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Abstract

Problem definition: In each period of a planning horizon, an online retailer decides on how

much to replenish each product and how to allocate its inventory to fulfillment centers (FCs)

before demand is known. After the demand in the period is realized, the retailer decides on

which FCs to fulfill it. It is crucial to optimize the replenishment, allocation, and fulfillment

decisions jointly such that the expected total operating cost is minimized. The problem is

challenging because the replenishment-allocation is done in an anticipative manner under a

“push” strategy, but the fulfillment is executed in a reactive way under a “pull” strategy. We

propose a multi-period stochastic optimization model to delicately integrate the anticipative

replenishment-allocation decisions with the reactive fulfillment decisions such that they are

determined seamlessly as the demands are realized over time.

Academic/practical relevance: The aggressive expansion in e-commerce sales signifi-

cantly escalates online retailers’ operating costs. Our methodology helps boost their com-

petency in this cut-throat industry.

Methodology: We develop a two-phase approach based on robust optimization to solve the

problem. The first phase decides whether the products should be replenished in each period

(binary decisions). We fix these binary decisions in the second phase, where we determine

the replenishment, allocation, and fulfillment quantities.

Results: Numerical experiments suggest that our approach outperforms existing methods

from the literature in solution quality and computational time, and performs within 7% of

a benchmark with perfect information. A study using real data from a major fashion online

retailer in Asia suggests that the two-phase approach can potentially reduce the retailer’s

cumulative cost significantly.

Managerial implications: By decoupling the binary decisions from the continuous de-

cisions, our methodology can solve large problem instances (up to 1,200 products). The
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integration, robustness, and adaptability of the decisions under our approach create signifi-

cant values.

Keywords: online retailing; inventory management; allocation; order fulfillment; robust op-

timization

1 Introduction

Due to the rapid development of internet technology and mobile devices, more consumers opt

for online shopping. This results in a boom of online retail sales during the past decades.

According to eMarketer (2016), global e-commerce sales in 2016 grew at a rate of 23.7% and

reached $1.915 trillion, which accounts for 8.7% of the total retail sales. By 2020, e-commerce

sales will amount to $4.058 trillion, making up 14.6% of the total retail sales. The aggressive

expansion in sales not only makes online retailing a promising industry, but also significantly

escalates its operating cost (Kaplan, 2017).

This paper is motivated by a common challenge faced by an online retailer selling multiple

products to di↵erent demand zones over a multi-period horizon. The retailer replenishes the

products from di↵erent suppliers and stores the products at multiple fulfillment centers (FCs) to

satisfy demand. In each period, the retailer makes three types of decisions: (i) At the start of the

period, the retailer determines how much to replenish for each product from each supplier given

a lead time and a limited production capacity. (ii) The retailer then decides how to allocate the

inventory to the di↵erent FCs, given that each FC has a limited storage capacity and di↵erent

allocation and fulfillment costs. (iii) At the end of the period, the demands are realized and the

retailer decides on which FCs to fulfill the demands of each zone. In case a product is out of

stock, the retailer requests the product to be drop-shipped from suppliers to satisfy the demands

(for example, CleoCat Fashion in Singapore o↵ers drop-shipping services for fashion products).

The retailer’s objective is to minimize the expected total operating cost over the multi-period

horizon. We have learned of this problem through the interaction with our industrial partner,

which is a major fashion online retailer in Asia. The retailer serves the demands of six countries

(zones) through three FCs strategically located at di↵erent Asian cities.

In contrast to brick-and-mortar retailing, a distinct characteristic of online retailing is that

the retailer has the flexibility to satisfy the demands of a zone from any FC that holds the

inventory. This fulfillment flexibility improves service levels, but may also increase the retailer’s

outbound shipping cost, which is a main operating cost of online retailing (Dinlersoz and Li,

2006). The fulfillment flexibility further complicates the inventory allocation to the FCs and

the product replenishments from the suppliers. To address these issues in an e↵ective manner,

the retailer needs to optimize the replenishment, allocation, and fulfillment decisions jointly.

The problem is especially challenging because replenishment and allocation of inventory
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are typically done before the demand is known in each period. Thus, the replenishment and

allocation decisions are made in an anticipative manner. In contrast, the fulfillment decisions

are made in a reactive manner as order fulfillment for online retailing is usually performed

after the actual demand is realized in each period. In other words, an online retailer typically

adopts a “push” strategy for inventory replenishment-allocation and a “pull” strategy for order

fulfillment in each period. In this paper, we propose a multi-period stochastic optimization

model that delicately integrates the anticipative replenishment-allocation decisions with the

reactive fulfillment decisions to minimize the retailer’s expected total cost. These two kinds

of decisions (anticipative versus reactive) can be determined seamlessly by our model as the

uncertain demands are revealed over time.

We make contributions in three dimensions: constructing a stochastic optimization model,

proposing an e�cient and scalable solution approach, and obtaining technical insights that may

be useful for practitioners.

1. Model. To the best of our understanding, this is the first paper establishing a multi-period

stochastic optimization model that integrates the anticipative replenishment-allocation

decisions with the reactive fulfillment decisions. Note that this is typical for online retailing

where replenishment and allocation in each period are done before the demand in the

period is realized, but the fulfillment is performed after we know the actual demand. Our

paper fills a major gap in the online retailing literature in which all papers address the

replenishment, allocation, and fulfillment problems separately.

2. Solution approach. We propose a two-phase approach (TPA) based on robust optimiza-

tion to solve the multi-period stochastic optimization model with binary and continuous

decisions. In Phase 1 of the TPA, we solve a target-oriented robust optimization (TRO)

model to determine the binary replenishment decisions with a goal to absorb as much

demand uncertainty as possible. We fix these binary decisions in Phase 2, where our

objective is to minimize the worst-case expected total cost. We use a linear decision rule

(LDR) in Phase 2 to adapt the replenishment, allocation, and fulfillment quantities as the

demand uncertainty is revealed. The way that we decouple the binary decisions from the

continuous decisions is novel. We benchmark the TPA with several approaches from the

literature through numerical experiments. The results suggest that the TPA outperforms

most of these existing approaches by producing high-quality solutions and, more impor-

tantly, it is remarkably more scalable than all of these approaches. A further study based

on data from a major fashion online retailer in Asia suggests that the TPA can poten-

tially reduce the total cumulative cost of the company’s status quo policy by 30%. Our

paper is the first to propose an approximation scheme for solving large-scale multi-stage

mixed-integer adaptive robust optimization problems.
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3. Technical insights. We have the following technical insights on the TPA’s performance:

(i) Decoupling the binary decisions from the continuous decisions yields high-quality so-

lutions while preserving tractability. This decoupling allows the TPA to use a simple

decision rule in each phase: a static rule in Phase 1 and an LDR in Phase 2. This results

in tractable formulations. (ii) The integration, robustness, and adaptability of the TPA’s

decisions create significant values. Compared to a heuristic that decouples the replenish-

ment decisions from the other decisions, the TPA yields up to 27% savings. This shows

the benefit of integrating all the decisions. Benchmarking the TPA against a deterministic

and static policy based on mean demands shows that the TPA yields up to 17% savings,

demonstrating the benefit of the TPA’s robust and adaptive decisions. (iii) Solving the

TRO model in Phase 1 produces more e↵ective binary decisions. The TRO model accom-

modates as much demand uncertainty as possible when determining the binary decisions.

This yields a significantly lower average cost than an alternative two-phase approach that

solves a deterministic model using mean demands in Phase 1.

The paper is organized as follows. Section 2 reviews the related literature. Section 3 for-

mulates the problem with deterministic and stochastic demands. Section 4 describes the TPA

based on robust optimization. Section 5 conducts a series of numerical experiments to com-

pare the TPA with the benchmark approaches and discusses some technical insights. Section

6 examines the applicability and the performance of the TPA using the real data from our

industrial partner. Section 7 gives some concluding remarks. All proofs can be found in the

online supplement.

2 Literature review

The problem studied in this paper is related to (i) inventory rationing and allocation and (ii)

e-commerce fulfillment. Our methodology is related to research in multi-stage adaptive robust

optimization.

Inventory rationing and allocation

There is a large body of literature that studies inventory rationing and allocation in single-

depot, multi-warehouse (or multi-location) systems. The goal is to optimize inventory pooling

and then to allocate the central inventory to each warehouse facing random demand. Eppen and

Schrage (1981) use the classical multi-echelon, multi-period inventory model to solve this prob-

lem. Federgruen and Zipkin (1984) derive a dynamic programming model and systematically

approximate it by a single-location inventory problem. Erkip et al. (1990) further generalize

this problem to incorporate demand correlations across warehouses and over time. They derive
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a closed-form expression for the optimal safety stock as a function of the level of correlation

through time. Jackson and Muckstadt (2015) propose a robust optimization approach to solve a

similar problem and extend the inventory policy to incorporate an adaptive and non-anticipative

shipment policy.

Cattani and Souza (2002) study an inventory rationing policy for firms operating in a direct-

market channel. They show that rationing inventory can be beneficial for the channel under

certain conditions. Zhong et al. (2018) consider a manufacturer with a centralized inventory

pool that fulfills multiple e-distributors with service-level requirements. They derive necessary

and su�cient conditions for the minimum inventory level of the centralized pool, and develop an

anticipative allocation policy to satisfy the e-distributors’ service levels. Acimovic and Graves

(2017) study a phenomenon called demand spillover: A stockout at a fulfillment center leads to

demand spilling over to another fulfillment center. By taking possible demand spillover during

the replenishment lead time into consideration, they propose a heuristic to allocate inventory to

the fulfillment centers. Their simulation results suggest that the heuristic outperforms an online

retailer’s status quo policy, and captures over 90% of the possible improvement generated by a

pseudo-optimal policy.

In contrast to these papers, we consider a three-echelon online retailing network that con-

sists of multiple suppliers, FCs, and demand zones over multiple periods. We also incorporate

transportation costs from the suppliers to the FCs and then to the zones, which makes our

problem significantly harder to solve.

E-commerce fulfillment

The rapid growth of e-commerce has attracted substantial attention from researchers. See

Simchi-Levi et al. (2004) and Agatz et al. (2008) for a comprehensive review. Netessine and Rudi

(2006) study a drop-shipping arrangement for online retailers that is also considered in our paper.

They investigate the retailers’ optimal stocking decisions, and find that drop-shipping and dual

channels can be viable choices. Xu et al. (2009) study an e-commerce fulfillment problem, and

develop a heuristic to minimize the number of shipments by periodically reevaluating wait-to-

pick orders and making real-time reassignments. Their numerical results show that this heuristic

yields a 50% reduction in the number of split orders. Mahar and Wright (2009) also investigate

the benefits of assigning orders nonmyopically and postponing the assignment decisions. They

develop a quasi-dynamic assignment policy that reduces the fulfillment cost by as much as 23%

on average.

Acimovic and Graves (2015) study the problem of minimizing the total shipping cost. They

develop a heuristic that assigns orders to FCs based on the dual values of a transportation linear

program (LP). Their numerical results suggest that the heuristic yields a 1.07% improvement
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over the myopic policy based on real data from a global online retailer. Jasin and Sinha (2015)

develop two heuristics to solve a similar problem. The first heuristic is based on a deterministic

LP’s solution and the second heuristic improves the first one through a correlated rounding

scheme. They analytically and numerically show that the performance of the second heuristic

is very close to optimal.

Lei et al. (2018) study joint dynamic pricing and order fulfillment to maximize an online

retailer’s expected profit, and propose two heuristics to solve the problem. The first heuris-

tic uses the solution of a deterministic approximation as control parameters, and the second

heuristic improves the first one by adaptively adjusting the control parameters. They show

analytically and numerically that the second heuristic performs very close to a benchmark. In

addition, some papers study pricing policies for online retailers (Ferreira et al., 2016) and their

interactions with fulfillment-related decisions (Leng and Becerril-Arreola, 2010; Becerril-Arreola

et al., 2013; Gümüs et al., 2013). Our work di↵ers from the above papers by considering not

only the fulfillment decisions, but also the inventory replenishment and allocation decisions in

a single model.

Adaptive robust optimization

Robust optimization (RO) is an approach for solving optimization problems under uncertainty.

It uses only partial information of the uncertainty and yields tractable models (Bertsimas and

Sim, 2004; Ben-Tal et al., 2009; Bertsimas et al., 2011a). Moreover, the RO approach provides

an opportunity to satisfy some pre-specified goals (Chen and Sim, 2009; Lim and Wang, 2017).

Recently, adaptive robust optimization (ARO) has attracted considerable interests. The ARO

approach addresses multi-period problems where the recourse decisions are determined after

the uncertain parameters are revealed. To create tractable models, the ARO approach usually

assumes the decision variables as functions of the uncertain parameters. These functions are

also called decision rules. Many papers have developed decisions rules for the ARO problems

with continuous recourse decisions. These include the static rule (Bertsimas and Goyal, 2010;

Bertsimas et al., 2015; Lim and Wang, 2017), the linear decision rule (Ben-Tal et al., 2004; Chen

et al., 2008; Bertsimas et al., 2010; See and Sim, 2010; Kuhn et al., 2011; Ang et al., 2012), and

the nonlinear decision rule (Chen and Zhang, 2009; Goh and Sim, 2010; Bertsimas et al., 2011;

Georghiou et al., 2014). Applications of these decision rules include contract design (Ben-Tal et

al., 2005), revenue management (Adida and Perakis, 2006), inventory management (Bertsimas

and Thiele, 2006; See and Sim, 2010; Mamani et al., 2017; Lim and Wang, 2017), warehouse

operations (Ang et al., 2012), and vehicle routing (Gounaris et al., 2013).

Unfortunately, the above decision rules cannot be applied to binary recourse decisions, which

have received less attention in the literature. There are three streams of methodologies that han-
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dle the binary recourse decisions: (i) In a K-adaptability approach, a decision maker assumes

K second-stage decisions and implements the best of them after the uncertain parameters are

revealed. Hanasusanto et al. (2015) approximate a two-stage robust binary program with a K-

adaptability problem, and study the approximation quality and the computational complexity.

They point out that the K-adaptability approach does not readily extend to multi-stage ARO

problems. (ii) A binary decision rule (BDR) represents a binary decision as a function of trans-

lated uncertain parameters. Bertsimas and Caramanis (2007) restrict the binary decisions to

linear combinations of ceiling functions of uncertain parameters, and solve the resultant semi-

infinite optimization problem through constraint sampling. Bertsimas and Georghiou (2015)

restrict the binary recourse decisions to piecewise-constant functions of uncertain parameters,

and develop an iterative cutting-plane algorithm to solve the resultant semi-infinite program.

Bertsimas and Georghiou (2018) restrict binary recourse decisions to linear combinations of

translated Heaviside step functions of uncertain parameters, and construct a higher-dimensional

probability space using a lifting technology. They show that the resultant mixed-integer refor-

mulation scales polynomially and provides high-quality solutions. (iii) A finite adaptability (FA)

approach partitions an uncertainty set and assigns di↵erent recourse decisions to each partition.

Based on this idea, Bertsimas and Dunning (2016) and Postek and den Hertog (2016) propose

similar iterative partition-and-bound methods to approximate a fully adaptive solution. The

former uses a Voronoi diagram, whereas the latter uses a single separating hyperplane in each

iteration of partition. A linear decision rule for continuous recourse decisions can be incorpo-

rated into their methods. All the three approaches above determine the binary and continuous

recourse decisions simultaneously in a single model.

In this paper, we propose a two-phase approach based on RO to solve the joint replenishment,

allocation, and fulfillment problem for online retailing. The first phase of our approach uses a

static rule to determine the binary decisions, and the second phase uses a linear decision rule to

determine the continuous decisions. Our approach’s novelty is the way we decouple the binary

decisions from the continuous decisions, which exhibits a promising performance in producing

high-quality solutions while preserving tractability.

3 Problem formulation

Consider an online retailer selling products n = 1, . . . , N to customers in demand zones k =

1, . . . ,K. The retailer replenishes her inventory from suppliers i = 1, . . . , I and allocates the

inventory to FCs j = 1, . . . , J , where she retrieves the inventory to fulfill the demand of each

zone. If the retailer is out of stock for a certain product, the product is drop-shipped directly

from the suppliers to the customers. For notational convenience, we denote the drop-shipping

channel as FC J + 1, which incurs significantly higher production and transportation costs.
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We divide the planning horizon into periods t = 1, . . . , T . In each period t, the retailer

makes the following three decisions in the specified sequence: (1) At the start of period t, the

retailer determines the replenishment quantity for each product from each supplier (called the

replenishment decisions). (2) The retailer then chooses the FCs to store the product (called

the allocation decisions). (3) At the end of period t, the demand of each zone for each product

is realized, the retailer selects the FCs to retrieve the product to fulfill the demand (called the

fulfillment decisions). For convenience, define N = {1, . . . , N}, I = {1, . . . , I}, J = {1, . . . , J},

J + = {1, . . . , J + 1}, K = {1, . . . ,K}, T = {1, . . . , T}, and T + = {1, . . . , T + 1}.

3.1 Deterministic optimization model

We first consider a deterministic model in which all demand information throughout the entire

planning horizon is available at the start of period t = 1. Let yntj denote the on-hand inventory

level of product n in FC j at the start of period t, for n 2 N , j 2 J , t 2 T . Based on these

inventory levels, the retailer replenishes a quantity xnti of product n from supplier i at the start

of period t. This incurs a fixed setup cost Snt
i and a variable production cost pnti xnti , where

pnti is the corresponding unit production cost. Each supplier i has a production capacity x̄ti in

period t such that
P

n2N xnti  x̄ti, for i 2 I, t 2 T . We assume a constant lead time lni such

that a replenishment order for product n from supplier i placed at the start of period t � lni

will be received by the retailer at the start of period t. We assume the replenishment quantities
n
x
n,1�lni
i , . . . , xn0i

o
and the initial inventory levels yn1j , for n 2 N , i 2 I, j 2 J , are given at the

start of period t = 1.

Define vntij as a decision variable representing the quantity of product n from supplier i

allocated to FC j in period t, for n 2 N , i 2 I, j 2 J , t 2 T . This incurs an allocation

cost antij v
nt
ij , where antij is the corresponding unit allocation cost. Since all the received quantity

x
n,t�lni
i at the start of period t must be allocated to the FCs, we have

P
j2J vntij = x

n,t�lni
i , for

n 2 N , i 2 I, t 2 T . The total inventory of each FC j cannot exceed its storage capacity ȳj

such that
P

n2N

⇣
yntj +

P
i2I v

nt
ij

⌘
 ȳj , for j 2 J , t 2 T . Let dntk denote the realized demand

of zone k for product n in period t, for n 2 N , k 2 K, t 2 T . Define wnt
jk as a decision variable

representing the quantity of product n retrieved from FC j to fulfill the demand of zone k in

period t, for n 2 N , j 2 J +, k 2 K, t 2 T . This incurs a fulfillment cost fnt
jkw

nt
jk, where fnt

jk

is the corresponding unit fulfillment cost. Note that wnt
J+1,k is the drop-shipping quantity of

product n to fulfill the demand of zone k in period t and fnt
J+1,k is the corresponding unit drop-

shipping cost. We do not allow backlog or lost-sales of demands such that
P

j2J+ wnt
jk = dntk ,

for n 2 N , k 2 K, t 2 T , and yntj � 0, for n 2 N , j 2 J , t 2 T +.

After the demands are fulfilled, the inventory level of product n in FC j at the start of period

t+1 is yn,t+1

j = yntj +
P

i2I v
nt
ij �

P
k2K wnt

jk. Since the leftover inventory at the end of period t is
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carried over to period t+1, a holding cost hntj yn,t+1

j is incurred, where hntj is the corresponding

unit holding cost. Figure 1 illustrates the integration of anticipative replenishment-allocation

with reactive fulfillment for the online retailer. The objective is to minimize the online retailer’s

total cost over the planning horizon. We formulate the joint replenishment-allocation-fulfillment

(JRAF) problem as the following optimization model:

(PD) min
X

t2T

X

n2N

2

4
X

i2I

�
Snt
i �nti + pnti xnt

i

�
+
X

j2J
hnt
j yn,t+1

j +
X

i2I

X

j2J
antij v

nt
ij +

X

j2J+

X

k2K
fnt
jkw

nt
jk

3

5

s.t.
X

n2N
xnt
i  x̄t

i, i 2 I, t 2 T ; (1.1)

X

j2J
vntij = x

n,t�lni
i , n 2 N , i 2 I, t 2 T ; (1.2)

X

n2N

 
yntj +

X

i2I
vntij

!
 ȳj , j 2 J , t 2 T ; (1.3)

X

j2J+

wnt
jk = dntk , n 2 N , k 2 K, t 2 T ; (1.4)

yn,t+1

j = yntj +
X

i2I
vntij �

X

k2K
wnt

jk, n 2 N , j 2 J , t 2 T ; (1.5)

xnt
i � 0, n 2 N , i 2 I, t 2 T ; (1.6)

vntij � 0, n 2 N , i 2 I, j 2 J , t 2 T ; (1.7)

wnt
jk � 0, n 2 N , j 2 J +, k 2 K, t 2 T ; (1.8)

yntj � 0, n 2 N , j 2 J , t 2 T +; (1.9)

xnt
i  x̄t

i�
nt
i , �nti 2 {0, 1}, n 2 N , i 2 I, t 2 T . (1.10)

⁝ 

⁝ 

𝑤  

𝑑  

𝑤  

 

𝑦  

⁝ 

⁝ 

𝑦  

𝑦  

Fulfillment 
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decisions 
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decisions 

Online retailing channel Drop-shipping channel 

Figure 1: Integrating anticipative replenishment-allocation with reactive fulfillment for an
online retailer

The first term of the objective function is the total replenishment cost, the second term is

the total holding cost at the FCs, the third term is the total allocation cost to the FCs, and the

last term is the total fulfillment cost to the zones. We relax the integrality constraints on the
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decision variables xnti , yntj , vntij , and wnt
jk so that we have a tractable formulation. Problem PD is

always feasible because the retailer can always request drop-shipping if necessary (for example,

one feasible solution is xnti = vntij = wnt
jk = 0, for n 2 N , i 2 I, j 2 J , k 2 K, t 2 T , and

wnt
J+1,k = dntk , for n 2 N , k 2 K, t 2 T ).

3.2 Stochastic optimization model

We now generalize Problem PD to model a more practical situation with uncertain demands.

Let d̃ntk denote the random demand of zone k for product n in period t with mean d̂ntk , for

n 2 N , k 2 K, t 2 T . Let dntk be the realization of d̃ntk at the end of period t. For convenience,

let d̃nt
k =

⇣
d̃n1k , . . . , d̃ntk

⌘
denote a collection of demands of zone k for product n from period 1

to period t. Let d̃
t =

⇣
d̃
1t
1
, . . . , d̃Nt

1
, . . . , d̃1t

K , . . . , d̃Nt
K

⌘
denote a collection of all the demands

from period 1 to period t, and let d̃ = d̃
T . Let dt be the realization of d̃t and let d = d

T .

In practice, we make the replenishment, allocation, and fulfillment decisions after observing

some historical demands. We define the following adjustable decision variables: (1) xnti

⇣
d̃
t�1

⌘

represents the quantity of product n ordered from supplier i at the start of period t after

d̃
t�1 is realized. �nti

⇣
d̃
t�1

⌘
represents a binary variable that equals 1 if xnti

⇣
d̃
t�1

⌘
> 0,

and equals 0 otherwise. (2) vntij

⇣
d̃
t�1

⌘
represents the quantity of product n from supplier

i allocated to FC j at the start of period t after d̃
t�1 is realized. (3) wnt

jk

⇣
d̃
t
⌘

represents

the quantity of product n retrieved from FC j to fulfill the demand of zone k at the end

of period t after d̃
t is realized. Note that xnti

⇣
d̃
t�1

⌘
, �nti

⇣
d̃
t�1

⌘
, and vntij

⇣
d̃
t�1

⌘
are antic-

ipative decisions because they are determined before we know the demands in period t, and

wnt
jk

⇣
d̃
t
⌘

is a reactive decision as it is determined after the demands in period t are real-

ized. For notational convenience, let x

⇣
d̃

⌘
=

⇣
xnti

⇣
d̃
t�1

⌘
, 8n 2 N , i 2 I, t 2 T

⌘
denote a

collection of the replenishment decisions over the planning horizon. Similarly, let �
⇣
d̃

⌘
=

⇣
�nti

⇣
d̃
t�1

⌘
, 8n 2 N , i 2 I, t 2 T

⌘
, v

⇣
d̃

⌘
=

⇣
vntij

⇣
d̃
t�1

⌘
, 8n 2 N , i 2 I, j 2 J , t 2 T

⌘
, and

w

⇣
d̃

⌘
=

⇣
wnt
jk

⇣
d̃
t
⌘
, 8n 2 N , j 2 J +, k 2 K, t 2 T

⌘
. We summarize the notation of the de-

terministic and stochastic models in Table 1.

Given d, the retailer’s total cost over the planning horizon is given by

 (� (d) ,x (d) ,v (d) ,w (d)) =
X

t2T

X

n2N

X

i2I

�
Snt
i �nti

�
d
t�1

�
+ pnti xnt

i

�
d
t�1

��

| {z }
total replenishment cost

+
X

t2T

X

n2N

X

j2J
hnt
j yn,t+1

j

�
d
t
�

| {z }
total holding cost

+
X

t2T

X

n2N

X

i2I

X

j2J
antij v

nt
ij

�
d
t�1

�

| {z }
total allocation cost

+
X

t2T

X

n2N

X

j2J+

X

k2K
fnt
jkw

nt
jk

�
d
t
�

| {z }
total fulfillment cost

.
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Table 1: Notation

Sets and parameters

N : {1, . . . , N}, set of products
I: {1, . . . , I}, set of suppliers
J : {1, . . . , J}, set of FCs
K: {1, . . . ,K}, set of demand zones
T : {1, . . . , T}, set of periods
lni : replenishment lead time of product n from supplier i
x̄t
i: production capacity of supplier i in period t

ȳj : storage capacity of FC j
Snt
i : fixed setup cost for replenishing product n from supplier i in period t

pnti : unit production cost for replenishing product n from supplier i in period t
hnt
j : unit holding cost for product n in FC j from period t to period t+ 1

antij : unit allocation cost for product n from supplier i to FC j in period t
fnt
jk : unit fulfillment cost for product n from FC j to zone k in period t

Notation of the determinisitic model

dntk : demand realization of zone k for product n in period t
d
nt
k : collection of demand realizations of zone k for product n from period 1 to period t,

d
nt
k =

�
dn1k , . . . , dntk

�

d
t: collection of demand realizations for all products from period 1 to period t,

d
t =

�
d
1t
1
, . . . ,dNt

1
, . . . ,d1t

K , . . . ,dNt
K

�

xnt
i : replenishment quantity for product n from supplier i in period t

�nti : binary replenishment decision for product n from supplier i in period t, �nti 2 {0, 1}
vntij : allocation quantity for product n from supplier i to FC j in period t
wnt

jk: fulfillment quantity for product n from FC j to zone k in period t
yntj : on-hand inventory level of product n in FC j at the start of period t

Notation of the stochastic model

d̃ntk : demand of zone k for product n in period t
d̃
nt
k : collection of demands of zone k for product n from period 1 to period t,

d̃
nt
k =

⇣
d̃n1k , . . . , d̃ntk

⌘

d̃
t: collection of demands for all products from period 1 to period t,

d̃
t =

⇣
d̃
1t
1
, . . . , d̃Nt

1
, . . . , d̃1t

K , . . . , d̃Nt
K

⌘

xnt
i

⇣
d̃
t�1

⌘
: adjustable replenishment quantity for product n from supplier i in period t

�nti

⇣
d̃
t�1

⌘
: adjustable binary replenishment decision for product n from supplier i in period t

vntij

⇣
d̃
t�1

⌘
: adjustable allocation quantity for product n from supplier i to FC j in period t

wnt
jk

⇣
d̃
t
⌘
: adjustable fulfillment quantity for product n from FC j to zone k in period t

yntj

⇣
d̃
t�1

⌘
: adjustable on-hand inventory level of product n in FC j at the start of period t

11



We minimize the expected total cost by solving the following stochastic optimization model:

(PS) min Ed̃

h
 
⇣
�
⇣
d̃

⌘
,x

⇣
d̃

⌘
,v

⇣
d̃

⌘
,w

⇣
d̃

⌘⌘i

s.t.
X

n2N
xnt
i

⇣
d̃
t�1

⌘
 x̄t

i, i 2 I, t 2 T ; (2.1)

X

j2J
vntij

⇣
d̃
t�1

⌘
= x

n,t�lni
i

⇣
d̃
t�lni �1

⌘
, n 2 N , i 2 I, t 2 T ; (2.2)

X

n2N

 
yntj

⇣
d̃
t�1

⌘
+
X

i2I
vntij

⇣
d̃
t�1

⌘!
 ȳj , j 2 J , t 2 T ; (2.3)

X

j2J+

wnt
jk

⇣
d̃
t
⌘
= d̃ntk , n 2 N , k 2 K, t 2 T ; (2.4)

yn,t+1

j

⇣
d̃
t
⌘
= yntj

⇣
d̃
t�1

⌘
+
X

i2I
vntij

⇣
d̃
t�1

⌘
�
X

k2K
wnt

jk

⇣
d̃
t
⌘
, n 2 N , j 2 J , t 2 T ; (2.5)

xnt
i

⇣
d̃
t�1

⌘
� 0, xnt

i

⇣
d̃
t�1

⌘
2 Rt�1, n 2 N , i 2 I, t 2 T ; (2.6)

vntij

⇣
d̃
t�1

⌘
� 0, vntij

⇣
d̃
t�1

⌘
2 Rt�1, n 2 N , i 2 I, j 2 J , t 2 T ; (2.7)

wnt
jk

⇣
d̃
t
⌘
� 0, wnt

jk

⇣
d̃
t
⌘
2 Rt, n 2 N , j 2 J +, k 2 K, t 2 T ; (2.8)

yntj

⇣
d̃
t�1

⌘
� 0, yntj

⇣
d̃
t�1

⌘
2 Rt�1, n 2 N , j 2 J , t 2 T +; (2.9)

xnt
i

⇣
d̃
t�1

⌘
 x̄t

i�
nt
i

⇣
d̃
t�1

⌘
, �nti

⇣
d̃
t�1

⌘
2 Bt�1, n 2 N , i 2 I, t 2 T ; (2.10)

where R⌧ and B⌧ are sets of all functions mapping RN⇥K⇥⌧ to R and {0, 1}, respectively,

for any period ⌧ . The constraints in Problem PS must be satisfied essentially for all demand

realizations. Note that yn1j

⇣
d̃
0

⌘
= yn1j is given, for n 2 N , j 2 J . By solving Problem PS, we

obtain replenishment, allocation, and fulfillment decisions that minimize the retailer’s expected

total cost.

Problem PS is a multi-period mixed-integer stochastic optimization problem that is generally

intractable in practice. In particular, the adjustable binary decisions �
⇣
d̃

⌘
significantly increase

the computational complexity. Unfortunately, the widely used decision rules with continuous

recourse decisions in ARO cannot be applied to Problem PS directly. For example, the linear

rule, which represents the decisions as a�ne functions of uncertain parameters, cannot be applied

to Problem PS because the binary variables �
⇣
d̃

⌘
cannot be represented by a�ne functions of

uncertain parameters. The static rule, which fixes the decisions as the demands unfold over time,

does not work for Problem PS because the fulfillment quantities may not match the random

demands (that is, Constraint (2.4) may not be satisfied, for some n, k, and t). Furthermore, we

will demonstrate in our numerical experiments that the existing methods (BDR and FA) that

handle binary recourse decisions do not scale for large problem instances. This motivates us to

develop an e�cient computational method to solve Problem PS.
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4 A two-phase approach based on robust optimization

We develop a two-phase approach (TPA) based on robust optimization to solve Problem PS. In

Phase 1 of our approach, we solve a target-oriented robust optimization (TRO) model to deter-

mine the binary replenishment decisions �⇤ with a goal to absorb as much demand uncertainty

as possible. We fix these binary decisions in Phase 2, where our objective is to minimize the

worst-case expected total cost. We use a linear decision rule (LDR) in Phase 2 to determine the

continuous replenishment, allocation, and fulfillment quantities as the uncertainty is revealed.

Phase 1 requires solving a mixed-integer linear program, whereas Phase 2 requires solving a

linear program. Our idea is to decouple the binary decisions from the continuous decisions.

Note that we only require the means and the support sets of the demands in this approach,

which allows us to handle demand-distribution ambiguity. As will be evidenced by our numeri-

cal experiments, the TPA produces high-quality solutions with acceptable computational time

for realistic problem instances.

We assume that the demand d̃ntk of zone k for product n in period t falls in a support set
⇥
dntk , d̄ntk

⇤
with mean d̂ntk . We define the uncertainty set for each d̃ntk asDnt

k =
�
dntk |dntk  dntk  d̄ntk

 
,

n 2 N , k 2 K, t 2 T . Define D
t = (Dn⌧

k , n 2 N , k 2 K, ⌧ = 1, . . . , t) and D = D
T .

4.1 Phase 1: Determining binary replenishment decisions

The goal of Phase 1 is to determine the binary decisions �⇤ by solving Problem PS using the TRO

approach. For each uncertain demand d̃ntk , we define an adjustable uncertainty set as Dnt
k (�) :=

n
dntk

���d̂ntk � �zntk  dntk  d̂ntk + �z̄ntk

o
, where zntk = d̂ntk � dntk , z̄ntk = d̄ntk � d̂ntk , and � 2 [0, 1] is

called the uncertainty set parameter. For convenience, define D
nt
k (�) =

�
Dn1

k (�), . . . , Dnt
k (�)

�
,

D
t(�) =

�
D

1t
1
(�), . . . ,DNt

1
(�), . . . ,D1t

K(�), . . . ,DNt
K (�)

�
, and D(�) = D

T (�).

We introduce a cost target �, which is a pre-specified budget that the retailer can spend on

her replenishment, allocation, and fulfillment operations for the entire planning horizon. Our

goal is to find a solution for the JRAF problem that maximizes the sizes of all the adjustable

uncertainty sets, subject to a constraint that all demand realizations from these sets will yield a

total cost no more than �. We can achieve this by solving the following optimization problem:

(PTRO) �⇤ = max �

s.t.  (� (d) ,x (d) ,v (d) ,w (d))  �, 8d 2 D(�);

Constraints (2.1)–(2.10), 8dt 2 D
t(�);

0  �  1.

The above is called the TRO model of the JRAF problem. The first constraint represents the

cost-target constraint. The remaining constraints correspond to the constraints in Problem

PS. The TRO model finds a solution that maximizes the sizes of all the adjustable uncertainty

sets such that all demand realizations from these sets will result in a total cost no larger than

13



the pre-specified cost target (budget) �. Instead of minimizing the total cost, the TRO model

absorbs as much demand uncertainty as possible so long as the cost target is met.

Theorem 1 of Lim and Wang (2017) shows that a static rule can be optimal if we can identify

a worst-case scenario of uncertainty. Unfortunately, the theorem does not apply to Problem

PTRO. A static rule may not be feasible for Problem PTRO because of the equality constraint

(2.4):
P

j2J+ wnt
jk

⇣
d̃

⌘
= d̃ntk . Note that the left-hand side of the constraint under a static rule

will be a constant, which generally does not equal a random demand on the right-hand side.

We can overcome this issue by solving the following relaxed problem:

�0 = max � (3)

s.t.  (� (d) ,x (d) ,v (d) ,w (d))  �, 8d 2 D(�);

P
j2J+

wnt
jk (d

t) � dntk , n 2 N , k 2 K, t 2 T , 8dt 2 D
t(�);

Constraints (2.1)–(2.3), (2.5)–(2.10), 8dt 2 D
t(�);

0  �  1;

where the second constraint relaxes Constraint (2.4) to an inequality, which leads to �0 � �⇤.

We will show that a static rule (� (d) ,x (d) ,v (d) ,w (d)) = (�,x,v,w) is optimal for

Problem (3), where � =
�
�nti , 8n 2 N , i 2 I, t 2 T

�
, x =

�
xnti , 8n 2 N , i 2 I, t 2 T

�
, v =

⇣
vntij , 8n 2 N , i 2 I, j 2 J , t 2 T

⌘
, and w =

⇣
wnt
jk, 8n 2 N , j 2 J +, k 2 K, t 2 T

⌘
. Thus, we

do not need to consider other complicated decision rules to solve Problem (3). To show this,

we use a vector ⇡ (d) to represent all the decision variables in Problem (3) and let ⇧ denote

the feasible ranges of these variables. Recall that d =
�
dntk , 8n 2 N , k 2 K, t 2 T

 
represents a

collection of uncertain variables and D(�) represents the adjustable uncertainty sets of d given

�. We rewrite Problem (3) in the following general form:

�0 = max � (4)

s.t. A (d)⇡ (d)  b (d) , 8d 2 D(�);

F (d)⇡ (d) = g (d) , 8d 2 D(�);

⇡ (d) 2 ⇧, 8d 2 D(�);

where A (d), b (d), F (d), and g (d) contain both deterministic and uncertain coe�cients. For

simplicity, we assume the cost target � and the capacities x̄ti and ȳj are su�ciently large that

Problem (3) and its generalized version, Problem (4) are all feasible. The equality constraints

F (d)⇡ (d) = g (d) , 8d 2 D(�) in the above TRO model require a di↵erent way of handling

compared to the inequality constraints A (d)⇡ (d)  b (d) , 8d 2 D(�) when we construct a

robust counterpart optimization model. This makes the problem more complicated to handle.

We consider a static rule ⇡ (d) = ⇡ that can be obtained by solving the following problem:

�s = max � (5)
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s.t. A (d)⇡  b (d) , 8d 2 D(�);

F (d)⇡ = g (d) , 8d 2 D(�);

⇡ 2 ⇧.

We emphasize that Problem (5) may not be feasible because the static rule ⇡ may not satisfy

the constraints for all d 2 D(�). However, we can ensure the feasibility of Problem (5) if we

can identify a worst-case scenario of uncertainty defined as follows.

Definition 1. (Worst-case scenario of uncertainty) Given � and the coe�cients A (d),

b (d), F (d), and g (d), an element d̆(�) 2 D(�) is called a worst-case scenario of uncertainty

if for each ⇡ 2 ⇧ that satisfies A

⇣
d̆(�)

⌘
⇡  b

⇣
d̆(�)

⌘
and F

⇣
d̆(�)

⌘
⇡ = g

⇣
d̆(�)

⌘
, it also

satisfies A (d)⇡  b (d) and F (d)⇡ = g (d), for any d 2 D(�).

To identify a worst-case scenario of uncertainty for Problem (3), for any �, we consider

the upper bound d̂ntk + �z̄ntk of the adjustable uncertainty set Dnt
k (�). Let d̆(�) = (d̂ntk + �z̄ntk ,

8n 2 N , k 2 K, t 2 T ). Suppose the static rule ⇡ = (�,x,v,w) satisfies the constraints of

Problem (3) under the scenario d̆(�). Specifically, we have
P

j2J+ wnt
jk � d̂ntk + �z̄ntk , for n 2 N ,

k 2 K, t 2 T . Now, we show that the static rule ⇡ is also feasible for Problem (3) under any

scenario d 2 D(�). Since
P

j2J+ wnt
jk � d̂ntk +�z̄ntk � dntk , for dntk 2 Dnt

k (�), n 2 N , k 2 K, t 2 T ,

the static rule ⇡ satisfies the second constraint of Problem (3). The static rule ⇡ also satisfies the

other constraints of Problem (3) because all their coe�cients are independent of the demands.

According to Definition 1, given any �, d̆(�) =
⇣
d̂ntk + �z̄ntk , 8n 2 N , k 2 K, t 2 T

⌘
is a worst-

case scenario of uncertainty for Problem (3).

Definition 1 implies that for a given �, a static rule ⇡ that is feasible for Problem (5) under

a worst-case scenario of uncertainty is also feasible for any other scenario d 2 D(�). This leads

to the following lemma.

Lemma 1. If there exists a worst-case scenario of uncertainty d̆(�) 2 D(�) for Problem (5)

for some � 2 [0, 1], then Problem (5) is feasible.

The following theorem shows that an optimal solution of Problem (5) is also optimal for

Problem (4). That is, a static rule is optimal for Problem (4).

Theorem 1. (Optimality of a static rule) If there exists a worst-case scenario of uncertainty

d̆(�) 2 D(�) for Problem (5) for any � 2 [0, 1], then a static rule ⇡† is optimal for Problem (4),

where ⇡† represents an optimal solution of the following deterministic optimization problem:

�† = max � (6)

s.t. A

⇣
d̆(�)

⌘
⇡  b

⇣
d̆(�)

⌘
;

F

⇣
d̆(�)

⌘
⇡ = g

⇣
d̆(�)

⌘
;

⇡ 2 ⇧;

and �0 = �s = �†.
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Theorem 1 is important because for any given � 2 [0, 1], if Problem (4) has a worst-case scenario

of uncertainty, then the problem can be solved by just considering a static rule and the worst-

case scenario of uncertainty for the given �.

We now discuss how to solve Problem (3), which is a relaxed TRO model of the JRAF

problem. Recall that we assume Problem (3) is feasible. According to Theorem 1, to solve

Problem (3), we just need to consider a static rule ⇡ and the worst-case scenario of uncertainty

d̆(�) for any �. Thus, an optimal solution of Problem (3) can be obtained by solving the

following mixed-integer program:

(Pstatic) �† = max �

s.t.
X

t2T

X

n2N

2

4
X

i2I

�
Snt
i �nti + pnti xnt

i

�
+
X

i2I

X

j2J
antij v

nt
ij +

X

j2J+

X

k2K
fnt
jkw

nt
jk +

X

j2J
hnt
j yn,t+1

j

3

5  �;

X

j2J+

wnt
jk � d̂ntk + �z̄ntk , n 2 N , k 2 K, t 2 T ;

Constraints (1.1)–(1.3), (1.5)–(1.10);

0  �  1.

Define a target coe�cient ↵ = ⇢(1)��
⇢(1)�⇢(0) , where ⇢(�), � = 0, 1, is determined as follows:

⇢(�) = min
X

t2T

X

n2N

2

4
X

i2I

�
Snt
i �nti + pnti xnt

i

�
+
X

i2I

X

j2J
antij v

nt
ij +

X

j2J+

X

k2K
fnt
jkw

nt
jk +

X

j2J
hnt
j yn,t+1

j

3

5 (7)

s.t.
X

j2J+

wnt
jk � d̂ntk + �z̄ntk , n 2 N , k 2 K, t 2 T ;

Constraints (1.1)–(1.3), (1.5)–(1.10).

We first choose ↵ 2 [0, 1] and find the cost target � = ↵⇢(0) + (1� ↵)⇢(1). By solving Problem

Pstatic, we obtain the binary decisions �⇤ that are optimal for Problem (3). We then pass �⇤ to

the second phase to find the replenishment, allocation, and fulfillment quantities.

4.2 Phase 2: Determining replenishment, allocation, and fulfillment quanti-

ties

Our goal in the second phase is to determine the replenishment, allocation, and fulfillment

quantities. We define a mean support set for each d̃ntk as D̂nt
k =

n
d̂ntk |dntk  d̂ntk  d̄ntk

o
, n 2

N , k 2 K, t 2 T . For convenience, define D̂ =
⇣
D̂n⌧

k , n 2 N , k 2 K, ⌧ 2 T
⌘
. We define F as

a set of distributions of d̃ such that, for any distribution P 2 F , EP

h
d̃

i
2 D̂. Since the

distributions of the uncertain demands are generally unknown, we formulate Problem PS as a

robust optimization problem that minimizes the worst-case expected total cost over a family

of distributions (Gilboa and Schmeidler, 1989). Fixing the binary decisions �, we find the

replenishment, allocation, and fulfillment quantities by solving the following robust optimization

problem in Phase 2:

16



(Probust) min max
P2F

EP

2

4
X

t2T

X

n2N

0

@
X

i2I
pnti xnt

i

⇣
d̃
t�1

⌘
+
X

j2J
hnt
j yn,t+1

j

⇣
d̃
t
⌘
+

X

i2I

X

j2J
antij v

nt
ij

⇣
d̃
t�1

⌘
+

X

j2J+

X

k2K
fnt
jkw

nt
jk

⇣
d̃
t
⌘
1

A

3

5

s.t. Constraints (2.1)–(2.9), 8dt 2 D
t;

xnt
i

�
d
t�1

�
 x̄t

i�
nt
i , n 2 N , i 2 I, t 2 T , 8dt�1 2 D

t�1.

Note that the fixed binary variables � in the last constraint are given by Phase 1.

Given the fixed �, we solve Problem Probust using a linear decision rule. Specifically, we

restrict the feasible space of the adjustable continuous variables to admit the following linear

decision rule:

xnt
i

⇣
d̃
t�1

⌘
= xnt,0

i +
X

k02K

t�1X

⌧=1

xnt,k0⌧
i d̃n⌧k0 , n 2 N , i 2 I, t 2 T ,

vntij

⇣
d̃
t�1

⌘
= vnt,0ij +

X

k02K

t�1X

⌧=1

vnt,k
0⌧

ij d̃n⌧k0 , n 2 N , i 2 I, j 2 J , t 2 T ,

wnt
jk

⇣
d̃
t
⌘
= wnt,0

jk +
X

k02K

tX

⌧=1

wnt,k0⌧
jk d̃n⌧k0 , n 2 N , j 2 J +, k 2 K, t 2 T .

(8)

Given the coe�cients xnt,0i , vnt,0ij , wnt,0
jk , xnt,k

0⌧
i , vnt,k

0⌧
ij , and wnt,k0⌧

jk , the decisions xnti

⇣
d̃
t�1

⌘
,

vntij

⇣
d̃
t�1

⌘
, and wnt

jk

⇣
d̃
t
⌘

can be determined as d̃
t unfolds. Note that these decisions only

respond to the demands associated with all the zones for product n, and are independent of the

other products. Furthermore, we restrict the feasible space of yntj

⇣
d̃
t�1

⌘
to admit the following

linear decision rule: yntj

⇣
d̃
t�1

⌘
= ynt,0j +

P
k02K

Pt�1

⌧=1
ynt,k

0⌧
j d̃n⌧k0 , n 2 N , j 2 J , t 2 T +.

Theorem 2. Given �, the optimal coe�cients of the linear decision rule (8) can be obtained by

solving the following robust optimization problem:

(PLDR) min
X

t2T

X

n2N

2

4
X

i2I
pnti

 
xnt,0
i +

X

k02K

t�1X

⌧=1

xnt,k0⌧
i d̂n⌧k0

!
+
X

i2I

X

j2J
antij

 
vnt,0ij +

X

k02K

t�1X

⌧=1

vnt,k
0⌧

ij d̂n⌧k0

!

+
X

j2J+

X

k2K
fnt
jk

 
wnt,0

jk +
X

k02K

tX

⌧=1

wnt,k0⌧
jk d̂n⌧k0

!
+
X

j2J
hnt
j

 
yn,t+1,0
j +

X

k02K

tX

⌧=1

yn,t+1,k0⌧
j d̂n⌧k0

!3

5

s.t.
X

n2N

 
xnt,0
i +

X

k02K

t�1X

⌧=1

xnt,k0⌧
i dn⌧k0

!
 x̄t

i, i 2 I, t 2 T , 8dt�1 2 D
t�1;

X

j2J
vnt,0ij = x

n,t�lni ,0
i , n 2 N , i 2 I, t 2 T ;

X

j2J
vnt,k

0⌧
ij =

8
><

>:

x
n,t�lni ,k

0⌧
i , if ⌧ = 1, . . . , t� lni � 1,

0, if ⌧ = t� lni , . . . , t� 1,
n 2 N , i 2 I, t 2 T , k0 2 K;
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X

n2N

"
ynt,0j +

X

i2I
vnt,0ij +

X

k02K

t�1X

⌧=1

 
ynt,k

0⌧
j +

X

i2I
vnt,k

0⌧
ij

!
dn⌧k0

#
 ȳj , j 2 J , t 2 T , 8dt�1 2 D

t�1;

X

j2J+

wnt,0
jk = 0, n 2 N , k 2 K, t 2 T ;

X

j2J+

wnt,k0⌧
jk =

8
><

>:

1, if k0 = k and ⌧ = t

0, otherwise
, n 2 N , k 2 K, t 2 T , k0 2 K, ⌧ = 1, . . . , t;

yn,t+1,0
j = ynt,0j +

X

i2I
vnt,0ij �

X

k2K
wnt,0

jk , n 2 N , j 2 J , t 2 T ;

yn,t+1,k0⌧
j = ynt,k

0⌧
j +

X

i2I
vnt,k

0⌧
ij �

X

k2K
wnt,k0⌧

jk , n 2 N , j 2 J , t 2 T , k0 2 K, ⌧ = 1, . . . , t� 1;

yn,t+1,k0t
j +

X

k2K
wnt,k0t

jk = 0, n 2 N , j 2 J , t 2 T , k0 2 K;

xnt,0
i +

X

k02K

t�1X

⌧=1

xnt,k0⌧
i dn⌧k0 � 0, n 2 N , i 2 I, t 2 T , 8dt�1 2 D

t�1;

vnt,0ij +
X

k02K

t�1X

⌧=1

vnt,k
0⌧

ij dn⌧k0 � 0, n 2 N , i 2 I, j 2 J , t 2 T , 8dt�1 2 D
t�1;

wnt,0
jk +

X

k02K

tX

⌧=1

wnt,k0⌧
jk dn⌧k0 � 0, n 2 N , j 2 J +, k 2 K, t 2 T , 8dt 2 D

t;

ynt,0j +
X

k02K

t�1X

⌧=1

ynt,k
0⌧

j dn⌧k0 � 0, n 2 N , j 2 J , t 2 T +, 8dt�1 2 D
t�1;

xnt,0
i +

X

k02K

t�1X

⌧=1

xnt,k0⌧
i dn⌧k0  x̄t

i�
nt
i , n 2 N , i 2 I, t 2 T , 8dt�1 2 D

t�1;

xnt,0
i , xnt,k0⌧

i 2 R, n 2 N , i 2 I, t 2 T , k0 2 K, ⌧ = 1, . . . , t� 1;

vnt,0ij , vnt,k
0⌧

ij 2 R, n 2 N , i 2 I, j 2 J , t 2 T , k0 2 K, ⌧ = 1, . . . , t� 1;

wnt,0
jk , wnt,k0⌧

jk 2 R, n 2 N , j 2 J +, k 2 K, t 2 T , k0 2 K, ⌧ = 1, . . . , t;

ynt,0j , ynt,k
0⌧

j 2 R, n 2 N , j 2 J , t 2 T +, k0 2 K, ⌧ = 1, . . . , t� 1.

Note that we express the robust optimization formulation PLDR in terms of demand real-

izations dn⌧k0 . Some constraints of Problem PLDR must hold for all dt 2 D
t. We can transform

these constraints into deterministic linear constraints using the duality theory (Ben-Tal et al.,

2009). Then, Problem PLDR is reduced to a linear program.

Figure 2 summarizes the framework of the TPA, which combines the advantages of the

static rule and the linear decision rule. The two phases complement each other to overcome

their limitations. The static rule in Phase 1 allows us to determine the binary decisions (which

are often challenging for the linear decision rule). The linear decision rule in Phase 2 can handle

the equality constraints with uncertain parameters (which the static rule cannot handle).
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Phase 1

1. Convert Problem PS to Problem PTRO. Re-

lax Constraint (2.4) of Problem PTRO to in-

equality and obtain Problem (3).

2. Consider the static rule and the worst-case

scenario of uncertainty, reduce Problem (3)

to Problem Pstatic.

3. Choose a target coe�cient ↵ and obtain a

cost target �, solve Problem Pstatic and ob-

tain the binary decisions �⇤
.

�⇤

)

Phase 2

1. Given �⇤
, convert Problem PS to Problem

Probust. Consider the LDR, convert Problem

Probust to Problem PLDR.

2. Solve Problem PLDR and obtain the coe�-

cients of the LDR in Equations (8).

3. Determine the replenishment, allocation,

and fulfillment quantities as the uncertain

demands unfold according to Equations (8).

Figure 2: Framework of the two-phase approach (TPA)

5 Numerical experiments and technical insights

In this section, we conduct a series of numerical experiments to compare the TPA with other

approaches. Section 5.1 benchmarks the TPA against the existing methods in the literature that

handle binary decisions. Section 5.2 tests the TPA’s performance on larger problem instances.

Section 5.3 summarizes some technical insights from the numerical experiments.

For each policy in the experiments, we first solve the corresponding model to get its decisions,

and then conduct simulations to compute its average cost. We round any non-integral xnti ,

vntij , and wnt
jk to the nearest integers. If the rounded solution does not match the number of

replenished (demanded) units, then we allocate (fulfill) any additional units to (from) the nearest

available FC. For example, if the realized demand of a zone for a product is 55 but the rounded

solution is to fulfill 54 units from FC 1 and 0 from the other FCs, then we fulfill 1 more unit from

the nearest FC that has stock. We benchmark all the policies against the expected value given

perfect information(EV |PI). We first solve Problem PD using each sample’s realized demands,

and then compute EV |PI as the average cost over all the samples. Define the e�ciency gap

of a policy with average cost P as (P � EV |PI) /EV |PI ⇥ 100%. Unless stated otherwise, we

test each policy’s performance under three demand distributions: Beta(⌘, ⌘), ⌘ = 0.3, 1, 4 in the

simulations. We set CPLEX’s integrality gap tolerance to 1%.

5.1 Comparing with existing approaches

Since the TPA decouples the binary decisions from the continuous decisions, we first exam-

ine the benefits of this decoupling in terms of solution quality and computational tractability.

Specifically, we benchmark the TPA against four approaches from the literature that determine

the binary and continuous decisions simultaneously in a single model: (i) The BDR by Bert-

simas and Georghiou (2018) that handles binary recourse decisions. (ii) The FA approach by

Bertsimas and Dunning (2016) that partitions the uncertainty set and assigns di↵erent (binary
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and continuous) recourse decisions to each partition. (iii) An FAB approach that applies the

FA approach only on the binary decisions, and solves for the continuous decisions as linear de-

cision rules for the entire uncertainty set. The FAB approach reduces the model size as it treats

only the binary variables as finitely adaptable. (iv) The nonadaptive binary decision (NBD)

approach by See and Sim (2010) that restricts the binary decisions to static binary variables.

Our numerical experiments on small problem instances suggest that the TPA outperforms

the BDR, FA, and FAB approaches in terms of average cost and computational time. The

BDR, FA, and FAB approaches cannot even solve a small instance with N = 3, I = J = K = 2,

and T = 10 within 4 hours. In contrast, the TPA obtains a solution with a lower average cost

within about 1 second for all the problem instances examined by us. This suggests a promising

advantage of the TPA in both solution quality and computational tractability. Our results also

suggest that the TPA’s average cost is very close to that of the NBD approach, which determines

both the binary and continuous decisions simultaneously. Online Supplement B shows that the

NBD approach is also not scalable. Furthermore, the TPA yields a smaller standard deviation

of costs compared to the NBD approach.

5.2 Performance of the TPA on larger problem instances

We further evaluate the TPA on larger instances. Given that the BDR, FA, and NBD approaches

become intractable as the problem size increases, we compare the TPA with two other heuristics:

(i) A decomposition approach (DCA) that decouples the replenishment decisions from the other

decisions. Online Supplement F describes the details of the DCA. (ii) A determinisitic (DET)

approach that solves Problem PD using the mean demands and implements the resultant static

policy. We consider five di↵erent supply chains shown in column 2 of Table 2. To choose the best

target coe�cient for the TPA, we first conduct a sensitivity analysis on ↵ in Online Supplement

B. As suggested by this analysis, we set ↵ = 0.7 for the TPA. Based on a similar analysis,

we choose ↵ = 0.1 for the DCA. We set the CPLEX’s time limit for solving a mixed-integer

program to 4 hours (14,400 seconds).

Columns 4–5, 6–7, and 8–9 of Table 2 show the average cost and e�ciency gap of the TPA,

DCA, and DET policies respectively. The last column shows the EV |PI. The results suggest

that the TPA significantly outperforms the other policies, with an e�ciency gap less than 7%.

The subscript of each average cost in Table 2 represents the standard deviation of costs over

the 500 samples. The TPA consistently gives a smaller standard deviation than the DCA and
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Table 2: Performance of each policy for larger-size instances

Beta(⌘, ⌘)
�
N

��I, J,K
�

Time TPA DCA DET EV |PI
(s) Cost Gap Cost Gap Cost Gap (⇥106

)

(⇥106
) (%) (⇥106

) (%) (⇥106
) (%)

⌘ = 0.3 (1, 200|2, 5, 5) 19,573 28.41(0.017) 6.20 36.64(0.048) 36.98 34.41(0.199) 28.64 26.75(0.022)
(900|3, 6, 8) 13,270 30.27(0.018) 4.59 40.36(0.079) 39.42 36.05(0.223) 24.56 28.95(0.021)
(500|4, 7, 10) 17,546 19.29(0.015) 3.11 25.87(0.060) 38.22 23.05(0.181) 23.19 18.71(0.016)
(200|5, 10, 15) 11,984 10.29(0.009) 4.24 14.03(0.048) 42.13 12.05(0.142) 22.04 9.872(0.011)
(100|6, 15, 20) 22,928 6.270(0.006) 4.88 8.656(0.044) 44.79 7.248(0.115) 21.23 5.978(0.008)

⌘ = 1 (1, 200|2, 5, 5) 19,573 28.41(0.013) 6.20 36.39(0.039) 36.02 32.45(0.152) 21.30 26.75(0.017)
(900|3, 6, 8) 13,270 30.27(0.013) 4.59 40.27(0.061) 39.11 34.21(0.162) 18.20 28.95(0.016)
(500|4, 7, 10) 17,546 19.29(0.010) 3.11 25.79(0.047) 37.82 21.93(0.136) 17.17 18.71(0.012)
(200|5, 10, 15) 11,984 10.29(0.007) 4.25 14.01(0.040) 41.89 11.48(0.107) 16.34 9.872(0.008)
(100|6, 15, 20) 22,928 6.270(0.005) 4.89 8.647(0.034) 44.64 6.929(0.092) 15.91 5.978(0.007)

⌘ = 4 (1, 200|2, 5, 5) 19,573 28.41(0.008) 6.20 36.29(0.023) 35.67 30.05(0.088) 12.33 26.75(0.009)
(900|3, 6, 8) 13,270 30.27(0.008) 4.59 40.23(0.034) 38.98 31.99(0.092) 10.51 28.95(0.009)
(500|4, 7, 10) 17,546 19.29(0.006) 3.11 25.77(0.025) 37.71 20.56(0.078) 9.89 18.71(0.007)
(200|5, 10, 15) 11,984 10.29(0.004) 4.25 14.00(0.024) 41.81 10.80(0.061) 9.45 9.871(0.005)
(100|6, 15, 20) 22,928 6.270(0.003) 4.85 8.644(0.020) 44.55 6.527(0.052) 9.16 5.978(0.005)

DET policies, which suggests that the TPA’s cost is less variable under demand ambiguity. One

advantage of the TPA is that it adjusts the replenishment quantities as the demands unfold.

In contrast, the other two policies fix the replenishment quantities at the start of the planning

horizon. Column 3 of Table 2 shows that the TPA’s computation time has an average value of

about 4 hours and a highest value of about 6 hours on a desktop computer. This is acceptable

for making a weekly plan, which demonstrates the applicability of the TPA in practice.
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Figure 3: Cumulative costs, e�ciency gaps, and cost components

Figure 3 compares the policies for N = 1, 200, I = 2, and J = K = 5 under the distribution

Beta(0.3, 0.3). Figure 3(a) shows that the TPA’s cumulative cost is consistently lower than

that of the other policies from period 2 onwards (with the cost savings increases with time) and

maintains very close to EV |PI. Figure 3(b) shows that the TPA’s e�ciency gap decreases over

time to about 7%, and is significantly lower than that of the other policies. Figure 3(c) examines

the components of each policy’s average cost. The TPA does not require any drop-shipping,
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whereas the other two policies result in large drop-shipping costs. This is the main driver for

the TPA to outperform the other two policies because they all yield comparable results for the

other components. Note that the TPA’s performance is close to the EV |PI in every component.

Experiments based on other instances with various unit drop-shipping costs fnt
J+1,k in Online

Supplement C show similar results.

5.3 Key technical insights from the numerical experiments

We have obtained the following technical insights that may be useful for practitioners from the

numerical experiments.

(i) Decoupling the binary decisions from the continuous decisions yields high-

quality solutions while preserving tractability. Given any set of binary replenishment

decisions, there exists a set of continuous decisions so that the problem is feasible. This special

problem structure prompts us to design the TPA to first determine the binary variables in Phase

1 and then solve for the continuous variables in Phase 2 with the binary variables fixed. This

decoupling allows the TPA to use a simple decision rule in each phase: a static rule in Phase

1 and an LDR in Phase 2. This yields tractable formulations and makes the TPA significantly

more scalable than the existing approaches (see Sections 5.1–5.2 and Online Supplement B).

Compared with the BDR, FA, and FAB approaches, the TPA produces a lower average cost.

(ii) The integration, robustness, and adaptability of the decisions create signif-

icant values. Compared to the DCA, which decouples the replenishment decisions from the

other decisions, the TPA yields a significantly lower average cost (up to 27% savings) and a

smaller standard deviation of costs (see Table 2). This shows the benefits of integrating all the

decisions. Benchmarking the TPA against the DET policy also shows that the TPA results in

a significantly lower average cost (up to 17% savings) and a smaller standard deviation of costs

(see Table 2). Online Supplement C rea�rms that the TPA consistently outperforms the DET

policy under various drop-shipping costs. Furthermore, as the drop-shipping costs increase, the

superiority of the TPA over the DET policy becomes more significant. The TPA’s average

cost is very robust and remains within 8% of the EV |PI for various drop-shipping costs. This

demonstrates the values of the robustness and adaptability of the decisions under the TPA.

(iii) Solving the TRO model in Phase 1 produces more e↵ective binary decisions.

The TRO model in Phase 1 of our approach absorbs as much demand uncertainty as possible

so long as a pre-specified cost target is met. Online Supplement D demonstrates that the TPA
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yields significant cost savings over an alternative two-phase approach that solves the determin-

istic Problem PD using the mean demands in Phase 1. This shows the value of solving the TRO

model in Phase 1, which produces more e↵ective binary decisions. We find that the cost savings

is especially large when the binary replenishment decisions are crucial. This happens when

the demands are so small that frequent replenishments are not necessary and the decisions on

which periods to replenish become more important. Online Supplement E further shows that

the TPA’s performance is especially sensitive to the target coe�cient ↵ in this situation. Online

Supplement H provides some guidance on the choice of ↵. We acknowledge that more research

is needed to develop a deeper understanding of why the TPA performs well.

6 Numerical study using real data from an online retailer

To demonstrate the applicability of the TPA, we perform a numerical study using data from

a major fashion online retailer in Asia. The retailer sells her products to six countries (or

regions): Hong Kong (HK), Indonesia (ID), Malaysia (MY), the Philippines (PH), Singapore

(SG), and Taiwan (TW). Each country (or region) corresponds to a zone in our model. The

retailer operates three FCs, one each in Jakarta (ID), Kuala Lumpur (MY), and Manila (PH).

Thus, we have J = 3 and K = 6. Currently, the retailer adopts a dedicated strategy with the

Jakarta FC serves the ID zone, the Kuala Lumpur FC serves the HK, MY, SG, and TW zones,

and the Manila FC serves the PH zone. When a designated FC is out of stock, the demand of

a zone is fulfilled by drop-shipping.

The retailer sells approximately 10,168 di↵erent products. We have collected a set of daily

sales data for six months, ranging from January 1 to June 30, 2017 (total 181 days). The

data set contains the actual demand of each zone for each product in each day. The retailer

replenishes these products from a single supplier with multiple production facilities located in

Guangzhou, China. Since the supplier can seek help from neighboring production facilities, we

assume the production capacity is unlimited.

Figure 4(a) sorts the 10,168 products according to their total sales (demands) of all the

zones and days. We remove the scale of the total sales on the Y-axis for confidentiality reasons.

The first 1,000 and 3,000 products account for about 40% and 80%, respectively, of the total

sales of all the products. Figure 4(b) shows the total sales of each zone over the six months.

For computational tractability, we focus on the first 1,000 products for this study.

The values of Snt
i , pnti , and hntj fall in the ranges [18.04, 209.92], [1.65, 20.44], and [0.13, 1.86]
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Figure 4: Total sales (demands) of the products and the zones

respectively. Online Supplement G.1 lists the unit shipping costs used in this study. The unit

drop-shipping cost, which falls in the range [40.68, 442.11], consists of two components: the unit

drop-shipping production cost and the unit shipping cost from Guangzhou to the corresponding

zone. We set each period as a day in our model. The replenishment lead time for each product

varies from 3 to 5 days. We set the length of the planning horizon T = 7.

Since the data does not show a strong demand correlation across the products, we assume

that the demand for each product is independent of the other products. However, the au-

tocorrelation of the daily demands for each product suggests a strong correlation across the

periods. Thus, we estimate the mean demand d̂ntk using a moving average method by setting

d̂ntk as the average of the actual demands of zone k for product n from period t� 14 to period

t � 8. To find the demands’ support sets, let �nt
k denote the standard deviation of the actual

demands of zone k for product n from period t � 14 to period t � 8. We assume dntk falls in
h
max

n
0, d̂ntk � 3�nt

k

o
, d̂ntk + 3�nt

k

i
. Figures 5(a) and (b) show the forecast means and the upper

bounds of the total demands of zones HK and SG, respectively, for the 1,000 products (the

lower bounds are almost 0). The scale of the total daily demand on the Y-axis is removed for

confidentiality reasons.

We compare the TPA, DCA, and DET policies based on the retailer’s data. We use the

data of weeks 1–2 to forecast the demands’ means and bounds for week 3. We compute the

decisions under the three policies and then evaluate them using the actual demands in week 3.

We compute the policies’ cumulative costs using a rolling-horizon principle: Given the updated

FCs’ inventory levels at the end of week 3, we use the data of weeks 2–3 to forecast the demands’

means and bounds for week 4. We compute the policies and evaluate them for week 4. This

procedure repeats for every subsequent week.
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Figure 5: Demand forecast for the 1,000 products over days

We also study the retailer’s status quo single-replenishment (SQS) policy. Under this policy,

the retailer places only a single replenishment and allocates the inventory to the FCs at the

start of week 3. The retailer only performs fulfillment for the remaining 23 weeks based on their

current dedicated-fulfillment network structure. To optimize the SQS policy, we determine the

replenishment and allocation decisions by solving Problem PD for a single period using the

forecast aggregate demand of each zone for each product over the 23 weeks. Given each FC’s

allocated inventory at the start of week 3, we then perform fulfillment. We also consider a

status quo multi-replenishment (SQM) policy, which is the TPA applied to the retailer’s current

dedicated-fulfillment network structure. The SQS and SQM policies are computed and evaluated

based on the same rolling-horizon principle.

6.1 Comparing various policies

We choose ↵ = 0.1 and 0.6 for the TPA and the DCA, respectively, based on a preliminary

study in Online Supplement G.2. We compare the performance of the TPA, DCA, DET, SQS,

and SQM policies for N = 100 to 1, 000 using the retailer’s data in Online Supplement G.3.

The results suggest that the TPA consistently outperforms all the other policies.

We analyze the results for N = 1, 000 as an illustration. Figure 6(a) shows that the cumu-

lative cost of the TPA is consistently lower than that of all the other policies over the 23 weeks.

The performance gaps between the TPA and the other policies generally become larger over

time, suggesting that the TPA yields substantial cost savings in the long run. In contrast, the

DET policy has the worst cumulative performance. Figure 6(b) compares the cost components

of the di↵erent policies over the 23 weeks. Since the actual demands can be larger than the

forecast demand upper bounds, the TPA requires drop-shipping in some periods.
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Figure 6: Performance of the di↵erent policies based on the retailer’s data with N = 1, 000

Table 3 compares the daily costs of all the policies (except the SQS policy). The second

column suggests that the TPA yields a significantly lower average daily cost than the other

policies. Columns 3–5 show that the TPA results in the lowest 75%, 80%, and 85% quantiles of

the daily cost among all the policies. The reduction by the TPA in the average daily cost yields

substantial cost savings in the long run as shown in Figure 6. We further compare the TPA with

the DET policy for N = 50, 100, 150, and 200 in two rolling manners: rolling every week and

rolling every day. Table 4 shows each policy’s cumulative cost and total computational time over

23 weeks. The TPA consistently outperforms the DET policy in terms of the cumulative cost.

Note that the TPA rolled every week (column 3) even outperforms the DET policy rolled every

day (column 6) with a comparable computational time. Although the DET policy performs

substantially better as we change from rolling weekly to rolling daily, the TPA is still preferable

to simply updating the DET policy very frequently because of certain limitations in practice

(for example, in many cases, the replenishment decisions cannot be updated too frequently).

Table 3: Daily costs of di↵erent policies
(⇥104)

Avg. 75% 80% 85%
quantile quantile quantile

DET 21.12 27.32 33.77 38.65

DCA 18.40 21.11 22.58 23.47

SQM 12.82 14.85 16.63 18.27

TPA 11.57 13.41 14.71 16.85

Table 4: Comparing the TPA with the DET
policy

Rolling weekly Rolling daily
N Performance TPA DET TPA DET
50 Cost(⇥10

4
) 184.61 372.66 164.85 218.40

Total time(s) 1,360 18 8,068 1,730

100 Cost(⇥10
4
) 333.90 678.57 294.14 386.94

Total time(s) 4,295 49 416,723 3,257

150 Cost(⇥10
4
) 445.49 922.98 385.36 537.44

Total time(s) 8,964 68 480,518 8,808

200 Cost(⇥10
4
) 531.53 1,126.7 522.70 660.13

Total time(s) 14,650 282 513,807 10,959

6.2 The values of multiple replenishments and flexible fulfillment

We next investigate the values of multiple replenishments and flexible fulfillment. The retailer’s

current practice is to replenish only twice a year (once for six months), and each FC serves only a
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subset of the zones. By comparing the SQS and SQM policies in Figure 6(a), we see a significant

value of multiple replenishments through a flexible production schedule. The total cost savings

by the SQM policy over the SQS policy for the 23 weeks is $6,051,310 (22.67% savings). The

value of flexible fulfillment can be assessed by comparing the TPA with the SQM policy. The

cost savings of the TPA over the SQM policy reaches $2,012,640 (9.75% savings). Furthermore,

the cost savings of the TPA over the SQS policy (a proxy of the current practice) is $8,063,950

(30.21% savings). The online retailer is gradually making their replenishment schedule and

fulfillment structure more flexible. The above findings represent the potential values of multiple

replenishments and flexible fulfillment. Comparing the cost components of the TPA and the

SQS policy in Figure 6(b), we find that the SQS policy results in a significantly higher holding

cost but a lower drop-shipping cost because of its single replenishment at the start of week 3.

7 Conclusion

We consider an online retailer selling multiple products to di↵erent geographical zones over

a multi-period horizon. The retailer replenishes inventory from multiple suppliers and fulfills

demand through di↵erent FCs. The retailer makes three types of decisions in each period: (i) At

the start of the period, the retailer decides on the replenishment quantities. (ii) The retailer then

decides how to allocate the inventory to the di↵erent FCs. (iii) After the demands are realized at

the end of the period, the retailer decides on which FCs to fulfill the demands. If a product is out

of stock, the retailer requests drop-shipping to satisfy the demands. The objective is to minimize

the expected total cost over the selling horizon. To improve the service levels, the retailer can

flexibly satisfy the demands from any FCs with the inventory. This fulfillment flexibility may

increase the retailer’s outbound shipping cost, and complicates the replenishments and allocation

of inventory to the FCs. Thus, it is crucial to optimize the three types of decisions jointly. The

problem is especially challenging because the replenishment-allocation is done in an anticipative

manner under a “push” strategy, but the fulfillment is executed in a reactive way under a “pull”

strategy. We propose a multi-period stochastic optimization model that delicately integrates

the anticipative replenishment-allocation decisions with the reactive fulfillment decisions such

that they can be determined seamlessly as the uncertain demands are revealed over time.

We propose a two-phase approach (TPA) based on robust optimization to solve the multi-

period stochastic optimization model with binary and continuous decisions. The novelty of our

approach is the way we decouple the binary decisions from the continuous decisions. In Phase
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1, we determine the binary replenishment decisions with a goal to absorb as much demand

uncertainty as possible so long as a pre-specified cost target is met. We fix these binary decisions

in Phase 2, where our objective is to minimize the worst-case expected total cost. We use an

LDR in Phase 2 to adapt the replenishment, allocation, and fulfillment quantities as the demands

are realized over time. Our numerical experiments suggest that the TPA outperforms the BDR,

FA, and FAB approaches, which are specifically designed to handle binary recourse decisions,

in solution quality. The TPA also scales remarkably better than the existing approaches (the

BDR, FA, FAB, and NBD approaches) in the literature. Despite using very limited demand

information, the TPA’s average cost is very close to a benchmark with perfect information

(< 7% gap). A study based on data from a major fashion online retailer in Asia suggests that

the TPA significantly outperforms the DCA and the DET policies, and can potentially reduce

the total cumulative cost of the retailer’s status quo policy by 30%.

We have obtained the following technical insights that may be useful for practitioners:

(i) Given any set of binary replenishment decisions, there exists a set of continuous decisions

so that the problem is feasible. This special problem structure prompts us to design the TPA

to first determine the binary variables in Phase 1 and then solve for the continuous variables in

Phase 2 with the binary variables fixed. Decoupling the binary decisions from the continuous

decisions allows the TPA to use a simple decision rule in each phase: a static rule in Phase 1

and an LDR in Phase 2. This results in tractable formulations and high-quality solutions.

(ii) The integration, robustness, and adaptability of the TPA’s decisions create significant

values. The TPA yields up to 27% savings over the DCA policy, demonstrating the benefit of

integrating all the decisions. The TPA also generates up to 17% savings compared to the DET

policy. The TPA consistently outperforms the DET policy under various drop-shipping costs.

Furthermore, as the drop-shipping costs increase, the superiority of the TPA over the DET

policy becomes more significant. The TPA’s average cost is very robust and remains within 8%

of the EV |PI for various drop-shipping costs. This demonstrates the values of the robustness

and adaptability of the decisions under the TPA.

(iii) Solving the TRO model in Phase 1 of our approach produces more e↵ective binary

decisions. The TRO model accommodates as much demand uncertainty as possible when deter-

mining the binary decisions. This yields a significantly lower average cost than an alternative

two-phase approach that solves a deterministic model using the mean demands in Phase 1.

The cost savings is especially large when the binary replenishment decisions are crucial. This
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happens when the demands are so small that frequent replenishments are not necessary and the

decisions on which periods to replenish become more important. We also find that the TPA’s

performance is especially sensitive to the target coe�cient ↵ in this situation. We emphasize

that the selection of ↵ requires experimentation and it must be done judiciously to avoid the

TPA from being too conservative. We acknowledge that more research is needed to develop a

deeper understanding of why the TPA performs well.

The TPA assumes that the demand uncertainty sets are represented as a hypercube. Using

demands generated from ellipsoid uncertainty sets, our numerical simulations suggest that the

TPA is very robust and consistently produces low average costs. We have also developed the

TPA by assuming that the demand uncertainty sets are represented as an ellipsoid. The re-

sultant approach requires a longer computational time on average, and produces average costs

comparable to that of the TPA based on hypercube uncertainty sets. Generalizing the TPA to

other types of uncertainty sets may extend its applicability to other problems. However, this

likely leads to nonlinear constraints, which generally make the resultant model more di�cult to

solve. We leave this for future research.
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Gümüs, M., S. Li, W. Oh, S. Ray. 2013. Shipping fees or shipping free? A tale of two price partitioning
strategies in online retailing. Prod. Oper. Manag. 22(4) 758–776.

Hanasusanto G.A., D. Kuhn, W. Wiesemann. 2015. K-adaptability in two-stage robust binary program-
ming. Oper. Res. 63(4) 877–891.

Jackson, P., J. Muckstadt. 2015. Multi-period stock allocation via robust optimization. Working paper,
Cornell University.

Jasin, S., A. Sinha. 2015. An LP-based correlated rounding scheme for multi-item ecommerce order
fulfillment. Oper. Res. 63(6) 1336–1351.

Kaplan, D.A. 2017. The real cost of e-commerce logistics. Supply Chain Dive. https://www.
supplychaindive.com/news/amazon-effect-logistics-cost-delivery/444138/.

Kuhn, D., W. Wiesemann, A. Georghiou. 2011. Primal and dual linear decision rules in stochastic and
robust optimization. Math. Prog. 130(1) 177–209.

Lei, Y., S. Jasin, A. Sinha. 2018. Joint dynamic pricing and order fulfillment for e-commerce retailers.
Manuf. Serv. Oper. Manag. 20(2) 269–284.

Leng, M., R. Becerril-Arreola. 2010. Joint pricing and contingent free-shipping decisions in B2C trans-
actions. Prod. Oper. Manag. 19(4) 390–405.

Lim, Y.F., C. Wang. 2017. Inventory management based on target-oriented robust optimization. Man-
agement Sci. 63(12) 4409–4427.

31



Mahar, S., P.D. Wright. 2009. The value of postponing online fulfillment decisions in multi-channel
retail/e-tail organizations. Comput. Oper. Res. 36(11) 3061–3072.

Mamani, H., S. Nassiri, M.R. Wagner. 2017. Closed-form solutions for robust inventory management.
Management Sci. 63(5) 1625–1643.

Netessine, S., N. Rudi. 2006. Supply chain choice on the internet. Management Sci. 52(6) 844–864.

Postek K., D. den Hertog. 2016. Multistage adjustable robust mixed-integer optimization via iterative
splitting of the uncertainty set. INFORMS Journal of Computing 28(3) 553–574.

See, C.T., M. Sim. 2010. Robust approximation to multiperiod inventory management. Oper. Res. 58(3)
583–594.

Simchi-Levi, D., S.D. Wu, Z.J.M. Shen. 2004. Handbook of quantitative supply chain analysis: modeling
in the e-business era. Kluwer, Dordrecht, Netherlands.

Xu, P.J., R. Allgor, S.C. Graves. 2009. Benefits of reevaluating real-time order fulfillment decisions.
Manuf. Serv. Oper. Manag. 11(2) 340–355.

Zhong, Y., Z. Zheng, M.C. Chou, C.-P. Teo. 2018. Resource pooling and allocation policies to deliver

di↵erentiated service. Management Sci. 64(4) 1555–1573.

32



Online Supplement

A Proofs

A.1 Proof of Theorem 1

Since there exists a worst-case scenario of uncertainty d̆(�) 2 D(�) for Problem (5) for any � 2 [0, 1],
Lemma 1 implies that Problem (5) is feasible. The rest of the proof is similar to that of Lim and Wang
(2017). First, we have �s  �0 because �s is obtained under a static rule. Then, we have
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The first inequality above is due to the definition of the worst-case scenario of uncertainty, and the last
inequality is due to d̆(�) 2 D(�). Since the static rule ⇡† is optimal for Problem (6) under the worst-case
scenario of uncertainty, it is also feasible for Problem (4). Moreover, ⇡† yields the optimal objective �0,
thus the static rule is optimal for Problem (4).

A.2 Proof of Theorem 2

Applying the LDR in (8) to the objective function of Problem PS, we have
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The equivalence holds because the set Dt�1 is full dimensional. Following a similar procedure, we apply
the LDR in (8) to the other constraints and obtain Problem PLDR.

B Comparing the TPA with the NBD approach

We consider five di↵erent supply chains shown in column 1 of Table A1 and set T = 7. The values of
Snt
i , pnti , hnt

j , antij , and fnt
jk are generated randomly from the ranges [60, 80], [2, 8], [0.4, 1], [1, 10], and

[2, 15], respectively. The unit drop-shipping cost is fnt
J+1,k = 200, for n 2 N , k 2 K, t 2 T . We assume

each demand d̃ntk falls in [40, 60] with mean 50 and follows a Beta(1, 1) distribution in the simulations.
We try ↵ = 0.1, . . . , 0.9 for the TPA and set the time limit of CPLEX to 4 hours (14,400 seconds). Table
A1 shows the average cost, the standard deviation of costs, the e�ciency gap, and the computational
time of each policy. The lowest cost of the TPA for each instance is marked with an asterisk.

Table A1: Comparing the TPA with the NBD approach

(N, I, J,K) NBD TPA
↵ = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(100, 2, 5, 5)
Cost(⇥10

4
) 228.97 229.56 229.60 229.48 229.41 229.32 229.47 229.28⇤ 229.60 229.44

Std(⇥10
4
) (0.405) (0.401) (0.401) (0.402) (0.401) (0.402) (0.404) (0.403) (0.403) (0.403)

Gap(%) 3.121 3.387 3.405 3.349 3.319 3.277 3.347 3.260 3.406 3.333

Time(s) 14,400 170 263 191 641 442 484 352 542 563

(60, 3, 6, 8)
Cost(⇥10

4
) 216.32 217.39 217.41 217.40 217.25⇤ 217.30 217.32 217.29 217.36 217.46

Std(⇥10
4
) (0.406) (0.376) (0.377) (0.377) (0.377) (0.375) (0.375) (0.376) (0.374) (0.373)

Gap(%) 3.582 4.096 4.104 4.101 4.028 4.051 4.063 4.050 4.082 4.127

Time(s) 14,400 209 240 233 235 486 628 707 528 524

(40, 4, 7, 10)
Cost(⇥10

4
) 171.99 171.83 171.81 171.83 171.82 171.80 171.79 171.76⇤ 171.79 171.79

Std(⇥10
4
) (0.333) (0.318) (0.318) (0.317) (0.317) (0.317) (0.318) (0.317) (0.317) (0.317)

Gap(%) 3.911 3.813 3.803 3.812 3.806 3.793 3.789 3.773 3.791 3.788

Time(s) 14,400 264 274 269 277 349 350 425 419 372

(20, 5, 10, 15)
Cost(⇥10

4
) 103.80 104.34 104.21 104.28 104.22 104.12 104.32 104.06⇤ 104.08 104.11

Std(⇥10
4
) (0.230) (0.211) (0.211) (0.211) (0.212) (0.212) (0.210) (0.213) (0.213) (0.212)

Gap(%) 4.566 5.117 4.987 5.050 4.994 4.893 5.092 4.832 4.853 4.885

Time(s) 14,400 402 434 409 415 645 615 477 621 630

(10, 6, 15, 20)
Cost(⇥10

4
) 1,400 64.72 64.71 64.87 64.90 64.72 64.71 64.62⇤ 64.69 64.69

Std(⇥10
4
) (4.736) (0.181) (0.181) (0.178) (0.177) (0.181) (0.181) (0.183) (0.181) (0.181)

Gap(%) 2.156 4.265 4.247 4.511 4.556 4.263 4.254 4.111 4.227 4.216

Time(s) 14,400 780 671 726 946 750 690 1,163 987 881

The results suggest that the TPA’s average cost is very close to (or, in some cases, even lower than)
that of the NBD approach. The standard deviation of costs under the TPA is consistently lower than that
of the NBD approach. This suggests that the TPA produces more stabilized costs without significantly
sacrificing the solution quality. More importantly, the NBD approach cannot find an optimal solution
within 4 hours for all the instances, whereas the TPA obtains a solution within 20 minutes.

To improve the NBD approach’s tractability, we have tried a sparser linear decision rule and warm-
starting with the binary decisions from the TRO solution. Both methods do not improve its tractability.

C Impact of the drop-shipping costs

In this section, we study the performance of the TPA by varying the unit drop-shipping costs. For each
product n, we first set a minimum drop-shipping cost fn, which is independent of the zones and the
periods. Specifically, we set fn as the sum of the minimum setup cost, the minimum unit production
cost, the minimum unit allocation cost, and the minimum unit fulfillment cost for product n. This
ensures that drop-shipping is at least as costly as fulfilling the demand through the online retailer’s own
network. Note that if the drop-shipping costs for product n fall below fn, for all n, then the problem may
become trivial as the retailer may be better o↵ by simply requesting drop-shipping without replenishing
any inventory.

To assess the impact of the drop-shipping costs on the TPA’s performance, for each product n, we
set the drop-shipping cost fnt

J+1,k = fn + �, where � = 0, 50, 100, 200, 300, for all t, k. The values
of Snt

i , pnti , hnt
j , antij , and fnt

jk fall in the ranges [60, 80], [4, 10], [0.04, 0.1], [2, 5], and [2.4, 6] respectively.

We assume each demand d̃ntk falls in [40, 60] with mean 50 and follows a Beta(1, 1) distribution in the
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simulations. We consider ↵ = 0.1, . . . , 0.9, and choose the best ↵ for the TPA. We use the DET policy
as a benchmark. Table A2 shows the various costs (in 103) and the e�ciency gaps of the two policies for
di↵erent values of �.

Table A2: Comparing the TPA and DET policies for various magnitudes of drop-shipping costs

(N, I, J,K) � Replenishment Holding Drop-shipping Total Cost(⇥10
3) Gap(%)

TPA DET TPA DET TPA DET TPA DET TPA DET

(100, 2, 5, 5) 0 825.41 795.47 34.12 8.21 0 206.35 1,387.79 1,512.61 7.15 16.79

50 826.03 793.49 33.26 8.84 0 350.82 1,386.55 1,656.68 7.06 27.92

100 826.01 791.07 34.20 8.48 0 498.74 1,387.47 1,804.02 7.13 39.29

200 824.74 793.64 33.87 8.92 0 788.31 1,387.35 2094.19 7.12 61.70

300 825.41 793.64 33.46 8.92 0 1,079.69 1,386.43 2,385.58 7.05 84.20

(60, 3, 6, 8) 0 696.10 663.84 29.14 5.45 0 74.19 1,288.88 1,303.08 5.79 6.96

50 697.09 677.73 29.61 5.14 0 262.84 1,290.81 1,497.42 5.83 22.76

100 696.45 677.73 29.60 5.14 0 373.53 1,290.29 1,608.11 5.78 31.84

200 697.47 677.73 29.40 5.14 0 594.90 1,291.06 1,829.48 5.85 49.99

300 696.85 677.73 29.28 5.14 0 816.28 1,290.02 2,050.86 5.76 68.14

(40, 4, 7, 10) 0 518.56 505.56 20.11 4.52 0 110.11 1,003.33 1,079.05 4.39 12.27

50 517.42 505.92 20.39 4.46 0 190.75 1,002.71 1,159.81 4.33 20.67

100 518.77 505.92 20.36 4.46 0 271.79 1,003.23 1,240.86 4.38 29.11

200 518.70 505.92 20.10 4.46 0 433.89 1,002.97 1,402.95 4.36 45.97

300 517.88 505.92 20.19 4.46 0 595.98 1,002.93 1,565.04 4.35 62.84

It is clear that as the drop-shipping costs increase (� increases), the DET policy’s performance drops
(its e�ciency gap increases). In contrast, the TPA’s performance is very robust with its e�ciency gap
remaining within 8% as � increases. For example, the gap for the TPA is about 4.4% for all � in the
third problem instance, but the gap for the DET policy increases from 12.27% to 62.84% as � increases
from 0 to 300. The TPA is superior because in Phase 1 it calibrates the replenishment decisions more
carefully according to the drop-shipping costs. Thereafter, it fine-tunes the allocation and fulfillment
decisions in Phase 2. Table A2 shows that the TPA incurs larger replenishment and holding costs, but
a smaller drop-shipping cost than the DET policy. This is because the TPA replenishes more products
by considering the worst-case demand scenario. As the drop-shipping costs increase, the superiority of
the TPA over the DET policy becomes more significant.

D Benefits of solving the TRO model in Phase 1

We examine the benefits of solving the TRO model in Phase 1 for the TPA. We compare the TPA
with an alternative two-phase approach (called DTPA) that solves a deterministic model with the mean
demands in Phase 1. We consider an instance with N = 50, I = 3, J = 8, K = 10, T = 7, and three
support sets of demands: [0, 20] with mean 10, [0, 60] with mean 30, and [0, 100] with mean 50. We
compare the TPA with the DTPA under two settings: (i) A single horizon, where we randomly generate
500 demand samples and compute each policy’s average cost. (ii) A rolling horizon over 20 weeks, where
we randomly generate a single demand sample and compute each policy’s cumulative cost. The ranges
of the cost parameters are identical to that of Section 5.1. Table A3 lists the results for the distribution
Beta(4, 4) (the results for the other demand distributions are similar). For the single horizon, we report
each policy’s average cost and its computational time. For the rolling horizon, we report each policy’s
cumulative cost and its average computational time per week. We try ↵ = 0.1, . . . , 0.9 for the TPA. The
lowest cost of the TPA for each setting is marked with an asterisk. The second-to-last column of Table
A3 shows the DTPA’s results. The last column represents the percentage of cost savings by the TPA
(using the best ↵) over the DTPA.

Table A3 shows that for the single horizon, the smallest TPA’s average cost (marked with an asterisk)
is consistently lower than that of the DTPA. The cost savings by solving the TRO model in Phase 1
becomes even more significant in the rolling horizon setting, where the TPA yields a substantially lower
cumulative cost (up to 38% savings) for all the cases. This suggests that the TPA is able to sustain
significant cost savings over the DTPA in the long run. Furthermore, the cost savings is especially large
when the binary replenishment decisions are crucial (this happens when the demands are so small, with
the support set [0, 20], that frequent replenishments are not necessary). The TPA generally requires a
longer computational time, which is acceptable given its significant cost advantage.

We also compare the TPA with the DTPA using the online retailer’s data for N = 100, . . . , 1, 000.
Table A4 shows each policy’s cumulative cost and its average computational time per week. The last
row of Table A4 shows the percentage of cost savings by the TPA (using ↵ = 0.1) over the DTPA. The
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Table A3: Comparing the TPA with the DTPA

Horizon Setting TPA DTPA Savings
↵ = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (%)

Single [0, 20]
Cost(⇥10

4
) 41.71 41.02⇤ 41.02 41.02 41.11 41.11 42.64 42.94 43.19 44.08 6.94

Time(s) 1,270 1,002 1,140 1,317 1,211 1,207 1,655 1,773 7,701 447

[0, 60]
Cost(⇥10

4
) 60.45⇤ 61.29 61.23 61.39 61.13 61.31 61.62 61.51 61.58 62.98 4.01

Time(s) 702 966 927 1,045 1,059 1,363 2,529 7,758 2,320 493

[0, 100]
Cost(⇥10

4
) 208.3 201.1⇤ 201.3 205.6 208.3 203.6 208.3 208.3 203.7 202.3 0.60

Time(s) 1,033 902 743 725 887 736 704 744 674 679

Rolling [0, 20]
Cost(⇥10

5
) 70.01⇤ 70.27 70.81 72.44 75.44 79.88 84.08 90.08 98.01 114.02 38.60

Avg. Time(s) 1,892 1,440 1,362 1,667 1,938 4,398 7,488 7,974 7,838 622

[0, 60]
Cost(⇥10

5
) 108.9⇤ 109.3 110.2 111.9 114.0 116.4 120.3 126.1 131.5 138.3 21.23

Avg. Time(s) 1,121 1,202 1,357 1,244 1,640 1,614 3,231 6,444 7,136 392

[0, 100]
Cost(⇥10

5
) 345.2⇤ 347.1 349.8 352.7 365.6 371.5 381.3 397.6 426.7 467.7 26.19

Avg. Time(s) 1,193 1,946 846 1,026 1,651 1,119 1,714 1,069 1,124 884

results suggest that the TPA consistently yields significant cost savings (up to 24%) over the DTPA for
each value of N , which shows an obvious cost advantage of solving the TRO model in Phase 1.

Table A4: Comparing the TPA with the DTPA using the online retailer’s data
Policy Performance Number of products (N)

100 200 300 400 500 600 800 1000
TPA Cost(⇥10

6
) 3.304 5.502 7.343 9.102 10.39 11.63 15.14 18.63

Avg. time(s) 187 762 1,897 3,848 7,116 11,758 16,097 18,132

DTPA Cost(⇥10
6
) 4.198 7.069 9.718 11.93 13.71 15.25 18.39 20.88

Avg. time(s) 114 296 418 704 791 1,321 1,600 2,975

Savings(%) 21.29 22.16 24.44 23.71 24.18 23.69 17.73 10.77

E Sensitivity of the TPA’s performance on ↵

In this section, we investigate the impact of ↵ on the TPA’s performance. Specifically, we set the demand
support set as [0, 20], [40,60], [20, 80], and [0, 100]. The values of Snt

i , pnti , hnt
j , antij , f

nt
jk , and fnt

J+1,k fall in
the ranges [60, 80], [4, 10], [0.04, 0.1], [2, 5], [2.4, 6], and [166, 180] respectively. Table A5 shows the results.
For each problem instance, the lowest cost is marked with an asterisk (⇤), and we denote the best value
of ↵ as ↵⇤. The last column shows the maximum percent deviation from the lowest cost (corresponding
to ↵⇤).

The results suggest the following:

(i) The TPA is sensitive to ↵ when the demands are small (that is, [0, 20]). For example, for the
problem instance (100, 2, 5, 5) with the demand support set [0, 20] in Table A5, ↵⇤ = 0.1 gives a
cost of 4.17⇥105, while ↵ = 0.9 gives a cost of 8.69 ⇥ 105, which is more than double. This is
because when the demands are su�ciently small, frequent replenishments are not necessary. In
this situation, optimizing the binary replenishment decisions is more crucial. Thus, the TPA’s
performance (especially Phase 1) becomes more sensitive to the target coe�cient ↵.

(ii) The TPA is also sensitive to ↵ when the demands have a large support set (that is, [0, 100]). For
example, for the problem instance (60, 3, 6, 8) with the demand support set [0, 100] in Table A5,
↵⇤ = 0.7 gives a cost of 16.13⇥105, and ↵ = 0.9 gives a cost that is 6% larger.

F The decomposition approach (DCA)

The DCA decouples the replenishment decisions from the allocation and fulfillment decisions. Specifi-
cally, we first determine the replenishment quantities for each period, by solving a backlogged inventory
management model using the TRO approach. We fix the replenishment quantities and then determine
the allocation and fulfillment quantities using the LDR.

We consider the aggregate demand for each product across all the zones. Let ẽnt denote the aggregate
demand for product n in period t with mean ênt, for n 2 N , t 2 T . For convenience, let ẽ

nt =
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Table A5: The sensitivity of the TPA’s performance on ↵

(N, I, J,K) Support Cost(⇥10
5
) Max

Set ↵ = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Dev(%)

(100, 2, 5, 5) [0, 20] 4.17⇤ 4.20 4.25 5.59 5.19 4.38 6.06 8.25 8.69 108.4

[40, 60] 13.90 13.87⇤ 13.89 13.89 13.91 13.90 13.90 13.90 13.91 0.3

[20, 80] 16.01 16.10 15.86 15.89 15.92 15.85 15.84 15.93 15.77⇤ 2.1

[0, 100] 18.86 18.58 18.22⇤ 18.25 18.25 18.78 24.32 28.98 19.00 59.0

(60, 3, 6, 8) [0, 20] 3.71⇤ 3.77 3.75 3.78 3.83 4.67 4.40 5.60 5.79 56.3

[40, 60] 12.96 12.92 12.92 12.92 12.94 12.93 12.92 12.90⇤ 12.92 0.4

[20, 80] 14.64 14.42 14.42 14.45 14.44 14.38 14.38 14.37⇤ 14.47 1.9

[0, 100] 16.44 17.14 16.44 16.44 16.74 16.13 16.13⇤ 16.42 17.16 6.4

(40, 4, 7, 10) [0, 20] 2.74 2.75 2.74 2.73⇤ 2.78 2.80 2.80 2.83 2.82 4.0

[40, 60] 10.05 10.05 10.05 10.04 10.03 10.05 10.03 10.03⇤ 10.03 0.2

[20, 80] 11.06 11.08 11.05 11.03⇤ 11.05 11.07 11.11 11.11 11.07 0.7

[0, 100] 12.57 12.57 12.53 12.38 12.88 12.12⇤ 12.16 12.21 12.26 6.3

�
ẽn1, . . . , ẽnt

�
denote a collection of aggregate demands for product n from period 1 to period t. Let

ẽ
t =

�
ẽ
1t, . . . , ẽNt
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denote a collection of aggregate demands for all the products from period 1 to period
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t be the realization of ẽ
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J as the average unit holding cost for product n in period t, and f̂nt =
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K as
the average unit drop-shipping cost for product n in period t. We determine the replenishment quantities
by solving the following backlogged inventory management model:
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We solve Problem (A1) using the TRO approach. For each ẽnt, we define an adjustable uncertainty set
as Ent(�) =

�
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define E
nt(�) =

�
En1(�), . . . , Ent(�)

�
and E

t(�) =
�
E

1t(�), . . . ,ENt(�)
�
. Given a cost target �, we

reformulate Problem (A1) to the following TRO model:

�⇤ = max � (A2)

s.t.
X

t2T

X

n2N

"
X

i2I

�
Snt
i �nti

�
e
t�1

�
+ pnti xnt

i

�
e
t�1

��
+ ĥnt
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Since the first constraint of Problem (A2) contains nonlinear (·)+ and (·)� terms, we further approximate
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Problem (A2) by the following problem:
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We further tighten Constraints (A3.1) by replacing en⌧ with ên⌧ � bn⌧ , and tighten Constraints
(A3.2) by replacing en⌧ with ên⌧ + cn⌧ , where bn⌧ and cn⌧ are uncertain variables falling in Bn⌧ =�
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According to Theorem 1, the static rule is optimal for Problem (A4). Thus, the solution to Problem
(A4) can be obtained by solving the following mixed-integer program:
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"
Y n1 +

tX

⌧=1

 
X

i2I
x
n,⌧�lni
i + �⇠n⌧

!
�

tX

⌧=1

ên⌧
#
, n 2 N , t 2 T ;

✓nt � �f̂nt

"
Y n1 +

tX

⌧=1

 
X

i2I
x
n,⌧�lni
i � �⇠̄n⌧

!
�

tX

⌧=1

ên⌧
#
, n 2 N , t 2 T ;

38



xnt
i � 0, n 2 N , i 2 I, t 2 T ;

xnt
i  x̄t

i�
nt
i , �nti 2 {0, 1}, n 2 N , i 2 I, t 2 T ;

0  �  1.

By solving Problem (A5), we obtain the replenishment quantities x⇤. We fix the replenishment quantities
and then determine the allocation and fulfillment quantities using the LDR in (8).

G Supplemental material for the numerical study using the on-
line retailer’s data

G.1 Unit shipping costs

To determine the unit allocation cost from the supplier to each FC, we choose the cheapest rate for
shipping a 1-kg parcel from Guangzhou to each FC from the DHL, UPS, and Fedex websites 1. Likewise,
we use the cheapest rate for shipping a 1-kg parcel from each FC to each zone from the above websites
to set the corresponding unit fulfillment cost. We scale the shipping costs such that they are comparable
to the unit production costs. Table A6 lists the unit shipping costs used in this study.

Table A6: Unit shipping cost (USD)
Destinations

Origins HK ID MY PH SG TW
Guangzhou 2.942 4.361 4.361 4.361 4.361 4.276

Jakarta 4.986 0.335 4.986 4.986 3.757 5.829

Kuala Lumpur 3.527 3.527 1.625 3.527 2.193 3.527

Manila 1.893 2.453 2.453 2.505 1.893 1.893

G.2 A preliminary study

We conduct a preliminary study to choose the best target coe�cients for the TPA and the DCA. We try
↵ = 0.1, . . . , 0.9 and vary N = 50, 100, 150, 200. Table A7 shows the cumulative cost of each policy. The
lowest cost of each policy for each N is marked with an asterisk. We observe that the lowest cost of the
TPA policy occurs when ↵ 2 [0.1, 0.3]. Thus, we choose ↵ = 0.1 for the TPA. Similarly, the lowest cost
of the DCA policy occurs when ↵ 2 [0.6, 0.7] and we choose ↵ = 0.6 for the DCA.

Table A7: Choosing the best ↵

N Policy Cumulative cost (⇥104)

↵ = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50 TPA 184.61⇤ 184.95 184.76 185.42 189.81 192.36 192.46 196.15 206.47

DCA 309.88 315.51 302.72 302.52 300.65 295.28⇤ 297.35 301.76 330.15

100 TPA 333.90 332.01⇤ 333.80 340.93 340.00 342.27 356.82 355.61 374.36

DCA 604.27 585.42 579.34 576.05 567.79 568.92 564.61⇤ 579.02 635.81

150 TPA 445.49⇤ 446.03 448.72 450.59 455.86 459.45 481.55 491.37 548.57

DCA 705.87 683.41 682.94 685.24 686.25 681.87⇤ 683.74 715.74 796.34

200 TPA 531.53 534.80 529.48⇤ 560.68 541.42 547.60 562.90 593.17 616.38

DCA 974.79 975.08 960.62 949.59 947.53 937.71⇤ 942.45 990.84 1,075.4

G.3 Comparing the policies for di↵erent numbers of products

We study the performance of each policy for N = 100 to 1,000. We set the time limit of CPLEX for
solving a single mixed-integer model to 4 hours (14,400 seconds). Table A8 lists each policy’s cumulative
cost and its average computational time per week. We also report the percentages of cost savings by
the TPA over the other policies. The results suggest that the TPA yields significantly lower cumulative
costs (up to 54% savings) for all the cases. Although the TPA requires a longer computational time
than the other heuristics, we can compute it for 1,000 products within about 5 hours on average. This
is acceptable for making a weekly plan.

1
Sources: http://dct.dhl.com/input.jsp?langId=en#shipping_options, https://www.ups.com/mobile/
ratetnthome?loc=en_us, https://www.fedex.com/ratefinder/home?cc=US&language=en&locId=express
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Table A8: Comparing the policies for various numbers of products

Policy Performance Number of products (N)
100 200 300 400 500 600 800 1,000

TPA Cost(⇥10
6
) 3.339 5.315 7.343 9.102 10.39 11.63 15.14 18.63

Avg. time(s) 187 640 1,897 3,848 7,116 11,758 16,097 18,132

DET Cost(⇥10
6
) 6.786 11.27 15.74 19.39 22.60 24.94 29.88 34.01

TPA savings(%) 50.79 52.82 53.35 53.05 54.02 53.36 49.36 45.22

Avg. time(s) 2 10 10 13 16 33 109 28

DCA Cost(⇥10
6
) 5.689 9.377 13.16 16.22 18.91 20.97 25.76 29.70

TPA savings(%) 41.31 43.32 44.19 43.89 45.05 44.51 41.27 37.28

Avg. time(s) 74 207 233 323 375 831 829 861

SQS Cost(⇥10
6
) 4.530 7.721 11.37 14.26 16.59 18.71 23.14 26.69

TPA savings(%) 26.29 31.16 35.40 36.18 37.36 37.82 34.61 30.21

Avg. time(s) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

SQM Cost(⇥10
6
) 4.119 6.743 9.323 11.65 13.49 15.05 18.45 20.64

TPA savings(%) 18.93 21.17 21.23 21.86 22.95 22.70 18.00 9.75

Avg. time(s) 75 205 427 839 837 2,186 4,317 3,800

H Choosing the value of ↵

The TPA relies on the choice of the target coe�cient ↵. To understand how the value of ↵ should be
chosen, we conduct experiments to investigate the impact of drop-shipping costs, demand support sets,
and setup costs on the choice of ↵. Table A9 shows the best ↵ for various magnitudes of drop-shipping
costs. We consider three supply-chain structures and two demand support sets as shown in columns 1
and 2, respectively, of Table A9. We assume that all demands follow a Beta(1, 1) distribution in the
simulations. The values of Snt

i , pnti , hnt
j , antij , and fnt

jk fall in the ranges [60, 80], [4, 10], [0.04, 0.1], [2, 5],
and [2.4, 6] respectively. We set the drop-shipping cost fnt

J+1,k = fn +�, for n 2 N , k 2 K, t 2 T , where
fn represents a minimum drop-shipping cost and � = 0, 100, 200, 300, and 400. We try ↵ = 0.1, . . . , 0.9
and report the best ↵ that yields the lowest average cost in the simulations. Table A10 shows the best ↵
for various magnitudes of setup costs. The demand support set is [40,60]. We fix the drop-shipping costs
by setting � = 200. We set the setup cost Snt

i = Sn
i +�s, for n 2 N , i 2 I, t 2 T , where Sn

i represents
a base setup cost randomly generated from [60, 80] and �s = 0, 50, 100, 150, and 200. The values of pnti ,
hnt
j , antij , and fnt

jk fall in the ranges [4, 10], [0.04, 0.1], [2, 5], and [2.4, 6] respectively.

Table A9: The best ↵ for various magnitudes
of drop-shipping costs

(N, I, J,K) Support �

Set 0 100 200 300 400

(100, 2, 5, 5) [0,20] 0.2 0.2 0.2 0.1 0.1

[40,60] 0.7 0.4 0.2 0.2 0.1

(100, 3, 6, 8) [0,20] 0.1 0.1 0.1 0.1 0.1

[40,60] 0.7 0.7 0.6 0.1 0.2

(100, 4, 7, 10) [0,20] 0.1 0.2 0.2 0.1 0.2

[40,60] 0.7 0.7 0.2 0.1 0.1

Table A10: The best ↵ for various
magnitudes of setup costs

(N, I, J,K) �s

0 50 100 150 200

(100, 2, 5, 5) 0.4 0.1 0.1 0.2 0.1

(60, 3, 8, 10) 0.7 0.4 0.3 0.3 0.3

(40, 4, 7, 10) 0.5 0.3 0.3 0.1 0.2

We observe the following trends about the choice of ↵ from Tables A9 and A10:
(i) As the drop-shipping costs increase (� increases), we should choose a smaller ↵ (that

is, ↵ = 0.1 or 0.2). If drop-shipping is costly, we should be more conservative and take larger demands
into account when making the binary replenishment decisions. A smaller ↵ corresponds to a larger cost
target �, which produces more conservative binary replenishment decisions.
(ii) As the demands become smaller (when the demands fall in [0, 20] in Table A9), we

should choose a smaller ↵. If the demands are su�ciently small that frequent replenishments are not
necessary, the binary replenishment decisions become especially important. In this situation, we want to
absorb as much uncertainty as possible. We can achieve this by choosing a smaller ↵.
(iii) As the setup costs become larger (�s increases), a smaller ↵ is generally preferred.

When the setup costs become larger, we should be more conservative in making the binary replenishment
decisions by absorbing more uncertainty. This can be achieved by setting a smaller ↵.

The observed trends above provide some guidance for practitioners to choose the value of ↵.
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