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Neurodegenerative diseases, such as Alzheimer’s or Parkinson’s disease, show characteristic degradation
of structural brain networks. This degradation eventually leads to changes in the network dynamics and
degradation of cognitive functions. Here, we model the progression in terms of coupled physical processes:
The accumulation of toxic proteins, given by a nonlinear reaction-diffusion transport process, yields an
evolving brain connectome characterized by weighted edges on which a neuronal-mass model evolves. The
progression of the brain functions can be tested by simulating the resting-state activity on the evolving brain
network. We show that while the evolution of edge weights plays a minor role in the overall progression of
the disease, dynamic biomarkers predict a transition over a period of 10 years associated with strong
cognitive decline.
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Introduction.—Neurodegenerative diseases are not only
major health and societal problems [1], they are also
formidable scientific challenges. Their neuropathology,
characterized by diseased brain tissue and cortical atrophy,
is linked to the accumulation of toxic proteins. These
structural modifications change the way neurons interact
[2] and lead to cognitive decline and neurobehavioral
symptoms [3]. Specifically, axonal death has a direct effect
on the collective brain network dynamics, including
synchronization [4], dynamics [5,6], and connectivity
[7]. There are three interconnected physical and cognitive
processes at work: disease progression through the brain,
structural damage created by the disease, and dynamic
changes from damage with the associated functional loss.
Here, we build a model that predicts both the

spatiotemporal evolution of the disease and also how it
affects basic cognitive functions. Our approach combines
dynamics on multiple temporal scales (years for the disease
and seconds for the resting-state dynamics) with multi-
physics at various levels (transport, aggregation, damage,
and oscillations). Specifically, we look at interacting
dynamical processes on an evolving network structure:
Disease progression changes the structural properties of the
brain connectome, which results in changes to character-
istic dynamics of the brain network dynamics. To probe
cognitive functions of a given connectome we simulate
whole-brain resting states against functional magnetic
resonance imaging (fMRI) resting-state data [8]. Since
gamma activity emerges in neural populations [9] and is
related to both hippocampal memory formation [10] and
Alzheimer’s disease [11,12], we use a minimal neural-mass

model with intrinsic frequency in the gamma range
(defined by Γ ¼ ½30; 100� Hz) [13].
Disease progression.—We follow the prionlike

paradigm [14–16], which proposes that degeneration is
caused by the invasion and conformational autocatalytic
conversion of misfolded proteins transported along axonal
pathways [17]. The prionlike idea has served as an
important unifying concept through which many features
can be understood such as staging [18], biomarker
evolution [19], and neural atrophy. Basic models based
in this notion recover most of these observations [20,21].
The basic features of these diseases can be obtained by
restricting all physical quantities on the structural connec-
tome, a brain network representing the connections
between different regions of interest [22–24]. Our model
[25,26], with parameters taken from [27], combines net-
work diffusion encoded by a graph Laplacian and a reaction
term characterizing the population amplification due to the
conversion of healthy proteins.
We model the connectome as an evolving undirected

weighted graph GT at time T ≥ 0. The initial graph G0 is
extracted from the tractography of diffusion tensor
magnetic resonance images of 418 healthy subjects of
the Budapest Reference Connectome v3.0 [28,29]. Each
node k is associated with a particular brain region
Rs, s ¼ f1;…; 7g, corresponding to the frontal, parietal,
temporal, occipital lobes, the limbic area, the basal ganglia,
and the brain stem; cf. Fig. 1. The graph has M edges with
weight wkjðTÞ, between nodes k and j, defined as the ratio
of the number of fibers between the nodes and the mean
fiber length, which leads to the symmetric matrix
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W ¼ ðwkjÞ, k; j ∈ f1;…; Ng and the weighted graph
Laplacian L ¼ ρðD −WÞ, where D ¼ diagðPN

j¼1 wkjÞ
and ρ is an overall velocity constant defining the timescale
of transport.
Assuming the concentration of healthy proteins remains

mostly unchanged [21], the protein concentration ckðtÞ
at node k obeys a network discretization of a Fisher-
Kolmogorov-Petrovsky-Piskunov equation [25] given by

_ck ¼ −
XN
j¼1

Lkjcj þ αckð1 − ckÞ; k ¼ 1;…; N; ð1Þ

where α characterizes the conversion from healthy to toxic
proteins. Since L depends on the weightsW, we require an
equation for the evolution of the weights in time.
Network damage and evolution.—The accumulation of

toxic proteins influences the network properties due to its
effect on synapses, plasticity, and eventual cell death
[2,30,31]. We quantify the damage at each node by a
variable qk ∈ ½0; 1� (0 healthy, 1 maximal damage), for
which we assume a first-order rate model:

_qk ¼ βckð1 − qkÞ; qkð0Þ ¼ 0; k ¼ 1;…; N;

ð2Þ

where β characterizes the protein toxicity. Since transport
away from a node depends on the node’s health, the
damage at a node affects the connectivity to other nodes.
We assume that the relative change of an edge weight
depends on the damages at the nodes with a rate γ
according to

_wkj ¼ −γwkjðqk þ qjÞ; k; j ¼ 1;…; N; ð3Þ

and the systems (1)–(3) form a closed system of 2N þM
ordinary differential equations. Initially, the concentration
of toxic proteins vanishes at all nodes except at seeding
nodes that are disease dependent. For illustrative
purposes, we use the propagation of tau proteins as the

main source of toxic protein and seed the system in the
entorhinal region [32] by setting ckð0Þ ¼ 0 for all k except
for c26ð0Þ ¼ c68ð0Þ ¼ 0.025. Initially, the connectome is
healthy, with qkð0Þ ¼ 0 for all k, and the weights wkjð0Þ are
given by G0.
Damage does not slow down disease progression.—

Before considering the resting-state dynamics on an
evolving connectome, we study the effect of damage on
the propagation of the disease. To quantify disease
progression, we compute three key structural biomarkers
evaluated at a sampled time T: (a) the average concen-
tration CðTÞ ¼ ð1=NÞPN

j¼1 cjðTÞ, (b) the average damage
QðTÞ ¼ ð1=NÞPN

j¼1 qjðTÞ, and (c) the scaled average
connection weight WðTÞ ¼ kWðTÞk=kWð0Þk, where
kWk ¼ N−2PN

k;j¼1 wkj. We also compute the average
damage Qs in region s by only summing over indices in
Rs and normalizing accordingly.
While one may expect a slowing-down of disease

progression as the transport network is affected, the actual
overall effect is negligible, as shown in Fig. 2. We first
compare C in the absence of damage (solid curves) with the
case of severe damage over a period of 30 yr (dotted curve)
and see a negligible difference. Even for unrealistic values
(dashed curves) leading to the destruction of the network
within a period of 15 yr, the delay in invasion is only about
a year. Hence, network damage does not slow down
significantly the invasion of the disease even in extreme
cases. Indeed, the reduction of diffusion associated with
damage mostly affects regions where the concentration is
high. In these regions, most of the tissue is already
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FIG. 1. The connectome G0 with N ¼ 83 nodes and M ¼ 1654
edges (592 shown).
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FIG. 2. Evolution of averaged toxic concentration and damage.
The black dotted curve (superimposed with the blue solid curve)
is the average concentration in the absence of damage
(β ¼ γ ¼ 0) whereas the solid curve is the case of severe damage
[β ¼ ð1=4Þ=yr, γ ¼ ð1=8Þ=yr] leading to a reduction of the
connection weight of 50% after 20 yr. Even for unrealistic values
of the parameters (β ¼ 4, γ ¼ 2, dashed curve) with a reduction
of 99% of all weights after 15 yr, the delay in the evolution of the
concentration is only a year [α ¼ ð3=4Þ=yr, ρ ¼ 1=100 mm=yr in
all simulations].
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damaged and only very little transport is taking place. In
terms of front dynamics, the front velocity in Fisher–KPP
depends entirely on the asymptotic zero state. Once nodes
have been seeded, the local increase in concentration takes
place even in the absence of a network. This nonlinear
effect due to the conversion of healthy to toxic agents is
fundamentally different than the diffusion process where
the toxic protein must be carried from its source.
Disease staging can be obtained by computing damage in

each region (Fig. 3) [33]. Physical damage first appears in
the limbic region where the disease originates but moves
rapidly to the temporal and parietal lobes. This early
invasion can be understood by looking at the topological
properties of the linearized system [26] (that can be
solved explicitly [34] as shown in the Supplemental
Material [35]). Note that increase in damage in the limbic
region is slower than in other regions and that by year
13 the total damage, for example, in the temporal lobe is
larger than in the limbic region. Eventually, the disease
invades all cortical areas.
Resting-state brain dynamics.—To test the declining

cognitive functions of the brain, we focus on resting-state
brain dynamics. The timescales involved in the process are
of the order of months for the disease and of the order of
seconds for the rest-state activity. Therefore, the disease
dynamics is quasistationary and at time t ¼ T we consider
the connectome GT to be constant when probing resting-
state activity. As a proof of principle, we consider a simple
neural-mass model on each node representing large inter-
acting excitatory and inhibitory neural populations to
approximate a Wilson-Cowan-type model [13,36]. In the
absence of coupling, the intrinsic node dynamics are given
by a supercritical Hopf bifurcation. The state of node k is
given by zk ∈ C, and, apart from an offset, the real part of zk
encodes the activity of the excitatory population and the
imaginary part the activity of the inhibitory population.

For a given network GT with associated weights W ¼
WðTÞ the neural populations are coupled through the
amplitude of the excitatory population and modulated by
a sigmoidal function SðxÞ ¼ 1=½1þ expð−xÞ� through the
delay differential equation,

_zk ¼ FðzkÞ þ κS

�
Re

�XN
j¼1

wkjzjðt − τkjÞ
��

; ð4Þ

where FðzkÞ ¼ zkðλþ iωk − jz2kjÞ with decay λ ¼ −0.01,
intrinsic frequencies ωk ¼ ωþ δk ¼ 40 Hzþ δk whose
deviations δk are sampled from a normal distribution
(mean zero, variance 0.1 Hz), coupling gain κ ¼ 10, and
delays τkj proportional to the distance between node k and
j from the connectome data with transmission speed of
1.5 m=s (discretized to have a maximum of 40 distinct
delays); these model parameters were chosen to approxi-
mate the neural-mass model in Ref. [13] validated against
resting-state fMRI. For the initial graph G0, we observe
collective oscillations. In the absence of coupling, all
amplitudes decay exponentially with a frequency of
around 40 Hz.
Global cognitive decline after physical damage.—As

indicators of cognitive processes, we consider three
dynamic biomarkers obtained from tsim ¼ 10 s of
resting-state dynamics Eq. (4): (d) the overall power in
the Gamma range PðTÞ ¼ R

Γ PSDðhziÞðΩÞdΩ, where
PSD is the power spectral density of the signal
hzi ¼ ð1=NÞPN

j¼1 ReðzjÞ, (e) the average oscillatory

activity AðTÞ ¼ N−1PN
j¼1 t

−1
sim

R tsim
0 jzjðtÞjdt, and (f) the

metastability index BðTÞ ¼ N−1PN
j¼1 σ

2
t ðjzjðtÞjÞ, where

σ2t is the variance of the signal over the time interval
½0; tsim�. We define the corresponding measures Ps, As, Bs
for Rs by summing over the corresponding nodes and
normalizing accordingly. These dynamic biomarkers
have been associated with cognitive processes and neuro-
degenerative diseases [4]. The average amplitude
is a measure of the general activity and the meta-
stability index is associated with information processing
[37–40].
To evaluate how the disease affects the dynamics, we

solved Eq. (4) on the evolving brain connectome for
different times T; see Supplemental Material for details
[35]. Figure 4 shows the mean and standard deviations of
the dynamical biomarkers scaled with respect to the healthy
response at T ¼ 0. We see that all dynamical indicators
remain fairly unchanged up to year 20 as the disease
progresses. At that time, the brain has already suffered
significant physical damage even if this damage cannot be
easily assessed from the dynamics (see Fig. 2). It suggests
that the brain state is structurally stable against damages for
an extended time. However, after 20 yr, the dynamics
undergoes a clear transition when nodes are unable to
sustain oscillatory activities.
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FIG. 3. Evolution of damage in different brain regions. Physical
damage first manifests itself in the limbic region then moves to
the temporal lobe, the basal ganglia, and the parietal and occipital
lobes before invading all cortical areas.
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The local dynamical biomarkers show a more differ-
entiated picture of how the spreading disease changes the
dynamics. The transition of the global dynamics is pre-
ceded by a decay of oscillatory activity in the temporal
lobe. In terms of the oscillatory activity, the markers for all
other regions are close to the global mean [Fig. 4(b)]. Given
that damage first accumulates in the limbic system (Fig. 3),
this observation may be counterintuitive. However, it
indicates that both speed of damage accumulation and
network structure determine the critical threshold for the
decay of oscillatory dynamics: The region where one first
sees significant structural damage can be distinct from the
region that first undergoes a dynamical transition. This is
consistent with experimental findings that indicate that
temporal lobe activity is a precursor for the disease
onset [41].
Adaptation slows cognitive decline.—Connections

between neurons are typically not static but adjust in
response to the dynamics [42,43]. Thus, in addition to
damage-induced changes to the network, the neural dynam-
ics itself affects the network to maintain homeostasis [44].
To capture this effect, we implement a minimal model of
homeostatic adaptation that aims to keep the mean con-
nectome coupling constant over time. For an adaptation

parameter ξ ∈ ½0; 1�, we define the scaled matrix with
W̄ð0Þ ¼ Wð0Þ and

W̄ðTÞ ¼
�
ð1 − ξÞ þ ξ

�kW̄ðT − 1Þk
kWðTÞk

��
WðTÞ; ð5Þ

for T ¼ 1; 2;…. This homeostatic adaptation creates a new
weighted connectome for the resting-state dynamics (4) for
every year T of disease progression. Through Eq. (5),
homeostasis acts by globally rescaling the coupling
weights. For ξ ¼ 0, there is no homeostatic adaptation
and the network structure changes solely through the
disease progression. For ξ ¼ 1, there is complete homeo-
static adaptation in the sense that we have a constant mean
coupling weight kW̄ðTÞk ¼ 1 for all T. This does not
imply W̄ðTÞ ¼ W̄ð0Þ. Rather, due to the global nature of
the homeostatic adaptation, disease-induced changes in
coupling strength in one brain region will yield hyper-
excitability in another brain region to balance the overall
decay in coupling strength.
Homeostatic adaptation modulates the disease pro-

gression. We simulated the resting-state dynamics
Eq. (4) subject to the homeostatic adaptation Eq. (5).
Figure 5 shows the average amplitude AðTÞ as disease
progresses for different values of the adaptation parameter
ξ. An increase in homeostasis does not change the actual
onset of loss of oscillatory activity (around year 13) but
yields a slow-down of the degeneration. However, assum-
ing that cognitive decline sets in once a certain threshold is
reached, the slow-down of disease progression will alter the
onset of the overall transition. Figure 5 also shows mean
oscillation amplitude for the temporal lobe. The temporal
lobe shows a decay in oscillatory activity for all values of
the adaptation parameters preceding the overall decay of
oscillatory activity. This happens even for full adaptation,
ξ ¼ 1, where the overall oscillatory activity stays constant
in the time window considered here. This decline implies

(a)

(b)

(c)

FIG. 4. Dynamic biomarkers are stable up to year 10 followed
by a rapid decline from year 16 onward. (a) Power in the Γ band
and (b) oscillation mean amplitude; there are no oscillations in the
absence of network coupling. (c) Mean variability which in-
dicates nonstationary (and potentially metastable) brain dynam-
ics. Mean and standard deviation for 12 realizations with different
intrinsic frequencies and initial conditions [solid gray line is CðTÞ
for comparison].

FIG. 5. Oscillation amplitude changes with the homeostasis
parameter. Increasing homeostasis does not lead to a shift in the
onset of decline but only changes the shape of the decline. The
global mean oscillation amplitude (gray lines) shows how the
slope varies for different homeostasis parameters; in the extreme
case ξ ¼ 1, the oscillation amplitude remains constant. By
contrast, the mean amplitude in the temporal lobe (blue lines)
decreases in any case. For comparison, CðTÞ is given by the solid
gray line.
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that other brain areas have to be up-regulated in order to
keep the overall activity almost constant. However, it also
means that for our simple model of adaptation, the variation
of oscillation amplitude is a precursor for the overall
transition of the dynamics independently of the adaptation
parameter.
Discussion.—Compared to previous studies that focused

on either static properties of the declining network [45],
synchronization [4], or activity-based decline [46], we
focused on the importance of the underlying inter-
acting physical processes. The physical damage of
the brain and neural dynamics—two independent yet
coupled processes—interact on the same connectome.
Neurodegeneration, modeled as an invasion process due
to the accumulation of toxic proteins, provides a natural
evolution of the connectome on long timescales that can be
probed dynamically on short timescales. Our observations
are compatible with the activity-dependent spreading
hypothesis [46]: toxic proteins will spread predominantly
along highly connected nodes which also show high
activity due to the amount of input they receive.
While the actual brain connectome is not an undirected

graph, there is very little information on directionality for
the human brain. However, an analysis of a mesocale
mouse connectome [47] that has been used for toxic protein
diffusion [24,48] reveals that asymmetry delays signifi-
cantly the onset of the disease but preserves its main
characteristics (see Supplemental Material [35]).
Our setup provides a unified framework that combines

the biophysics of disease spreading with whole-brain
dynamics to give mechanistic insights into the dynamics
of neurodegenerative diseases and its associated cognitive
decline. First, we showed that damage does not slow the
disease propagation as damage is delayed with respect to
seeding. A very low level of toxic proteins diffuse and seed
new regions. Then, even in the absence of transport, there is
a local autocatalytic increase of toxic protein. Second, we
gained insight into the dynamical transitions appearing in
some brain regions and confirm the prediction [41] that the
temporal lobe is one of the first to see alteration in brain
dynamics, hence showing cognitive deficiencies related to
that region for Alzheimer’s disease, as shown in Fig. 4.
Third, our results elucidate the interplay between network
adaptation and spreading. We found that incorporating a
simple model of global homeostasis does not change the
onset of dynamical changes, but how fast they evolve as the
disease progresses. Interestingly, we saw that, in the
particular case of Alzheimer’s disease, a decline of oscil-
lations in the temporal lobe is a universal indicator
independent of the adaptation parameter.
Further insights are needed on how the multiphysics

of disease propagation interact with brain network
dynamics to identify reliable noninvasive biomarkers to
assess disease progression as early as possible and develop
an integrated approach for treatment. Other models for

whole-brain dynamics are available that focus on different
features of brain dynamics [8] and relate to microscopic
neural properties [49]. When combined with data from a
comprehensive longitudinal study and suitable dynamical
models, our approach will be able to explore new treatment
approaches and intervention scenarios on the combined
level of network structure and dynamics [2,50,51].
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