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Pseudo-magnetic fields generated in artificially strained lattices have enabled the emulation of exotic phenomena
once thought to be exclusive to charged particles. However, to date, they have failed to emulate the tunability
of real magnetic fields because they are determined solely by the engineered strain configuration, rendering
them fixed by design. Here, we unveil a new universal mechanism to tune pseudo-magnetic fields for polaritons
supported by a strained honeycomb metasurface composed of interacting dipole emitters/antennas. Without
altering the strain configuration, we show that one can tune the pseudo-magnetic field strength by modifying
the surrounding electromagnetic environment via an enclosing cavity waveguide, which modifies the nature of
the dipole-dipole interactions. Remarkably, due to the competition between short-range Coulomb interactions
and long-range photon-mediated interactions, the pseudo-magnetic field can be entirely switched off at a critical
cavity width, without removing the strain. Consequently, by varying only the cavity width, we demonstrate a
tunable Lorentz-like force that can be switched on/off and a collapse and revival of polariton Landau levels.
Unlocking this tunable pseudo-magnetism poses new intriguing questions beyond the paradigm of conventional
tight-binding physics.

Unfortunately, neutral particles do not directly couple to the
electromagnetic gauge potentials. Therefore, exotic phenom-
ena exhibited by charged particles in magnetic fields, such as
the Lorentz force, Aharonov-Bohm effect, and Landau quanti-
zation, remain elusive for neutral particles. This fundamental
limitation has inspired various ways of engineering artificial
magnetic fields which are revolutionizing our ability to ma-
nipulate neutral particles [1–18]. Within graphene physics, it
has been demonstrated that non-uniform strain can generate
pseudo-magnetic fields which can mimic some of the prop-
erties of real ones [19–23]. This tantalizing concept has re-
cently been emulated for photons by judiciously engineering
aperiodicity in honeycomb photonic lattices of evanescently
coupled waveguides, which mimic the tight-binding physics
of graphene [12]. However, these emergent pseudo-magnetic
fields in artificially strained lattices have failed to emulate
one key property of real magnetic fields: tunability. While
real magnetic fields that are applied across samples in the lab
can be tuned by varying external parameters (e.g., the current
through a solenoid), these pseudo-magnetic fields are deter-
mined solely by the engineered strain configuration, rendering
them fixed by design. Most notably, it is impossible to switch
the pseudo-magnetic field on/off after the photonic structure
has been fabricated. Therefore, a fundamental question arises:
how do we overcome this seemingly intrinsic lack of tunabil-
ity?

Here we unveil a new universal mechanism to tune pseudo-
magnetic fields for polaritons that requires no change to the
strain configuration. In particular, we consider polaritons sup-
ported by a strained honeycomb metasurface composed of
interacting electric dipole emitters/antennas. In addition to
short-range Coulomb interactions between the dipoles, the
dipoles also couple to the transverse photonic field which
results in long-range dipole-dipole interactions mediated by
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photons; crucially, both of these dipole-dipole interactions de-
pend qualitatively on the surrounding electromagnetic envi-
ronment in which the dipoles are embedded. Therefore, pre-
vious results derived from conventional tight-binding models
do not trivially extend to lattices of interacting dipoles [24].
By exploiting this key difference we show that one can tune
the artificial magnetic field by modifying the real electromag-
netic environment.

To demonstrate this tunability we embed the metasurface
inside a cavity waveguide where, by reducing the cavity
width, one can modify the dominant dipolar coupling from
Coulomb interactions to photon-mediated interactions. As a
result, we unveil that one can tune the strength of the pseudo-
magnetic field after the metasurface has been fabricated with
a fixed strain configuration by varying a single external pa-
rameter: the cavity width. In fact, we reveal that one can
even switch off the pseudo-magnetic field entirely at a critical
cavity width, without removing the strain — this highly non-
trivial result is impossible to achieve with photonic systems
that emulate the tight-binding physics of graphene [25–27].
Consequently, we demonstrate a tunable Lorentz-like force
that can be switched on/off, deflecting polariton wavepackets
into effective cyclotron orbits whose radius can be controlled
via the cavity width. For large strains, we also demonstrate
Landau quantization of the polariton cyclotron orbits, where
progressively decreasing the cavity width can induce a col-
lapse and revival of the polariton Landau levels. This work
reveals that rich physics emerges from non-trivial long-range
interactions, and therefore poses many intriguing questions
beyond the realm of conventional tight-binding models which
can be explored in a variety of different experimental set-ups
across the electromagnetic spectrum.

Minimal metasurface model.— A schematic of the
cavity-embedded metasurface is depicted in figure 1a. We
model the resonant electric dipoles with a generic bare polar-
izability α0(ω) = 2ω0Ω(ω2

0−ω2− iωγnr)
−1 that is applicable

to both classical antennas and quantum emitters in their linear
regime, where Ω characterizes the strength of the polarizabil-



2

FIG. 1. Cavity-tunable dipole-dipole interactions. a, Schematic of a strained honeycomb metasurface composed of interacting dipole
emitters/antennas embedded inside a cavity waveguide of width L, where the induced dipole moments point in the z-direction. We assume
a subwavelength nearest-neighbour separation a � λ0 such that the metasurface supports subradiant polaritons that are evanescently bound
to the lattice. b, Longitudinal Green’s function (G‖) for a large (dashed blue line) and small (solid orange line) cavity width, which mediates
short-range Coulomb interactions. c, Real part of the transverse Green’s function (G⊥) for a large (dashed blue line) and small (solid orange
line) cavity width, which describes long-range coherent interactions mediated by the cavity photons. By varying the cavity width, one can tune
the relative dominance between the Coulomb and photon-mediated interactions. Plots obtained with λ0 = 6.5a.

ity, γnr accounts for non-radiative losses, and ω0 is the free-
space resonant frequency. We assume the polarizability to
be anisotropic such that the induced electric dipole moments
point in the z-direction (see inset). The unstrained metasur-
face is composed of a honeycomb array of dipoles which
consists of two inequivalent hexagonal sublattices. Further-
more, we consider subwavelength nearest-neighbour separa-
tion a� λ0, where λ0 is the free-space resonant wavelength,
so that the metasurface supports subradiant polaritons that are
evanescently bound to the lattice. The strained metasurface
is considered to have a fixed strain configuration where the
dipoles are displaced according to a slowly-varying displace-
ment field u(r) = [ux(r), uy(r)]. Finally, the metasurface
is embedded at the centre of a cavity waveguide of width L,
where the cavity walls are assumed to be perfectly reflecting
mirrors.

The interactions between the dipoles are mediated by the
cavity Green’s function G(r− r′, ω) which describes the field
generated at r due to a point dipole source at r′, and it can be
decomposed into its longitudinal and transverse components
G(r − r′, ω) = G‖(r − r′) + G⊥(r − r′, ω) (see Methods
for the full expressions and Supplementary Section 1 for the
derivations). The longitudinal Green’s function decays like

G‖(r− r′) ∼ e−2π|r−r′|/L√
|r− r′|

, (1)

and describes short-range Coulomb interactions whose
strength decreases rapidly with the separation distance be-
tween dipoles as shown in figure 1b. In stark contrast, the
transverse Green’s function decays like

G⊥(r− r′, ω0) ∼ ei2π|r−r′|/λ0√
|r− r′|

, (2)

where the real part describes coherent long-range interactions
mediated by the cavity photons whose strength oscillates and

decreases slowly with the separation distance as shown in fig-
ure 1c. This non-trivial nature of the photon-mediated inter-
actions means that the metasurface is not amenable to a sim-
ple tight-binding model — in fact, we must include all the
photon-mediated interactions between all pairs of dipoles to
accurately describe the physics. Crucially, by varying the
cavity width one can tune the relative dominance between
these two distinct types of interactions; for large cavity widths
(L ∼ λ0) the physics near the K/K′ points is dominated by the
Coulomb interactions (see dashed blue lines in figures 1b-c),
while for small cavity widths (L� λ0) the Coulomb interac-
tions are exponentially suppressed and the photon-mediated
interactions become dominant (see solid orange lines in fig-
ures 1b-c).

Cavity-tunable pseudo-gauge potentials.— To gain ana-
lytical insight, we have used a coupled-dipole model to de-
rive an effective Hamiltonian describing the polaritons near
the K/K′ points, which is valid to leading order in the strain
tensor εij(r) = (∂uj/∂ri + ∂ui/∂rj)/2. For the K valley,
the effective Hamiltonian reads (~ = 1)

HK = ωD(L)1+ivD(L)σ ·∇+Φ(r, L)1+σ ·A(r, L) , (3)

where 1 is the identity matrix and σ = [σx, σy] is the
vector of Pauli matrices acting in the sublattice space (see
Methods for the derivation and equivalent Hamiltonian for
the K′ valley). Therefore, the polaritons behave like mass-
less Dirac quasiparticles with a linear Dirac cone dispersion
[24], where ωD(L) is the Dirac frequency and vD(L) is the
Dirac velocity (see Methods for the expressions). As schemat-
ically shown in figure 2a, the strain leads to a spatially-
varying shift of the Dirac cones in frequency and momentum
which is effectively described by a pseudo-scalar potential
Φ(r, L) = Φ0(L)[εxx(r) + εyy(r)] and a pseudo-vector po-
tential A(r, L) = A0(L)[εxx(r)−εyy(r),−2εxy(r)], respec-
tively. In figures 2b-c we show how the strain-independent
parameters Φ0(L) and A0(L) can be tuned by varying only
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FIG. 2. Cavity-tunable pseudo-gauge potentials. a, The unstrained metasurface supports massless Dirac polaritons characterized by linear
Dirac cones near the high symmetry K/K′ points. Applying strain leads to a shift of the Dirac cones in frequency and momentum which is
effectively described by a pseudo-scalar and pseudo-vector potential, respectively. b-c, Show how the strain-independent parameters in the
pseudo-scalar potential (Φ0) and pseudo-vector potential (A0) can be tuned by varying the cavity width (black solid lines), respectively. We
also show the separate contributions emerging from the Coulomb interactions (blue dotted lines) and the photon-mediated interactions (orange
dashed lines) which are always finite but have opposite signs. At critical cavity widths (LΦ and LA) these contributions cancel resulting in the
pseudo-gauge potentials being switched off for any strain configuration. Plots obtained with λ0 = 6.5a and Ω = 0.01ω0.

the cavity width (see Methods for the expressions). Remark-
ably, there exists critical cavity widths (LΦ and LA) where
these parameters vanish identically, thereby switching off the
pseudo-gauge potentials entirely for any strain configuration.

We stress that this is a highly non-trivial phenomenon. To
switch off the pseudo-vector (scalar) potential one requires
that the strain-induced change in the dipole locations within
the metasurface does not change the intersublattice (intrasub-
lattice) interaction energy. Within a nearest-neighbour tight-
binding model, this would require one to engineer a hop-
ping parameter that does not vary with distance; this is im-
possible to achieve with photonic analogs of graphene where
the strength of the evanescent coupling strictly decreases
with separation distance [25–27]. In general, the strain does
change the interaction energy between any pair of dipoles in
the metasurface; however, the sum of all these changes can
be made to vanish. Crucially, while the contributions from
the short-range Coulomb interactions and long-range photon-
mediated interactions are always finite and never vanish in-
dividually, they have opposite signs and thus tend to com-
pensate each other in the pseudo-gauge potentials (see dotted
and dashed lines, respectively, in figures 2b-c). At the criti-
cal cavity widths, these contributions perfectly cancel making
the pseudo-gauge potentials vanish. This ability to switch off
and tune the pseudo-gauge potentials without modifying the
strain opens up new perspectives beyond previously studied
tight-binding models.

In what follows, we investigate some of the implications
of the tunable pseudo-vector potential. Specifically, we con-
sider a strain configuration described by the displacement
field u(r) = (∆/a)[2xy, x2 − y2] [12, 19], where ∆ is
a measure of the strain magnitude. This trigonal strain
configuration gives rise to a vanishing pseudo-scalar poten-
tial Φ = 0 and a spatially-varying pseudo-vector poten-
tial A = 4(∆/a)A0[y,−x], leading to a uniform pseudo-
magnetic field Bτ = τ∇ × A = −τ8(∆/a)A0ẑ which, by

virtue of time-reversal symmetry, has opposite signs for the K
(τ = +1) and K′ (τ = −1) valleys.

Cavity-tunable Lorentz-like force.— In the ‘semiclassi-
cal’ limit [28], polariton wavepackets propagating through the
strained metasurface behave as if they were subjected to a
Lorentz-like force Fτ (L) = sgn(vD)v̂ × Bτ which acts per-
pendicular to the group velocity direction v̂. Consequently,
the polaritons exhibit cyclotron motion, as schematically de-
picted in figure 3a, in direct analogy with charged particles in
real magnetic fields. Crucially, by modifying the nature of the
dipole-dipole interactions via the cavity width, one can tune
the magnitude of the Lorentz-like force and the effective cy-
clotron mass of the Dirac polaritons mc(L) = δω/v2

D, where
δω = ω−ωD is the frequency relative to the Dirac point. As a
result, in figure 3b we show how the corresponding cyclotron
radius Rc(L) = |mc|v2

D/|Fτ | can be tuned by varying only
the cavity width. The dotted line indicates the region of cav-
ity widths where the linear approximation of the Dirac cone
breaks down [24] (see Supplementary Section 2).

To verify the tunability of the cyclotron orbits, we sim-
ulated the evolution of Gaussian wavepackets using the ef-
fective Hamiltonian (3), and in figure 3c we plot the trajec-
tories of their centre-of-mass for a metasurface with a fixed
strain configuration, but different cavity widths (see Meth-
ods). As expected, the polariton wavepackets in the K/K′

valleys undergo cyclotron motion in opposite directions due
to time-reversal symmetry (e.g., see snapshots along trajec-
tory 6), and the orbit radii agree very well with the analyti-
cal predictions (see crosses in figure 3b). Note, the direction
of the orbits depend on the signs of the Dirac velocity, cy-
clotron mass, and pseudo-magnetic field. For subcritical cav-
ity widths L > LA where the short-range Coulomb interac-
tions are dominant, the cyclotron radius expands as the cavity
width is reduced (see trajectories 1-3). At the critical cav-
ity width L = LA, the pseudo-magnetic field is switched off
and the polariton wavepackets feel no Lorentz-like force; they
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FIG. 3. Cavity-tunable Lorentz-like force and cyclotron orbits. a, Schematic of the cyclotron motion exhibited by polariton wavepackets
due to a Lorentz-like force generated by a pseudo-magnetic field which has opposite signs in the K/K′ valleys. b, Predicted evolution of the
cyclotron radius as the cavity width is reduced for a fixed strain configuration at a fixed frequency relative to the Dirac point (black line).
c, Simulated trajectories of polariton wavepackets in the K/K′ valleys (solid/dashed lines) propagating through a strained metasurface with
different cavity widths (calculated radii given by crosses in b). For subcritical cavity widths L > LA, the cyclotron radius expands as the
cavity width is reduced (trajectories 1-3). At the critical cavity width L = LA, the wavepackets feel no Lorentz-like force (trajectory 4).
For supercritical cavity widths L < LA, the cyclotron orbits reemerge and the cyclotron radius shrinks as the cavity width is reduced further
(trajectories 5-7). Plots obtained with ∆ = 2 × 10−5, δω = −0.001ω0, λ0 = 6.5a, and Ω = 0.01ω0.

propagate through the strained metasurface as if there was no
strain present at all (see trajectory 4). For supercritical cavity
widths L < LA where the long-range photon-mediated inter-
actions become dominant, the cyclotron orbits reemerge and
the cyclotron radius now shrinks as the cavity width is reduced
further (see trajectories 5-7).

Cavity-tunable Landau levels.— For larger strains the
pseudo-magnetic field increases and one can reach the ‘quan-
tum’ limit, where the polariton cyclotron orbits undergo Lan-
dau quantization in direct analogy with charged particles in
real magnetic fields [29]. Therefore, as schematically de-
picted in figure 4a, the massless Dirac cones collapse into
a quantized Landau level spectrum ωn(L) = ωD(L) +
sgn(n)ωc(L)

√
|n|, where n = 0,±1,±2 . . . is the Landau

level index, and ωc(L) =
√

2|vD||Bτ | is the effective cy-
clotron frequency. The polariton Landau levels have a charac-
teristic squareroot dependence on the Landau level index and
the strain magnitude, which is a manifestation of the pseudo-
relativistic nature of the massless Dirac polaritons (see Sup-
plementary Section 3).

In the previously studied photonic analog of graphene, the
Landau level spectrum was fixed by the engineered strain con-
figuration — to modify the pseudo-magnetic field they had to
fabricate an entirely new structure with a different strain pat-
tern [12]. In stark contrast, here we show that for a meta-
surface with a fixed strain configuration, the polariton Landau
level spectrum depends qualitatively on the surrounding elec-
tromagnetic environment which mediates the dipole-dipole in-
teractions. In fact, as shown in figure 4b, one can drastically
reconfigure the Landau level spectrum by varying only the
cavity width. As before, the dotted line indicates the region
of cavity widths where the linear Dirac cone approximation

breaks down [24] (see Supplementary Section 4). Remark-
ably, the transition of the dominant dipolar coupling from
Coulomb to photon-mediated interactions as the cavity width
is reduced results in a collapse and revival of the polariton
Landau levels, despite the metasurface having a fixed strain
configuration.

To verify the tunability of the polariton Landau levels, we
go beyond the approximations of the effective Hamiltonian
and calculate the effective polarizability αeff(ω) of a resonant
dipole, which fully accounts for the strong multiple scattering
within the metasurface (see Methods). From this, we define
a local spectral function Im[αeff(ω)] which is related to the
local density of states and characterizes the full spectral re-
sponse of the metasurface. In figures 4c-e we show the local
spectral function at the centre of a metasurface with a fixed
strain configuration but different cavity widths, and the insets
show the corresponding unstrained case.

For subcritical cavity widthsL > LA where the short-range
Coulomb interactions are dominant (see figure 4c), a sequence
of resonant peaks emerge within the vicinity of the Dirac re-
gion where the effective Hamiltonian is valid. These peaks
directly correspond to the predicted polariton Landau levels
which are not present in the unstrained case. Note the spec-
tral function has an asymmetry about the Dirac point due to
long-range interactions between dipoles residing on the same
sublattice which break the chiral symmetry. For example,
more Landau levels can be observed above the Dirac point
than below as the Dirac approximation holds for a wider fre-
quency range. As the cavity width is reduced, the spacing
between the Landau level peaks decreases in accordance with
the analytical prediction (see Supplementary Section 4). At
the critical cavity width L = LA (see figure 4d), the pseudo-
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FIG. 4. Cavity-induced collapse and revival of polariton Landau levels. a, Schematic of a massless Dirac cone splitting into quantized
polariton Landau levels. b, Predicted evolution of the Landau levels as the cavity width is reduced. c-e, Local spectral function at the centre
of a metasurface with a fixed strain configuration, but different cavity widths of a/L = 0.2, a/L = 0.83, and a/L = 1.2, respectively (insets
show the corresponding unstrained case). For subcritical cavity widths L > LA (see c), we observe Landau level peaks which are not present
in the unstrained case (labelled according to their Landau index). At the critical cavity width L = LA (see d), the pseudo-magnetic field
is switched off and therefore no Landau level peaks are observed. For supercritical cavity widths L < LA (see e), the Landau level peaks
reemerge, thus verifying the collapse and revival of the polariton Landau levels. Plots obtained with ∆ = 0.002, λ0 = 6.5a, Ω = 0.01ω0,
and γnr = 0.025Ω.

magnetic field is switched off and therefore the Landau lev-
els completely vanish within the Dirac region, thus verify-
ing the cavity-induced collapse of the polariton Landau lev-
els. As the cavity width is reduced beyond this critical value,
the Landau level peaks begin to reemerge (see Supplementary
Section 4). For supercritical cavity widths L < LA where
the long-range photon-mediated interactions become domi-
nant (see figure 4e), a clear sequence of Landau level peaks
can be observed within the Dirac region which are not present
in the unstrained case, thus verifying the remarkable revival
of the polariton Landau levels.

Experimental considerations.— Since the localized Lan-
dau level states are subradiant (see Supplementary Section 5),
the width of the Landau level peaks is limited only by non-
radiative losses. Therefore, to clearly resolve the Landau lev-
els one must ensure that the Landau level spacing is larger
than the non-radiative losses in the metasurface ωc � γnr.

We note that the general principle underlying this mecha-
nism for tuning pseudo-magnetic fields can be generalized to
include metasurfaces composed of classical antennas that ex-
hibit magnetic dipole and higher order multipole moments,
such as split-ring resonators and dielectric Mie resonators.
To provide a concrete example of a possible classical real-
ization which is well described by our minimal model, in
Supplementary Section 6 we present finite-element simula-
tions of a microwave metasurface composed of metallic he-

lical dipole antennas. Since metals behave approximately as
perfect conductors at microwave frequencies the Landau level
peaks should have a high quality factor. We have simulated the
dispersion for unstrained and strained lattices to extract the
effective Hamiltonian parameters as a function of the cavity
width. Crucially, we show that there indeed exist critical cav-
ity widths where the pseudo-gauge potentials vanish, in direct
accordance with our analytical predictions. Using a vector
network analyzer, one can map the entire Landau level spec-
trum in a single measurement by measuring the return loss
of a near-field source antenna, which is related to the local
density of states. Furthermore, one can also map the field dis-
tribution of the Landau level states using a second detector
antenna which can be scanned across the metasurface [17].

Furthermore, our classical analysis is a valid description for
a subwavelength array of quantum two-level emitters in the
single-excitation subspace [30]. It would therefore be very
interesting to explore these tunable pseudo-magnetic fields
in the quantum regime, by considering subwavelength arrays
of excitonic particles [31, 32] or atomic (atom-like) quantum
emitters which have been attracting considerable interest in
recent years [33–38]. Finally, we stress that there are many
ways to modify the nature of the interactions between emit-
ters/antennas by engineering different electromagnetic envi-
ronments; for example, one could consider interactions medi-
ated by surface plasmons in graphene [39] or guided modes
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of photonic crystals [37, 40] which may provide alternative
mechanisms to tune the pseudo-magnetic field.

Outlook.— This new universal mechanism for tuning
pseudo-magnetic fields poses new intriguing questions be-
yond the realm of conventional tight-binding models. For ex-
ample, do quantum-Hall-like edge states associated with the
polariton Landau levels exist in the presence of long-range in-
teractions? Can one controllably switch them on/off, or tune
their properties, by modifying the nature of the dipole-dipole
interactions? Moreover, do novel edge states emerge at inter-
faces separating regions with different electromagnetic envi-
ronments? The polariton Landau levels also provide a novel
way of sculpting the local density of states — this could be
exploited for enhancing/suppressing light-matter interactions
for emitters embedded in subwavelength photonic structures.
Furthermore, while we have demonstrated a tunable Lorentz-
like force and tunable Landau levels, one should also be able
to observe Aharonov-Bohm-like interference patterns which
will depend qualitatively on the surrounding electromagnetic
environment. Finally, here we have focused on some of the
implications of a tunable pseudo-magnetic field, but what
are the implications of a tunable pseudo-electric field arising
from the pseudo-scalar potential? To conclude, while intense
efforts are devoted towards designing systems that emulate
tight-binding models, this work hints towards a richer land-
scape of physics emerging from non-trivial long-range inter-
actions which are prevalent in electromagnetic systems.
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METHODS

The unstrained metasurface is composed of a honeycomb array of dipoles located at
periodic positions RA = R − d/2 and RB = R + d/2 which form the A and B
hexagonal sublattices, respectively. Here, d = a[0, 1] is the vector connecting the A
and B sites in the unit cell, and R = l1a1 + l2a2 are the set of lattice vectors, where
l1 and l2 are integers, and a1 = (

√
3a/2)[−1,

√
3] and a2 = (

√
3a/2)[1,

√
3]

are the primitive lattice vectors. The corresponding reciprocal lattice vectors are G =
n1b1 + n2b2, where n1 and n2 are integers, and b1 = (2π/3a)[−

√
3, 1] and

b2 = (2π/3a)[
√

3, 1] are the primitive reciprocal lattice vectors. To describe an
artificially strained metasurface we introduce a slowly-varying displacement field u(r),
where the dipoles are located at new displaced positions R̄A/B = RA/B + u(RA/B).
Finally, the metasurface is embedded at the centre of a cavity waveguide formed by two
perfectly reflecting mirrors located at z = ±L/2.

Effective polariton Hamiltonian.— To describe a resonant dipole’s response to an
external field, one has to modify the bare polarizability to take into account the inter-
action with its own scattered field. The renormalized polarizability of a resonant dipole
inside the cavity reads

α
−1

(ω) = α
−1
0 (ω)− Σ(ω) , (4)

where the polarizability correction is given by

Σ(ω) = i
2a3k3

ω

3
+

4a3

L3

[
Li3
(

e
ikωL

)
− ikωLLi2

(
e
ikωL

)]
, (5)

where kω = ω/c and Lin(z) =
∑∞
l=1 z

l/ln is the polylogarithm of order n (see
Supplementary Section 1 for the derivation). The first term in equation (5) is the usual
radiative-reaction correction in free-space, whereas the other terms encode the correc-
tions due to the cavity. In the absence of a driving field, the induced electric dipole
moments pRA

= pRA
ẑ and pRB

= pRB
ẑ on the A and B sublattices are given by

the self-consistent coupled-dipole equations

1

α(ω)
pRA

(ω) =
∑

R′A 6=RA

G(R̄A − R̄
′
A, ω)pR′A

(ω) +
∑
RB

G(R̄A − R̄B, ω)pRB
(ω)

(6)
and

1

α(ω)
pRB

(ω) =
∑

R′B 6=RB

G(R̄B − R̄
′
B, ω)pR′B

(ω) +
∑
RA

G(R̄B − R̄A, ω)pRA
(ω) ,

(7)
where the first/second sum in each equation corresponds to the field (z-component) gen-
erated by all the other dipoles belonging to the same/opposite sublattice (see Supplemen-
tary Section 1 for the derivation).

The interactions between the dipoles are mediated by the cavity Green’s function
which can be expressed in the spectral domain as

G(r−r
′
, ω) = i

πa3k2
ω

L

∞∑
m=−∞

(
1−

k2
m

k2
ω

)
H

(1)
0

(
|r−r

′|
√
k2
ω − k2

m

)
, (8)

where km = 2mπ/L and H
(1)
0 is the Hankel function of zeroth order and first kind

(see Supplementary Section 1 for the derivation). We decompose the cavity Green’s
function (8) into its longitudinal and transverse components G(r − r′, ω) = G‖(r −
r′)+G⊥(r−r′, ω), where the longitudinal component can be expressed in the spectral
domain as

G‖(r− r
′
) = −

4a3

L

∞∑
m=1

k
2
m K0

(
km|r− r

′|
)
, (9)

where K0 is the modified Bessel function of zeroth order and second kind (see Sup-
plementary Section 1 for the derivation). Note, the longitudinal component is equiv-
alent to equation (8) in the static limit ω → 0, and therefore mediates Coulomb in-
teractions between the dipoles inside the cavity. In contrast, the transverse component
G⊥(r − r′, ω) = G(r − r′, ω) − G‖(r − r′) describes interactions that are me-
diated by the transverse photonic modes of the cavity. For simplicity, we retain only the
dominant contribution from the fundamental transverse electromagnetic (TEM) mode of
the cavity which has a linear dispersion ωk = c|k| and polarization (along z-direction)
that are independent of the cavity width. This is a good approximation since we are
interested in the regime of cavity widths L < λ0, where the higher order quantized
cavity modes do not contribute to the long-range interactions between the dipoles. The
corresponding Green’s function for the TEM mode reads

GTEM
⊥ (r− r

′
, ω) =

iπa3k2
ω

L
H

(1)
0

(
kω|r− r

′|
)
, (10)

which is equivalent to them = 0 term in equation (8) (see Supplementary Section 1 for
the derivation).

In what follows, we derive the effective Hamiltonian for the K valley since the effec-
tive Hamiltonian for the K′ valley is related via time-reversal symmetry. To analyze the
polaritons near the K point, we write the dipole moments as

pRA
(ω) = e

iK·RAψ
K
A(RA, ω) , pRB

(ω) = e
iK·RBψ

K
B (RB, ω) , (11)

where ψK
A and ψK

B are slowly-varying envelope fields for the A and B sublattices, re-
spectively. To not overburden notation we suppress the valley index until the end. By
introducing the Fourier transform of the envelope fields

ψ̃A(k, ω) =

∫
d2r

2π
ψA(r, ω)e

−ik·r
, ψ̃B(k, ω) =

∫
d2r

2π
ψB(r, ω)e

−ik·r

(12)
we can write the coupled-dipole equations in matrix form as

1

α̌(ω)
ψ̃(k, ω) =

∫
d

2
k
′ [D‖(k,k′) +D⊥(k,k

′
, ω)
]
ψ̃(k
′
, ω) , (13)

where α̌−1(ω) = α−1
0 (ω) − Re[Σ(ω)]. In equation (13), the Fourier transform of

the spinor envelope field reads ψ̃(k, ω) = [ψ̃A(k, ω), ψ̃B(k, ω)]T, the longitudinal
dynamical matrix encoding the Coulomb interactions is given by

D‖(k,k
′
) =

[
DAA
‖ (k,k′) DAB

‖ (k,k′)

DAB∗
‖ (k′,k) DBB

‖ (k,k′)

]
, (14)

and the transverse dynamical matrix encoding the photon-mediated interactions reads

D⊥(k,k
′
, ω) =

[
DAA
⊥ (k,k′, ω) DAB

⊥ (k,k′, ω)

DAB∗
⊥ (k′,k, ω) DBB

⊥ (k,k′, ω)

]
. (15)

We will first analyze the longitudinal dynamical matrix elements in equation (14),
where the intersublattice (off-diagonal) matrix elements read

DAB
‖ (k,k

′
) =

∫
d2r

(2π)2

∑
R

G‖(R− d + u(r)− u(r−R + d))

× e
−i(K+k′)·(R−d)

e
i(k′−k)·r

.

(16)

Since the Coulomb interactions are short-range, the lattice sums converge rapidly in real
space. After expanding equation (16) to leading order in the displacement field we obtain

DAB
‖ (k,k

′
) =

∫
d2r

(2π)2

∑
R

G‖(R− d)e
−i(K+k′)·(R−d)

e
i(k′−k)·r

×
{

1−
β(R− d)

2π

(R− d)i

|R− d|2

∫
d

2
q ũi(q)

[
1− e

−iq·(R−d)
]
e
iq·r
}
,

(17)
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where the parameter β(R) = |∂ log[G‖(R)]/∂ log(|R|)| encodes how the
Coulomb interaction strength between dipoles, initially separated by R, changes with
respect to small changes in the separation distance, and

ũ(q) =

∫
d2r

2π
u(r)e

−iq·r (18)

is the Fourier transform of the displacement field. Next, performing the spatial integral
in equation (17) we obtain

DAB
‖ (k,k

′
) =

∑
R

G‖(R− d)e
−i(K+k′)·(R−d)

{
δ(k
′ − k)

−
β(R− d)

2π

(R− d)i

|R− d|2
ũi(k− k

′
)
[
1− e

−i(k−k′)·(R−d)
]}

.

(19)

Finally, expanding equation (19) to leading order in k and k′ yields

DAB
‖ (k,k

′
) =

∑
R

G‖(R− d)e
−iK·(R−d)

{
δ(k
′ − k)

[
1− i(R− d)ik

′
i

]
−
β(R− d)

2π

(R− d)i(R− d)j

|R− d|2
∇̃uij(k− k

′
)

}
,

(20)

where we have identified ikiũj(k) = ∇̃uij(k), which is the Fourier transform of
the displacement gradient tensor defined as ∇uij = ∂uj/∂ri. Performing similar
analysis for the intrasublattice (diagonal) matrix elements in equation (14) we obtain

DAA/BB
‖ (k,k

′
) =

∑
R6=0

G‖(R)e
−iK·R

{
δ(k
′ − k)

[
1− i(R)ik

′
i

]
−
β(R)

2π

(R)i(R)j

|R|2
∇̃uij(k− k

′
)

}
.

(21)

We will now analyze the transverse dynamical matrix elements in equation (15),
where the intersublattice (off-diagonal) matrix elements read

DAB
⊥ (k,k

′
, ω) =

∫
d2r

(2π)2

∑
R

GTEM
⊥ (R− d + u(r)− u(r−R + d), ω)

× e
−i(K+k′)·(R−d)

e
i(k′−k)·r

.

(22)

Since the photon-mediated interactions are long-range, we need to perform the lattice
sums in reciprocal space where they converge rapidly. To do this, we first insert the
inverse Fourier transform of the TEM Green’s function (10) into equation (22) which
gives

DAB
⊥ (k,k

′
, ω) =

∫
d2r

(2π)2

∫
d2k′′

2π

∑
R

G̃TEM
⊥ (k

′′
, ω)e

i(k′−k)·r

× e
i(k′′−k′−K)·(R−d)

e
ik′′·[u(r)−u(r−R+d)]

,

(23)

where G̃TEM
⊥ (k, ω) = (2a3k2

ω/L)(k2−k2
ω)−1 is the Fourier transform of the TEM

Green’s function. Next, the expansion of equation (23) to leading order in the displace-
ment field yields

DAB
⊥ (k,k

′
, ω) =

∫
d2r

(2π)2

∫
d2k′′

2π

∑
R

G̃TEM
⊥ (k

′′
, ω)e

i(k′−k)·r

× e
i(k′′−k′−K)·(R−d)

{
1 +

i

2π
k
′′
i

∫
d

2
q ũi(q)

[
1− e

−iq·(R−d)
]
e
iq·r
}
,

(24)

and after performing the spatial integral in equation (24) we obtain

DAB
⊥ (k,k

′
, ω) =

∫
d2k′′

2π

∑
R

G̃TEM
⊥ (k

′′
, ω)e

i(k′′−k′−K)·(R−d)

×
{
δ(k
′ − k) +

i

2π
k
′′
i ũi(k− k

′
)
[
1− e

−i(k−k′)·(R−d)
]}

.

(25)

We now use Poisson’s summation identity
∑

R exp[i(k′ − k) · R] =

[(2π)2/A]
∑

G δ(k′ − k + G), whereA = 3
√

3a2/2 is the area of the unit cell

in the unstrained lattice, to convert the sum over lattice vectors to a sum over reciprocal
lattice vectors

DAB
⊥ (k,k

′
, ω) =

2π

A
∑
G

φG

{
G̃TEM
⊥ (k

′
+ K−G, ω)δ(k

′ − k)

+
i

2π

[
G̃TEM
⊥ (k

′
+ K−G, ω)(k

′
+ K−G)i − (k

′ ↔ k)
]
ũi(k− k

′
)

}
,

(26)

where φG = exp(iG ·d) are non-trivial phase factors that are crucial for maintaining
the correct symmetry. Finally, expanding equation (26) to leading order in k and k′ we
obtain

DAB
⊥ (k,k

′
, ω) =

∑
G

ω2ξ2φG

ω2
K−G − ω2

{
δ(k
′ − k)−

1

2π
∇̃uii(k′ − k)

−
2c2(K−G)i

ω2
K−G − ω2

[
k
′
iδ(k

′ − k)−
1

2π
(K−G)j∇̃uij(k− k

′
)
]}

,

(27)

where ξ2 = 4πa3/AL parameterizes the strength of the light-matter coupling. Per-
forming similar analysis for the intrasublattice (diagonal) matrix elements in equa-
tion (15) we obtain

DAA/BB
⊥ (k,k

′
, ω) =

∑
G

ω2ξ2

ω2
K−G − ω2

{
δ(k
′ − k)−

1

2π
∇̃uii(k′ − k)

−
2c2(K−G)i

ω2
K−G − ω2

[
k
′
iδ(k

′ − k)−
1

2π
(K−G)j∇̃uij(k− k

′
)
]}

− Re[GTEM
⊥ (0, ω)]δ(k

′ − k) .

(28)

To obtain an effective Hamiltonian for the polariton envelope fields, we linearize
the coupled-dipole equations for simplicity which captures the essential physics away
from the light-line. First, we calculate the renormalized resonant frequency ωcav of the
dipoles inside the cavity which can be found by solving Re[α−1(ωcav)] = 0. Next, we
evaluate the polarizability correction (5) and the transverse dynamical matrix (15) at the
cavity resonant frequency, neglect non-radiative losses, and approximate ω2

cav − ω
2 '

2ωcav(ωcav − ω). Finally, by Fourier transforming equation (13) to the real-space and
time domains, we obtain the equation of motion i∂tψK(r, t) = HKψK(r, t) for the
spinor envelope field in the K valley ψK(r, t) = [ψK

A(r, t), ψK
B (r, t)]T, where the

effective Hamiltonian is given by equation (3) in the main text. Similarly, we obtain the
equation of motion i∂tψK′ (r, t) = HK′ψK′ (r, t) for the spinor envelope field in the

K′ valley ψK′ (r, t) = [ψK′
A (r, t), ψK′

B (r, t)]T, where the effective Hamiltonian is
related to equation (3) by time-reversal symmetryHK′ = H∗K , and reads

HK′ = ωD(L)1− ivD(L)σ
∗ · ∇+ Φ(r, L)1 + σ

∗ ·A(r, L) , (29)

where σ∗ = [σx,−σy ]. Note, since time-reversal symmetry is preserved the pseudo-
vector potential couples with opposite signs in the two valleys. In equations (3) and (29)
the Dirac frequency reads

ωD(L) =ωcav − Ω
ω0

ωcav

∑
R6=0

G‖(R)e
−iK·R

+Ω
ω0

ωcav
Re[GTEM

⊥ (0, ωcav)]− Ω
ω0

ωcav

∑
G

ω2
cavξ

2

ω2
K−G − ω2

cav
,

(30)

and the Dirac velocity is given by

vD(L) = − iΩ
ω0

ωcav

∑
R

G‖(R− d)e
−iK·(R−d)

(R− d)x

− Ω
ω0

ωcav

∑
G

2ω2
cavξ

2c2(K−G)xφG

(ω2
K−G − ω2

cav)
2

.

(31)

Furthermore, the strain-independent parameter in the pseudo-scalar potential reads

Φ0(L) = Ω
ω0

ωcav

∑
R 6=0

G‖(R)e
−iK·R (R)2

x

|R|2
β(R)

+Ω
ω0

ωcav

∑
G

[
ω2

cavξ
2

ω2
K−G − ω2

cav
−

2ω2
cavξ

2c2(K−G)2
x

(ω2
K−G − ω2

cav)
2

]
,

(32)

and the strain-independent parameter in the pseudo-vector potential is given by

A0(L) = Ω
ω0

ωcav

∑
R

G‖(R− d)e
−iK·(R−d) (R− d)2

x

|R− d|2
β(R− d)

−Ω
ω0

ωcav

∑
G

2ω2
cavξ

2c2(K−G)2
xφG

(ω2
K−G − ω2

cav)
2

.

(33)
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Note, to evaluate the Dirac frequency (30) one requires a suitable regularization pro-
cedure since the last two terms separately diverge (see Supplementary Section 7 for
details).

Numerical simulation of polariton wavepackets.— We use the second-order split-
operator method [22] to approximate the time evolution of the polariton envelope fields.
After a small time δt has elapsed, the polariton envelope field in the K valley is given by

ψK(r, t+ δt) = e
−iHKδtψK(r, t) . (34)

In the second-order split operator method, the evolution operator in equation (34) is ap-
proximated as

e
−iHKδt = e

− i
2
HεKδte

−iH0
Kδte

− i
2
HεKδt +O(δt

3
) , (35)

whereH0
K = ωD1 + ivDσ · ∇ andHεK = Φ(r)1 + σ ·A(r). Note, the cubic error

in δt is due to the noncommutativity of the position and gradient operators. To calculate
the field after timeNtδt has elapsed, we have to apply the operation (35) iteratively

ψK(r, t+Ntδt) ≈
Nt∏
i=1

(
MK

rF
−1MK

kFM
K
r

)
ψK(r, t) , (36)

whereF andF−1 represent the direct and inverse Fourier transform operations, respec-
tively. Using the standard identity for the exponential of Pauli matrices, we can write the
position-dependent operator in equation (36) as

MK
r = e

−iδtΦ/2

[
cos(δtA/2)1− i

sin(δtA/2)

A
σ ·A

]
, (37)

and the momentum-dependent operator as

MK
k = e

−iωDδt
[

cos(vDkδt)1 + i
sin(vDkδt)

k
σ · k

]
. (38)

Similarly, the evolution of the polariton envelope field in the K′ valley can be approxi-
mated as

ψK′ (r, t+Ntδt) ≈
Nt∏
i=1

(
MK′

r F
−1MK′

k FM
K′
r

)
ψK′ (r, t) , (39)

where the operatorsMK′
r andMK′

k are related to equations (37) and (38) by the re-
placement σ ↔ σ∗ and k↔ −k.

For the simulations in figure 3c, we initialize the following Gaussian wavepackets

ψK(r, t = 0) =
1

2w
√

2π
e
− |r|

2

2w2

[
1

− sgn(vD)

]
e
ikin·r , (40)

and

ψK′ (r, t = 0) =
1

2w
√

2π
e
− |r|

2

2w2

[
1

sgn(vD)

]
e
ikin·r , (41)

in the K and K′ valleys, respectively. We consider wavepackets that are located in the
lower polariton band with a fixed central frequency δω = −0.001ω0 relative to the
Dirac point, and an initial central wavevector kin = −|δω/vD|x̂. Furthermore, the
wavepackets are initially centred at the origin with a width ofw = 100a. We then track
the centre-of-mass trajectory of the wavepackets for the two valleys which is given by

〈r〉K/K′ =

∫
d2r |ψK/K′ |

2r∫
d2r |ψ

K/K′ |
2
. (42)

In Supplementary Section 2 we go beyond the linear Dirac cone approximation by in-
cluding second order field gradients in the effective Hamiltonian.

Effective polarizability and local spectral function.— To describe a resonant
dipole’s response to a local driving field, one has to take into account the strong mul-
tiple scattering within the metasurface. Therefore, we define the effective polarizability
of a dipole located at r0 to be

α
−1
eff (ω) = α

−1
(ω)− S(r0, r0, ω) , (43)

where the scattering function

S(r0, r0, ω) =
N∑
µ=1

N∑
ν=1

G(r0 − rµ, ω)[T (N)
(ω)]µνG(rν − r0, ω) (44)

encodes all the multiple-scattering events between the other N dipoles in the metasur-
face located at positions r1, . . . , rN . In equation (44), T (N)(ω) is the T-matrix with
matrix elements

[T (N)
(ω)]µν = α(ω)[W−1

(ω)]µν , (45)

where the matrix elements ofW(ω) read

[W(ω)]µν = δµν − (1− δµν)G(rµ − rν , ω)α(ω) . (46)

Note, here we include the full cavity Green’s function given by equation (8) and we
keep the frequency dependence. In figures 4c-e, we plot the local spectral function
Im[αeff(ω)] for the resonant dipole located at r0 = [0, a/2] on the B sublattice
within a metasurface consisting of approximately 14,000 dipoles and arranged in a cir-
cular configuration (before the applied strain).
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