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Abstract
Purpose of Review Feedbacks between CO2-induced climate change and the carbon cycle are now routinely represented in the
Earth System Models (ESMs) that are used to make projections of future climate change. The inconclusion of climate-carbon
cycle feedbacks in climate projections is an important advance, but has added a significant new source of uncertainty. This review
assesses the potential for emergent constraints to reduce the uncertainties associated with climate-carbon cycle feedbacks.
Recent Findings The emergent constraint technique involves using the full ensemble of models to find an across-ensemble
relationship between an observable feature of the Earth System (such as a trend, interannual variation or change in seasonality)
and an uncertain aspect of the future. Examples focussing on reducing uncertainties in future atmospheric CO2 concentration,
carbon loss from tropical land under warming and CO2 fertilization of mid- and high-latitude photosynthesis are exemplars of
these different types of emergent constraints.
Summary The power of emergent constraints is that they use the enduring range in model projections to reduce uncertainty in the
future of the real Earth System, but there are also risks that indiscriminate data-mining, and systematic model errors could yield
misleading constraints. A hypothesis-driven theory-led approach can overcome these risks and also reveal the true promise of
emergent constraints—not just as ways to reduce uncertainty in future climate change but also to catalyse advances in our
understanding of the Earth System.

Keywords Carbon cycle . Climate change . Emergent constraints

Introduction

The General Circulation Models (GCMs) used to make pro-
jections of future climate change are vitally important to in-
form climate mitigation and adaptation strategies, but they are
also invaluable tools for testing hypotheses about the function-
ing of the Earth System. GCM projections appear prominently
within each of the assessment reports of the Intergovernmental
Panel on Climate Change (IPCC). Climate modelling centres
around the world have devoted increasing effort to improving
GCMs over the quarter of a century since the first IPCC report
in 1990. This has led to increases in spatial resolution, im-
proved process representation and the inclusion of new

feedbacks. The latter includes the inclusion of carbon cycle
feedbacks in GCMs—which ultimately resulted in the evolu-
tion of climate models into Earth System Models (ESMs).

As a result of these many ongoing model improvements,
ESMs now provide a more complete representation of the
myriad of interactions and feedbacks that determine how the
climate will change in response to human and natural forcing
factors. Unfortunately though, the range of model projections
has not significantly reduced despite these improvements. To
give a simple example, the projected range of global warming
by 2100 still varies by a factor of more than two across the
model range, even under a common emission scenario [1].
This uncertainty in climate projections is in large part due to
continuing uncertainty in physical climate feedbacks (e.g.
feedbacks from clouds, water vapour and ice-albedo) which
leads to a large range in the sensitivity of climate to changes in
carbon dioxide, other greenhouse gases and aerosols.
However, in emission-driven ESM runs, there is also a signif-
icant additional uncertainty due to different representations of
climate-carbon cycle feedbacks, which lead to differing
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projections of future carbon dioxide concentrations in the at-
mosphere. For example, under the RCP8.5 emissions, the
projected carbon dioxide concentration by 2100 varies by
more than 300 ppmv [2].

ESM development has traditionally been a rather reductionist
bottom-up process, with each component of an ESM (e.g. con-
vection, land surface, clouds) being worked upon by a subset of
the scientists in a climate modelling centre, before the improved
sub-components are coupled together to form a new ESM. The
historical simulations of the resulting ESM are then evaluated
against observations of the real climate system, to assess the
realism of the model. The difficulty with this approach to model
evaluation is that it does not focus specifically on the variables in
the contemporary observations which are most relevant to the
future climate. ESMs are designed tomake reliable projections of
the future, so it would be preferable to judge the reliability of a
given model in terms of the aspects of the contemporary climate
that are most relevant to those projections. The concept of emer-
gent constraints is a very promising way to identify the most
relevant aspects of climate for future projection [3] and also to
derive constrained estimates of key feedbacks in the Earth
System [4]. This review focusses specifically on possible emer-
gent constraints on climate-carbon cycle feedbacks.

Climate-Carbon Cycle Feedbacks

The ocean and land carbon cycles are currently performing an
important role for humanity, as they are collectively absorbing
about half of global CO2 emissions from human activities—
the so-called airborne fraction (AF). This means that atmo-
spheric CO2, and therefore global temperature, is increasing
about half as fast as it would be in the absence of these land
and ocean carbon sinks. There are a number of well-known
mechanisms that lead to net carbon uptake by land and ocean
as the atmospheric CO2 concentration increases. Carbon diox-
ide dissolves in seawater, somore atmospheric CO2 ultimately
leads to more carbon storage in the ocean. A carbon sink in
vegetation and soils on the land can arise from increased plant
growth that could be due to enhanced photosynthesis under
elevated CO2, nitrogen deposition, or high-latitude warming;
or from forest regrowth on formerly deforested areas.

The processes underlying these land and ocean carbon
sinks are however also known to be dependent on climate.
In the oceans less CO2 dissolves in warmer seawater.
Warming of the ocean surface also suppresses vertical
mixing, which hinders the transfer of anthropogenic car-
bon to depth and may deny nutrients to the phytoplankton
that drive the biological carbon pump. On the land respi-
ration fluxes from vegetation and soil, which return CO2

to the atmosphere, increase with warming. The distribu-
tion and functioning of vegetation also depend strongly
on patterns of temperature and rainfall.

As a result of these climate-dependent processes land and
ocean carbon sinks, and therefore the airborne fraction of an-
thropogenic emissions, are sensitive to climate. This is espe-
cially evident for the land which switches to become a carbon
source during strong El Niño events as a consequence of
warming and drying in the tropics. An increase in atmospheric
CO2, which results in a climate change via the greenhouse
effect, may therefore change the carbon storage in the ocean
and on land and therefore modify the CO2 concentration of the
atmosphere producing a further change in climate. We de-
scribe this as a climate-carbon cycle feedback.

Uncertainties in Climate-Carbon Cycle Projections

The extent to which the natural carbon cycle lessens the cli-
mate impact of our CO2 emissions can be thought of in terms
of the airborne fraction (AF), which is the rate of increase of
atmospheric CO2 concentration divided by the rate of release
of CO2 by anthropogenic emissions. The combined effect of
land and ocean carbon sinks has kept the mean AF at around
0.5 since the mid-nineteenth century. A similarly near-
constant AF was assumed into the future for climate projec-
tions made prior to the development of ESMs in the late
1990s. As a result, climate model projections up to that time
did not account for climate-carbon cycle feedbacks. The first
published projection which included the carbon cycle as an
interactive element within GCM climate models showed an
alarming tendency for the AF to increase through time leading
to an acceleration of global warming, mainly due to a wide-
spread warming-induced release of soil carbon and a drying-
induced dieback of the Amazonian rainforest [5, 6].

At around this time, a team at IPSL in France was also
carrying out their first climate-carbon cycle projections [7].
They also found a positive (i.e. amplifying) climate-carbon
cycle feedback, but of a smaller magnitude. Collaboration
and comparison of the two model projections revealed that
the primary differences were in the response of the land
biosphere to climate change. The Cox et al. [5] model
projected a more negative impact of climate change on
land-carbon storage, most likely due to greater drying in
Amazonia, the inclusion of vegetation dynamics and the
use of a single soil carbon pool [8].

These differing results motivated an international group to
set up the Coupled Climate-Carbon Cycle Model
Intercomparison Project (C4MIP). The purpose of C4MIP
was to encourage other climate modelling centres to include
an interactive carbon cycle and to coordinate the comparison
of climate-carbon cycle projections. The first-generation
C4MIP models agreed that climate effects on the carbon cycle
would accelerate the increase in atmospheric CO2. However,
the size of this effect varied by an order of magnitude across
the models, from 30 to 300 ppmv of extra CO2 by 2100 under
a common scenario [9].
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Largely as a consequence of the C4MIP project, many of
the climate projections reported in the Intergovernmental
Panel on Climate Change (IPCC) 5th Assessment Report
(AR5) include climate-carbon cycle feedbacks [10]. While
the evolution of the global ocean carbon sink and its large-
scale spatial pattern was found to be similar amongst the
models, the future land carbon sink had a huge range. For
example, even under an idealized scenario of a 1% increase
in CO2 per year, the projected impact on global land carbon
storage varied by more than 500 PgC by 2100 [10] (where
1 PgC = 1 billion tonnes of carbon). The divergence amongst
model projections was even more significant when feasible
changes in land use were included [11].

Early results suggest that a similarly large range is to be
expected from the CMIP6 projections to be included in the
IPCC 6th Assessment Report (AR6). Figure 1 shows the
projected range of changes in ocean and land carbon storage
in concentration-driven RCP2.6 and RCP8.5 scenarios. The
colour wedges represent the ensemble mean plus and minus
one standard deviation across the ensemble. For each scenario,
the model runs prescribe the same changes in atmospheric
greenhouse gas concentrations and land-use change. As for
the AR5, the range is very much larger for land than for ocean.

All ESMs predict a declining global ocean carbon sink
once the CO2 concentration starts to decline from the mid-
2020s onwards under RCP2.6, such that the projected ocean
sink is around 0.8 ± 0.35 PgC year−1 by 2100 (Fig. 1a).
Despite increasing CO2 under RCP8.5 the ocean carbon sink
saturates by 2100 at 5.5 ± 0.7 PgC year−1. The change in
ocean carbon storage from the present day until 2100 is very
different between RCP8.5 (410 ± 45 PgC) and RCP2.6 (175 ±
30 PgC). Once again, we see a much larger range in future
projections of the land carbon sink (Fig. 1b). The model en-
semble projects a change in land carbon storage from 2005 to
2100 of 65 ± 90 PgC under RCP2.6 and 110 ± 170 PgC under
RCP8.5. Even the sign of the change in land carbon storage,
which depends on the difference between the net carbon up-
take by existing vegetation and net carbon release from land-
use change, is therefore disputed.

Coupled climate-carbon cycle models enable contempo-
rary policy-relevant questions to be more directly addressed,

such as ‘how much CO2 can we emit and still avoid 1.5K of
global warming?’. Such large uncertainties therefore under-
mine the value of these projections to inform climate policy.
One way to alleviate this problem is by using emergent con-
straints to reduce key uncertainties in the myriad of interac-
tions between the carbon cycle and climate change.

The Emergent Constraint Concept

The usual way for the climate modelling community to deal
with a spread amongst projections is to look at the perfor-
mance of each model compared with contemporary observa-
tions and then assume the most realistic models produce the
most believable projections. This approach has been rather
unkindly compared to a beauty contest, as the metrics of mod-
el quality are not necessarily relevant to the value of a model
for making predictions. Partly as a result of this, it has been
difficult to get agreement amongst modelling groups on the
choice of model evaluation metrics.

Fortunately, there is another way. Complex Earth System
Models (ESMs) simulate variations on timescales from hours
to centuries—so in principle, ESMs tell us how aspects of the
current observable Earth System relate to its sensitivity to
anthropogenic forcing. In the context of this review, variations
include historical trends, interannual variability, seasonal cy-
cles or trends in seasonal cycles. Sensitivity relates to a pre-
dicted change in the future in response to some given change
in forcing (e.g. a change in future atmospheric CO2 in re-
sponse to a given scenario of CO2 emissions, or a change in
tropical land carbon storage in response to a change in global
mean temperature).

We expect different ESMs to often agree on the relationship
between variability and sensitivity for two main reasons: (a)
short-term and long-term changes are often linked by conser-
vation laws (e.g. relationships between changes in carbon
fluxes and changes in carbon stores) and (b) there are theoret-
ical reasons (e.g. the fluctuation-dissipation theorem) to ex-
pect variability and sensitivity to be linked in a large class of
systems. The fluctuation-dissipation theorem (FDT) links the
sensitivity of a linear system to external forcing, to the internal
fluctuations of that system. Broadly speaking, more sensitive

Fig. 1 Projected change in a
ocean carbon storage and b land
carbon storage for 2005 to 2100
in concentration-driven RCP2.6
(blue) and RCP8.5 (red) scenari-
os. Thick lines represent the en-
semble mean of the available
ESM runs, and the shaded area
represents ± one standard devia-
tion about that mean
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systems also have fluctuations that are less effectively
damped, such that fluctuations are larger and longer-lived.
FDT-type ideas were used in statistical thermodynamics even
before the FDTwas formally defined or proven, most notably
by Einstein in his work relating Brownian motion to the dif-
fusivity of a gas. Although the FDTonly applies approximate-
ly to the climate system [12], it provides the theoretical moti-
vation for a number of emergent constraint studies [13, 14]. In
essence, these emergent constraints hypothesise relationships
between sensitivity and variability across a model ensemble.
Similar ideas are also applied to explain tipping point
precursors—trends in system variability as an abrupt transi-
tion are approached. In that case, a temporal change in system
variability (such as ‘critical slowing down’) reveals a reducing
resilience of the system to perturbations that can be extrapo-
lated in time to estimate when a tipping point will occur [15].
The link between tipping point precursors, emergent con-
straints and the FDT is a promising avenue for future research.

Where an ensemble of different ESMs do agree on a rela-
tionship between a short-term observable variation and a
longer-term sensitivity, an observation of the short-term vari-
ation in the real world can be converted, via the model-based
relationship, into a constraint on the sensitivity—called an
emergent constraint. An emergent constraint is a relationship
between a predicted aspect of the future Earth System and an
observable feature of the Earth System, evident across an en-
semble of models. Whereas the spread amongst ESM projec-
tions is normally considered to increase uncertainty about the
future, emergent constraints make use of this spread to make
inferences about the sensitivity of the real Earth System.
Emergent constraints therefore also offer a means to assess
models on the basis of the metrics that are most relevant for
the fidelity of future projections.

The term ‘emergent constraint’ was first coined in the con-
text of climate projections by Allen and Ingram [16].
However, the archetypal emergent constraint was demonstrat-
ed by Hall and Qu [17], who found a linear relationship be-
tween the size of the snow-albedo feedback in climate models
and the sensitivity of the seasonal snow cover to seasonal
temperature variations in the same models. This relationship
was first shown for the generation of models used in the IPCC
4th Assessment (CMIP3) and has since been shown to also
hold for the more recent (CMIP5) models. The observational
constraint on the seasonal snow cover sensitivity comes from
satellite observations of snow cover and observed near-surface
temperatures. Broadly speaking, it is possible to convert the
range of possible values for this short-term sensitivity into a
range of possible values for the snow-albedo feedback, using
the across-model relationship between these two variables.
This implies an emergent constraint on the snow-albedo feed-
back in the real world.

The Hall and Qu [17] example has motivated many others
to search for emergent constraints on other uncertain aspects

of future climate change, including sea-ice loss [18], tropical
precipitation extremes [19], cloud feedbacks [20] and many
attempts to constrain equilibrium climate sensitivity [21]. It
has also encouraged a number of recent studies aiming at
finding emergent constraints on the carbon cycle components
of the Earth System.

Examples of Emergent Constraints on Carbon Cycle
Feedbacks

The simplest type of emergent constraint is a relationship be-
tween a past-to-present change and a present-to-future change.
For example, a relationship was noted in ESM runs between
the simulated CO2 concentration by 2010 and the projected
CO2 concentration in the future under the RCP8.5 scenario
[2]. As the CO2 concentration in 2010 is known from obser-
vations, there is a potential emergent constraint on the future
CO2 concentration under this common scenario [22], as
shown in Fig. 2a. Such trend-on-trend relationships depend
on models being similarly forced (in this case by CO2 emis-
sions consistent with RCP8.5).

Other emergent constraints assume relationships between
short-term variability and long-term sensitivity to forcing. The
first published emergent constraint on the carbon cycle was of
this type, relating to the long-standing problem of the sensitivity
of tropical forests to climate change [23]. The amount of carbon
released per degree of warming in the tropics spanned a factor
of more than four in the C4MIP projections (from 29 to
133 GtC/K), ranging from a relatively small effect which was
more than counteracted by CO2 fertilization to projections in-
volving catastrophic dieback of the Amazon rainforest [5, 6].

There are no direct measurements of changes in tropical
land carbon storage to provide the observational constraint,
but the year-to-year variation in atmospheric CO2 provides a
valuable proxy. The annual growth rate of atmospheric CO2 is
known to be strongly correlated with the El Niño Southern
Oscillation (ENSO) predominantly through its climatic impact
on the tropical land carbon cycle. By combining observational
records for the annual CO2 concentration and the annual mean
temperature in the tropics, it is possible to calculate the sensi-
tivity of the annual CO2 growth rate to interannual (IAV)
temperature variability in the tropics. Identical calculations
can be undertaken to derive the IAV sensitivities of the CO2

growth rate for each of the C4MIP models.
A strong linear emergent relationship was found between

the IAV sensitivity of the CO2 growth rate and the key
unknown—the century-timescale sensitivity of tropical land
carbon to warming in the tropics (Fig. 2b). By combining this
emergent relationship with the estimated IAV sensitivity of the
CO2 growth rate, it was possible to obtain an emergent con-
straint on the sensitivity of tropical land carbon to warming of
53 ± 17 GtC/K, compared with the unconstrained C4MIP
model range of 29–133 GtC/K [23]. A broadly consistent
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emergent constraint on tropical carbon loss due to climate
change has also been derived from the more recent CMIP5
models [24]. In a similar way, satellite estimates of the inter-
annual variability in ocean productivity have been used to
constrain projected changes in tropical marine productivity
under long-term warming [26].

Other constraints relate the seasonal cycle [17], or changes in
the seasonal cycle [25], to the strength of particular feedbacks.
A recent carbon cycle example uses the well-documented in-
crease in the amplitude of the seasonal cycle of atmospheric
CO2 as measured at Mauna Loa and Point Barrow [27] to
constrain CO2 fertilization of photosynthesis on mid- and high
latitude [25], as shown in Fig. 2c. A more complete list of
proposed emergent constraints, including on climate-carbon
cycle feedbacks, is given in Table 1 of Hall et al. [3].

Promise, Dangers and the Need to Be Theory-Led

There are many attractive features of emergent constraints, but
perhaps the most beguiling is that they offer the possibility of
using the continuing range in model projections to reduce un-
certainty in the future of the real climate system. This is in stark
contrast to the usual interpretation of the projection range,
which is as a measure of our uncertainty about the future.

Emergent constraints require both internal consistency
of models, so that the observable and future changes are
related across the ensemble, and also a significant range
of model projections, so that this emergent relationship is
well-defined. Emergent constraints therefore make best
use of the current situation in climate modelling, where
we have an increasing number of complex internally con-
sistent ESMs, but an enduring range of climate projec-
tions. It is however rather ironic that the emergent con-
straint approach, which is designed to reduce model
spread, needs model spread in order to be effective. Hall
et al. [3] relate this to a Douglas Adams-like ‘emergent
constraint paradox’—emergent constraints will cease to
exist as soon as model developers start to take them seri-
ously (such that they begin to tune their models to satisfy
emergent constraints).

There are dangers associated with the emergent constraint
approach as most effectively pointed out by Caldwell et al.
[28]. Modern ESMs predict an increasing number of variables
on increasingly high-resolution grids. This implies huge num-
bers of potential output variables, and a risk that indiscrimi-
nate data-mining of the multidimensional outputs from ESMs
could lead to spurious correlations [28] and proposed con-
straints on future changes that are not robust [29]. Where the
models share similar systematic biases, or neglect similar pro-
cesses, even statistically significant emergent relationships
may mislead about the likely changes in the real system.

Hall et al. [3] suggest an emergent constraint ranking sys-
tem to assess the robustness of emergent constraints, ranging
from ‘proposed’ to ‘confirmed’—once an emergent constraint
has both a plausible physical mechanism and has been vali-
dated ‘out of sample’ on a model ensemble other than the one
it was developed for (e.g. shown to exist for both CMIP5 and
CMIP6). To guard further against spurious constraints, Hall
et al. [3] also propose a hypothesis-driven approach to testing
for emergent constraints. This involves hypothesising a rela-
tionship between an observable trend or variation of the sys-
tem and a projected future change and then checking that
relationship across the model ensemble. This theory-led ap-
proach would both guard against the risks of indiscriminate
data mining and also encourage efforts to understand the Earth
System in terms of simpler theoretical models.

In the case of changes in relatively fast variables (such as
marine phytoplankton concentration), there may be a fairly
straightforward near one-to-one relationship between the
short-term variability and the longer-term sensitivity, because
the fast variable will be in a quasi-equilibrium state even with
short-term climate variations [26]. For slower variables (such
as the forest carbon storage), short-term variations are more
likely to measure fluxes (or equivalently the rate of change of
the store). In this case, finding a constraint on future changes
in the store requires multiplying the flux sensitivity to short-
term variations by a characteristic timescale for eachmodel. In
some cases, the characteristic timescale may be similar across
the model spectrum, leading to a simple emergent relationship
between the short-term flux sensitivity and the long-term

Fig. 2 Examples of emergent constraints on the carbon cycle in ESMs. a
Projected global mean atmospheric CO2 concentration by 2060 under the
RCP8.5 emission scenario against the simulated CO2 concentration in
2010 [2, 22]. b Sensitivity of tropical land carbon to temperature
increase against the sensitivity of the atmospheric CO2 growth rate to

tropical temperature variability [23, 24]. c Sensitivity of gross primary
production (GPP) to a doubling of atmospheric CO2 against the sensitiv-
ity of the amplitude of the CO2 seasonal cycle at Point Barrow, Alaska, to
a change in global mean atmospheric CO2 concentration [25]
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sensitivity of the store [23]. In general though, converting a
flux sensitivity to a store sensitivity requires an independent
estimate of the characteristic timescale of the store [24].

A recent attempt to develop a theory-guided emergent con-
straint on equilibrium climate sensitivity [13] was based on
analytical solutions to the simplest stochastic energy balance
model [30]. The x-axis observable in that case was a function
of both the variance of the temperature and the autocorrelation
of the temperature—which is a measure of the characteristic
timescale of the system [14, 31]. There seems to be huge
promise in further developing the theory of emergent con-
straints, including making links to ideas such as the
fluctuation-dissipation theorem [12] and the theory of tipping
point precursors, such as critical slowing down [15].

Despite the drive towards theory-led emergent constraints,
the approach is likely to be semi-empirical for the foreseeable
future. Emergent constraints will therefore remain conditional
on the model ensembles used to define them and will be sub-
ject to systematic biases in the model ensemble. Most obvi-
ously, if an important process is neglected in all models (e.g.
nutrient limitations on CO2 fertilization, or the impacts of
forest fires on the interannual variability of CO2), this has
the potential to lead to spurious emergent constraints on the
real Earth System. For this reason, it is vital to reassess emer-
gent constraints with each new generation of models, espe-
cially where that new generation includes previously
neglected processes and feedbacks.

Conclusions

The challenge of reducing the spread of model projections has
vexed climate science for many decades. Despite great prog-
ress in climate modelling and in process understanding, key
Earth System sensitivities remain poorly constrained. The
emergent constraint approach has been developed to address
this impasse by applying a more top-down approach to pro-
jections from an ensemble of ESMs. Emergent constraints
offer a very attractive way to make the growing number of
complex Earth System Models (ESMs) into ‘more than the
sum of the parts’. This is achieved by using an ensemble of
ESMs to relate an observable trend, interannual variation or
change in a seasonal cycle, to a future projected change. The
emergent constraint approach is being applied to more and
more aspects of the physical climate system [3] and has more
recently been applied to feedbacks between CO2-induced cli-
mate change and the carbon cycle. There have been published
studies claiming constraints on carbon loss from the tropics
under climate change [23, 24], mid-century atmospheric CO2

concentration [22], CO2-fertilization of land photosynthesis
[25, 32], changes in tropical ocean primary production under
warming [26] and permafrost melt [33]. There are recognised
dangers which counter the attractive features of emergent

constraints—indiscriminate data mining or systematic model
errors could lead to spurious conclusions about the real sys-
tem. A move towards theory-led/hypothesis-driven approach
has the promise to mitigate against these risks and also en-
courage the development of simple models to aid understand-
ing of the real Earth System.
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