Another note on the comparison between DPC and REDPC is that although
REDPC uses one more parameter than DPC does, which is the neighbourhood
size N (they both use the distance cutoff parameter Cy), in practice, we spend
almost equally amount of effort in determining the best performing parameter
values for both methods. The reason is because for REDPC, we always fix the
value of Cy at 1% and tune N in an incremental manner. On the other hand, in
order to get DPC’s best clustering accuracy, we need to tune Cy with varying
values. Therefore, in terms of conducting the experiments shown in this paper,

both methods require the tuning of only one parameter.

5. Conclusion

In this paper, we propose the Residual Error-based Density Peak Clustering
(REDPC) algorithm by using residual error computation to measure the local

density within a neighbourhood region and further process the identified low-
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density data points. As such, REDPC may generate better decision graphs for
cluster centroid identifications and better identify the possible anomalies. The
experimental results on both synthetic and real-world UCI datasets demonstrate
that REDPC performs better than DPC and other algorithms.

Going forward, we will improve REDPC for better autonomy in parameter

value determination and apply it to more complex and challenging datasets.
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