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Abstract
Purpose  To compare endocrine responses to intermittent vs continuous enteral nutrition provision during short-term bed rest.
Methods  Twenty healthy men underwent 7 days of bed rest, during which they were randomized to receive enteral nutrition 
(47%E as carbohydrate, 34%E as fat, 16%E as protein and 3%E as fibre) in a continuous (CONTINUOUS; n = 10; 24 h day−1 
at a constant rate) or intermittent (INTERMITTENT; n = 10; as 4 meals per day separated by 5 h) pattern. Daily plasma 
samples were taken every morning to assess metabolite/hormone concentrations.
Results  During bed rest, plasma leptin concentrations were elevated to a lesser extent with INTERMITTENT vs CON-
TINUOUS (iAUC: 0.42 ± 0.38 vs 0.95 ± 0.48 nmol L−1, respectively; P = 0.014) as were insulin concentrations (interac-
tion effect, P < 0.001) which reached a peak of 369 ± 225 pmol L−1 in CONTINUOUS, compared to 94 ± 38 pmol L−1 in 
INTERMITTENT (P = 0.001). Changes in glucose infusion rate were positively correlated with changes in fasting plasma 
GLP-1 concentrations (r = 0.44, P = 0.049).
Conclusion  Intermittent enteral nutrition attenuates the progressive rise in plasma leptin and insulinemia seen with con-
tinuous feeding during bed rest, suggesting that continuous feeding increases insulin requirements to maintain euglycemia. 
This raises the possibility that hepatic insulin sensitivity is impaired to a greater extent with continuous versus intermittent 
feeding during bed rest. To attenuate endocrine and metabolic changes with enteral feeding, an intermittent feeding strategy 
may, therefore, be preferable to continuous provision of nutrition.
This trial was registered on clinicaltrials.gov as NCT02521025.
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Abbreviations
GLP-1	� Glucagon-like peptide-1
HbA1c	� Glycated hemoglobin
RM	� Resting metabolic rate
iAUC​	� Incremental area under the curve
SD	� Standard deviation
ANOVA	� Analysis of variance
GIR	� Glucose infusion rate

Introduction

Malnutrition during hospitalisation is a common occur-
rence (McWhirter and Pennington 1994) and is associ-
ated with poorer patient outcomes (Robinson et al. 1987) 
delayed discharge times, and an increase in associated 
costs (Reilly et al. 1988). When nutritional requirements 
cannot be met by normal eating due to either lack of 
consciousness, swallowing difficulties, or lack of appe-
tite, then enteral nutritional support is advised, particu-
larly when oral intake is likely to be insufficient (< 70% 
of requirements) for 3–7 days (Stroud et al. 2003; Singer 
et al. 2018). Enteral nutrition is preferred over parenteral 
nutrition due to lower infection risks (Braunschweig et al. 
2001) and because it represents a more “physiological” 
mode of nutrition delivery (Stroud et al. 2003). For exam-
ple, nutrients in the gastrointestinal tract are responsible 
for the incretin effect; a phenomenon whereby the peptides 
glucagon-like peptide-1 (GLP-1) and glucose-dependent 
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insulinotropic polypeptide (GIP) stimulate insulin secre-
tion. Accordingly, intravenous glucose does not raise 
GLP-1 concentrations above basal (Nielsen et al. 1985), 
whereas both oral ingestion (Nielsen et al. 1985; Chen 
et al. 2018) and enteral nutrition [either gastric or jejunal 
delivery (Luttikhold et al. 2016)] potently raise plasma 
postprandial GLP-1 concentrations above fasting values. 
Importantly, the incretin effect has a central role in meta-
bolic control; responsible for the majority (up to 70%) of 
postprandial insulin secretion in healthy humans (Nauck 
et al. 2004; Nauck and Meier 2016).

Metabolic complications are common with nutritional 
therapy and the prevalence of insulin resistance in patients 
with enteral tube feeding is ~ 33% (Woolfson et al. 1976), 
which could be due to a number of factors including muscle 
disuse (Dirks et al. 2016), injury/illness-associated stress 
(Woolfson et al. 1976) and/or the endocrine disruption due 
to enteral nutrition delivery pattern and mode (Luttikhold 
et al. 2016; Stoll et al. 2012). In intensive care, it is most 
commonly recommended to provide enteral nutrition in a 
continuous pattern, rather than an intermittent pattern that 
better mimics feeding patterns in normal daily life (Singer 
et al. 2018; NICE 2006). There is little information on the 
role of enteral feeding patterns on endocrine and metabolic 
responses in vivo in humans. The decline in peripheral insu-
lin sensitivity during bed rest with enteral nutrition appears 
to be independent of the pattern (intermittent vs continuous) 
of enteral nutrition delivery in humans (Dirks et al. 2019a). 
However, it is unknown whether feeding pattern alters other 
aspects of metabolism or endocrine function.

Alongside evidence that exogenous GLP-1 improves gly-
caemic control in healthy and critically ill humans (Deane 
et al. 2009; Gutniak et al. 1992; D’Alessio et al. 1994), it has 
been suggested that endocrine alterations (including GLP-1) 
may be a key mechanism underlying the metabolic responses 
to differing delivery modes and patterns of enteral nutrition 
(Luttikhold et al. 2016; Stoll et al. 2012). Alongside GLP-1, 
other peptide hormones, such as ghrelin, glucagon and leptin 
are also responsive to feeding, and all play important roles 
in glucose metabolism, insulin sensitivity and appetite regu-
lation (Kojima and Kangawa 2005; Morton and Schwartz 
2011; Friedman 2014; Troke et  al. 2014; Sandoval and 
D’Alessio 2015). In the early phase of enteral feeding (first 
4 h), an intermittent pattern produces a divergent insulin 
and gut hormone response compared to a continuous pattern 
(Chowdhury et al. 2016). Non-randomized trials indicate 
that intermittent feeding over 3 days suppresses appetite rat-
ings and plasma ghrelin concentrations and raises plasma 
leptin and glucagon concentrations compared to placebo 
(Stratton et al. 2008), whereas continuous feeding does not 
suppress appetite or alter plasma glucagon concentrations 
compared to placebo (Stratton et al. 2003). To date, however, 
there are no direct comparisons of intermittent vs continuous 

enteral tube feeding on peptide responses over a time-period 
when enteral nutrition is typically advised (i.e. ~ 5–7 days).

An opportunity arose to address whether enteral feed-
ing pattern alters endocrine responses during 7 days of bed 
rest by making use of plasma samples collected as part of a 
wider project examining muscle metabolism and mitochon-
drial capacity (Dirks et al. 2019a, b). Blood samples and 
appetite ratings were taken each morning throughout 7 days 
of bed rest with enteral nutrition delivered in an intermittent 
vs continuous pattern. Accordingly, the aim of this study 
was to assess the effects of an intermittent pattern of enteral 
nutrition during 7 days of bed rest on endocrine (insulin, 
glucagon, GLP-1, ghrelin, and leptin) responses, compared 
to current standard practice of continuous enteral nutrition. 
We also aimed to characterise the relationship between 
endocrine responses, insulin sensitivity, and appetite. We 
hypothesised that intermittent feeding may increase plasma 
glucagon and ghrelin concentrations alongside increases in 
appetite ratings, whilst decreasing insulin concentrations, 
when compared to continuous feeding.

Materials and methods

Study design

The data presented in the current manuscript are part of a 
larger study on muscle metabolic responses to enteral feed-
ing patterns during bedrest (Dirks et al. 2019a). Where data 
have previously been reported, this is clearly stated and 
cited. All endocrine data presented in this manuscript have 
not been reported previously. After screening, 20 partici-
pants completed baseline testing and began a control period 
comprising 7 days of standardised nutrition. On day 7 of 
the control period, participants underwent body composi-
tion testing and a hyperinsulinemic–euglycemic clamp to 
determine whole-body insulin sensitivity. On the same even-
ing, participants arrived at the University for insertion of a 
nasogastric tube and remained at the University overnight. 
The following morning at 08:00, a 7-day period of bed rest 
began. During this period, participants were randomized to 
receive enteral nutrition in either an intermittent (INTER-
MITTENT; n = 10; 4 meals per day) or continuous (CON-
TINUOUS; n = 10; 24 h day−1 at a constant rate) pattern. 
After 7 days of bed rest, the hyperinsulinemic–euglycemic 
clamp was repeated to determine changes in whole-body 
insulin sensitivity.

In order to characterise the acute responses with tempo-
ral resolution, one additional participant with characteristics 
representative of study population (age: 28 years; stature: 
1.86 m; body mass: 93 kg) completed two, 24-h periods of 
bed rest with nasogastric feeding in either an intermittent (4 
meals per day) or continuous pattern, with a 7-day washout 
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period. Blood was sampled hourly to characterise the initial 
diurnal responses to the protocol.

Participants

The present study recruited young healthy men (age range 
for recruitment: 18–35 years), on the basis that this would 
allow for an understanding of the effects of feeding pat-
tern per se, without the potential confounding of interac-
tions with injuries/illnesses. Participant’s characteristics are 
presented in Table 1 [as previously reported (Dirks et al. 
2019a)]. All participants were informed of the nature and 
risks of the experiment prior to taking part before being 
informed, written consent was obtained. Prior to participa-
tion, participants also completed a general health question-
naire and medical screening to determine their eligibility 
to participate. Exclusion criteria included the following: a 
body mass index below 18.5 or above 30 kg m−2; a family 
history of deep vein thrombosis, type 2 diabetes (defined by 
HbA1c > 7.0%); any back, knee or shoulder complaints that 
could be contraindicative of bed rest; and participation (in 
the 6 months prior to the study) in resistance-type exercise 
training. During screening, a blood sample was obtained in 
the fasted state and resting metabolic rate was determined 
using a ventilated hood. The current study was approved 
by the Medical Ethical Committee of Maastricht University 
Medical Centre+ (registration number MEC 15-3-035) in 
accordance with the Declaration of Helsinki.

Bed rest

Participants underwent a 7-day period of strict bed rest to 
mimic the effects of hospitalization. On day 1 of bed rest, 
at 08:00, participants began the bed rest procedure during 
which they were not permitted to leave the bed for 7 days. 
Participants were woken at 07:30 and lights were switched 
off at 23:30 daily. During daytime, participants were permit-
ted to use a pillow and slight elevation of the bed in order to 

perform daily activities. Washing and all sanitary activities 
were performed in bed. Participants were constantly moni-
tored by members of the research team.

Nutritional intake

During screening, resting metabolic rate (RMR) was deter-
mined via indirect calorimetry using an open-circuit venti-
lated hood system [Omnical, Maastricht University, Maas-
tricht, the Netherlands; (Schoffelen et al. 1985)]. During the 
7-day control period prior to bed rest, and during the bed 
rest period, all nutrition was provided by the research team 
and dietary intake was standardised to achieve energy bal-
ance based on RMR multiplied by either 1.60 (control period 
prior to bed res) or 1.35 (for bed rest). The macronutrient 
composition of the diet was identical during both the control 
period prior to bed rest and the bed rest period.

During bed rest, enteral nutrition was provided via a 
nasogastric tube (Flocare© PUR tube Enlock, Ch8, 110 cm, 
Nutricia Advanced Medical Nutrition, the Netherlands). 
Correct placement of the tube in the stomach was confirmed 
by pH assessment immediately following insertion and on 
every morning during bed rest. A standard enteral nutrition 
product (Nutrison Multi Fibre, Nutricia Advanced Medi-
cal Nutrition) was employed, providing carbohydrates (47% 
energy) fat (34% energy), protein (16% energy) and fibre (3% 
energy). During INTERMITTENT, participants received 
nutrition in four daily boluses, administered at 08:00 (30% 
of daily energy intake; ~ 720 kcal over 30 min), 13:00 (30% 
of daily energy intake; ~ 720 kcal over 30 min), 18:00 (30% 
of daily energy intake; ~ 720 kcal over 30 min) and 23:00 
(10% of daily energy intake; ~ 240 kcal over 10 min) at a 
rate of 25 mL min−1, with the first meal administered on the 
morning of the first day of bed rest. During CONTINUOUS, 
participants received nutrition in a continuous pattern via a 
Flocare© Infinity enteral feeding pump (Nutricia Advanced 
Medical Nutrition) at a constant rate (~ 100 mL h−1, depend-
ing on energy requirements, equating to a mean intake 
of ~ 100 kcal h−1). Continuous feeding began at 00:00 on 
the evening before bed rest and ended at 00:00 on the even-
ing of day 7 to allow for the final measures to be determined 
in a fasted state. Nasogastric tubes were removed at 00:00 
on the evening of day 7 in both groups.

Body composition

Height was determined using a stadiometer, and body mass 
was determined with participants wearing minimal cloth-
ing. Body composition was determined by dual-energy X-ray 
absorptiometry (DXA; Hologic, Discovery A, QDR Series, 
Bradford, MA, USA) The software package Apex v 4.0.2 
was used to determine whole-body fat mass.

Table 1   Participant characteristics

Data previously reported (Dirks et  al. 2019a). HbA1c, glycated hae-
moglobin
INTERMITTENT intermittent enteral nutrition pattern, CONTINU-
OUS continuous enteral nutrition pattern

INTERMITTENT 
(n = 10)

CONTINU-
OUS (n = 10)

Age (year) 27 ± 4 24 ± 4
Stature (m) 1.81 ± 0.09 1.79 ± 0.08
Body mass (kg) 77.5 ± 16.2 77.3 ± 16.1
Body mass index (kg m−2) 23.5 ± 4.0 24.0 ± 3.2
HbA1c (%) 5.2 ± 0.3 5.2 ± 0.5
Body fat (%) 22.9 ± 5.9 22.3 ± 3.8
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Hyperinsulinemic–euglycemic clamp

Whole-body insulin sensitivity was assessed by a hyperinsu-
linemic–euglycemic clamp on the days immediately before 
and after bed rest as previously described (Dirks et al. 2016). 
Briefly, an intravenous cannula was inserted retrogradely 
into a dorsal hand vein, with the hand kept in a heated box 
(60 °C) for sampling of arterialised blood. In the contralat-
eral arm, an intravenous cannula was inserted into an antecu-
bital vein for infusion of 20% glucose (Baxter B.V., Utrecht, 
Netherlands) and insulin (40 mU m−2 min−1; Novorapid, 
Novo Nordisk Farma, Alphen aan den Rijn, the Nether-
lands). Blood was sampled every 5 min throughout the 2.5-h 
clamp to determine glucose concentration (ABL800 FLEX; 
Radiometer Medical, Brønshøj, Denmark). Glucose infusion 
rate (GIR) was altered in order to maintain euglycemia at 
5.0 mmol L−1, and average GIR of the last 30 min was used 
as a measure of peripheral insulin sensitivity.

Blood sampling and analysis

Blood was sampled via venepuncture prior to the control 
period, and then at 08:00 on each morning of bed rest. Since 
the CONTINUOUS group were constantly in a fed state, all 
blood samples during bed rest were taken in a “postprandial” 
state in this group, vs a fasted state in the INTERMITTENT 
group. In order to ascertain an effect of feeding pattern 
independent from feeding status, a final blood sample was 
collected at 08:00 (in the fasted state for both groups) on 
the day after bed rest (day 8) prior to the hyperinsulinemic-
euglycemic clamp. Samples were collected in EDTA-coated 
tubes and immediately centrifuged at 1000g for 10 min at 
4 °C. Plasma was divided into aliquots, snap frozen in liquid 
nitrogen and stored at − 80 °C until subsequent determina-
tion of glucose (GLUC3, reference 05168791 190, Roche; 
detection limits; 0.11–41.6 mmol L−1), glycated haemo-
globin (determined in 4 mL venous blood by high-perfor-
mance liquid chromatography; Bio-Rad Diamat, Munich, 
Germany) insulin (Immunologic, reference 12017547 
122, Roche; detection limits; 1.39–6945 pmol L−1), GLP-
1Total (Epitope Diagnostics Inc. CA, USA; detection limits; 
0.6–54 pmol L−1) ghrelin (EMD Millipore, Germany; detec-
tion limits; 50–5000 pg mL−1) glucagon (Mercodia AB, 
Sweden; detection limits; 0.024–100,000 pmol L−1) leptin 
(Mercodia AB, Sweden). Intra- and inter-assay co-efficients 
of variation were all < 8%.

Appetite ratings

Appetite ratings were determined using 100 mm visual ana-
logue scales (Flint et al. 2000) with descriptors anchored at 
each end describing the extremes (e.g. “I am not hungry at 
all” versus “I have never been more hungry”). Participants 

rated their appetite by placing a vertical mark across each 
line on paper, and participants were not permitted to refer 
to their previous ratings when completing the scales. Scales 
were analysed by measuring the horizontal distance from 
the left-had anchor to the point marked by the participant.

Statistics

The sample size for the study was based on the primary 
outcome of glucose infusion rate as reported in the parent 
manuscript (Dirks et al. 2019a). However, this sample size 
should also be sufficient to detect meaningful differences in 
endocrine responses based on data reported by Stoll et al. 
(Stoll et al. 2012), whereby INTERMITTENT resulted in 
a plasma GLP-1 concentrations of 43 ± 11 pmol L−1, com-
pared to 32 ± 3 pmol L−1 with CONTINUOUS. Using this 
effect size (d = 1.36), ten participants in each group should 
provide a power of 0.82 with a two-tailed α-level of 0.05 in 
a between-group design (Faul et al. 2007).

Data are expressed as mean ± SD in text and tables and 
mean ± 95% CI in figures. Data were analysed using Prism 
v7 (GraphPad Software, San Diego, CA, USA) and log-
transformed if appropriate, prior to analysis (determined by 
Shapiro–Wilk normality test). Baseline differences between 
groups were assessed using independent t test. Changes over 
time were assessed by repeated measures ANOVA, with time 
(days 0–7 or pre- vs post-bed rest) as the within-subjects 
factor and group (INTERMITTENT vs CONTINUOUS) 
as the between-subjects factor. The incremental area under 
the curve (iAUC) for plasma peptide concentrations over 
time (above baseline for GLP-1, glucagon and leptin; below 
baseline for ghrelin), was calculated using the trapezoidal 
method to use as a summary statistic. Between group dif-
ferences (INTERMITTENT vs CONTINUOUS) in iAUC, 
and pre- to post-bed rest change in fasting variables (glucose 
infusion rate, plasma glucose and hormone concentrations) 
were analysed by independent t tests. Relationships between 
variables were analysed by Pearson correlation coefficients 
when normally distributed, or Spearman correlation coef-
ficients when non-normally distributed (determined by 
Shapiro–Wilk normality test). All P values were corrected 
for multiple comparisons using the Holm–Sidak adjust-
ment. A P value of ≤ 0.05 was used to determine statistical 
significance.

Results

Acute endocrine responses to modulation of 24‑h 
enteral nutrition pattern

The acute (24-h) endocrine responses to intermittent vs 
continuous enteral feeding are displayed in Fig. 1, using 
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data from an additional participant (n = 1). Plasma glu-
cose concentrations followed a relatively similar pattern 
with intermittent vs continuous feeding (Fig. 1a), whereas 
plasma insulin concentrations varied markedly more with 
intermittent, compared to continuous feeding (Fig. 1b), 
increasing ~ ninefold following each main bolus feed. At the 
24-h timepoint, plasma insulin concentrations were com-
parable between intermittent and continuous feeding pat-
terns. Plasma GLP-1 concentrations increased > fourfold 
within 1 h after each main meal during INTERMITTENT, 
returning to basal concentrations following the overnight 
period (Fig. 1c). During CONTINUOUS, plasma GLP-1 
concentrations displayed less variability (Fig. 1c). Simi-
larly, plasma glucagon concentrations (Fig. 1d) fluctuated 
more widely with INTERMITTENT vs CONTINUOUS, 
increasing > sevenfold from basal with the first meal dur-
ing INTERMITTENT, whereas during CONTINUOUS 
plasma glucagon concentrations did not rise more than two-
fold above basal values at any time point. By 24 h, plasma 

glucagon concentrations were comparable to baseline values 
during both INTERMITTENT and CONTINUOUS. Plasma 
ghrelin concentrations (Fig. 1e) decreased with feeding dur-
ing INTERMITTENT, from ~ 640 to 312 pmol L−1, whereas 
plasma ghrelin concentrations did not decrease below 
522 pmol L−1 at any time point during CONTINUOUS 
(Fig. 1e). Plasma leptin concentrations, however, remained 
stable over 24 h and did not differ between INTERMIT-
TENT vs CONTINUOUS feeding (Fig. 1f).

Plasma glucose, insulin and glucagon responses 
during 7 days of bed rest

At baseline, no differences were detected between INTER-
MITTENT vs CONTINUOUS in plasma glucose, insulin, 
GLP-1, glucagon, ghrelin, or leptin concentrations, nor 
insulin-to-glucagon ratio (all P > 0.05; Figs. 2, 3). Whilst 
a modest difference in plasma glucose concentrations was 
observed after day 1 of bed rest with NTERMITTENT vs 

Fig. 1   Plasma glucose (a), 
insulin (b), GLP-1 (c), glucagon 
(d), ghrelin (e) and leptin (f) 
concentrations during 24 h 
of bed rest in a representative 
participant (n = 1), with enteral 
nutrition provided in either an 
intermittent (INTERMITTENT) 
or continuous (CONTINU-
OUS) pattern. Dashed vertical 
lines indicate when nutrition 
was provided in the intermittent 
condition. GLP-1 glucagon-like 
peptide-1
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CONTINUOUS, (interaction effect, P < 0.001); thereafter, 
plasma glucose concentrations did not differ between condi-
tions for the remainder of the 7 days of bed rest (Fig. 2a).

Plasma insulin concentrations did not differ between 
INTERMITTENT vs CONTINUOUS for the first day of 
bed rest. Thereafter, plasma insulin concentrations remained 
stable in INTERMITTENT, but began to rise in CONTIN-
UOUS (interaction effect, P < 0.001; Fig. 2b), reaching 
peak concentrations of 94 ± 38 pmol L−1 in INTERMIT-
TENT, compared to 369 ± 225 pmol L−1 in CONTINUOUS 
(P = 0.001).

Plasma glucagon concentrations began to decrease dur-
ing the first 2 days of bed rest in both groups (time effect, 
P = 0.002), but towards day 7 of bedrest, plasma glucagon 
concentrations began to rise in the INTERMITTENT group 
only (interaction effect, P = 0.042; Fig. 2c).

The plasma insulin-to-glucagon ratio remained stable 
during bed rest with INTERMITTENT, but increased with 
CONTINUOUS (interaction effect, P < 0.001) such that 
by days 6 and 7, the plasma insulin-to-glucagon ratio was 
lower with INTERMITTENT vs CONTINUOUS (Fig. 2d; 
P < 0.05).

Plasma GLP‑1, ghrelin and leptin responses during 7 
days of bed rest

Plasma GLP-1 concentrations (Fig. 3a) were not altered 
during bed rest compared to baseline values (time effect, 
P = 0.93). The delivery pattern of enteral nutrition, 

however, did alter the plasma GLP-1 response over time 
(interaction effect, P = 0.024), although following adjust-
ment for multiple comparisons, none of the differences 
between feeding patterns at any time point remained sig-
nificant (Fig. 3a).

Compared to baseline, plasma ghrelin concentrations 
decreased during bed rest (time effect, P < 0.001), to a simi-
lar extent in INTERMITTENT vs CONTINUOUS groups 
(interaction effect, P = 0.79; Fig. 3b).

Plasma leptin concentrations increased during bed rest, 
compared to baseline (time effect, P < 0.001) but to a lesser 
extent in the INTERMITTENT vs CONTINUOUS group 
(interaction effect, P = 0.001; Fig. 3c). Moreover, the leptin 
iAUC was lower with INTERMITTENT vs CONTINU-
OUS (0.95 ± 0.48 vs 0.42 ± 0.38 nmol L−1, respectively; 
P = 0.014).

Appetite ratings during bed rest

During bed rest, appetite ratings were higher in the 
INTERMITTENT vs CONTINUOUS group (group effect, 
P = 0.01). Following adjustment for multiple comparisons, 
the INTERMITTENT group reported higher appetite ratings 
at both 0800 and 1800 h on day 7 only (Table 2). Moreover, 
appetite ratings on day 7 positively correlated with plasma 
ghrelin concentrations sampled at the same time point 
(Fig. 4). Appetite ratings did not correlate with either plasma 
glucagon or leptin concentrations (both P > 0.05).

Fig. 2   Plasma concentrations 
of glucose (a), insulin (b), 
glucagon (c) and the insulin-to-
glucagon ratio (d) before (day 
0) and during 7 days of bed 
rest, and with enteral nutrition 
provided in either an intermit-
tent (INTERMITTENT; n = 10) 
or continuous (CONTINU-
OUS; n = 10) pattern. Data are 
means ± 95% CI. *difference 
between INTERMITTENT and 
CONTINUOUS, P < 0.05 0 1 2 3 4 5 6 7
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Changes in fasting plasma glucose and regulatory 
hormones following bedrest

Fasting plasma GLP-1 concentrations decreased from pre-
to-post 7 days of bed rest with INTERMITTENT versus 
CONTINUOUS (P = 0.024; Fig. 5d). In contrast, fasting 
glucagon, ghrelin and leptin concentrations were unaltered 
by enteral feeding pattern (all P > 0.05 for; Fig. 5a–c, e, f).

Insulin sensitivity

As previously reported, GIR declined by ~ 42% following 
7 days of bed rest, independent of feeding pattern [data from 
both groups pooled in the present manuscript; Fig. 6a (Dirks 
et al. 2019a)]. However, the change in GIR positively cor-
related with the change in log plasma GLP-1 concentrations 
(Fig. 6b), but not the change in glucagon, ghrelin or leptin 
concentrations (all P > 0.05).

Discussion

The present study demonstrates that intermittent enteral 
nutrition attenuates the increase in post-absorptive plasma 
insulin and leptin concentrations but has little impact on 
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Fig. 3   Plasma concentrations of GLP-1 (a glucagon-like peptide-1), 
ghrelin (b), and leptin (c) concentrations before (day 0) and during 
7  days of bed rest, and with enteral nutrition provided in either an 
intermittent (INTERMITTENT; n = 10) or continuous (CONTINU-
OUS; n = 10) pattern. Data are presented as group means ± 95% CI. 
*P < 0.05 for INTERMITTENT vs CONTINUOUS

Table 2   Appetite ratings during 7 days of bedrest with enteral nutri-
tion provided in either an intermittent or continuous pattern

INTERMITTENT intermittent enteral nutrition pattern, CONTINU-
OUS continuous enteral nutrition pattern

Day Time Appetite rating (mm) INTERMITTENT 
vs CONTINUOUS
Adjusted P valueINTER-

MITTENT 
(n = 10)

CON-
TINUOUS 
(n = 10)

Day 1 0800 h 39 ± 24 18 ± 14 0.162
1800 h 38 ± 24 23 ± 18 0.783

Day 4 0800 h 39 ± 22 21 ± 18 0.376
1800 h 40 ± 22 19 ± 14 0.115

Day 7 0800 h 41 ± 16 18 ± 15 0.029
1800 h 46 ± 21 16 ± 14 0.009
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plasma glucose, GLP-1 and ghrelin concentrations, when 
compared to continuous enteral nutrition during 7 days of 
bed rest.

Enteral nutrition is advised when nutritional require-
ments during hospitalisation are unlikely to be met by 
oral ingestion for > 5–7 days (Stroud et al. 2003; Singer 
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Fig. 6   Glucose infusion rate 
during a hyper-insulinemic, 
euglycemic clamp before (PRE) 
and after (POST) 7 days of bed 
rest with enteral nutrition (a), as 
previously reported (Dirks et al. 
2019a). Relationship between 
the change in fasting plasma 
GLP-1 concentration and glu-
cose infusion rate after 7 days of 
bed rest conducted with enteral 
nutrition provided in either an 
intermittent (INTERMITTENT) 
or continuous (CONTINUOUS) 
pattern (b)
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et al. 2018). Enteral nutrition is generally provided in a 
continuous pattern (50–100 mL h−1 over 12–24 h day−1), 
possibly due to logistics and time commitments of clinical 
staff, although an intermittent feeding pattern mimicking 
habitual dietary feeding, is occasionally used (Stroud et al. 
2003). The effect of dietary feeding pattern on insulin sen-
sitivity and endocrine responses in humans are not well 
characterised. This is the first study to demonstrate that the 
nutrition delivery pattern modulates endocrine responses 
to enteral nutrition in humans in vivo, during a time period 
when enteral nutrition is advised (e.g. > 5 days). Our data 
also demonstrate that intermittent feeding lowers fasting 
plasma glucose and GLP-1 concentrations compared to 
continuous feeding, and the changes in fasting GLP-1 are 
associated with changes in peripheral insulin sensitivity 
during bed rest.

In addition to peripheral insulin sensitivity, hepatic 
insulin sensitivity is a major contributor to glucose control 
(Groop et al. 1989). Hepatic glucose production is primar-
ily regulated by the insulin-to-glucagon ratio (Gonzalez 
et al. 2016). Here, we demonstrate that insulin concentra-
tions required to maintain euglycemia progressively increase 
across 7 days of bed rest with continuous enteral feeding, 
whereas intermittent feeding prevented this increase in insu-
linemia. Whilst the continuous group would have a continu-
ous exogenous glucose appearance at a rate of ~ 0.2 g min−1, 
this was not sufficient to raise insulinemia until at least 48 h 
of bed rest, with nutrition provided to meet energy require-
ments. This suggests that the increase in insulinemia is due 
to the development of insulin resistance, rather than a physi-
ological response to continuous exogenous carbohydrate 
appearance. When combined with our previously reported 
observations that feeding pattern does not alter the decline in 
peripheral insulin sensitivity or muscle mitochondrial func-
tion during bed rest (Dirks et al. 2019a, b), and also with 
evidence that hepatic insulin sensitivity plays a more impor-
tant role in glucose control at low insulin concentrations 
that at high insulin concentrations (Groop et al. 1989), this 
suggests that hepatic insulin sensitivity was declining with 
continuous versus intermittent feeding. This is in line with 
prior observations that 7 days of head down-tilt bed rest with 
nutritional intake as 3 meals per day, results in decreased 
peripheral insulin sensitivity, without a decline in hepatic 
insulin sensitivity in men (Blanc et al. 2000a). Interestingly, 
women showed decreases in both peripheral and hepatic 
insulin sensitivity following bed rest (Blanc et al. 2000a). 
Combined with our data, this suggests that maintaining a 
degree of fasting between meals can prevent hepatic insulin 
resistance during bed rest in men, but more work is required 
to understand if feeding pattern can alter hepatic insulin sen-
sitivity during bed rest in women. Furthermore, our observa-
tions require confirmation with the addition of stable-isotope 
methods to euglycemic–hyperinsulinemic clamps in order to 

definitively establish whether hepatic insulin sensitivity is 
altered by enteral feeding pattern during bed rest.

GLP-1 is a gut hormone with a central role in postpran-
dial metabolism (Drucker 2018) and is secreted in response 
nutrients in the gastrointestinal tract (Gonzalez and Steven-
son 2014a; Gonzalez et al. 2015). The present data demon-
strate that continuous enteral nutrition delivered at a rate of 
100 kcal h−1 is insufficient to increase GLP-1 concentrations 
above those seen in a fasted state. However, following 7 days 
of bed rest, an intermittent feeding pattern lowered fasting 
GLP-1 concentrations compared to a continuous feeding pat-
tern. Furthermore, individuals demonstrating the greatest 
decline in fasting GLP-1 concentrations also demonstrated 
the greatest decline in glucose infusion rate during a hyper-
insulinemic–euglycemic clamp. When considered alongside 
evidence that exogenous GLP-1 improves glucose homeo-
stasis in ICU patients (Deane et al. 2009), and may enhance 
glucose disposal in humans (Gutniak et al. 1992; D’Alessio 
et al. 1994) [although not under all conditions (Orskov et al. 
1996; Ahren et al. 1997)], these data suggest that endoge-
nous GLP-1 plays a role in metabolic control during bed rest. 
As direct effects of GLP-1 on peripheral insulin sensitivity 
are unclear, the mechanism(s) by which GLP-1 may contrib-
ute to metabolic control are thought to also include micro-
vascular recruitment and glucose-stimulated insulin secre-
tion (Drucker 2018). Whilst enteral feeding pattern does not 
modulate the decline in peripheral insulin sensitivity during 
bed rest (Dirks et al. 2019a), other strategies that increase 
endogenous GLP-1 concentrations, such as enteral delivery 
mode (Luttikhold et al. 2016) and/or nutrient composition 
(Gonzalez et al. 2015; Gonzalez and Stevenson 2014b; Chen 
et al. 2019), warrant exploring as potential approaches to 
preserve GLP1 concentrations during bed rest.

Leptin is a peptide hormone primarily derived from adi-
pose tissue which is mostly known for its role in suppressing 
appetite, but can also increase insulin sensitivity (Morton 
and Schwartz 2011), and has been shown to increase dur-
ing bed rest (Blanc et al. 2000b). Since leptin is thought to 
be mostly regulated by chronic changes in energy balance, 
it is important to note that participants in the present study 
were fed to maintain energy balance, confirmed by the stable 
fat mass (within 0.1 kg) previously reported (Dirks et al. 
2019a). Here, we demonstrate that intermittent feeding less-
ens the increase plasma leptin concentration seen during bed 
rest with continuous feeding. This provides the first evidence 
that feeding pattern can modulate the leptin response to bed 
rest, independent from energy balance. Since prolonged 
insulinemia is thought to stimulate increased leptin secre-
tion (Kolaczynski et al. 1996; Gonzalez et al. 2019), the 
progressive increase in insulinemia seen with continuous 
vs intermittent feeding may explain this increase in leptin 
concentrations. If a higher leptin response is desirable, then 
a continuous feeding pattern could be a strategy to ensure 
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high leptin concentrations independent from changes in 
energy balance.

Ghrelin is primarily secreted from the gut and is currently 
the only known gut hormone to stimulate appetite. It has 
previously been reported that patients in the intensive care 
unit (ICU) display ~ 50% lower plasma ghrelin concentra-
tions than age- and BMI-matched healthy controls (Nematy 
et al. 2006). As the present study was conducted on healthy 
participants, this suggests that reductions in ghrelin concen-
trations that have previously been reported in the ICU might 
be a result of physical inactivity per se or changes in feed-
ing mode, rather than illness. It remains to be established 
whether the reduction in plasma ghrelin concentrations is a 
direct result of bed rest, naso-gastric feeding, or an interac-
tion between physical inactivity and naso-gastric feeding. 
Changes in ghrelin concentrations are likely to play a role 
in appetite regulation during bed rest, as demonstrated by 
both the positive relationship between appetite and ghre-
lin concentrations in the present study. This is in line with 
the positive relationship observed between plasma ghrelin 
concentrations and ad libitum food intake in ICU patients 
(Nematy et al. 2006). Since malnutrition is prevalent dur-
ing and following periods in intensive care, strategies that 
reduce ghrelin concentrations should be considered with 
caution. It should also be noted that blood samples and appe-
tite ratings measured during bed rest were taken in in the 
fasted state for the INTERMITTENT group, compared with 
constant nutrition in the CONTINUOUS group. Neverthe-
less, the differences in insulinemia and leptin were progres-
sive, and not apparent within the first 24 h of continuous 
feeding. This suggests that these responses are a true reflec-
tion of the interaction between feeding pattern and bed rest, 
rather than an artefact of the sampling time point. A further 
consideration is that we recruited young, healthy men. The 
generalisability of these findings to clinical nutrition and 
to women is, therefore, somewhat limited. Nevertheless, 
by studying healthy people, the present findings are able 
to isolate the effects of enteral feeding pattern independent 
from the diverse impact of disease states and injuries seen 
in clinical settings.

In conclusion, these data demonstrate that enteral feeding 
pattern alters the endocrine response to bed rest in vivo in 
humans. Intermittent enteral nutrition attenuates the increase 
in plasma insulin and leptin concentrations along with the 
decline in plasma glucagon concentrations during 7 days of 
bed rest, when compared to a continuous feeding pattern. 
The increase in insulinemia in the absence of differences 
in peripheral insulin sensitivity suggests that hepatic insu-
lin sensitivity may be compromised to a greater extent with 
continuous feeding. If a clinical aim is to attenuate endocrine 
and metabolic changes seen with enteral feeding during bed 
rest, then an intermittent feeding pattern may be preferable 
over continuous delivery of enteral nutrition.
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