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Abstract

Probiotics, live microorganisms that, when administered in adequate amounts,

confer a health benefit on the host, offer an alternative to antibiotics and have

become popular among shrimp farmers for use in the regulation of pond water

quality, promotion of shrimp growth and the prevention of disease. Most shrimp

probiotics are selected for testing based on their ability to competitively exclude

pathogens through bacterial antagonism assays, although the mechanisms of

pathogen exclusion are rarely investigated. In this review, we provide a compre-

hensive overview of the mechanisms of competitive exclusion (interference and

exploitation competition) by species screened and subsequently identified as

shrimp probiotics based on their ability to inhibit the growth of pathogenic bacte-

ria in vitro. We show that the current methods used to identify potential probi-

otics preferentially select for interference-based competitive mechanisms and may

overlook the potential of many species to be considered a probiotic. Furthermore,

we show that the efficiency of a probiotic in vivo may be improved by considering

the suitability of competitive strategies to shrimp farming conditions. We high-

light important limitations and future directions for the screening and identifica-

tion of probiotics in shrimp aquaculture, to aid in the development of effective

and sustainable microbial management strategies.

Key words: competitive exclusion, gut microbiome, microbial ecology, probiotics, shrimp aqua-

culture.

Introduction

Probiotics, defined as ‘live microorganisms that, when

administered in adequate amounts, confer a health benefit

on the host’ (Hill et al., 2014), are becoming increasingly

popular antibiotic alternatives to promote growth and pre-

vent disease in shrimp aquaculture. Whilst knowledge on

their exact mechanisms of action is limited, there is strong

evidence showing they are able to confer probiotic effects

through the competitive exclusion of pathogenic bacteria,

nutrient and enzymatic contribution to shrimp digestion,

enhancement of the shrimp immune response and antiviral

effects (Kumar et al., 2016; Hoseinifar et al., 2018; Li et al.,

2018; Ringø, 2020). To date, approximately 20 genera of

bacteria have been shown to have a probiotic effect in

shrimp, although the majority of research has focused on

Bacillus and lactic acid bacteria (LAB), such as Lactobacillus

(Tables 1–3), due largely to their prevalence and successful

application as probiotics in mammals and poultry. Probi-

otics can be administered orally with the feed (including

bioencapsulation with live food vectors such as artemia;

Immanuel, 2016), directly into the water as purified cultures

or spores (Ringø, 2020), or within a fermented growth

media, for example Bacillus subtilis E20-fermented soybean

meal (Liu et al., 2009, 2010; Tseng et al., 2009; Tsai et al.,

2019; Wang et al., 2019). Similarly, probiotics may be

administered in combination with a complementary prebi-

otic, ‘a non-digestible food ingredient that beneficially

affects the host by selectively stimulating the growth and/or

activity of one or a limited number of bacteria in the colon’

(Gibson & Roberfroid, 1995), to form treatments known as

‘symbiotics’ (Schrezenmeir & de Vrese, 2001; Li et al., 2018).
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Probiotic species are often isolated from the intestines of

shrimp and the surrounding water or sediment of their

environment (examples are shown in Tables 1–3). How-

ever, they have also been isolated from fruit waste filtrates

(Nurliana et al., 2020), curd (Karthik et al., 2014), fer-

mented soybeans ‘Natt�o’ (Liu et al., 2010), fermented pick-

les (Zokaeifar et al., 2012a,b) and the intestines of other

species. For example, in the case of the latter, shrimp probi-

otic Lactobacillus species have been isolated from the diges-

tive tracts of chickens (Phianphak et al., 1999) and fish

(Sha et al., 2016a; Doroteo et al., 2018). Commercial probi-

otic treatments, which largely contain LAB and Bacillus

spp., have also been tested for their probiotic effects in

shrimp (Ringø, 2020). Lack of strict regulations regarding

commercial probiotics intended for aquaculture in some

regions, however, has raised concerns regarding the reliabil-

ity of the labelling of such treatments. As an example to

illustrate this, Vargas-Albores et al. (2016) detected both

additional and different bacterial species in the commercial

probiotic Eco-AQUAPROTEC (Eco Technology Solutions,

Australia) to those reported for the product by the manu-

facturer. Furthermore, it is also the case that commercial

probiotics often contain more than one microbial species,

as well as feed additives such crude protein and fibre, and

enzymes such as proteases, amylases, cellulase, xylanase and

beta-glucanases. This, in turn, often makes it difficult to

attribute probiotic effects to any individual species or com-

ponent of the formulation to be able to characterise their

underlying effect mechanisms. In this review, we focus on

shrimp probiotic treatments containing a single species,

including those isolated from commercial products to bet-

ter understand competitive exclusion mechanisms in

shrimp probiotics. For an extensive list of commercial and

multi-species probiotics that have been investigated, we

refer the reader to the recent paper by Ringø (2020).

Prior to in vivo testing, a number of criteria are consid-

ered by researchers during the screening and selection of

potential probiotic species in shrimp aquaculture. For

example, ease of culture, biosafety (including haemolytic

activity and antibiotic susceptibility) and their ability to

produce extracellular enzymes and competitively exclude

pathogens. However, after isolation, potential probiotics

are more often than not selected for based on the competi-

tive exclusion principle (that species competing for the

same limited resources cannot co-exist; Volterra, 1928;

Gause, 1932; Hardin, 1960; Levin, 1970), through bacterial

antagonism assays, in which pathogens are exposed directly

(co-culture) or indirectly (extracellular products) to candi-

date bacteria (Tables 1-3). If they show a significant inhibi-

tory effect against the pathogenic bacteria and are

presumed to be safe to the host organism (the presence of

safety-related virulence factors such as haemolytic activity

(Chang et al., 2000) and chitinase production (Defoirdt

et al., 2010; Frederiksen et al., 2013) are often not deter-

mined prior to in vivo testing), then they are generally

applied as an experimental treatment to test for probiotic

effects. However, few studies have attempted to identify the

underlying mechanisms involved in bacterial growth inhi-

bition, or considered the wider competitive strategies

employed and how this relates to the efficiency and mecha-

nism of probiotic action in vivo. Although antagonism

assays offer a limited representation of the diverse and

complex interactions between probiotics and their associ-

ated host, microbial community and environmental factors,

characterisation of these mechanisms is nonetheless neces-

sary to ensure that probiotic use in shrimp aquaculture is

both effective and sustainable. Furthermore, considering

the rise of antimicrobial resistance (which is predicted to

result in 10 million deaths by 2050 if the current trend con-

tinues; Meade et al., 2020), the potential insights gained

from such investigations extend far beyond the field of pro-

biotics in shrimp aquaculture given that these probiotic

species produce antimicrobial substances that have not yet

been identified and which make them ideal candidates for

bioprospecting for novel antimicrobial therapeutics. Here,

after introducing the competitive exclusion principle and

how it works through exploitation and interference compe-

tition, we provide a comprehensive overview of the mecha-

nisms of competitive exclusion by species that have been

screened and subsequently identified as probiotic based on

their ability to inhibit the growth of pathogenic bacteria

in vitro. We then go on to discuss how our current under-

standing of the mechanisms of competitive exclusion could

be used to improve the selection and application of probi-

otics. Finally, we highlight important considerations and

future directions for the selection and application of probi-

otics, with the aim to aid best practise in the development

of effective microbial management strategies in shrimp

aquaculture.

Competitive exclusion of pathogenic bacteria

Competitive exclusion is where co-occurring bacterial spe-

cies in the same ecological niche compete for limited

resources (nutrients and space) through two competitive

strategies: exploitation and interference competition.

Exploitation competition is indirect, characterised by rapid

resource consumption (restricting supply to competitors

and investing in growth), whereas interference competition

occurs when one organism directly harms another, for

example, through the production of antimicrobial com-

pounds.

Exploitation competition includes mechanisms that

increase, relative to the competitors, the rate at which

nutrients are captured and utilised. Nutrient capture can be

improved by the secretion of extracellular molecules that
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break down complex macromolecules thus making nutri-

ents more readily accessible. These extracellular excretion

molecules include proteases (Bachmann et al., 2011) and

iron-chelating siderophores that access insoluble iron

(K€ummerli et al., 2015). These mechanisms can be consid-

ered co-operative traits, as the ‘public goods’ produced are

accessible to all and may benefit a population (Morris

et al., 2012). Not all members of that population necessarily

invest resources in the production of the compounds and

the bacteria producing materials for enabling nutrient cap-

ture are vulnerable to inter- and intra-specific competition

from social ‘cheaters’, who save resources and invest them

in growth. For example, some bacteria can utilise heterolo-

gous siderophores, allowing them to save energy on pro-

duction costs and reduce the accessibility of iron to the

siderophore producing species (Khan et al., 2006). The

extent to which cheating occurs, however, appears to be

dependent on environmental and social context (Ghoul

et al., 2014). Niehus et al. (2017) argue that although side-

rophores can be public goods (when all cells have the same

receptors), they should be considered a competitive pheno-

type. Certainly, species able to produce ‘private’ sidero-

phores with higher iron binding affinities have an

advantage over lower-affinity siderophore producing

organisms (Weaver & Kolter, 2004; Joshi et al., 2006). The

efficiency and speed with which microorganisms utilise

nutrients can provide another competitive advantage. Opti-

mal allocation of resources can maximise growth rates

(Flamholz et al., 2013; Bosdriesz et al., 2015; Hui et al.,

2015). For example, switching between metabolic strategies

depending on substrate availability, such as from the higher

ATP-yielding respiration process to fermentation, even

when glucose is available in excess, to maximise growth

rates. This phenomenon, termed ‘overflow metabolism’

(Neijssel & Tempest, 1976; Molenaar et al., 2009), has been

observed in a number of fast-growing bacterial and fungal

species including Saccharomyces cerevisiae, Escherichia coli

and Bacillus subtilis (van Dijken et al., 1993; Vemuri et al.,

2006; Sonenshein, 2007; Molenaar et al., 2009; Basan et al.,

2015; LaCroix et al., 2015). Whilst this mechanism may

appear counter-intuitive, an increasing growth rate is the

result of a trade-off between energy yield and synthesis rate

of alternative pathways; fermentation requiring more car-

bon flux but being more proteome efficient (requires fewer

proteins) than respiration, thereby allowing more resources

to invest in growth (Molenaar et al., 2009; Basan et al.,

2015).

Exploitation competition for space can be achieved

through rapid colonisation of uninhabited niches, or

through competing with populations that are already estab-

lished. The production of adhesins and receptors that bind

to specific surface features can provide a competitive

advantage for the colonisation of unoccupied niches, as

well as prevent displacement by invaders (Schluter et al.,

2015). For example, after adherence to human epithelial

cells, some Lactobacillus species produce extracellular glyco-

proteins, preventing pathogen attachment (Horie et al.,

2002; Golowczyc et al., 2007; Johnson-henry et al., 2007).

Furthermore, attachment, whilst decreasing mobility, is

critical for biofilm formation (surface-attached microbial

communities; Hall-Stoodley et al., 2004). The expansion of

adhesive cells in biofilms can also aid the removal of non-

adhesive cells from the population (Schluter et al., 2015).

Cell aggregation of the same genotype can also provide

another competitive advantage by sharing resources, such

as plasmids conferring antibiotic resistance (Savage et al.,

2013), limiting exposure to social ‘cheaters’ (West et al.,

2007; Smukalla et al., 2008; Queller et al., 2011; Drescher

et al., 2014), and increasing tolerance to antimicrobials

(Olsen, 2015). However, there is strong competition within

these biofilms (Xavier & Foster, 2007; Davies & Marques,

2009), in which nutrients become limited regionally (Ste-

wart & Franklin, 2008; Kim et al., 2014). On the other

hand, to compete with biofilm formation, many species

produce molecules that can actively stimulate dispersal of

other species (without killing them), such as rhamnolipid

and cis-2-decenoic acid (Irie et al., 2005; Davies & Mar-

ques, 2009), within established biofilms. Alternatively,

some species can disrupt biofilm formation. For example,

Pseudomonas aeruginosa PsDAHP1 (isolated from the

Indian prawn Fenneropenaeus indicus) has been found to

antagonise the ability of Vibrio parahaemolyticus to form

biofilms in zebrafish gills and intestine, resulting in a much

looser architecture and possibly making them more suscep-

tible to antimicrobials (Vinoj et al., 2015).

Interference competition typically involves the produc-

tion of antimicrobials, which range from strain-specific

bacteriocins (ribosomally synthesised antimicrobial pep-

tides; Yang et al., 2014), to broad-spectrum antibiotics such

as the quinolones (Aldred et al., 2014). Investigation into

the functional role of sub-inhibitory concentrations of

antimicrobials has revealed their multifaceted nature

(Fajardo & Mart�ınez, 2008), with involvements in sig-

nalling (Davies et al., 2006; Linares et al., 2007; Romero

et al., 2011), inhibition of quorum sensing (Hong et al.,

2012; Algburi et al., 2017) and kin recognition (Wall,

2016). Nevertheless, there is substantial experimental evi-

dence to support the hypothesis that antibiotics are primar-

ily used as weapons (Abrudan et al., 2015; Cornforth &

Foster, 2015). It is plausible that some species have evolved

to use certain antimicrobials solely as weapons, whereas

others have multiple functions. Interference competition

also includes contact-dependent mechanisms such as Type

V and Type VI secretion systems. The contact-dependent

growth inhibition system (CDI) is a Type V system, first

recognised in Escherichia coli (Aoki et al., 2005), in which
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polymorphic protein toxins (growth inhibitory signals) are

delivered into the cytoplasm of the target cell displaying

complementary receptors, mediating killing unless the

recipient bacterium produces a corresponding antidote

(Aoki et al., 2005, 2010; Anderson et al., 2012; Nikolakakis

et al., 2012). For example, the CdiA-CTEC869 tRNase toxin

from enterohemorrhagic E. coli EC869 obstructs protein

synthesis and thus inhibits growth by specifically cleaving

transfer RNAs of recipient cells (Jones et al., 2017).

Recently, Garcia et al. (2016) have shown that, in

Burkholderia thailandensis, gene expression and phenotypic

changes that promote community-associated behaviours,

such as biofilm formation, occur in immune (self) recipi-

ents in response to the CDI toxin. Their results suggest that

the CDI system may have two functions, challenging

heterospecific (non-immune) bacteria and promoting con-

specific (immune) bacteria. Similarly, type VI secretion sys-

tems deliver effectors (substrates) directly into the

cytoplasm of recipient cells (Cianfanelli et al., 2016) result-

ing in death (Hood et al., 2010; MacIntyre et al., 2010; Sch-

warz et al., 2010; Murdoch et al., 2011; Russell et al., 2014).

Interestingly, the use of this system appears to be highly

dynamic, with some species (such as Vibrio cholerae)

employing highly offensive (non-directional) strategies

(Basler et al., 2012), while others, such as P. aeruginosa, ori-

entate the machinery towards a perceived threat in a ‘tit-

for-tat’ response (Basler et al., 2013; Le Roux et al., 2015).

Furthermore, cell lysis via Type VI secretion systems may

facilitate horizontal gene transfer, as DNA from the target

cell may also be transferred into the attacking cell, poten-

tially conferring benefits in the form of new genes, such as

those conferring antimicrobial resistance, to the new host

and providing a competitive advantage (Borgeaud et al.,

2015).

Probiotic bacteria

Considering the relative importance of bacterial antag-

onism assays for the screening of potential probiotics

in shrimp aquaculture, investigations into the underly-

ing mechanisms are limited. In the following sections,

we discuss our current understanding of the mecha-

nisms of pathogenic growth inhibition, in vitro, for

individual strains within each genus of bacteria that

has been identified as shrimp probiotic (Tables 1-3).

We then go on to discuss the implications of the use

of antagonism assays in probiotic screening, and how

we can improve their efficiency and sustainability,

in vivo, based on our current understanding of the

mechanisms of competitive exclusion. We also high-

light some of the key limitations and future directions

for the methods used to identify probiotics in shrimp

aquaculture.

Lactic acid bacteria (LAB)

Lactic acid bacteria produce many antibacterial substances

including lactic acid, acetic acid, hydrogen peroxide and

bacteriocins (Mokoena, 2017; Ringø et al., 2020) that sup-

press growth of competing bacteria (Nes et al., 2011; Reis

et al., 2012; Alvarez-Sieiro et al., 2016). Many LAB have

been identified as shrimp probiotics due to their ability to

inhibit the growth of several pathogenic Vibrio species,

Aeromonas hydrophila and Pseudomonas fluorescens through

well and disc diffusion assays (Table 1), suggesting these

species produce extracellular compounds with antimicro-

bial properties. The mechanisms of growth inhibition for

LAB remain largely uncharacterised, but some studies have

used catalase-treated and/or pH-neutralised cell-free cul-

ture supernatants (CFCS) to test for antagonistic activity

and determine whether or not the source of growth inhibi-

tion was due to the effect of hydrogen peroxide and/or

organic acid production, respectively (see Table 1). Kong-

num and Hongpattarakere (2012) found that hydrogen

peroxide was a major agent contributing to the antibacte-

rial effect of Lactobacillus plantarum MRO3.12. Interest-

ingly, Sgibnev and Kremleva (2017) found that hydrogen

peroxide produced by probiotic vaginal lactobacilli were

effective in increasing sensitivity to antibiotics, suggesting

that hydrogen peroxide producing LAB in combination

with antibiotic-producing species may be more effective for

pathogenic growth inhibition. The antimicrobial activity of

LAB shrimp probiotic Streptococcus phocae PI80 has been

shown to be due to the production of the bacteriocin Pho-

caecin PI80, which inhibits the growth of a range of Gram-

positive and Gram-negative bacteria, including Listeria

monocytogenes, Vibrio spp., Aeromonas hydrophila and

Pseudomonas aeroginosa (Satish Kumar & Arul, 2009). The

authors of this work suggest that Phocaecin PI80 increases

the permeability of sensitive cells through pore formation

in the cytoplasmic membrane, as it was shown to induce

potassium ion leakage in the tested indicator strains: E. coli,

Listeria monocytogenes and V. parahaemolyticus (Satish

Kumar & Arul, 2009).

Lactic acid bacteria have also been shown capable of

inhibiting the adhesion of pathogenic bacteria to the

intestinal mucosa of shrimp. For example, Lactobacillus

pentosus HC-2 and Enterococcus faecium NRW-2 have been

shown to adhere to crude intestinal shrimp mucus, suggest-

ing that these strains may compete against pathogens such

as Vibrio spp. for adherence sites in the intestinal mucus

(Sha et al., 2016c). The authors used fluorescent imaging to

subsequently confirm that L. pentosus HC-2 was able to

competitively exclude V. parahaemolyticus E1 in the intes-

tine of the Whiteleg shrimp Litopenaeus vannamei. L. pen-

tosus HC-2 was also shown to increase the level of

transcription of the luxS gene in response to
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V. parahaemolyticus E1, suggesting it may play an impor-

tant role in improving its adherence to the gut of L. van-

namei and in turn competitively exclude the adhesion of

V. parahaemolyticus E1. These authors also reported that

heat-killed L. pentosus HC-2 cells upregulated the expres-

sion of toxicity-related factors in V. parahaemolyticus E1

and suggested that shrimp fed a diet containing the intra-

cellular components of L. pentosus HC-2 may result in an

increase in the risk of infection by Vibrio spp. This hypoth-

esis, however, was not then tested. Collectively, these find-

ings illustrate the importance of understanding the

underlying probiont-pathogen interactions, determining

strain specific characteristics, and not extrapolating from

related strains or even species. They also highlight that

community analyses alone (for example through the use of

16S sequencing) are limited for assessments seeking to

identify putative interactions.

Lactic acid bacteria are Generally Recognised as Safe

(GRAS) by the USA Food and Drug Administration (US

FDA), and currently have a wide range of applications in

the human food chain, primarily in the manufacturing of

fermented food products such as yogurt, cheese and alco-

holic beverages. Similarly, the European Food Safety

Agency (EFSA) includes many LAB species (belonging to

the genera Lactobacillus, Lactococcus, Pediococcus, Strepto-

coccus) in the Qualified Presumption of Safety (QPS) list,

meaning that, except for enterococci which no longer has

QPS status, a demonstration of their safety only requires

confirmation of the absence of determinants of resistance

to antibiotics of human and veterinary clinical significance

(EFSA BIOHAZ Panel, 2020). This would suggest that the

use of LAB, with the exception of Enterococcus faecium, as

probiotics is unlikely to have any significant potential

health concern for human consumption of treated shrimp.

There may, however, be safety concerns based on antibiotic

resistance and virulence factors for multiple genus of LAB.

This, in turn, highlights that a more thorough risk assess-

ment may be required when considering the application of

LAB as probiotics in shrimp aquaculture (Mu~noz-Atienza

et al., 2013; Sharma et al., 2016).

Bacillus

The genus Bacillus, like LAB, includes representatives that

are defined as GRAS by the US FDA, but which, for the

EFSA QPS qualification, are modified to include ‘absence

of food poisoning toxins, absence of surfactant activities,

absence of enterotoxic activities’ (EFSA BIOHAZ Panel,

2020). Therefore, Bacillus species would also seem to be

ideal candidates for animals destined for human consump-

tion, and indeed, they currently have a range of applica-

tions in food processing. Bacillus species also need to show

an ’absence of acquired genes for antimicrobial resistance’

before introduction into the food chain (EFSA BIOHAZ

Panel, 2020). The large majority of probiotics in shrimp

aquaculture belong to the genus Bacillus, but their safety

for use in shrimp aquaculture should not be presumed, and

this should be the case with all isolates. For example, Guo

et al. (2009) found that addition of Bacillus cereus biovar

toyoi to cultures of the giant tiger prawn Penaeus monodon

culture resulted in near total mass mortality. Similarly,

Bacillus subtilis and B. cereus have been reported to cause

bacterial white spot syndrome in cultured P. monodon

(Wang et al., 2000) and bacterial white patch disease in

L. vannamei, respectively (Velmurugan et al., 2015). This

highlights the importance of thorough testing of probiotic

candidates, and not simply extrapolating from related spe-

cies or strains. Ngo et al. (2016) have shown that Bacillus

strains isolated from shrimp intestines exhibit resistance to

clinically relevant antibiotics, highlighting the importance

of antibiotic susceptibility screening when evaluating

shrimp probiotics. Bacillus produce a diverse array of over

20 different types of antimicrobial compounds (including

polypeptide antibiotics, bacteriocins and lipopeptides),

with a wide variety of activities ranging from antibacterial

and antifungal, to anticancer and antiviral (Martirani et al.,

2002; Stein, 2005; Sutyak et al., 2008; Smitha & Bhat, 2012;

Mondol et al., 2013; Cochrane & Vederas, 2016). Recently,

genome mining of Bacillus spp. has successfully guided the

identification and characterisation of novel antimicrobial

metabolites (Yang et al., 2016; Zhao & Kuipers, 2016),

highlighting their competitive potential. Many studies

investigating Bacillus species as potential probiotics in

shrimp aquaculture (Soltani et al., 2019) demonstrate

antagonistic growth inhibition of shrimp, fish and human

pathogens (Table 2). Most of these studies suggest that

Bacillus species produce diffusible extracellular antimicro-

bials, through the inhibition of pathogens as assessed using

the agar or well diffusion techniques and CFCS diffusion

assays (Table 2). More specifically, the production of pro-

teinaceous antibacterial substances (bacteriocins or bacteri-

ocin-like inhibitory substances; BLIS, Zokaeifar et al.,

2012a,b; Masitoh et al., 2016), antimicrobial polypeptides

(AMPs; Cheng et al., 2017; Cheng et al., 2020) and antimi-

crobial lipopeptides (Lee et al., 2016) have all been identi-

fied as a source of inhibition.

Recently, (Gao et al., 2017) reported that Bacillus pumilus

H2 produces an anti-Vibrio substance, structurally identical

to amicoumacin A, that has been shown to inhibit the

growth of 29 Vibrio strains by disrupting cell membranes

and leading to cell lysis (Itoh et al., 1981). No extracellular

antimicrobial activity, however, was detected in B. subtilis

BS11 and Bacillus sp. P11 when using an antimicrobial resi-

due screening test kit (Powedchagun et al., 2011; Utiswan-

nakul et al., 2011) but this method tests only for ‘18 known

standard antibiotics’ (Utiswannakul et al., 2011). Tseng
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et al (2009) found that B. subtilis E20, isolated from the gut

of L. vannamei, had no inhibitory effect against eight fish

and shrimp pathogens and was only weakly inhibitory

against A. hydrophila (Tseng et al., 2009). Nevertheless, the

authors found that a B. subtilis E20 supplemented diet

increased resistance of L. vannamei to Vibrio alginolyticus.

These results may be due to a variety of reasons, including

an increased immune capability of the shrimp. Importantly,

however, it helps illustrate that the disc diffusion method

(using CFCS) alone may not capture the ability of B. sub-

tilis E20 to inhibit growth using exploitation competition

mechanisms. Illustrating this further, Luis-Villase~nor et al.

(2015) showed that Bacillus strains, isolated from the

intestinal tract of shrimp, can adhere to intestinal mucus

and gastric mucin of L. vannamei, which may then confer

an ability to exclude pathogens by competing for binding

sites, as well as producing antimicrobial compounds. Simi-

larly, Bacillus licheniformis DAHB1, isolated from F. indi-

cus, has been shown to invest in exploitation mechanisms,

producing a quorum-quenching N-hexanoyl-L-homoserine

lactone (AHL)-lactonase (AiiA) able to inhibit vibrio bio-

film development and colonisation of shrimp intestines

(Vinoj et al., 2014). More recent work has shown that

B. cereus BP-MBRG/1b, isolated from the gut of a healthy

giant freshwater prawn (Macrobrachium rosenbergii), is able

to ablate both AHL signal molecules and quorum sensing

in A. hydrophila (Wee et al., 2018). Further effects relating

to quorum sensing have been demonstrated. For example,

Bacillus sp. NFMI-C has been shown to degrade N-hex-

anoyl-L-homoserine lactone (HHL) molecules (also pro-

duced by A. hydrophila) in co-culture, which subsequently

increased the survival of M. rosenbergii larvae when chal-

lenged with Vibrio campbellii, whose virulence is regulated

by AHL quorum sensing (Pande et al., 2013, 2015). Bacillus

spp. are known to produce intracellular lactonases, one of

the two major classes of AHL-inactivating enzymes, that act

by hydrolysing the lactone ring and are capable of inactivat-

ing a wide range of AHLs (Dong et al., 2007; Pande et al.,

2015). The growth of V. campbellii was not affected by cul-

ture with Bacillus sp. NFMI-C or its CFCS, nor was the

growth of the shrimp larvae affected when treated with

Bacillus sp. NFMI-C. This would suggest that the probiotic

effect was likely due to the ability of this isolate to degrade

AHL through the production of lactase. This is of particular

interest in the management of Vibrio spp. in shrimp aqua-

culture, whose ubiquitous and abundant presence in the

shrimp gut (Holt et al., 2020) plays an important role in

the health of the animal, and not just in disease. Vibrio is

the most dominant genus in the early development of

P. monodon (Angthong et al., 2020) and dominates in the

gastrointestinal tract regardless of environment or life stage

(Mongkol et al., 2018). Probiotics that are theoretically able

to prevent the onset of disease that have limited effects on

the microbial diversity of ecologically important genera

warrant further investigation.

Vibrio

Cordero et al. (2012) showed that marine Vibrio popula-

tions are organised into socially cohesive units, in which

interference competition is greater between (rather than

within) ecologically defined populations. These findings

suggest that the inhibitory activities of Vibrio species are

strain-specific. The results from this study also indicate that

low intra-population antagonism may result from fast alle-

lic turnover and rapid loss and acquisition of genes. There-

fore, considering virulence or antibiotic resistance of

clinical importance, the use of Vibrio species in shrimp

aquaculture may be unwise. Furthermore, these authors

suggested that the antagonistic interactions investigated

were due to small molecules and not proteins such as bacte-

riocins. Nevertheless, several vibriocins (bacteriocins pro-

duced by the genus Vibrio; Wahba, 1965; McCall &

Sizemore, 1979; Sugita et al., 1997; Shehane & Sizemore,

2002) and bacteriocin-like inhibitory substances (Prasad

et al., 2005; Carraturo et al., 2006) involved in inter-strain

and inter-species inhibition have been described. Several

Vibrio species investigated for their probiotic potential in

shrimp (Table 3) have been shown to produce diffusible

extracellular antimicrobials, able to inhibit the growth of

fish, shrimp and human pathogens (Gullian et al., 2004;

Balc�azar et al., 2007; Rahiman et al., 2010; Pham et al.,

2014). These studies suggest that some Vibrio isolates may

be good probiotics. The lack of QPS qualification, however,

would suggest that there is currently not enough literature

supporting the use of Vibrio species in animals intended for

the food chain. Furthermore, it has been shown that the

bacteriophage Vibrio harveyi myovirus like (Munro et al.,

2003) and V. harveyi siphophage 1 (Khemayan et al., 2012)

are able to confer and increase virulence of V. harveyi to

shrimp, respectively. This is of concern when using unchar-

acterised Vibrio species in shrimp aquaculture (Table 3), as

virulence may be easily acquired or transferred.

Pseudomonas

Pseudomonas spp. are known to produce a range of bioac-

tive compounds, such as bacteriocins, pyocin, phenazinen,

quinoline and quinolone (Isnansetyo & Kamei, 2009; Pre-

etha et al., 2010), and have been shown to antagonise the

growth of several shrimp pathogens (Table 3). Pseu-

domonas aeruginosa, Pseudomonas synxantha (Van Hai

et al., 2007) and Pseudomonas aestumarina SLV22 (Balc�azar

et al., 2007) produce diffusible extracellular antimicrobials

that can inhibit the growth of several Vibrio pathogens;

however, only few studies have characterised these
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compounds. The anti-Vibrio activity of P. aeruginosa I-2,

however, has been suggested to be attributed to a low

molecular weight, non-proteinaceous antimicrobial com-

pound, possibly pyocyanin (Chythanya et al., 2002), that is

a well-described virulence factor associated with disease in

patients with cystic fibrosis (Jeffries et al., 2016). If this is

indeed the case, then it would raise safety concerns regard-

ing use of this species in the food chain. Pseudomonas sp.

W3, isolated from intensive shrimp pond water (Rat-

tanachuay et al., 2007), has been shown to produce prote-

olytic enzymes and lysozyme (N-acetylmuramidase;

Rattanachuay et al., 2010) and 2-heptyl-4-quinolone

(HHQ) with anti-Vibrio activity (Rattanachuay et al.,

2011). Interestingly, Pseudomonas sp. W3 appears to have

lost its ability to convert HHQ to PQS (2-heptyl-3-hy-

droxy-4(1H)-quinolone; Diggle et al., 2006, 2007), a quo-

rum sensing molecule involved in the production of iron-

scavenging compounds (Diggle et al., 2007; Rattanachuay

et al., 2011). Nevertheless, Reen et al. (2011) demonstrated

strong antibacterial activity of HHQ against Vibrio fischeri

and Vibrio vulnificus. The authors reported that this com-

pound was bacteriostatic, in addition to reducing mobility

and interfering with pellicle and biofilm activity in B. sub-

tilis. This may raise concerns surrounding the efficiency of

this species for use as probiotic treatment, particularly in

combination with Bacillus species, as it is possible that it

may affect Bacillus sp. that are already established in the

gut. In contrast with this, high levels of siderophores from

the catechol group were identified in cell-free extracts of

Pseudomonas PS-102 (Vijayan et al., 2006) able to inhibit

the growth of several Vibrio and Aeromonas spp., suggesting

investment in exploitation mechanisms. Similarly, CFCS of

AHL-degrading P. aeruginosa strains, isolated from the

intestine of F. indicus, was shown to inhibit more than

80% of biofilm formation by V. parahaemolyticus (Vinoj

et al., 2015). Pseudomonas spp. are known to produce acy-

lases, the other major class of AHL-inactivating enzymes,

which cleave the AHL molecule into homoserine lactone

and a fatty acid (Fast & Tipton2012), and exhibit substrate

specificity (Tang & Zhang, 2014). Furthermore, the CFCS

reduced the hydrophobicity index and exopolysaccharide

production of V. parahaemolyticus, limiting biofilm forma-

tion and potentially increasing their susceptibility to antibi-

otics. P. aeruginosa is known to produce rhamnolipids and

fatty acid messengers (such as cis-2-decenoic acid) that can

disperse biofilms of several microbial species (Irie et al.,

2005; Davies & Marques, 2009). However, in this instance,

the compound(s) was not characterised.

Pseudoalteromonas

Pseudoalteromonas spp. isolated from the marine intertidal

areas of New Caledonia have shown growth inhibition

activity against Vibrio nigripulchritudo and V. harveyi,

through the production of diffusible antimicrobials (Pham

et al., 2014). The antimicrobial compounds were not char-

acterised in this study, but the authors noted that the iso-

lates were coloured, and that pigmented species belonging

to the Pseudoalteromonas genus are known to produce a

variety of bioactive compounds (Bowman, 2007). Similarly,

yellow colony-forming Pseudoalteromonas spp. CDM8 and

CDA22 have been isolated from the hindgut of healthy

L. vannamei, and shown to display antagonistic activity

against pathogenic V. parahaemolyticus (Wang et al., 2018).

The antagonistic effect was abolished when the CFCS (for

both species) was treated with catalase, suggesting that the

inhibition was likely the result of hydrogen peroxide pro-

duction. The two most predominant proteins isolated from

the CFCS of CDM8 and CDA22 (identified by MALDI-

TOF/TOF mass spectrometry), shared high similarity to a

TonB-dependent receptor (TBDRs) and an antibacterial

protein (L-lysine 6-oxidase) of Pseudoalteromonas flavipul-

chra JG1, respectively. TBDRs play a fundamental role in

nutrient uptake, including iron-siderophore complexes

(Moeck & Coulton, 1998), whilst the antimicrobial activity

of L-lysine 6-oxidase has been attributed to its generation of

hydrogen peroxide. In Pseudoalteromonas tunicate, the

hydrogen peroxide generated by the lysine oxidase AlpP is

involved in biofilm killing (Mai-Prochnow et al., 2008).

Interestingly, Pseudoalteromonas sp. CDM8 displayed weak

antagonistic activity against Pseudoalteromonas sp. CDA22

and a noncooperative effect were observed for shrimp when

fed with a combination of CDM8 and CDA22, highlighting

the importance of investigating probiotic relationships in

multi-strain/species treatments. Theoretically, similar spe-

cies that occupy the same ecological niche within the

shrimp gut will have likely developed strategies to compete

with [competitively exclude] each other, suggesting that

multi-strain probiotics would be better targeted to a wide

range of niches.

Paenibacillus

Two isolates from the genus Paenibacillus, P. polymyxa

(formerly recognised as Bacillus polymyxa) and an unas-

signed Paenibacillus spp., have shown probiotic effects in

L. vannamei (Amoah et al., 2020) and P. monodon (Ravi

et al., 2007), respectively. P. polymyxa are able to produce a

variety of bioactive compounds, including lipopeptide bio-

surfactants able to disrupt biofilms (Quinn et al., 2012).

Even in their sporulated state, they can produce fusari-

cidins, AMPs and polymyxins due to the activity of non-ri-

bosomal peptide synthetase systems (Shaheen et al., 2011;

Grady et al., 2016). Paenibacillus spp. was shown to inhibit

the growth of Vibrio species (including V. harveyi) when

co-cultured using the well diffusion method, suggesting
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that it is able to produce diffusible extracellular antimicro-

bials; however, the mechanism of antagonism was not

investigated further.

Streptomyces

Species belonging to the genus Streptomyces produce a sub-

stantial number of bioactive compounds (over 7630; B�erdy,

2005) including antimicrobial, antifungal, anti-cancer

agents (B�erdy, 2005; Kim et al., 2008; Wang et al., 2013;

Zothanpuia et al., 2017) and are good candidates for poten-

tial use as probiotics in aquaculture (Das et al., 2010; Tan

et al., 2016). Streptomyces spp. N7 and RL8 isolated from

marine sediment both have antagonistic activity against

pathogenic Vibrio spp. (Bernal et al., 2015). Streptomyces

sp. N7 improved haemocyte counts, growth parameters

and Vibrio counts in the shrimp hepatopancreas, but it also

increased Vibrio counts in the rearing water and reduced

the SOD activity. Furthermore, there was no difference in

the survival rate of the treated shrimp when challenged

with V. parahaemolyticus. Again, this highlights the impor-

tance of thorough testing of probiotic candidates, and not

extrapolating from related species or strains. Interestingly,

when Streptomyces spp. N7 and RL8 were combined, the

negative effects on water Vibrio counts and survival rates

were not counteracted by Streptomyces sp. RL8, albeit SOD

activity returned to the level of that in the control group.

This illustrates the importance of considering both the

individual and the combined functional traits of probiotic

candidates. Bernal et al. (2015) also showed that these

strains are likely to adhere to the gut of their host, allowing

them to competitively inhibit Vibrio spp. in vitro, in addi-

tion to the production of antimicrobials. Similarly, Strepto-

myces isolates and Streptomyces rubrolavendula biogranules

(filamentous aggregation of cells) have demonstrated the

ability to inhibit the growth of Vibrio spp. in co-culture

(Das et al., 2006, 2010; Augustine et al., 2016); however, the

mechanisms were not investigated.

Clostridium

Clostridium butyricum is the only member of the genus

Clostridium tested as a probiotic in shrimp aquaculture

(Table 3) and it shows several probiotic effects in shrimp,

as it does in humans and other animals (Kanai et al., 2015;

Zhao et al., 2017) including fish (Pan et al., 2008; Gao

et al., 2013). The competitive exclusion mechanisms, how-

ever, have not been investigated (Table 3).

Psychrobacter

Few studies have been conducted on the use of Psychrobac-

ter spp. as potential probiotics in aquaculture, and only

Psychrobacter sp. 17-1 has been reported as a probiotic for

shrimp (Table 3). Screening of this isolate by the double

layer method has suggested that it is able to produce extra-

cellular antimicrobials, but the mechanism of antagonism

against V. harveyi and Aeromonas sp. has not been investi-

gated (Franco et al., 2016).

Using competitive exclusion principles to enhance
disease resistance

Despite the majority of probiotics in shrimp aquaculture

being screened and selected for further testing based on

their ability to antagonise bacterial shrimp pathogens

in vitro, from the studies reported upon it is clear that rela-

tively little is known about the mechanisms by which this

growth inhibition occurs. Furthermore, the investment of

energy into interference mechanisms (the production of

extracellular antimicrobials) by shrimp probiotics suggests

that they may be useful targets for bioprospecting for novel

antimicrobial therapeutics. In the following sections, we

discuss the implications and limitations of the use of antag-

onism assays to screen for potential probiotics.

Competitive exclusion principles and life strategies

Interference competition has been shown to improve spe-

cies fitness (Rao et al., 2005; Shank et al., 2011) and stimu-

late biodiversity (Cz�ar�an et al., 2002; Little et al., 2008;

Hibbing et al., 2010). However, the energy investment

involved in antimicrobial production generally results in

slower growth rates and reduced rates of reproduction

(Case & Gilpin, 1974; Little et al., 2008). Closely related

and co-occurring species can employ fundamentally differ-

ent competitive strategies. To illustrate this, Patin et al.

(2016) have shown that for two co-occurring marine Acti-

nomycete species, Salinispora arenicola invests in interfer-

ence competition via the production of antibiotics at the

expense of growth, whereas Salinispora tropica invests in

growth and exploitation competition. Copiotrophic species

invest in rapid growth and are selected for in environments

that are nutrient rich, whereas oligotrophic microbes are

selected for in resource-poor environments (Koch, 2001;

Roller & Schmidt, 2015). Roller and Schmidt (2015)

defined a conceptual model proposing innate differences in

growth efficiency, progeny per unit of resource utilised,

between copiotrophic and oligotrophic microbial species

and suggested that selection for efficiency based on

resource availability and quality is a primary driver of

microbial community composition. However, this model

does not account for resources that are invested in interfer-

ence competition mechanisms and may therefore result in

population persistence regardless of the growth rate or effi-

ciency. Furthermore, whilst this model shares many of the
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underlying principles of r/K selection – the selection of

combinations of traits in an organism that trade-off

between quantity and quality of offspring – it does not con-
sider environmental factors beyond resource availability.

Thus, the use of functional traits to understand processes

that influence community structure, such as the competi-

tor/stress-tolerator/ruderal (CSR) theory (Grime & Pierce,

2012) are more applicable to developing microbial manage-

ment strategies. The theory links community function and

environmental conditions by classifying traits as Competi-

tive (C; neighbours seek to capture the same unit of

resource), Ruderal (R; assisting in re-establishment of pop-

ulation after disturbance) or Stress tolerant (S; tolerance of

resource shortage, as opposed to resource competition)

and proposes that prevailing traits will be a result of

resource investment trade-off in such traits that confer an

adaptive advantage to environmental disturbance and

stress. Whilst the CSR theory was originally developed to

explain plant communities, it has been successfully applied

to soil microbial communities (Wood et al., 2018). Using

Grime’s CSR theory, fast growing species investing in

exploitation competition mechanisms (Ruderal life strate-

gists) are selected for in disturbed environments that are

not resource-limited, whereas slower growing species

investing in interference mechanisms (competitive life

strategists) are selected for in undisturbed environments

where resources are not limiting (Wood et al., 2018).

Considerations for the selection of shrimp
probiotics

Most probiotics used in shrimp aquaculture appear to be

competitive life strategists, as they are often selected for

based on their ability to produce extracellular antimicro-

bials. Due to the nature of shrimp aquaculture, in which

ponds are disturbed by chemical treatments, weather events

and disease, these probiotics may not always be the most

effective choice. Rather, certain environmental conditions

and disturbances are likely to favour the proliferation of

ruderal life strategists. To compensate for this, frequent

treatment may be necessary to establish the probiotic (com-

petitive life strategist) within the microbial community at

the required abundance and achieve the desired effects.

This may in turn impact the microbial community struc-

ture of the system and further favour ruderal life strategists

that invest in exploitation mechanisms. Improper use of

probiotic treatments may potentially lead to conditions

which favour pathogenic invasion, for example by using

species that compete with indigenous beneficial species, or

alter the overall structure or function of the community

(Long & Azam, 2001; P�erez-Guti�errez et al., 2013). There-

fore, elucidating the mechanisms underlying growth effi-

ciency and competitive strategies employed by potentially

probiotic and pathogenic species, as well as understanding

their optimal environmental conditions, are needed to

develop the most effective microbial management strategies

to both prevent and treat disease. For example, tailoring

treatments so that they contain species, or strains, that can

competitively exclude specific pathogens using multiple

mechanisms will increase the likelihood of successful

pathogen exclusion; particularly if the pathogen becomes

resistant to a mechanism, or there is a new (or opportunis-

tic) pathogenic invasion. Patin et al. (2016) designed a

workflow that aims to determine whether interference or

exploitation competition is employed by using a series of

simple inhibition assays. Following a direct challenge (co-

culture) assay, a cell-free agar (and disc) diffusion assay

determines if the antagonistic activity can be attributed to a

diffusible molecule and thus is indicative of antimicrobial

production. A negative result suggests the production of

non-diffusible growth inhibitors, indicating an exploitation

mechanism is at work. In this case, the assay is followed

with a supplement assay in which the direct challenge assay

is repeated with media supplemented by specific nutrients,

such as iron. Applying this workflow provides a simple and

cost-effective way to assess the competitive strategy likely

employed by probiotic species in vivo, although future

studies should consider the extent to which in vitro models

(mechanisms of antagonism) are accurate representations

of their interactions with pathogens, and other competi-

tors, in vivo. Making this distinction is of importance when

considering the type (i.e. desired characteristics) of probi-

otic to apply to specific conditions; for example, to improve

disease resistance before a pathogenic invasion, or in

response to an environmental disturbance, such as disease.

Theoretically, competitive life strategists would be more

suited to prophylactic treatment, as they are selected for in

undisturbed environments, whilst ruderal life strategists

would be best applied to reduce the severity of disease, as

they are selected for in disturbed environments. This also

highlights the importance of applying ecological theory to

develop effective probiotics for disease prevention in

shrimp aquaculture.

Potential probiotic identification based on the use of

limited methods, such as cell-free extracts or diffusion

assays exclusively, is selective of interference-based compe-

tition strategies due to the antimicrobial (and diffusible)

properties of the extracellular metabolites. The culture con-

ditions of potential probiotics may not stimulate inhibitory

compound production (Long & Azam, 2001), or increase

the activity of the compound (Rattanachuay et al., 2011).

Furthermore, the inhibitory effect of cell-free supernatants

and resistance of pathogens may be incorrectly determined

due to insufficient concentrations in assays such as the

disc-diffusion method (Smith, 2006; Van Hai et al., 2007).

The limitations of culture-based probiotic selection
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methods, combined with the current focus on the ability of

probiotic species to inhibit the growth of Vibrio species

(Table 3), may overlook the capability of many putative

probiotic species for shrimp aquaculture. Whilst patho-

genic Vibrio species are undoubtably an important target

for potential probiotics to antagonise, screening based on

in vitro growth inhibition of a limited number of specific

pathogens (i.e. Vibrio) may be inadvertently polarising the

type (i.e. competitive strategy) of shrimp probiotics avail-

able. Therefore, closer attention to characterising the

underlying mechanisms by which probiotics inhibit the

growth of these pathogens in vitro, combined with our

increasing understanding of their effects in vivo, will enable

us to better evaluate and develop our screening and selec-

tion methods. Probiotic treatment is able to alter the

microbial community structure in the shrimp gut and con-

fer resistance to pathogens such as V. parahaemolyticus, as

is the case for Bacillus aryabhattai TBRC8450 treatment in

L. vannamei (Tepaamorndech et al., 2019). Probiotics tar-

geted specifically at Vibrio spp. may increase the risk of dis-

ease in the event of an invasion by another species that the

probiotic cannot inhibit, doing so by lowering the proba-

bility that other members of that community provide

antagonistic traits. Stimulation of the shrimp immune

response by such probiotics should, theoretically, mitigate

some of these effects. However, it remains to be tested that

a probiotic with such effects is able to enhance resistance to

multiple pathogens. Rather, the current trend is to identify

novel probiotics, which, without focusing on the underly-

ing mechanisms, will continue to create a ‘never-ending

story’ in this field (Ringø et al., 2016). We suggest, there-

fore, that emphasis should be placed on the development of

complementary, culture-independent, methods of potential

probiotic identification and characterisation. With the

increasing affordability of sequencing approaches, whole

genome sequencing of probiotic species would benefit our

understanding of the potential mechanisms of probiotic

effects and allow us to make more informed decisions

about the suitability of such species. Furthermore, metage-

nomic, transcriptomic, and metatranscriptomic studies,

complemented by proteomics, would allow for more thor-

ough investigation, assessment and development of probi-

otic treatments in shrimp aquaculture.

Conclusions and future perspectives

Probiotics in shrimp aquaculture are often screened and

selected for in vivo testing based on their ability to competi-

tively exclude pathogens in vitro. Few studies have attempted

to identify the underlying mechanisms involved in bacterial

growth inhibition; however, they collectively illustrate the

importance of understanding the underlying probiont-

pathogen interactions, determining strain specific

characteristics and not extrapolating from related strains or

even species. This is particularly important to consider when

assessing the safety and suitability of a probiotic species for

use in animals intended for human consumption, and con-

sideration should be given to investigating the potential

impact of probiotic treatment on the virulence of pathogens.

The application of complementary sequencing approaches

such as whole-genome sequencing of probiotic species will

aid this assessment. The antagonism assays employed to

screen for probiotics in shrimp aquaculture use a limited

number of pathogens (i.e. Vibrio) and preferentially select

for interference-based mechanisms, which may overlook the

probiotic potential of many species and possibly increase the

risk of pathogen invasion. To address this, future work

should focus on expanding probiotic screening methods (in-

cluding the development of culture-independent

approaches) to include more species that use exploitation-

based mechanisms and pathogens with distinct mechanisms

of pathogenesis. Tailoring treatments so that they contain

species, or strains, that can competitively exclude specific

pathogens using multiple mechanisms will increase the likeli-

hood of successful pathogen exclusion; particularly if the

pathogen becomes resistant to a mechanism, or there is a

new (or opportunistic) pathogenic invasion. The impact of

probiotic treatment on the shrimp gut microbiota and dis-

ease resistance should also be carefully considered as not to

reduce the abundance of other ecologically important spe-

cies. Special consideration should be given to identifying and

testing probiotics that are able to prevent the onset of disease

with limited effects on the microbial community structure

and function. Furthermore, the efficiency of treatment may

be improved by considering the competitive life strategy of

the probiotic species. Future studies should investigate this

by validating the competitive strategies used in vivo¸ and

designing pathogen challenge trials that compare the effects

of probiotic administration, prior to and at the onset of dis-

ease or other such environmental disturbances, on the

shrimp gut microbiome and disease resistance.
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