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Abstract—Nowadays, surveillance cameras have been perva-
sively equipped with vehicles in public transport systems. For
the sake of public security, it is crucial to upload recorded
surveillance videos to remote servers timely for backup and
necessary video analytics. However, continuously uploading video
content generated by tens of thousands of vehicles can be
extremely bandwidth consuming. In this work, we investigate
the video uploading problem for moving buses by proposing to
deploy dedicated access points (AP) at bus stops to facilitate
video uploading. We define the harmonic objective for our
problem, which includes minimizing the video uploading delay
and minimizing the AP deployment cost. This problem is with
two fundamental challenges. Firstly, it is difficult to balance
the bandwidth capacity allocated to many buses because a
bus obtains bandwidth resource from a series of APs deployed
at stops along its route. Secondly, due to the randomness of
bus movement and the complexity of bus routes, it is hard
to predict the workload of an AP. Hence, it is challenging
to estimate the delay of uploading video content through an
AP. To cope with these challenges, we propose a water filling
placement (WFP) algorithm, aiming to balance the aggregated
bandwidth allocated to each bus. A queuing model is established
to analyze the uploading delay of video content. We further
resort to machine learning models to factor the influence of
bus routes into our queuing model. Finally, a convex problem
is formulated to optimize the harmonic objective, which can be
optimally solved with the gradient descent (GD) based algorithm.
We validate the correctness of our theoretical analysis and
demonstrate the effectiveness of our method by carrying out
extensive experiments using bus traces collected in Shenzhen
city of China. In comparison with benchmark algorithms, our
solution can always achieve the best performance.
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I. INTRODUCTION

Thanks to the unprecedented development of smart cities
in the last decade, it is feasible to pervasively deploy video
surveillance devices on public transport systems, such as buses
and taxis [1]. The public security can be drastically improved
if the recorded videos can be transmitted to remote cloud
servers, in a timely manner, for video analytics and backup [2],
[3]. Nevertheless, the massive video content uploading can
introduce tremendous traffic to the current Internet, resulting
in significant bandwidth consumption [4], [5]. Existing related
works mainly focus on content downloading for vehicles [6],
[7], [8]. Efficient video uploading for vehicles is still an open
but important research issue. To bridge this gap, we propose to
deploy dedicated access points (AP) at bus stops to facilitate
surveillance video uploading for bus transportation systems.
In practice, this is a challenging problem to minimize both
the video uploading delay and the AP deployment cost.

We consider a scenario that buses continuously generate
surveillance video content with a fixed rate when they are
carrying passengers. The video content is uploaded to remote
servers via APs placed at bus stops. It is worth noting that we
consider the case where APs are only deployed at stops, so that
buses can interact with them with a stable connection and close
distance so as to achieve a high uploading speed. Both APs and
buses maintain uploading buffers. Before a bus reaches an AP,
the generated content will be cached in the bus’s buffer. Here,
we assume that the transmission speed between a bus and a
connected AP is considerably high, because of a very short
distance between them [9], [10], [11]. Once the bus builds a
stable connection with an AP, all fresh content in the buffer
will be uploaded to the AP. The content that may come from
multiple buses, will be temporarily cached in the AP’s buffer
before uploading to remote servers with a constant rate.

In this scenario, we need to consider two objectives. First,
surveillance video content should be uploaded to remote
servers as early as possible for timely analysis [2], [12],
avoiding caching buffers of APs to be overflowed. Second,
there exists deployment cost including hardware cost and
maintenance cost for each deployed AP, which should not be
ignored. Thereby, we define a harmonic objective including
two sub-objectives: minimizing video uploading delay and
minimizing deployment cost. Although it is trivial to optimize
either one of these two sub-objectives alone, it is rather
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complicated to consider both of them simultaneously, because
the two sub-objectives conflict with each other. For instance,
we can deploy APs at all bus stops to minimize the uploading
delay. However, this solution will incur significant deployment
cost.

The problem investigated in this paper is challenging, which
can be illustrated from two aspects. Firstly, we consider the
videos generated by all buses are of an identical bitrate, and
thereby, it is necessary to balance the bandwidth allocated to
each bus evenly. However, a moving bus can obtain bandwidth
resources from a series of APs deployed at bus stops along
its route. It implies that we need to balance the aggregated
bandwidth resources allocated for each bus. Secondly, it is
difficult to estimate the waiting time of video content in an
AP’s buffer, due to the randomness of bus movement and the
influence of complex bus routes.

To deal with above challenges and deduce an optimal AP
placement, we propose a solution with three steps. Firstly, we
design a water filling placement (WFP) algorithm to balance
the aggregation of bandwidth allocated to each bus for a
given number of APs. Secondly, we develop a queuing model
to estimate the uploading delay of video content. Machine
learning models are then leveraged to factor the effect of bus
routes in the queuing model. Finally, a convex optimization
problem is formulated to decide the optimal number of APs
to be deployed, which can be efficiently solved by gradient
descent (GD) based methods [13].

To the best of the authors’ knowledge, our work is the
first to focus on the uploading issues of constantly generated
surveillance videos for moving buses. Our contributions can
be summarized as below.
• We propose a WFP algorithm to balance the aggregation

of bandwidth allocated to each bus.
• A queuing model is developed to analyze the uploading

delay of surveillance video content.
• A convex optimization problem is formulated to obtain

the optimal number of APs with an harmonic objective.
• Extensive experiments are conducted based on the bus

traces collected in Shenzhen city of China. The results
not only validate the correctness of our analysis, but also
demonstrate the superiority of our solution in comparison
with other competitive baselines.

The rest of the paper is organized as follows. The pre-
liminaries are introduced in Section II-A, and the problem
formulation is presented in Section II-B. The AP placement
algorithm is designed and shown in Section III. The theoretical
analysis of the uploading delay is presented in Section IV.
Optimizing the harmonic objective is illustrated in Section V.
The related works are discussed in Section VII, and finally,
our paper is concluded in Section VIII.

II. MODEL FORMULATION

A. Preliminaries

We consider the surveillance video uploading problem, in
which buses can upload their videos via the APs deployed at
different bus stops. When a bus approaches a particular AP,
it will build up a connection with the AP and transmit video

content to the AP. Note that the bus only needs to upload new
video content that has not been uploaded before to the AP.
Due to the fact that the AP is in the very close proximity to
the bus, the transmission speed should be considerably high
so that all the new video content can be properly transmitted
to the AP.

Both buses and APs are equipped with caching buffers. The
surveillance video content is cached in buses’ buffers before
being uploaded to an AP. In addition, the video content will
be temporarily stored in AP’s buffers before being uploaded
to remote servers with a constant uploading rate and an first-
in-first-out (FIFO) manner.1 The video content uploaded to
remote servers will be discarded from APs to refresh caching
space for new content. For simplicity, we assume that the
buffer size is large enough for both APs and buses so that
buffers will be never overflowed [14].2

An example is depicted in Fig. 1 to illustrate the video
uploading process considered in this paper.
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Fig. 1: An example to illustrate the video uploading process
given a bus and a deployed AP at some stop.

B. Problem Formulation

There are two aspects that should be taken into account to
design our objective.

As we have discussed in Section I, the video content should
be uploaded to remote servers as early as possible. It implies
that the first objective should be to minimize the video con-
tent’s uploading delay. In principle, the uploading delay can
always be reduced by deploying more APs in transportation
systems. The uploading delay will be minimized by deploying
APs at all bus stops, which however is a waste of AP resources.
Because deploying each additional AP incurs extra hardware
cost and maintenance cost, the second objective should be
to minimize the number of deployed APs in transportation
systems.

Note that it is not effective to deploy multiple APs at the
same bus stop due to the reason that interference between mul-
tiple APs will dramatically reduce the uploading throughput

1We assume that APs are standardized products and their uploading capacity
is fixed to simplify analysis. The feasibility to deploy heterogeneous APs with
different upload capacity will be briefly discussed in Section V.

2More details and justifications will be explained in the experimental
section.
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TABLE I: Frequently used notations

Notation Meaning
N , n the set of buses and the cardinality
M,m the set of bus stops and the cardinality
Si the set of bus stops covered by bus i
Ti the uploading delay of bus i
α the weight corresponding to the AP deployment cost
w the total number of APs to be deployed

Resi the number of APs allocated to serve bus i
D, d the size of newly generated video and the expected value

T0, t0, V [T0] the time to travel between two adjacent stops,
the expected value, and the variance

T1, t1 the delay before the video content is uploaded to an AP
and the expected value

T2, t2 the transmission delay via an AP and the expected value
r the bitrate of generated video content
u the AP’s uploading capacity
λ the bus arrival rate of APs
ρ the average uploading load of APs

[15]. Thus, we consider the condition that only a single AP
can be deployed at each bus stop.

We assume that N is the set of buses with cardinality n, and
M is the set of bus stops with cardinality m. The frequently
used notations are shown in Table I. The route of each bus
has been pre-determined. For a bus i, the set Si denotes the
route of the bus containing all stops bus i will go through.

We perceive the video uploading process from a stochastic
perspective. Let Ti denote the uploading delay of the video
content generated by bus i, which is a random variable affected
by many factors, such as the AP placement algorithm, the
competition from other buses, etc. Let Ij be an indicator that
denotes whether bus stop j has been equipped with an AP.
To involve both objectives into our analysis, we design the
harmonic objective that assigns the weight α to the deployment
cost and the weight 1 − α to the uploading delay. α is a
parameter in the range (0, 1), which can be tuned according to
the importance of each objective. Then, the harmonic objective
is defined as

obj = α

m∑
j=1

Ij + (1− α)
n∑
i=1

E[Ti], (1)

which should be minimized. Here, Ij is with value 1 if an
AP is placed at stop j, and 0 otherwise. E[Ti] is the expected
uploading delay suffered by the video content generated by
bus i.

To minimize the harmonic objective defined in Eq. (1),
we need to derive the expression of E[Ti]. Let u denote the
uploading capacity of each AP. E[Ti] is determined by the
number of APs, the AP placement and u. The AP placement is
a very complicated problem [16]. It is already an NP-complete
problem by merely considering a simplified special case.

For the special case, we set α = 1 and u = +∞, which
indicates that we only consider how to minimize the number
of deployed APs that can cover all buses. It is sufficient to
cover each bus with a single AP since its uploading capacity

is infinity. Hence, the problem is converted to:

min

m∑
j=1

Ij , (2a)

s.t.
∑
j∈Si

Ij ≥ 1, (2b)

Ij ∈ 0, 1. (2c)

The objective expressed in Eq. (2) is the simplified harmonic
objective. The constraint in Eq. (2b) implies that all buses must
be covered by at least once. This is a classical minimum set
cover problem which is NP-hard [17]. It is common to devise
heuristic algorithms to determine an AP placement.

Other than designing the AP placement algorithm, we still
need to derive E[Ti] to eventually solve this problem, which
however is another complicated problem. In this paper, we
propose a novel approach by leveraging a queuing model and
machine learning models together to derive the expression of
E[Ti] once the AP placement is fixed.

To ease our discussion, the harmonic objective can be
simplified as

obj = αw + (1− α)
n∑
i=1

E[Ti]. (3)

Here, we consider w APs in total, where w > 1. The uploading
delay E[Ti] of each bus will be identical if the AP placement
algorithm can balance the aggregated bandwidth allocated to
each bus. Meanwhile, n (the number of buses) is omitted,
because it can be regarded as a constant and can be absorbed
into the term 1− α.

To summary, the harmonic objective defined in Eq. (3)
can be minimized with three steps. Firstly, we heuristically
design the AP placement algorithm that manages to balance
the aggregation of bandwidth allocated to each bus once
the total number of APs is fixed. Secondly, we employ the
queuing theory to analyze the process of uploading video
content through an AP. Machine learning models are utilized
to determine two crucial parameters in the queuing model.
Finally, we prove that E[Ti] is a convex function, and hence,
the harmonic objective defined in Eq. (3) is also a convex
function with w. It can be minimized by searching the optimal
w with GD based methods.

III. AP PLACEMENT ALGORITHM

As we have illustrated in Section II-B, the AP placement
problem in principle is NP-complete. Inspired by previous
works [16], [18], a feasible solution is to design heuristic al-
gorithms. In this section, we propose a heuristic AP placement
algorithm given the total number of APs is w. It is worth to
emphasize that the speciality of our algorithm lies in balancing
the aggregated bandwidth capacity allocated to each bus.

Let Resi denote the number of APs allocated to serve bus
i. The aggregated bandwidth capacity allocated to bus i is
the aggregated capacity obtained from APs deployed at bus
stops in the set |Si|. By considering the size of |Si|, our
target is to balance the normalized bandwidth capacity, i.e.,
Resi
|Si| where i = 1, . . . , n, for all buses, and thereby, our
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AP placement algorithm is named as water filling placement
(WFP) algorithm.

The design principle of the WFP algorithm is briefly de-
scribed as follows. We define the popularity pj for stop j
as the number of buses that will go through it. Stops are
ranked by decreasing order of pj , and it is reasonable to
choose stops of larger popularity with higher priority for AP
placement. Thus, we begin the AP placement with the stop of
the highest popularity. Once an AP is deployed, the aggregated
bandwidth capacity of each bus is updated. If a bus has
obtained sufficient bandwidth capacity, it should be removed
and the stop popularity should be adjusted accordingly. The
details of the WFP algorithm are presented in Algorithm 1.

Algorithm 1: Water Filling Placement (WFP) Algorithm
Data: The set of buses N ; The set of stops Si covered

by bus i; The set of stops M; The number of APs
w to be deployed.

Result: The set of bus stops Q which should be
deployed with APs.

Initialization: Resi = 0 for n buses;
Compute pj based on the route information Si for all i’s;
Rank all stops by the decreasing order of pj ;
while w > 0 do

Select stop j ∈M of the highest popularity pj ;
Add j to the set Q;
for bus i covered by stop j do

Increase Resi by 1 ;

Rank all buses by decreasing order of Resi
|Si| ;

Remove top β percent of buses with the highest Resi
|Si|

from the set N ;
Re-compute the popularity of each stop;
Update the rank of stops by the decreasing order of
popularity;
Add all removed buses back to the set N ;
Remove stop j from M, and update w = w − 1;

Output: All stops in Q.

In the WFP algorithm, β is a parameter used to adjust the
balance of the bandwidth allocation. Before placing an AP,
all buses will be ranked by the decreasing order of allocated
bandwidth capacity. Then, top βn buses will be removed so
that the AP is placed to enhance the bandwidth capacity for
the rest (1−β)n buses. If β = 0, the most popular and vacant
stop is always chosen as the next one for AP placement. The
value of β can be determined through experiments. In our
study, we set β = 0.1 and empirically demonstrate that the
video uploading performance is not sensitive when the value
of β is around 0.1.

By placing an AP at stop j, we need to update the bandwidth
capacity for βn buses, and the complexity of updating stop
popularity is O(βn). The complexities of ranking stops and
buses are O(m logm) and O(n log n), respectively. Overall,
the time complexity of the WFP algorithm is O(βwn +
wm logm + wn log n). This algorithm can be executed ef-
ficiently for a typical-size city with the scale of thousands of
stops and tens of thousands of buses.

IV. ANALYSIS OF UPLOADING DELAY

Once the AP placement is determined by the WFP algo-
rithm, we establish a queuing model to analyze the uploading
delay, E[Ti]. The proposed queuing analysis initially does
not consider the information of bus routes. Machine learning
models are then developed to factor the effect of bus routes
in the derivation of E[Ti].

A. Stochastic Analysis

By ignoring the influence of bus routes, we assume that the
bandwidth capacity allocated to serve each bus is identical.
In fact, bus routes are heavily affected by the road topology
of a city, which makes the AP placement complicated. If the
road topology is a straight line, it is easier to balance the
bandwidth capacity allocated to each bus. However, if the road
topology is a tree, balancing the bandwidth capacity becomes
very challenging. We first establish a queuing model without
considering such influence.

For the sake of clarity of the illustration, our analysis
focuses on a particular bus. As we have described, when a
bus approaches a stop that has been equipped with an AP,
it will upload all newly generated video content with size D
to the AP. D is regarded as a random variable, since it is
uncertain how much time it will take for a bus to encounter
the next AP since its departure from the previous AP. The
probability that an AP has been deployed at a particular stop
is γw

m . Here, γ is a parameter determined by bus routes. If all
stops are of the same popularity, we have γ = 1. Otherwise, if
each of the stops that are ranked at top is deployed an AP, we
should have γ > 1. γ will be determined later by a machine
learning model. Note that we do not discriminate buses using
different values of γ, since the AP placement algorithm aims
to balance the number of APs to cover each bus, and each bus
should have a roughly identical chance to encounter an AP
though they may travel along different routes.

The uploading delay measures the time period since the
birth of video content, with size D, to the time when the
content is uploaded to remote servers. The uploading delay
can be further decomposed into two parts: T1, which is the
delay before the video content is uploaded to an AP, and T2,
which is the transmission delay via an AP. Here, both T1 and
T2 are perceived as random variables. The expected value of
D, T1 and T2 are represented by d, t1 and t2, respectively.

According to the definition of t1, it is the expected time for a
bus to travel from one AP to the next. Since we have assumed
that a bus meets an AP at a particular stop with probability
γw
m , it is expected that a bus will encounter the next AP after

visiting m
γw stops on average.

Based on the above discussion, the expectation of T1, i.e.,
t1, can be given by

t1 = E

[
m

γw
T0

]
=

m

γw
t0, (4)

where T0 is defined as the variable to indicate the time a bus
spends on traveling between two adjacent stops, with expected
value t0 and variance V [T0]. t0 and V [T0] can be estimated
from the historical trace records of a bus.
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B. Queuing Model

We derive the expression of t2 by establishing a queuing
model. Let r denote the bitrate of generated video content by
a bus. By taking each AP as a server and video content to be
uploaded as customers, we can employ the queuing theory to
analyze our problem.

If an AP’s buffer is perceived as a queue, each AP can be
regarded as a server processing video content uploading tasks.
Each task is a segment of video content uploaded by a bus. The
task size is D and the server capacity is the AP’s uploading
capacity that can process tasks with a constant uploading rate
u. The time to completely processing a task is then D

u . All
tasks will be processed with an FIFO manner.

The bus arrival to accessing an AP approximately follows
a Poisson process [19], [20]. The arrival rate is denoted
by λ which is heavily affected by w. For popular stops
serving many buses, λ should be larger, otherwise λ should
be smaller. According to the WFP algorithm, a small number
of popular stops will be selected for AP placement if w is
small. Otherwise, if w is large, we have to place APs on some
unpopular stops, and hence, λ is smaller. Thus, λ is affected
by the AP placement as well, and it is complicated to precisely
derive the expression of λ. To simplify our problem, we
assume that λ is known here, and we can resort to developing
a machine learning model to estimate λ later.

An uploading task with size D is always temporarily cached
at the AP’s buffer first, i.e., waiting in the queue. Thus, t2 is
the sum of the uploading processing time and the waiting time
in the queue. If the distribution of D is unknown, this task
uploading process can be modeled as an M/G/1 queue [21],
and hence, the expression of t2 can be given by:

t2 = E[Ts] +
λE[T 2

s ]

2(1− ρ)
, (5)

where ρ ≈ nr
wu is the average uploading load for each AP.3

It is required that ρ < 1 to maintain the stability of an AP’s
buffer, and thus, we have nr < wu. We will further discuss
the stability issue later. Ts is the service time (or uploading
processing time) of a particular bus, i.e., the time to complete
the uploading of a video segment with size D. In accordance,
we have

E[Ts] =
E[D]

u
,

E[T 2
s ] = E

[
D2

u2

]
=

1

u2
(
V [D] + E[D]2

)
.

Here V [D] is the variance of D. According to Eq. (4), E[D] =

t1r = m
γw t0r and V [D] = m2r2

γ2w2 V [T0]. E[Ts] and E[T 2
s ] are

further derived as

E[Ts] =
mt0r

γwu
, (6)

E[T 2
s ] =

m2r2

γ2w2u2
(
V [T0] + t20

)
. (7)

3In reality, the load ρ is heavier for more popular stops and lighter for less
popular stops. For the sake of clarity of illustration, we simply use a fixed
average load here. The influence is negligible, which will be validated through
trace-based experiments.

Recall that T0 is the time a bus takes to travel between any
two adjacent stops. t0 and V [T0] are the expected value and
variance of T0, which can be learned from bus trace records.

By substituting Eq. (6) and Eq. (7) back into Eq. (5), we
have:

t2 =
mt0r

γwu
+

λm2r2

2(1− ρ)γ2w2u2
(
V [T0] + t20

)
. (8)

C. Learning Parameters

1) Learning γ: Recall that a bus can access an AP at the
next stop with probability γw

m . γ is dependent on the value
of w, the AP placement and bus routes. Thus, it is rather
complicated to explicitly derive the expression of γ. With a
given w and the WFP algorithm, we propose to learn γ with
a machine learning model, which can automatically factor in
the influence of bus routes.

As we have discussed, γ should be greater than 1 if the
bus popularity is unevenly distributed, and WFP prefers to
place APs on more popular stops. Meanwhile, γ should be a
decreasing function with w, which can be intuitively explained
as follows. As w is small, APs can be placed at a small
number of popular stops, so as to more efficiently serve buses.
However, as w increases, it becomes more difficult to identify
appropriate popular stops to place APs, in order to balance the
aggregated bandwidth allocation. In view of that, γw should
be a concave increasing function, and γ is a convex decreasing
function with w.

Based on the above discussion, we select
w

9
10 /w,w

8
10 /w, . . . ,, w

1
10 /w as the basis functions of

our learning model.4 Specifically,

γ(w|θγ) =
1

w

(
c0 +

9∑
l=1

clw
10−l
10

)
. (9)

Here, θγ = (c0, cl, . . . c9) represents the set of the parameters
of the learning model. We can easily verify that r(w|θ) is a
convex monotonic decreasing function with w.
θγ can be learned as follows. Once APs are placed by the

WFP algorithm, we can compute γ easily. The WFP algorithm
will be executed for multiple times by setting with different
values of w, so that we can collect a number of samples with
different w and the corresponding γ. By feeding these samples
back to Eq. (9), we can train θγ by minimizing the fitting error.

2) Learning λ
1−ρ : Recall that λ is the average bus arriving

rate to a particular AP and ρ is the average service load of
each AP. If the popularity of bus stops is unevenly distributed,
and WFP prefers to select more popular stops with higher
priority, we anticipate that λ will decrease with w. When w
is smaller, APs will be placed on a fewer number of popular
stops, and hence, the average bus arriving rate will be higher.
In contrast, if w is larger, less popular stops have to be chosen
for AP placement, and hence, λ will be smaller. Meanwhile,
the term 1

1−ρ decreases with the increase of w as well since ρ

4The fitting error will be smaller if more basis functions are selected,
but overfitting risk will be higher. According to experiment, using 9 basis
functions is appropriate.
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is expected to decrease with w. Then, we design the function
λ

1−ρ (w|θλ) as a convex decreasing function as w approaches
m. Based on the above discussion and by using the same set
of basis functions, λ

1−ρ (w|θλ) is expressed as

λ

1− ρ
(w|θλ) =

9∑
l=0

blw
−l
10 . (10)

Here θλ = (b0, b1, . . . , b9) is the set of parameters to be fit.
Similar to the training of θγ , a sample with a pair of w and λ
can be collected if WFP is executed once. We learn θλ through
a number of samples collected by executing WFP multiple
times with different values of w.

V. OPTIMIZING THE HARMONIC OBJECTIVE

We embark optimizing the harmonic objective with the
knowledge of E[Ti].

A. Optimizing Objective
Recall that the harmonic objective includes two sub-

objectives: minimizing deployment cost and minimizing up-
loading delay. Until now, all our discussions assume that w is
a fixed value. Yet, this is not our final goal, and we need to
find w∗ that can minimize the harmonic objective.

By wrapping up all aforementioned arguments, our problem
can be formulated as

min
w

obj = αw + (1− α)(t1 + t2), (11a)

s.t. t1 =
m

γw
t0, (11b)

t2 =
mt0r

γwu
+

λm2r2

2(1− ρ)γ2w2u2
(
V [T0] + t20

)
, (11c)

γ =
1

w

(
ĉ0 +

9∑
l=1

ĉlw
10−l
10

)
, (11d)

λ

1− ρ
=

9∑
l=0

b̂lw
−l
10 , (11e)

w ≤ m, (11f)
wu > nr. (11g)

Here ĉl and b̂l are parameters learned in Section IV. The
condition, wu > nr, ensures that the overall uploading
capacity is greater than the overall video generating rate, i.e.,
ρ < 1. Based on the current form of the harmonic objective,
we prove:

Proposition 1: The harmonic objective obj = αw + (1 −
α)(t1 + t2) is a convex monotonic decreasing function with
w.
The detailed proof can be found in the Appendix.

The range of w is
[
nr
u ,m

]
, which is a convex set. Thus,

optimizing the harmonic objective is a convex optimization
problem, which can be efficiently solved by GD based al-
gorithms [22]. Let η denote the learning rate, and we can
iteratively search the value of w∗ as below.

w ←− w − η d (αw + (1− α)(t1 + t2))

dw
.

In our experiments, we set η = 0.1, and the convergence
condition is that the gradient is less than 10−4.

B. Discussion of Stability

It is vital to maintain the condition ρ < 1 for each AP, so
that the AP’s buffer will not be overflowed. We discuss this
problem from two perspectives.

Firstly, w should be large enough to ensure stability if
we assume that u is a fixed value that cannot be adjusted
arbitrarily. It implies that ρ is mainly determined by w. If w
is too small, it is very risky that some APs placed at popular
stops will suffer from exploding buffer increase. Therefore, to
ensure the stability of APs’ buffers, it is necessary to deploy
a plentiful number of APs in the system.

Unfortunately, it is difficult to explicitly derive the threshold
of w, over which the system will be stable and no AP’s buffer
will be overflowed. We turn to solving this problem by revising
w∗ searched by the GD algorithm. Given the AP placement
and w∗, it is necessary to check the workload of each AP by
computing ρj =

λjD
u , where j ∈ Q and λj is the bus arrival

rate to the stop j. If there exists any j such that ρj > 1, w∗
should be increased to a value between (w∗,m]. To reduce
searching time, the revised w∗ can be determined through a
binary search algorithm.

Secondly, the stability can be ensured better if an AP’s
upload capacity can be configured according to the load of
the AP. Intuitively, it can be realized by deploying more
powerful APs on more popular stops with heavier traffic loads.
However, deploying heterogeneous APs unavoidly increases
the deployment cost and complicates theoretical analysis. In
addition, the deployment will be infeasible if bus routes were
adjusted. due to the analysis of AP placement will be much
more complicated.

In fact, the first solution is more practical for deployment.
We will empirically prove the stability as long as w is not very
small in the next section. By deploying standardized APs, if a
very popular AP is overloaded, buses can carry video content
cached in their buffers to the next APs to balance AP loads.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we carry out trace-based experiments to
validate the correctness of our theoretical analysis and the
efficacy of our video uploading solution by comparing with
baselines.

A. Experimental Settings

In our experiments, we use the dataset generated by the GPS
terminals of buses in Shenzhen city of China. The dataset
records the history trajectory of each bus from 1st Nov. to
7th Nov. 2018 denoted by trace-20181101 to trace-20181107,
respectively. The record of each bus contains timestamp, bus
line, bus ID, and bus location. The statistics of representative
trace files are presented in Table II. As we can see, there are
more than 14K buses on each day driving along more than 700
routes, and more than 5K available stops for AP placement.

Based on the collected bus traces in Shenzhen city, we
have implemented a trace-driven video uploading simulator,
consisting of two modules:
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TABLE II: GPS trace file statistics.

# bus IDs # of bus routes # bus stop
trace-20181101 14346 766 5146
trace-20181102 14351 765 5147

TABLE III: Traffic information in different time periods.

t0 V [T0] n
RH 146.94 15198.96 14281

NRH 132.28 11108.03 13976
Overall 140.19 13368.26 14321

1) Bus Module: This module simulates the driving of a bus,
the generating of surveillance video, and the uploading
of video content to APs;

2) AP Module: This module makes the AP deployment
decisions and simulates the video uploading processes
through APs.

B. Road Traffic Conditions

Traffic conditions in a city can vary significantly during a
day. To present the fluctuating traffic information in different
time periods, we measure the average arrival rate to each bus
stop in each hour and present the results in Figure 2. From
the figure, we can see that the time periods from 8 AM to
10 AM and from 5 PM to 7 PM are the rush hours (RH),
the time periods from 11 AM to 4 PM are the non-rush hours
(NRH), and the rest time periods are the free hours (FH). More
detailed statistics of the training set are listed in Table III.

To further show the traffic conditions in the three time
periods, we plot the cumulative distribution function (CDF)
of the average duration for each bus traveling from one stop
to the next stop, shown as Figure 3. From the CDF graph, we
can see that about 24.25%, 42.04%, and 53.19% of the buses
have duration of less than 125 seconds for RH, NRH, and FH,
respectively, which means that traffic jams are more common
in RH compared to FH and NRH.

 NRH

Fig. 2: Average bus arrival rates in different time periods.

We assume that an AP’s communication range is 100 me-
ters. By verifying the GPS trace files, we find that 80.40% of
the buses stay within an AP’s communication range for more
than 42.5 seconds on average, shown as Figure 4. With higher-
order modulation and other uplink transmission enhancements
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Fig. 3: The CDF of average duration for each bus traveling
between two adjacent stops in different periods.

developed in 802.11 family, a very high transmission speed
among buses and a connected AP is achievable [9], [10], [11].
Based on these observations, we assume that all fresh content
in a bus’s buffer have enough time to be uploaded to the
neighboring AP.
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Fig. 4: The CDF of the average duration for each bus staying
within an AP’s communication range.

In our experiments, the video generating rate (i.e., r) is 8
Mbps, and the video uploading rate (i.e., u) of each AP is
1000 Mbps. We observe that a bus equipped with only 10GB
hard disk can buffer video for more than 2.7 hours without
uploading to any AP when the video generating rate is 8Mbps,
i.e., 1MBps. For an AP, we intuitively set the buffer limit as
50GB for each of them to make the simulation more robust.

C. Model Verification

We first conduct experiments to verify the correctness of our
theoretical analysis. Since we adopt machine learning models
to determine the values of γ and λ

1−ρ , we use trace-20181101
as the training set and trace-20181102 to trace-20181107 as
the testing set.

As the definitions of γ and λ
1−ρ have been illustrated in

Section IV, we can learn γ and λ
1−ρ accordingly, which can be

further used to calculate t1 and t2, respectively. The parameters
θγ and θ λ

1−ρ
learned based on Eqs. 9 and 10 are listed in
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TABLE IV: Parameters for fitting γ and λ
1−ρ

c0-c3 -4.798 -7.223 21.781 -2.715
c4-c7 14.849 11.366 -22.055 -13.549
c8-c9 -10.419 -7.421
b0-b3 -0.048 0.212 0.103 0.038
b4-b7 -0.231 -0.823 -1.045 -1.265
b8-b9 3.118 17.029

Table IV. The regularization parameters for learning γ and λ
are set as 1e-3 and 1e-7, respectively.

We depict the learned parameters against with w in Fig-
ures 5 and 6, where w increases from 1000 to 3000. We
further plot the measured parameters obtained from the testing
set to verify the correctness of our machine learning models.
As we can observe from Figures 5 and 6, γ and λ

1−ρ are
indeed convex monotonic decreasing with the increase in w.
The gap between the parameters calculated with the learned
models and the parameters measured from the training set is
very small, which indicates the low fitting errors and the good
applicability of our machine learning models.
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Fig. 5: Comparing fitted γ obtained through the training set
with the measured parameter γ obtained through the testing
set.
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Fig. 6: Comparing fitted λ
1−ρ obtained through the training set

with the measured parameter λ
1−ρ obtained through the testing

set.

It is essential to further validate the correctness of t1 and t2.
With the learned parameters γ and λ

1−ρ from the training set,

we can calculate the theoretical t1 and t2 for the testing set,
which are used to compare with the simulated t1 and t2. Here,
w is varied from 1000 to 3000 at an interval of 50. Both the
theoretical and the simulation results are plotted in Figures 7
and 8 for the Overall hours.

From Figure 7, we can see that the difference between the
theoretical t1 and the simulated t1 is negligible. It manifests
the effectiveness of estimating t1 with our model. Similarly, we
can compare the theoretical t2 with the simulated t2 in Figure
8. The small gap between the two curves also indicates that it
is accurate to estimate t2 with our developed queuing model.

It is interesting to note that both t1 and t2 monotonically
decrease with the increase in w. It implies that placing
more APs with larger w is an effective way of reducing the
uploading delay. However, the convex decreasing curves of
the delay suggest that the marginal effect of each incremental
AP deployment is decreasing. Thus, it is necessary to find an
appropriate w to avoid wasting AP resource.
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Fig. 7: The accuracy of theoretic t1 compared to the simulation
results.

1000 1500 2000 2500 3000

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

t 2 
(s

ec
on

ds
)

w

 sim-2
 sim-3
 sim-4
 sim-5
 sim-6
 sim-7
 theo-1

Fig. 8: The accuracy of theoretic t2 compared to the simulation
results.

D. Performance Evaluation

1) Baseline Algorithms: We compare the performance of
our solution to that of two baselines: 1) the Uniform algorithm;
2) the Evolutionary algorithm.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

• The Uniform algorithm is adopted from [17]. For this
algorithm, we first divide each bus route into several
sub-routes, which have the same number of bus stops.
Then, we apply the algorithm proposed in [17] to solve
the set-cover problem for all sub-routes. We named the
algorithm Uniform-x if each sub-route contains x bus
stops. Uniform-x guarantees that there is at least one AP
to cover every x bus stops.

• the Evolutionary algorithm is revised based on [23]. For
this algorithm, we set the fitness function the same as our
objective function, i.e., αw + (1− α)(t1 + t2), which is
defined in Eq. 11.

2) Experimental Results: In the first experiment, we com-
pare the performance of our solution to that of the Uniform
algorithm. As the Uniform algorithm can only make AP
placement with a given number of APs, we fix the number of
APs as 605, 900, and 1819 to evaluate the algorithms Uniform-
9, Uniform-6, and Uniform-3, respectively. We use the same
number of APs for each test case in our solution to keep
a fair comparison of the uploading delay with the Uniform
algorithm. We evaluate the performance of the two algorithms
with trace files from trace-20181102 to trace-20181107, and
the experimental results are the average values of the 6 tested
days.

The experimental results are presented in Figure 9. In
addition to comparing both algorithms during the overall
period, we also compare their performance in RH and NRH
separately to fully evaluate each algorithm. Fig. 9 indicates
that our solution can always achieve low uploading delays for
all evaluation cases with an equal number of APs. It is worth
mentioning that the uploading delay of both algorithms will be
larger during RH and smaller during NRH. The performance
of our solution during RH is even better than that of Uniform
in NRH, which indicates the superiority of our solution under
severe traffic conditions.
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Fig. 9: The performance comparison between our method and
the Uniform algorithm in terms of upload delay.

We further compare our solution with the Evolutionary al-
gorithm by varying the parameter α in the harmonic objective
function. For the Evolutionary algorithm, we set the mutation
rate, the elite rate, the population size, and the number of
generations as 0.01, 0.05, 50, and 50, respectively, according
to the recommendation in [23].

We compare the obj of our solution to that of the evolution-
ary algorithm with the same α in the RH of the testing traces,
as shown in Figure 10. From the figure, we can see that our
solution outperforms the evolutionary algorithm for all testing
traces, especially when α becomes larger. When α is 0.21, the
obj of our solution is 29.90% lower than that of the evolu-
tionary algorithm on average. Recall that higher α indicates
less importance for the objective of minimizing uploading
delay, which will cause both our solution and the evolutionary
algorithm to deploy less APs. Thus, as α increases, the number
of APs and their deployment positions become more critical,
where our solution performs better. However, as α decreases,
the bus stops will be widely equipped with APs, and thus the
problem becomes more trivial.
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Fig. 10: The performance comparison between our method and
the evolutionary algorithm in terms of obj.

VII. RELATED WORK

There have been many works utilizing the power of edge
facilities to alleviate the burdens of cellular networks and
increase the communication and computation capabilities
[24], [25], [26], [27]. Effective RSU deployment strategies
have been widely explored by researchers.

A. Linear Programming Based Solutions

Linear Programming (LP) has been widely used for the
modeling of the RSU deployment problem, which was further
solved by tools such as CPLEX or by more efficient heuristic
solutions.

In [28], Wang et al. deployed RSUs in a 2-D VANET
and conducted experiments in both urban and suburban road
scenarios. They proposed a LP model to maximize the total
centrality of candidate positions and solved the problem with
the 0-1 Knapsack algorithm. However, they only considered
road topology information with degree centrality and close-
ness centrality without considering the traffic conditions, and
simply assumed a constant vehicle speed.

Eftekhari et al. [29] proposed a Binary Programming (BP)
model to deploy RSUs for a 1-D road scenario, which incor-
porated information such as accident rates and was solved by
the CPLEX tool. Works, such as [30], [31], [32], leveraged
LP to model the RSU deployment problem, aiming to make a
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trade off between the cost of RSU placement and the coverage
ratio.

B. Genetic Algorithm Based Solutions

There are works solving the RSU deployment problem
based on Genetic Algorithm (GA).

In [23], Moura et al. modeled the RSU deployment problem
in VANETs as Maximum Coverage with Time Threshold
Problem (MCTTP). They performed a preprocessing based
on the betweenness centrality and the community detection
method to improve the convergence time, and solved the
problem based on GA. Mehar et al. [33] improved the end-
to-end application delay and reduced the deployment costs by
placing RSUs in vehicular networks. They filtered out the RSU
candidates based on the connectivity information, and utilized
GA and Dijkstra algorithm to reduce the number of RSUs.
C. Heuristic Algorithm Based Solutions

In [16], Trullols et al. deployed Dissemination Points (DP)
in a Vehicle-to-Infrastructure (V2I) communication scenario,
where the movement of vehicles was simulated with VanetMo-
biSim, aiming to maximize the number of vehicles connected
to DPs. They first maximized the number of contacted vehicles
assuming small message exchange, and then considered the
contacted duration without the assumption. A greedy algorithm
and a time-subzone algorithm were used to improve the
coverage ratio and the coverage time. Zhao et al. [34] proposed
a novel three-phase deployment approach to provide real-time
processing service and reduce the required number of edge
nodes (ENs). They constructed a utility metric for candidate
positions and proposed a heuristic algorithm to select positions
with high utilities.
D. Clustering in Deployment Problem

Clustering has been used to reduce the search space or
simplify model construction in facility deployment problem
[35]. In [36], Ni et al. proposed a LP-based clustering al-
gorithm to jointly improve the deployment of RSUs and
assignment of service tasks for the 2-D Internet-of-Vehicle
(IoV) networks. They used the LP-based clustering algorithm
to group the RSUs into different clusters, then greedily
solved sub-problems for each cluster, and finally combined
the solutions of all clusters. Cao et al. [37] optimized the
deployment of RSUs by considering the deployment cost and
the latency. They firstly chose the RSU candidates based on the
information of road topology and traffic data, such as traffic
flow in intersections. Then, they used the branch-and-bound
algorithm to reduce the number of RSUs based on K-nearest
neighbor algorithm (KNN).
E. Summary

Previous works attempted to increase the coverage ratio of
RSUs or ensure timely contacts between vehicles and RSUs,
while limiting the deployment cost. These works justified
the important role of RSUs in enabling inter-connection of
vehicles. However, they focused on the small content transmis-
sion, such as small text messages, safety messages, or control
signals [38], [39], ignoring the sizes of the content. On the
contrary, we consider the uploading of continuously generated

surveillance video of moving buses, which is extremely band-
width consuming and cannot be effectively solved by existing
approaches. We propose WFP to balance the aggregation
bandwidth of different buses, and combine a queuing model
with machine learning models to analyze the uploading delay
so as to optimize the AP budget.

VIII. CONCLUSION

In this work, we investigated the surveillance video up-
loading problem for buses in public transportation systems.
A novel strategy that uploads video content via APs de-
ployed at stops was designed. Firstly, the deployment cost
and the uploading delay were analyzed respectively. A WFP
algorithm was proposed to balance bandwidth allocation, and
a queuing model was established to analyze the uploading
delay. To factor in the effect of bus routes, machine learning
models were leveraged to learn two key parameters in the
queuing model. Then, a convex optimization problem was
formulated to minimize the harmonic objective that takes both
the uploading delay and the placement cost into account. Real
traces collected from Shenzhen city of China were used for
carrying out experiments. The experimental results not only
validated the correctness of our analysis but also showed the
effectiveness of our strategy. In the future, we will extend our
strategy to make it applicable for other public transportation
systems such as taxis.
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APPENDIX

Proof of Proposition 1: It is trivial to show that the harmonic
objective decreases with the increase of w because λ decreases while
γ increases with the increase of w.

To prove the harmonic objective is a convex function with w, we
turn to prove that t1 and t2 are convex functions with w respectively.

Define the composite function f (g(w)) where f = 1
g(w)

and
g = wγ(w|θ). Apparently, the difference between f (g(w)) and t1
is only a constant. By differentiating f (g(w)) with respect to w, it
turns out that

f (g(w))′ = f ′ (g(w)) g′(w),

f (g(w))′′ = f ′′ (g(w)) (g′(w))2 + f ′ (g(w)) g′′(w).

According to the definition of f and g, f ′ < 0, f ′′ > 0, g′′ < 0,
and thus f (g(w))′′ > 0, which indicates that t1 is a convex function
with w.

Assuming that we have two convex function f1(w) > 0 and
f2(w) > 0 which are monotonically decreasing with w. Then, we
prove that f1(w)f2(w) is a convex monotonic decreasing function
with w. The first and second order differentials of f1(w)f2(w) with
respect to w are

(f1(w)f2(w))
′ = f ′1(w)f2(w) + f1(w)f

′
2(w),

(f1(w)f2(w))
′′ = f ′′1 (w)f2(w) + 2f ′1(w)f

′
2(w)

+f1(w)f
′′
2 (w).

Since f1(w) and f2(w) are decreasing function with w, we have
f ′1(w) < 0 and f ′2(w) < 0, and thus (f1(w)f2(w))

′ < 0. It implies
that f1(w)f2(w) is a decreasing function. If f1(w) and f2(w) are
convex, we have f1(w) ≥ 0 and f ′′2 (w) ≥ 0, which implies that
(f1(w)f2(w))

′′ ≥ 0 and thus f1(w)f2(w) is a convex function.
t2 can be decomposed as a product of a constant and λ

1−ρ
1
γ

1
γ

.
Due to the fact that λ

1−ρ and 1
γ

are convex decreasing functions of
w, t2 is a convex monotonic decreasing function with the increase
of w.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 12

Laizhong Cui is currently a Professor in the College
of Computer Science and Software Engineering at
Shenzhen University, China. He received the B.S.
degree from Jilin University, Changchun, China, in
2007 and Ph.D. degree in computer science and tech-
nology from Tsinghua University, Beijing, China,
in 2012. His research interests include Future In-
ternet Architecture and protocols, Edge Computing,
Multimedia Systems and Applications, Blockchain,
Internet of Things, Cloud and Big Data Computing,
Software-Defined Network, Social Network, Com-

putational Intelligence and Machine Learning. He led more than 10 scientific
research projects, including National Key Research and Development Plan of
China, National Natural Science Foundation of China, Guangdong Natural
Science Foundation of China and Shenzhen Basic Research Plan. He has
published more than 70 papers, including IEEE Transactions on Multimedia,
IEEE IoT Journal, IEEE Transactions on Industrial Informatics, IEEE Trans-
actions on Vehicular Technology, IEEE Transactions on Network and Service
Management, ACM Transactions on Internet Technology, IEEE Transactions
on Computational Biology and Bioinformatics and IEEE Network. He serves
as an Associate Editor or a Member of Editorial Board for several inter-
national journals, including International Journal of Machine Learning and
Cybernetics, International Journal of Bio-Inspired Computation, Ad Hoc and
Sensor Wireless Networks and Journal of Central South University. He is a
Senior Member of the IEEE, and a Senior Member of the CCF.

Dongyuan Su received the B.E. degree in computer
science from the College of Computer Science and
Software Engineering, Shenzhen University, Shen-
zhen, China, in 2019, where he is currently working
toward the Master’s degree. His research interests
include edge computing and machine learning.

Yipeng Zhou is a lecturer in computer science with
Department of Computing at Macquarie University,
and the recipient of ARC DECRA in 2018. From
Aug. 2016 to Feb. 2018, he was a research fel-
low with Institute for Telecommunications Research
(ITR) ofUniversity of South Australia. From 2013.9-
2016.9, He was a lecturer with College of Computer
Science and Software Engineering, Shenzhen Uni-
versity. He was a Postdoctoral Fellow with Institute
of Network Coding (INC) of The Chinese University
of Hong Kong (CUHK) from Aug. 2012 to Aug.

2013. He won his PhD degree and Mphil degree from Informatio Engineering
(IE) Department of CUHK respectively. He got Bachelor degree in Computer
Science from University of Science and Technology of China (USTC).

Lei Zhang (S’12-M’19) received the B.Eng. degree
from the Advanced Class of Electronics and Infor-
mation Engineering, Huazhong University of Sci-
ence and Technology, Wuhan, China, in 2011, and
the M.S. degree and the Ph.D degree from Simon
Fraser University, Burnaby, BC, Canada, in 2013
and 2019, respectively. He is a recipient of C.D.
Nelson Memorial Graduate Scholarship (2013) and
Best Paper Finalist at IEEE/ACM IWQoS (2016).
He is currently an Assistant Professor at the College
of Computer Science and Software Engineering,

Shenzhen University. His research interests include multimedia systems and
applications, mobile cloud computing, edge computing, social networking,
and Internet of Things.

Yulei Wu is a Senior Lecturer with the Depart-
ment of Computer Science, College of Engineering,
Mathematics and Physical Sciences, University of
Exeter, United Kingdom. He received the B.Sc.
degree (First Class Honours) in Computer Science
and the Ph.D. degree in Computing and Mathematics
from the University of Bradford, United Kingdom,
in 2006 and 2010, respectively. His expertise is on
networking and his main research interests include
computer networks, networked systems, software de-
fined networks and systems, network management,

and network security and privacy. Dr. Wu contributes to major conferences
on networking and networked systems as various roles, including the Steering
Committee Chair, the General Chair and the Program Chair. His research has
been supported by Engineering and Physical Sciences Research Council of
United Kingdom, National Natural Science Foundation of China, University’s
Innovation Platform and industry. He is an Editor of IEEE Transactions on
Network and Service Management, Computer Networks (Elsevier) and IEEE
Access. He is a Senior Member of the IEEE, and a Fellow of the HEA (Higher
Education Academy).

Shiping Chen is a principal research scientist
in CSIRO Data61. He also holds an conjoint
A/Professor title with the University of New South
Wales (UNSW) and the University of Sydney
through teaching and supervising PhD students. He
has been working on distributed systems for over 20
years with focus on performance and security. He
has published 180+ research papers and technical
reports in these areas. He has been actively partic-
ipating in research communities through publishing
papers, journal editorships and conference PC/Chair

services, including WWW, EDOC, ICSOC and IEEE ICWS/SCC/CLOUD
etc. His current research interests include: application security, blockchain and
service-oriented trusted collaboration. He is a senior member of the IEEE.


