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Abstract

The density peak clustering (DPC) algorithm was designed to identify arbitrary-

shaped clusters by finding density peaks in the underlying dataset. Due to its

aptitudes of relatively low computational complexity and a small number of con-

trol parameters in use, DPC soon became widely adopted. However, because

DPC takes the entire data space into consideration during the computation of

local density, which is then used to generate a decision graph for the identifica-

tion of cluster centroids, DPC may face difficulty in differentiating overlapping

clusters and in dealing with low-density data points. In this paper, we propose

a residual error-based density peak clustering algorithm named REDPC to bet-

ter handle datasets comprising various data distribution patterns. Specifically,

REDPC adopts the residual error computation to measure the local density

within a neighbourhood region. As such, comparing to DPC, our REDPC algo-

rithm provides a better decision graph for the identification of cluster centroids

and better handles the low-density data points. Experimental results on both

synthetic and real-world datasets show that REDPC performs better than DPC

and other algorithms.
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1. Introduction

Clustering algorithms aim to analyze data by discovering their underlying

structure and organize them into different categories according to certain char-

acteristic measures, such as internal homogeneity and external bifurcation, with-

out priori-knowledge. Successful applications of clustering techniques are evi-5

dent in various domains, such as pattern recognition in general [1–4], image

understanding [5, 6], bioinformatics [7], lifestyle identification [8], disease diag-

nosis [9], cyber security [10], risk analysis [11] [12], etc. Moreover, some emerging

topics, such as big data [13], virtual reality [14], and Internet of Things (IoT)

[15], also avail from clustering methods. In general, clustering methods can10

be broadly categorized into five groups based on their dynamics, namely parti-

tioning [16] [17], hierarchical [18], density-based [19] [20], model-based [21], and

grid-based [22].

Density-based clustering algorithms have been widely applied to form

arbitrary-shaped clusters by detecting high-density regions in the data space.15

Basically, the region with high-density, or a set of densely connected data points,

is treated as a cluster. Density-based spatial clustering of applications with

noise (DBSCAN) [23] is probably the most well-known density-based clustering

algorithm engendered from the basic notion of local density. Recently, density-

based clustering methods have attracted more attention since Rodriguez and20

Liao proposed their density peak clustering (DPC) algorithm [24] in 2014. The

desirable features of DPC include i) relatively low computational complexity,

ii) small number of control parameters in use, and iii) identification of cluster

centroids of varying cluster sizes based on the generated decision graph.

Nonetheless, the performance of DPC highly relies on the value of the cutoff25

distance parameter Cd, which serves as a threshold to distinguish the level of
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Figure 1: The decision graph generated by DPC on the Iris dataset (Cd = 0.2449).

density in terms of distance between data points. Specifically, the identification

of cluster centroids in DPC is performed manually with the facilitation of a

generated decision graph, which is regulated by the value of Cd (see Section 2.2

for more technical details). For example, it is clearly shown in Figure 1 that30

only two cluster centroids (indexed as ‘1’ and ‘2’ with different colors) in the

well-known 3-cluster Iris dataset are straightforwardly identified by the decision

graph generated by DPC, even if the value of Cd is assigned in a systematic man-

ner (cutoff at 1% of the sorted distances among all data points, see Section 2.2

for more technical details). As such, the performance of DPC is sometimes35

limited by its way of generating decision graphs.

Moreover, DPC does not perform well on anomaly detection, which is a ben-

eficial function of clustering algorithms that the presence of anomalies indicates

possible erroneous conditions that may lead to significant performance degrada-

3



0 5 10 15
14

16

18

20

22

24

26

28

(a) Cd = 0.9301 (2%)

0 5 10 15
14

16

18

20

22

24

26

28

(b) Cd = 1.3124 (4%)

0 5 10 15
14

16

18

20

22

24

26

28

(c) Cd = 2.1213 (10%)

0 5 10 15
14

16

18

20

22

24

26

28

(d) Cd = 3.2381 (20%)

Figure 2: Clusters identified by DPC with different Cd parameter values on the Flame dataset.

tion [25]. As shown in Figure 2, DPC does not well handle the uneven cluster40

distribution (also pointed out in [26]) that the two anomalies (in the top left

corner) are always considered as part of a larger cluster regardless of different

Cd values in use, because there is no “noise-signal cutoff” used in DPC [24]. In

such cases, DPC faces the difficulty in identifying the outliers even with varying

Cd values and it may not be able to find clusters of small sizes or consisting of45

outliers (relatively speaking) only.

Therefore, to generate better decision graphs for cluster centroid identifi-

cations by adopting more effective density measurement, and to better detect

anomalies for comprehensive clustering results by further examining the border-

line data points, in this paper, we propose a density-based clustering method50

4



named Residual Error-based Density Peak Clustering (REDPC). Specifically,

REDPC adopts the residual error computation to measure the local density

within a neighbourhood region so that the generated decision graphs are bet-

ter suited for cluster centroid identifications (see Section 3.1 for more technical

details). Moreover, REDPC treats low-density data points as halo points (see55

Section 3.3 for more technical details) and further processes them to detect

anomalies.

The term halo was originally defined by Rodriguez and Laio in [24] as a set of

data points in certain halo regions that are “suitable to be considered as noise”

(see Section 2.2). In this paper, we adopt the similar usage that let halo points60

refer to the set of low-density data points that require further analysis. Due

to the further analysis applied to halo points, REDPC is shown to be capable

of better identifying and handling various types of anomalies manifested in

different patterns in different datasets (see Section 4).

In terms of performance evaluations, we apply REDPC on four UCI datasets65

and five synthetic datasets (two synthetic datasets are own-defined but publicly

available online). For comparison purposes, we also apply K-Means [27], affin-

ity propagation (AP) [18], DBSCAN [23] and DPC [24] on the same datasets.

Experimental results show that our algorithm achieves the best performance on

most datasets (specifically, best on eight out of nine datasets and the second70

best on the remaining dataset).

Our main contributions in this paper are listed as follows:

1. We adopt the residual error computation to measure local density within

a neighbourhood region. As such, the generated decision graphs are better

suited for cluster centroid identifications.75

2. We perform further analysis on low-density data points after obtaining

the intermediate clustering results. As such, the anomalies and borderline

data points are better distinguished.

3. We empirically show with the experimental results on nine datasets that

our proposed REDPC clustering method performs better than DPC and80
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other benchmarking clustering algorithms.

The rest of the paper is organized as follows. We briefly introduce the

dynamics of DBSCAN and DPC as related work in Section 2. We present our

proposed residual error-based clustering method in Section 3. We report the

experimental results with comparisons and discussions in Section 4. We draw85

the conclusion and propose future work in Section 5.

2. Related Work

In this literature review section, we present the technical concepts and dy-

namics of two density-based clustering methods, which are closely related to

ours. Specifically, we introduce the pros and cons of DBSCAN [23] and DPC90

[24] in the following two subsections, respectively.

2.1. DBSCAN: Density-Based Clustering Approach with Noise

DBSCAN is probably the most well-known and widely applied density-based

clustering algorithm due to its following desirable features: i) efficient identifi-

cation of arbitrary-shaped clusters, ii) scalability to large datasets [19], iii) small95

number of control parameters in use, iv) no predetermination on the number of

clusters a priori, and v) ability to identify outliers. The dynamics of DBSCAN

are based on the notion that clusters are defined as regions of considerably

higher density, wherein the density, represented by the number of data points in

the neighbourhood, exceeds a predefined threshold value. Moreover, the region100

with relatively lower density is kept outside the cluster and denoted as outliers.

Definitions used in DBSCAN are given as follows:

Definition 1: Eps-neighbourhood of a data point

The Eps-neighbourhood of a data point p is defined as follows:

NEps(p) = q ∈ D | dist(p, q) ≤ Eps, (1)

where q denotes another data point in the dataset D and dist(·) denotes the

function used to compute distance between two data points.
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Definition 2: Directly density-reachable105

A data point p is directly density-reachable from another data point q with

respect to NEps(p) and MinPts (minimum number of data points in the Eps

neighbourhood of that data point), if p ∈ NEps(q) and NEps(q) ≥ MinPts.

Definition 3: Density-reachable

A data point p is density-reachable from another data point q with respect to110

NEps(p) and MinPts, if there exists a chain of data points p1, p2, ..., pn, p1 =

q, pn = p such that pi + 1 is directly density-reachable from pi.

Definition 4: Density-connected

A data point p is density-connected to another data point q with respect to

NEps(p) and MinPts, if there exists a data point o such that both p and q are115

density-reachable from o with respect to NEps(p) and MinPts.

Definition 5: Cluster

Let D be a set of data points. A cluster C with respect to NEps(p) and MinPts

is a non-empty subset of D satisfying the following two conditions:

1. ∀ p, q: if p ∈ C and q is density-reachable from p with respect to NEps(p)120

and MinPts, then q ∈ C (maximality).

2. ∀ p, q ∈ C: p is density-connected to q with respect to NEps(p) and MinPts

(connectivity).

Definition 6: Noise

Let C1, C2, ..., Ck denote the clusters identified in D with respect to Eps and125

MinPts, then we can define the noise as the set of data points in D not belonging

to any cluster Ci, i = 1, ..., k, i.e., noise = p ∈ D | ∀i : p /∈ Ci.

During cluster formation, direct density-reachability, density-reachability and

density-connectivity (see Definitions 2-4) are used by DBSCAN to characterize

symmetric and asymmetric relations between core points (i.e., high-density data130

points within clusters) and borderline points. Based on the pre-determined den-

sity parameters Eps and MinPts, clusters are formed comprising reachable core

points and their corresponding borderline points. When there are no more data

points that can be further added into any cluster, DBSCAN terminates. Re-
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cently, an efficient distributed clustering scheme is proposed in [28], which uses135

only the borderline data points identified by DBSCAN to assist the clustering

across multiple datasets that may be stored in local sites.

DBSCAN has two major advantages in identifying arbitrary-shaped clusters

with outlier detection, namely the formation of a chain structure of high-density

data points (i.e., core points) and the identification of outliers as low-density140

data points. However, DBSCAN is sensible to the user-defined parameter values

and does not perform well on highly overlapped dense regions [29].

2.2. DPC: Density Peak Clustering

In a nutshell, DPC generates clusters by assigning data points to the same

cluster of its nearest neighbour with higher density. Specifically, DPC uses145

the decision graph approach to identify cluster centroids that have the highest

density. A decision graph is derived based on the following two fundamental

properties of each data point xi: i) local density ρi and ii) individual distance

of each data point from other data points of higher density δi.

Assume a dataset consists of XY×Z = [x1, x2, ..., xY ]T , where

xi = [x1i, x2i, ..., xZi] denotes a vector with Z number of attributes and Y de-

notes the total number of data points. The distance between two data points

xi and xj is computed as follows:

d(xi, xj) = || xi − xj ||, (2)

where || · || denotes Euclidean distance.150

The local density of a data point xi, denoted as ρi, is then defined as:

ρi =
∑
j

χ(d(xi, xj)− Cd), (3)

χ(a) =

1, if a < 0,

0, otherwise,

(4)

where Cd denotes the cutoff distance that user specified to distinguish the level

of density. In DPC, the value of Cd can be autonomously determined in a
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systematic way as follows:

Cd = DYd× p
100
, (5)

where Yd =
(
Y
2

)
, DYd× p

100
∈ D = [d1, d2, ..., dYd

], wherein D denotes the set of

all the distances between every pair of two data points in a dataset, sorted in

ascending order, and p denotes the user specified cutoff percentile.

On the other hand, δi is defined as the shortest distance from any other data

point that has a higher density value than xi. If xi has the highest density value,155

δi is assigned to the longest distance to any other data point. Specifically, δi is

computed as follows:

δi =


min

j:ρj>ρi
d(xi, xj), if ∃ j s.t. ρj > ρi,

max
j

d(xi, xj), otherwise.

(6)

After the computation of ρi and δi for each data point in the given dataset,

DPC autonomously generates a decision graph based on the computed ρ and

δ values (see Figure 3) and subsequently asks the user to determine cluster160

centroids. As a rule of thumb, data points with higher ρ and higher δ values

should be selected as cluster centroids. However, as shown previously in Figure 1

that because DPC considers all the data points during the computation of local

density (see (3)), it may not perform well on overlapping clusters.

In terms of dealing with the cluster boundaries, for each cluster, DPC defines165

a border region, which is a set of data points that are assigned to the underlying

cluster but within certain distance (i.e., Cd) from any data point belonging to

another cluster. Furthermore, DPC locates the data point with the highest

density within this border region of the corresponding cluster and makes use

of its computed density ρb. Subsequently, “the points of the cluster whose170

density is higher than ρb are considered as part of the cluster core (robust

assignation)” and “the others are considered as part of the cluster halo (suitable

to be considered as noise)” [24]. However, according to the definition, a halo

point has to be close to at least one data point belonging to another cluster.

Therefore, DPC may not well handle certain low-density data points, especially175

9



(a) Data points distribution (b) Corresponding decision graph

Figure 3: An example of DPC’s decision graph (excerpted from [24]).

if they are not near to other identified clusters. As shown previously in Figure 2,

the two data points in the top left corner are always considered as part of a larger

cluster regardless of different Cd values in use.

3. REDPC: Residual Error-based Density Peak Clustering Algorithm

To better deal with overlapping clusters and low-density data points, we180

propose Residual Error-based Density Peak Clustering (REDPC) algorithm.

Specifically, we learn from DPC in using decision graphs to identify cluster

centroids, learn from DBSCAN in determining density connectivities within a

neighbourhood, and learn from the residual error theory in measuring density.

The overall process of REDPC consists of the following four stages and each185

stage is elaborated in the following four subsections, respectively:

1. Preprocessing : Firstly, the residual errors of individual data points are

computed as local density measurement and then δ (see the following

subsection) is computed as distance measurement.

2. Initial assignment : Secondly, the decision graph is generated, cluster cen-190

troids are identified, and data points are intermediately assigned to the

respective clusters.

10



3. Halo identification: halo points (consists of both borderline points and

anomalies) are identified.

4. Anomaly refinement : Finally, anomalies are isolated from halo points and195

further processed before presenting the final clustering result.

3.1. Preprocessing

To construct better decision graphs for more distinguishable cluster centroid

identifications, we adopt the residual error computation to measure the density

of each data point within its neighbourhood region. Specifically, the residual200

error eij between data point xi to its neighbour xj is computed as follows:

eij =
|| xi − xj ||

N
, (7)

where N is a user-defined constant parameter denoting the neighbourhood size.

Specifically, N is an integer used to find N number of the nearest neighbours of

xi, wherein Euclidean distance is used as the same as DPC (see (2)). Further-

more, the residual error of xi can be computed as follows:

ei =
∑
j

eij =
∑
j

|| xi − xj ||
N

. (8)

Comparing (8) to (3), it is obvious that by adopting the residual error com-

putation, when measuring the local density, REDPC only takes the data points

within the neighbourhood into consideration. In contrast, DPC takes all the

data points in the entire dataset into consideration. By only considering the205

local regional density, REDPC is capable of generating better decision graphs

for cluster centroid identifications (see Section 4).

Moreover, we use δi to denote the minimum distance of data point xi to

another data point with lower residual error. Specifically, δi is computed as

follows:210

δi =


min
j:ej<ei

|| xi − xj ||, if ∃ j s.t. ej < ei,

max
j
|| xi − xj ||, otherwise.

(9)

11



The dynamics of the preprocessing procedures in REDPC are summarized

in Algorithm 1.

Algorithm 1 The preprocessing procedures in REDPC

Input: Dataset D comprising n number of data points and user predefined

neighbourhood size N

Output: Euclidean distance matrix DM of size n ∗ n, residual error vector e,

sortd e (e sorted in ascending order), minimum distance vector δ, and index

vector of the nearest neighbour of each data point NNeigh

Compute the Euclidean distance between data points to obtain DM ;

for each data point xi in D do

find its neighbours Ni based on DM and N ;

for each data point xj in Ni do

compute eij (see (7));

end for

end for

aggregate eij to obtain e and sort e in ascending order to obtain sortd e;

compute δ (see (8) and (9));

obtain NNeigh based on sortd e;

3.2. Initial Assignment

After preprocessing, REDPC then generates a decision graph based on ei

(see (8)) and δi (see (9)) computed for each data point xi in the underlying215

dataset (see Figure 7(a) in Section 4). As a rule of thumb, data points with

lower ei values and higher δi values should be selected as cluster centroids. After

the identification of cluster centroids, based on the shortest distance between

any unassigned data point xj to any data point xi that has been assigned with

its corresponding cluster label, assign xj to the same cluster as xi. Repeat this220

assignment procedure until all the data points have been assigned with certain

cluster labels. As such, we obtain the initial assignments of all data points.

12



The dynamics of initial assignment procedures in REDPC are summarized in

Algorithm 2.

Algorithm 2 The initial assignment procedures in REDPC

Input: user identified cluster centroids CC, sortd e and NNeigh obtained from

Algorithm 1

Output: cluster labels assigned to all the data points Cl

assign cluster labels to all cluster centroids in CC to obtain initial Cl;

while there still exists a data point with no cluster label assigned do

based on Cl, sortd e and NNeigh, find data point xi to be assigned;

assign xi with the cluster label of its nearest neighbour;

update Cl accordingly;

end while

3.3. Halo Identification225

After the initial assignment of cluster labels, we first identify the halo points

from each intermediate cluster for later anomaly detections (in the final stage).

To identify the halo points, we need to determine the value of the cutoff param-

eter Cd. In REDPC, Cd is defined as the same as that in DPC (see (5)), which

is systematically determined based on the user specified cutoff percentile p.230

Subsequently, for each data point xi in cluster A, if there exists a data point

xj in cluster B and B 6= A that the distance between xi and xj is less than the

cutoff threshold, i.e.,

|| xi − xj || < Cd, (10)

then we compute the mean of the residual values of the two data points as

follows:

mean eij =
1

2
(ei + ej). (11)

For each identified cluster K, we use a variable named residual threshold

rtK to denote the threshold for the residual value of each corresponding cluster.

13



0 5 10 15
14

16

18

20

22

24

26

28

73

230

(a) Flame

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

6

15

28

47

(b) D2 (see Section 4)

Figure 4: Illustrations of identified halo points, represented with asterisks in red color.

The value of rtK is initialized to a large number. If xi is found in cluster A,

xj is found in cluster B, and they fulfil the inequality defined in (10), then the

residual thresholds for both clusters are updated as follows:

rtK = mean eij , if rtK > mean eij ,K = A,B. (12)

After updating rt for all the clusters, we can then determine the set of halo

points in each cluster, denoted as haloset, by adopting the following criterion:

halosetK = halosetK ∪ xi, iff ei > rtK . (13)

The dynamics of halo identification procedures in REDPC are summarized

in Algorithm 3. The exact mechanisms adopted can be simply described as

using borderline data points to determine the level of overlap between adjacent

clusters, and subsequently identify the halo points in the border regions for

further identification of possible anomalies. As illustrated in Figure 4, halo235

points are well identified by REDPC around the cluster borders.

3.4. Anamaly Refinement

It is of great importance to distinguish the anomalies from other normal data

points in the identified clusters because anomalies highly likely represent the ab-

normal patterns or malicious activities in real-world scenarios. For example, un-240

usual road traffic patterns may suggest nearby accidents or emergencies, unusual

14



Algorithm 3 The halo identification procedures in REDPC

Input: dataset D, Cl obtained from Algorithm 2, Cd computed according to

(5) and eij obtained from Algorithm 1

Output: the set of halo points haloset

initialize residual threshold rt to a large value for each cluster in Cl ;

for each data point xi in D do

for each data point xj in D, i 6= j && Cl(i) 6= Cl(j) do

if distance between xi and xj is within Cd (see 10) then

compute the mean residual mean eij (see 11);

update rtCl(i) and rtCl(j) if necessary (see 12);

end if

end for

end for

initialize haloset to φ;

for each data point xi in D do

if halo point identification criterion is met (see 13) then

update haloset accordingly;

end if

end for

credit card transactions may indicate identity theft, unusual computer network

loads should alert the cyber security division, etc. Therefore, in REDPC, we

further detect the anomalies and highlight them during visualization.

During anomaly detection, a halo point with high residual error and low

δ value is recognized as an anomaly and highlighted with a special symbol for

clearer graphical representation (e.g., see Figure 8(f) in Section 4.2). The thresh-

old values used to distinguish e and δ are heuristically determined. Specifically,

the threshold for residual error the is defined as

the = mean(ei) +
1

2
(min(ei) +max(ei)) (14)

15



and the threshold thδ is defined as

thδ =
1

2
(min(δi) +max(δi)). (15)

Therefore, after the determination of the and thδ values, we can then identify

the set of anomalies in the dataset, denoted as anoset, by adopting the following

criterion:

anoset = anoset ∪ xi, iff ei > the && δi < thδ. (16)

Moreover, if anoset is non-empty, we further investigate the most possible245

cluster label of each detected anomaly. This refinement is also intuitively de-

signed that for each anomaly in anoset, we first find its nearest neighbours

with the neighbourhood size as the same as N defined in (7). Furthermore, if

within the neighbourhood of an anomaly, there exist other anomalies, we then

remove these anomalies from the neighbour because their cluster labels are not250

yet properly assigned. At last, we assign the cluster label of each anomaly to

the majority cluster label in its neighbourhood (if the majority ties, we assign

the cluster label of the nearest data point belonging to any of the tying clus-

ters). Due to the incorporation of such refinement of the identified anomalies,

not only the clustering results may be improved, but also these anomalies are255

highlighted visually for human inspections (see Section 4).

The dynamics of anomaly refinement procedures in REDPC are summarized

in Algorithm 4).

3.5. Overall REDPC Dynamics and Its Computational Complexity

The dynamics of REDPC is depicted in Figure 5, wherein the information260

flow among the underlying dataset, user inputs, and the REDPC algorithms are

explicitly shown. Moreover, the computational complexity of REDPC is shown

in Table 1, wherein n denotes the number of data points in the underlying

dataset and m denotes the number of halo points obtained from Algorithm 3.

In normal circumstances, m� n.265

Comparing to other clustering algorithms benchmarked in this paper,

REDPC has a middle level of computational complexity as shown in Table 2,

16



Algorithm 4 The anomaly refinement procedures in REDPC

Input: DM , e and δ obtained from Algorithm 1, Cl obtained from Algorithm 2,

haloset obtained from Algorithm 3 and user specified neighbourhood size N

Output: the set of anamalies anoset and refined Cl

initialize anoset to φ;

compute thresholds the and thδ (see (14) and (15));

for each data point xi in haloset do

if xi fulfils the anomaly criterion then

append xi to anoset (see (16));

end if

end for

for each data point xj in anoset do

find the neighbours Nj according to N ;

remove anomalies (both assigned and yet-to-be-assigned) from Nj ;

assign the cluster label of xj to the majority cluster label in Nj ;

end for

Table 1: Computational complexity of REDPC

Stage: Algo. 1 Algo. 2 Algo. 3 Algo. 4 Overall Algo

Complexity: O(n2) O(n log n) O(n2) O(mn) O(n2)

wherein I denotes the number of iterations and K denotes the user predefined

number of clusters. Moreover, in the following experiment section, we also com-

pare the computational time taken by all the clustering algorithms.270

4. Experiments

To evaluate the performance of REDPC, we apply it on four UCI datasets,

namely Iris, Seeds, Wine and Thyroid, three widely used synthetic datasets,
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Figure 5: Dynamics of the overall REDPC algorithm.

Table 2: Computational complexity comparisons

Algorithm: K-means AP DBSCAN DPC REDPC

Complexity: O(IKn) O(In2) O(n log n) O(n2) O(n2)
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Table 3: Properties of the UCI and synthetic datasets

Datasets Properties

# Points # Dimensions # Clusters

Iris 150 4 3

Seeds 210 7 3

Wine 178 13 3

Thyroid 215 5 3

Flame 240 2 2

Aggregation 788 2 7

Spiral 312 2 3

D1 87 2 3

D2 85 2 4

namely Flame, Aggression and Spiral, and two own-defined datasets D1 1 and

D2 2. The properties of these nine datasets are listed in Table 3. Moreover,275

we conduct experiments using K-Means [27] (to minimize the difference caused

by randomness, averaged results of 10 independent runs are reported), AP [18],

DBSCAN [23] and DPC [24] on the same datasets for comparisons.

In this paper, we use F -score to measure the accuracy of the clustering

results. The performance comparisons among all the benchmarking models are280

reported in Table 4 and visualized in Figure 6. It is encouraging to find that

REDPC achieves the highest F -score on eight out of nine datasets. Although

REDPC only achieves the second best on Aggregation, the difference between

the winner (DPC) and REDPC’s result is as small as 1 - 0.9983 = 0.0017 or

0.17%. When we further examine the difference in terms of the number of285

correctly labelled data points, we find that the difference between DPC and

REDPC is as small as 1 (out of the total number of 788 data points). As such,

1The D1 dataset (with cluster labels) is available online: https://www.dropbox.com/s/

f3ynvml53i2500u/D1_with_label.csv?dl=0
2The D2 dataset (with cluster labels) is available online: https://www.dropbox.com/s/

899xltgq3gg09bg/D2_with_label.csv?dl=0
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Table 4: Performance Comparsion

Datasets K-Means AP DBSCAN DPC REDPC

Iris 0.8149 0.3924 0.7462 0.8404 0.8404

Seeds 0.8091 0.2833 0.6137 0.8025 0.8106

Wine 0.5896 0.2521 0.5052 0.5699 0.5900

Thyroid 0.7251 0.1814 0.6933 0.7545 0.7890

Flame 0.7432 0.1538 0.8833 1 1

Aggregation 0.7890 0.2117 0.8885 1 0.9983

Spiral 0.3278 0.1505 1 1 1

D1 0.8352 0.5445 1 1 1

D2 0.9976 0.9332 0.9332 0.9756 1

although DPC achieves slightly better performance than REDPC in terms of

clustering accuracy, this small amount of difference may not be significant. In

the following subsections, we elaborate on the performance of REDPC in various290

aspects, respectively.

In addition, the computational time spent by each algorithm (average of 10

runs for all models) is shown in Table 5. The comparison results are consistent

with Table 2 that DBSCAN with the lowest computational complexity achieves

the shortest computational time and REDPC with a middle level of computa-295

tional complexity achieves a middle level of computational time. Comparing to

DPC, although they both have the same computational complexity of O(n2),

REDPC is always approximately 20 ms slower. This is mainly due to the addi-

tional refinement procedures taken by REDPC to better handle the anomalies

(see Algorithms 3 and 4). However, this compensation on computational time300

greatly improves REDPC’s performance (see Table 4). Note that all the clus-

tering algorithms were implemented using MATLAB and the experiments were

conducted using the same 64-bit computer installed with Intel(R) Core(TM)

i3-4160 CPU at 3.60 GHz and 8 GB RAM.
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Figure 6: Visualization of performance comparison on nine datasets.

Table 5: Comparisons on computational time spent (in ms)

Datasets K-Means AP DBSCAN DPC REDPC

Iris 148.2681 67.6571 1.9672 70.6112 93.5109

Seeds 148.0411 95.5450 1.8822 71.4411 82.6917

Wine 156.5255 70.2968 1.4468 69.4427 90.1444

Thyroid 149.1138 5551.4389 3.3243 70.8240 102.1959

Flame 150.5154 119.2546 1.7628 72.8839 92.1913

Aggregation 174.6097 1853.7493 10.2566 123.0901 148.9328

Spiral 160.1743 180.8485 3.1349 89.5048 105.0130

D1 149.6506 34.3190 1.1136 67.6673 90.7307

D2 146.9794 32.2693 0.8710 68.8392 92.7008
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Figure 7: Determination of cluster centroids and the resulting cluster formation based on the

decision graph generated by REDPC on Iris dataset.

4.1. Identifying Cluster Centroids305

As aforementioned that the performance of DPC is sometimes limited by its

generated decision graph. In comparison, REDPC employs the residual error

computation to measure the local density within a neighbourhood region. As

a result, REDPC generates decision graphs that are better suited for cluster

centroid identifications. As shown in Figure 7(a), the third cluster centroid in310

the Iris dataset is relatively more identifiable in the decision graph generated

by REDPC comparing to that generated by DPC (see Figure 1).

4.2. Identifying Clusters with Anomalies

To illustrate the capability of REDPC in anomaly detection, we present the

clustering results of all clustering methods on the Flame and D2 datasets in315

Figures 8 and 9, respectively. The two anomalies in Flame are located in the

top left corner and the five anomalies in D2 are located in the center. It is

clearly shown that K-Means and AP fail in identifying anomalous data points.

DBSCAN [23] adopts MinPts and density-connectivity to detect outliers, but

along with outliers, it detects much more borderline data points incorrectly on320

Flame dataset. DPC does not perform anomaly detections as aforementioned.
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Figure 8: Cluster formation results on Flame dataset.

On the other hand, as shown in Figures 8(f) and 9(f), REDPC consistently

detects the correct possible anomalies.
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Figure 9: Cluster formation results on D2 dataset.
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4.3. Identifying Clusters of Varying Sizes

To illustrate the performance of REDPC on datasets comprising of clusters325

of varying sizes, such as Aggregation and D1, we refer you to Figures 10 and

11, respectively. It is clearly shown in these two figures that both K-means and

AP do not perform well on these datasets. The performance of DBSCAN is

much better, however, it still faces problems in a small set of borderline points

(see Figure 10(c)). In comparison, DPC correctly identifies all the clusters of330

varying sizes and REDPC only mislabels one data point.

4.4. Identifying Clusters of Irregular Shapes

Density-based clustering algorithms have been shown to perform well in

identifying arbitrary-shaped clusters in the literature. In this subsection, we

use Figures 8, 10 and 12 to show REDPC’s performance in identifying irregular335

shaped clusters. K-means and AP are partition based clustering methods and

hence cannot well handle such datasets. DBSCAN performs perfectly in Spiral

(see Figure 12(c)), however, not so well in the other datasets. In comparison,

both DPC and REDPC are shown to be capable of correctly identifying the

natural clusters of irregular shapes.340

4.5. Identifying Clusters of Different Densities

Among all the datasets used in this paper, our own-defined synthetic dataset

D1 best illustrates the scenario of having clusters of different densities (see

Figure 11). It is clearly shown in the figure that K-Means and AP do not well

handle a dataset of varying densities. DBSCAN only detects two clusters and345

deems the third cluster as a set of outliers (i.e., the top cluster in Figure 11(c)

only consists of outliers, which is due to the relatively low density of those data

points that they do not fulfil the density-reachability definition, see Section 2.1).

In comparison, both DPC and REDPC correctly identify all the natural clusters

(the two anomalies reported by REDPC are assigned to the correct cluster after350

refinement, see Algorithm 4).
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Figure 10: Cluster formation results on Aggregation dataset.
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Figure 11: Cluster formation results on D1 dataset.

4.6. Overall Comparison of All Benchmarking Models

Our proposed REDPC algorithm has shown to perform better than the other

benchmarking models in identifying clusters of various properties in the previous
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Figure 12: Cluster formation results on Spiral dataset.

subsections, respectively. In this subsection, we summarize the performance of355

all clustering algorithms on each property of the clusters in Table 6. As shown
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Table 6: Overall Performance Comparison on Different Cluster Properties

Property Algorithm

K-Means AP DBSCAN DPC REDPC

Centroid detection
√

× ∂
√ √

Anomaly detection ∂ ×
√ √ √

Variable sizes ∂ ×
√ √ √

Variable shapes × ×
√ √ √

Variable densities
√

×
√ √ √

Symbols ‘×’ denotes poor performance, ‘∂’ denotes acceptable performance, and ‘
√

’ de-

notes excellent performance, respectively. The assignment criteria are based on whether

the clustering algorithm performs well on all the datasets used when analyzing the corre-

sponding property (see Sections 4.1 to 4.5). Specifically, ‘×’ is assigned if the F -score on

any dataset is less than 0.6, ‘
√

’ is assigned if the F -scores on all datasets are greater than

0.8, otherwise, ‘∂’ is assigned.

in the table, it is fair to say that REDPC is a well-designed algorithm working

well in various performance evaluation aspects.

Another note on the comparison between DPC and REDPC is that although

REDPC uses one more parameter than DPC does, which is the neighbourhood360

size N (they both use the distance cutoff parameter Cd), in practice, we spend

almost equally amount of effort in determining the best performing parameter

values for both methods. The reason is because for REDPC, we always fix the

value of Cd at 1% and tune N in an incremental manner. On the other hand, in

order to get DPC’s best clustering accuracy, we need to tune Cd with varying365

values. Therefore, in terms of conducting the experiments shown in this paper,

both methods require the tuning of only one parameter.

5. Conclusion

In this paper, we propose the Residual Error-based Density Peak Clustering

(REDPC) algorithm by using residual error computation to measure the local370

density within a neighbourhood region and further process the identified low-
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density data points. As such, REDPC may generate better decision graphs for

cluster centroid identifications and better identify the possible anomalies. The

experimental results on both synthetic and real-world UCI datasets demonstrate

that REDPC performs better than DPC and other algorithms.375

Going forward, we will improve REDPC for better autonomy in parameter

value determination and apply it to more complex and challenging datasets.
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