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The First Moment of L(%, x) for Real Quadratic Function Fields

J.C. Andrade
J. MacMillan

ABSTRACT: In this paper we use techniques first introduced by Florea to improve the asymptotic
formula for the first moment of the quadratic Dirichlet L-functions over the rational function field,
running over all monic, square-free polynomials of even degree at the central point. With some
extra technical difficulties that do not appear in Florea’s paper, we prove that there is an extra

. . 29+2 . . 2 (1+e€)
main term of size g¢~ 3 , whilst bounding the error term by ¢2 .

1 Introduction

An important and well-studied problem in analytic number theory is to understand the asymptotic
behaviour of moments of families of L-functions. Considering the family of Dirichlet L-functions,
L(s,xq), with x4 a real primitive Dirichlet character modulo d defined by the Jacobi symbol
xa(n) = (%), a problem is to understand the asymptotic behaviour of

Z L(57Xd)k7 (11)

0<d<D

summing over fundamental discriminants d, as D — co. In this context, Jutila [16], proved, when
1

s =3, that
29

5 ) PO e(2) ()i ] 0wt

for all € >0 and
1
P(s) - (1 ] _) |
l_p[ p*(p+1)

Goldfeld and Hoffstein [12], improved the error term to D™, Young [25], showed that the error
term is bounded by D% when considering the smoothed first moment. Jutila [16], computed the
second moment and Soundararajan [23], computed the second and third moments, when averaging
over real, primitive, even characters with conductors 8d. It is conjectured that

1 k k(k+1)
> L(—,xd) ~ CxD(log D)5,
0<d<D 2

where the sum is over fundamental discriminants. Keating and Snaith [19], conjectured a precise
value for Cj and Conrey et al [8], conjectured the integral moments and formulas for the principal
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lower order terms.

In the function field setting, the analogue problem is to understand the asymptotic behaviour of

> L(s,xp)"* (1.3)

DeHogr1

as |D| = q18(P) - oo, where Hag+1 denotes the space of monic, square-free polynomials of degree
2g+1 over Fy[x], which corresponds to the imaginary quadratic function field, and L(s, xp) denotes
the quadratic Dirichlet L-function for the rational function field. Since we are letting |D| — oo,
there are two limits to consider. The first is to fix g and let ¢ - o0 and the second is to fix ¢ and
let g —» co. Katz and Sarnak [17, 18] used equidistribution results to relate the ¢ limit of (1.3) to a
random matrix theory integral, which was then computed by Keating and Snaith [19]. Therefore
we will concentrate on the other limit, namely when ¢ is fixed and we let g - co. In this context,
Andrade and Keating [3], computed the first moment of (1.3), when s = %, which is considered to
be the function field analogue of Jutila’s result (1.2). In particular they proved the following result.

Theorem 1.1 (Andrade and Keating). Let g be the fized cardinality of the ground field and assume
for simplicity that g = 1(mod 4). Then

1 P(1) 4 P 3
L(—,XD): D[log D+1+——1]+O D|s*

logq 2

2 ), (1.4)

where

P(s) = g(l—m)

and Cu denotes the zeta function associated with A =TFy[z].

Andrade and Keating [4], also conjectured asymptotic formulas for higher and integral moments for
(1.3) which is considered to be the function field analogue of Keating and Snaith’s result [19] and
Conrey et al [8]. Rubinstein and Wu [21], provided numerical evidence for the conjecture given by
Andrade and Keating [4]. They numerically computed the moments for k& < 10 and d < 18, where
d =2g+ 1, for various values of ¢ and compared them to the conjectured formulas.

Using a similar method to Young’s [25], in the number field case, Florea [9], improved the asymptotic
2g+1
formula obtained by Andrade and Keating (1.4) by obtaining a secondary main term of size gqu

and bounding the error term by q%(“e).

Theorem 1.2 (Florea). Let g be a prime with ¢ = 1(mod 4). Then

/ +
5 1(500) - s [@ae e 1e T )|+ REs )+ 0630, (15)
D€H2g+1 2 QCA(2) logq P

where R is a polynomial of degree 1 that can be explicitly calculated.

Using a similar method, Florea [10, 11], computed the second, third and fourth moments of (1.3) at
s = % and showed that these asymptotic formulas agree with the formulas conjectured by Andrade
and Keating in [4].
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In [1], Andrade obtained an asymptotic formula for the first moment of (1.3) at s = 1. In particular,
he proved that
> L(1,xp) = IDIP(2) + O((20)). (1.6)
DeHogi1
Using the techniques presented by Florea, Andrade and Jung [2], improved the asymptotic formula,
(1.6), by obtaining a secondary main term of size q% and bounding the error term by ¢%¢, for any
€ > 0. In particular, they proved that

> L(1,xp) = P(2)¢** + 145 + O(¢%), (1.7)
DeHogr1

where ¢; is a constant that can be explicitly calculated.

In a recent paper, Bae and Jung [7], improved the asymptotic formula for the second derivative of
(1.3) at s = %, that was obtained by Andrade and Rajagopal [5], using the techniques presented by
Florea. In particular, compared to the asymptotic formula obtained by Andrade and Rajagopal,
Bae and Jung were able to obtain a secondary main term of size ng% whilst also bounding the
error term by g2 (1+9).

Another problem in function fields is to understand the aymptotic behaviour of

> L(s,xp), (1.8)

DeHogr2

as |D| - oo, where Hagso denotes the space of monic, square-free polynomials of degree 2g + 2,

which corresponds to the real quadratic function field. In particular we concentrate on when ¢ is

fixed and letting g — co. In this context Jung [13], obtained an asymptotic formula for the first
1

moment of (1.8) at s = 3.

Theorem 1.3 (Jung). Assume that q is odd and greater than 3. Then we have

logq 2

). (1.9)

1 P(1 4 P’ 1
% 1(500) = gDl oma D1+ - Ty w2 (5)| < ot
Detagen V2 2¢a(2) logq P 2

In this paper, we will use Florea’s method to improve the asymptotic formula obtained by Jung

(1.9). In particular we will obtain a secondary main term of size gq%, whilst also bounding the
error term by q%(l“). The main result of this paper is the following Theorem.

Theorem 1.4. Let q be a prime with q = 1(mod 4). Then

L(—>XD)=—qg+ 20+2)+ ——(1 +2CA(—) +q 3 R(29+2)+0(qz11%9),
De%:g+2 2 2¢a(2) ( ) log g P( ) 2 ( ) +0( )

(1.10)

where R is a polynomial of degree 1 that can explicitly be computed (see formulas (5.35)-(5.38)).

The calculations in this paper will follow the techniques presented in Florea [9]. Using a form of
the Poisson summation over F,[z], Lemma 2.6, which splits the sum up into different formulas
which evaluate the sums over degree f odd and degree f even, which is given in section 3. Similar
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to the imaginary function field case, the main term comes from the contribution of square poly-
nomials f to (2.6). In section 4, we express the sum over square polynomials f as a contour integral.

In section 5, we also evaluate the non-square f using the Poisson summation formula, which we
analyse the contribution from the square polynomials V. In the imaginary function field case, the
contribution to the main terms come from when the degree of f is even. However, in the real
function field case the contribution to the main terms from the square polynomials V' come from
when the degree of f is both even and odd. Thus compared to the calculations done by Florea,
there are extra terms to calculate and extra integrals to evaluate. We will then show how all these
terms combine with the main term to establish the asymptotic formula.

Remark 1.5. When revising this paper we came across a recent paper by Jung [15], where he
computed the mean value of L(%, Xp) when summing over all monic, square-free polynomials of
degree 2g + 2 as g — oo using similar methods to that done by Florea. Compared to Jung’s paper,
we explicitly go into more detail about how to calculate the asymptotic formula, especially when
analysing the contribution from the square polynomials V.

2 Preliminaries and Background

We first introduce the notation which will be used throughout the article and then provide some
background information on Dirichlet L-functions in function fields. We denote A* to be the set of
all monic polynomials in [F,[x] and we denote A}, and AZ, to be the set of all monic polynomials of
degree n and degree at most n in Fy[x] respectively. Let #,, denote the space of monic, square-free
monic polynomials over F,[z] of degree n. For a polynomial f € F,[z], we denote its degree by
d(f) and its norm by |f| = ¢®). The letter P denotes a monic, irreducible polynomial over Fqlx].

2.1 Preliminaries on Dirichlet characters and Dirichlet L-functions for function
fields

Most of the facts in this section are proved in [20]. For P(s) > 1, the zeta function of A = F,[z],
denoted by (a(s) is defined by the infinite series

()= Y —— =TT~ 1P (2.1)
feA* |f| P

There are ¢ monic polynomials of degree n, therefore we have
(als)=(1-¢")".

We will make use of the change of variables u = ¢7°, so that we write Z(u) = (4(s) and thus
Z(u) = (1-qu)™t.

Assume that ¢ is odd with ¢ = 1(mod 4). For P a monic irreducible polynomial, the quadratic
residue symbol (}—Ji) € {£1} is defined by

(—) =f 2 (mod P)
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for f coprime to P. If P|f, then (%) =0. We can also define the Jacobi symbol for arbitrary monic
Q. Let f be coprime to @ and @ = P{* ... P{*, then the Jacobi symbol is defined by

(@)-1(z)

Theorem 2.1 (Quadratic Reciprocity). Let A, B € Fy[x] be relatively prime and A #0 and B # 0.

Then A B
AN _ (B 1\ SdA)d(B)
(B) (A)( 1> '

If we assume that ¢ = 1(mod 4), then the quadratic reciprocity gives
(5)-(2)
B) \A)

[Hagso| = (¢-1)g** =

For g > 1 we have
|D|

Ca(2)

Definition 2.2. Let D e F,[x] be square-free. We define the quadratic character using the
quadratic residue symbol for F,[z] by

D
xp(f) = (—) :
f
Therefore, if P € Fy[x], we have

0, if P|D,
xp(P)=11, if P+ D and D is a square modulo P,
-1, if P4+ D and D is a non-square modulo P.

Definition 2.3. The L-function corresponding to the quadratic character yp by

L(s,xp)= Y. Xﬁcﬁsf),
feA*

which converges for R(s) > 1. For the change of variables u = ¢”%, we have

L(s,xp)=L(u,xp) = sz§+ xo(fHutd) = 1;[(1 —xp(fHutP). (2.2)

Since D is a monic, square-free polynomial, we have, from Proposition 4.3 in [20], that £(u, xp) is
a polynomial in u of degree d(D) — 1. From [22], L£(u, xp) has a trivial zero if and only if d(D) is
even. This enables us to define the completed L-function, £*(u, xp), by

L(u,xp) =1 -u) L (u,xp), (2.3)

where X\ = 1 if d(D) is even and A = 0 otherwise. Then £*(u,xp) is a polynomial in u of degree
20 =d(D) -1 - X and satisfies the functional equation

L*(u,xp) = (qu*)°L* ((qu) ™, xp). (2.4)
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For D a monic, square-free polynomial of degree 2g + 1 or 2g + 2, the affine equation y? = D(x)
defines a projective and connected hyperelliptic curve Cp of genus g over F,. The zeta function
associated to C'p was first introduced by Artin [6], and is defined by

Zcp, (u) :exp(i Nn(CD)%), (2.5)

n=1

where N,(Cp) is the number of points on Cp with coordinates in a field extension Fyn of Fy of
degree n > 1. Weil [24], showed that

Pop, (u)
(1-u)(1-qu)’

where Pc, (u) is a polynomial of degree 2¢. In his thesis, Artin, proved that Po, (u) = £*(u, xXp).-
Also, Weil [24], proved the Riemann Hypothesis for function fields, thus all the zeros of L*(u, xp)

Zcy, (u) =

lie on the circle |u| = qe.

2.2 Functional Equation and Preliminary Lemmas

For D € Hag42, the approximate functional equation was initially proved in Jung [13], but has been
corrected to match that of [21].

Lemma 2.4. Let xp be a quadratic character, where D € Hogio. Then

1 g n gr1 I
L(é,XD)= Y Y oo E-a T Y Y xolf)

n=0 feA} n=0 feA}
g-1 T g g-1
+> > xo(Na2-q2) > xolf).
n=0 feA} n=0 feA}
Proof. See [13], Lemma 2.1. ]

Using Lemma 2.4, it follows that

D L(%,XD)=]%; \/%DE; xo(f)—a % > > xo(f)

DeHageo fGA;rg DeHagyio
1 _9
o= X xnH-a2 Y Y xnlh) (2.6)
fEA;'g_l |f| DEH2g+2 feA;g_l De’)—[29+2

We now state two Lemmas that will be used in the calculations later.

Lemma 2.5. Let f € A*. Then we have

>, xpo(fH)= ) > xp(h)-q ) > xp(h), (2.7)

DeHaogsa Clf™ heAS o ouc Clf*™ hehs syc
CeAl, 9+2-24(C) CeAl, §-24(C)

where C|f*° means that any prime factor of C' are among the prime factors of f.

Proof. The proof is similar to that given in [9], Lemma 2.2. |
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We now state a version of Poisson summation formula over function fields. For a € ]F‘q((%))7 let

e(a) = €™/ where a; is the coefficient of % in the expansion of a (for more information, see [9],

section 3). For x a general character modulo f, the generalised Gauss sum G(V, xy) is defined as
AV
G- ¥ xe( ). (2.8)
A mod f f
The following Poisson summation formula holds.
Lemma 2.6. Let f € A" and let m be a positive integer.

1. If d(f) is odd, then

1

i
> xs(9) = e >, GVixyp). (2.9)

geAt, VeA;(f)_m_l
2. If d(f) is even, then
an
> xs(9) = Tl GO, xp)+(¢-1) >  GWVixp)- ) GVixp)|.  (210)
geAy, VeAli(fy-m-2 VeAl fy-m-

Proof. See [9], Proposition 3.1. ]

Remark 2.7. G(0, x) is nonzero if and only if f is a square, in which case G(0, xs) = ¢(f), where
¢(f) is Euler’s phi function for polynomials in F,[xz].

Lemma 2.8 (The function field analogue of Perron’s formula). If the power series

H(u)= Y a(f)u’

feA+

converges absolutely for |u| < R <1, then

S a(f) = iglg A, (2.11)

; _ n+1
fefkﬁ 27TZ u\—}% u

and

> a(f) = Lﬁf %du. (2.12)

fent 271 Jul=R (1 -u)

3 Setup of the Problem

Using Lemma 2.5 and the approximate functional equation (2.6), we write

1
Z L (_7 XD) = Sg,l - Sg,? + Sg—Ll - 89_172, (31)
DeHogio 2
where 1 1
Sg1= 2, = ), > xs(-a X —= > X xs(h),
JeAl, ‘f’ C|f> heAgngZ—zd(C) feAl, V |f| C|f* heAgde(C)

CeA?

<g+1

CeAgg
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1

S2=am Y Y Y wym-aT Y Y Y b,

feAt, CIf™ heAl feAt, CIf> heAl
<g Ceht, 2g+2-2d(C) <g Cent, 29-2d(C)
1 1
Sg-11= ), = ), > xsh)-a Y —= ¥ X
rent, VI clp hebd o o reif, VIS cipe hed ouc
CeAl,,, ‘ CeAgy

and

xr(h)

Spi2=af Y X X x-at XY N x(h).

fehl,y CIF* hehd ., hyc fehly o CII™ heh by

CEAngrl CGAEg

From section 4 in [9], we have

Yo lxg”

ClF=

CEA;+1

we see that the terms in S;1,S8y2,S4-1,1 and Sy_12 corresponding to C' € A;H are bounded by

O(q%(“e)). Therefore, for k € {g,g — 1}, we can rewrite the terms as

1

g
Ski= Y — 2 > oxg(h)-a Y xp(h) | +0(q209),
feAZ, Vv ’f| Clf= \hehS, o oacc) hehs sacc)
CeAgg
and
_ ok 2 (1+¢€)
Sk2=q 2 > > oxp(h)=a X xp(h) | +0(g2VY).
febZ, CIlF™ \heAS o vuoy heAS sacy
CeAzg

For ¢ € {1,2}, write
St =80, +85,+0(q2 179,

(3.2)

(3.3)

(3.4)

where S, and Sf , denote the sum over f € A7, of odd and even degree respectively. If d(f) is

odd, then using Lemma 2.6, we have

1 1
Spi=a¥ Y o Y —oSO(Vif.0)
’ feAl, | f] clf IC]
d(f) odd  CeA%,
and ] 1
4g9-k
Sta=qz 2 Y — 3 =SV f,0).
rear, VIl cpe IC?
d(f) odd CeAl,
where GWV.xp) 1 (V. xf)
o » X s X
S°(V; f,0) = S SENARS R LX)
1% | f] q vear |f]

€AY fy-2g-3+24(C) d(f)-2g-1+2d(C)

If d(f) is even, then we rewrite Sf , as

e _ e e
Spo =M+ S g1+ Sk
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Using the remark from the previous section, we have

2g9+2 2
q o(L7) 1
M1 = (3.9)
gA(2) LeA* |L|3 C|Zf:°° |C|2
<[5] CeAl,
and
4g-k+3
q > ¢(L?) 1
My2 = . (3.10)
6@ L IIF . IO
=2 CeAgg
Similarly, for j € {1,2}, we have
1 1
Sia=a7 Y = Y =5Si(Vif0), (3.11)
feAd, ’f| Clf= ‘C|
d(f) even  CeAl,
and
49-k+3 1 1
Skei=a 2 Y = > =5 (Vif0), (3.12)
! rens, VIl e )2
d(f) even CeAl,
where
Si(Vif,C)=(q-1) > W) g-1 ¢W.xp) (3.13)
VEA;d(f)—Qg—4+2d(C) |f| q VGA;d(j,)_29_2+2d(c) |f|
and
S;(V.f C) = 1 Z M _ M (3.14)
7 Vel 5)-2g-1+24(C) /1 VeA p)-29-3+2a(C) |1

Define S¢ ,(V =0O) to be the sum over V square and S}, ,(V # O) to be the sum over non-square V.
Note that in Equation (3.14), when d(f) is even, d(V)’ is odd and so V' cannot be a square. Also
note that in Equation (3.7), when d(f) is odd, d(V') is even, thus there is a contribution to the
main term when d(f) is odd, which is not present when working in the imaginary function field
case.

4 Main Term

Let
M = Mg,l - Mg’z + Mg—l,l - Mg_l’g (41)

In this section we evaluate the main term M. The main result in this section is the following result.
Proposition 4.1. We have that, for any ¢ >0
M:M1+M2+M3+M4+O(qg€)

where

1 duv

9?1 yg C(u)
|

) CA(Q) 2_7T’L ul=r u(l — qu)2(qu)[g]
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2g+2 1 (u)
My=1 du,
@7 o o g

3g+3

g2 1 C(u) u
My == CA(Q)Zmyg ru(l-u)(l- qu)u%d

and 5
2942
M4:—q2 Lyg C(u) o,
Ca(2) 2mi Jlul=r (1 - u)(1 - qu)u[T]
with r < ¢~' and
24P
4.2
e =T1{1- ) .

Remark 4.2. C(u) is analytic in |u| < 1. We may further write

u\-1 w4(P) u%(P)
et -2(5) 1+ trppgpim) - O o) @9

which furnishes an analytic continuation of C(u) to the region |u| < g.

Proof of Proposition 4.1. From (3.9) and (3.10) and using the facts that (see [9], Section 5),

1 _ . o
¥ - 1= 1P+ 06 ) and |‘|) [Ta- P (4.4)
glgf P|f P|L
eAZ,
we have 2942 | |
q9" 1 P
My, =4 - +0(q%) (4.5)
T2 LeAZ[k]|L|IIDI_£|P|+1
<2
and
4ng+3 |13’
My,2 = [ Pl 0(¢%). (4.6)

Ca(2) Leir 5 P

V\
r—w

Using the function field analogue of Perron’s formula (Lemma 2.8), we have

2g+2
M= 1 fu AW (4.7)

Ca(2) 2mi Jiul=r 441 - qu) (qu)l]
and 49-k+3 1 A
2
Myy=L — — jg %du, (4.8)
Ca(2) 2mi " u(l-u)u (2]
where 7 < ¢7! and
Pl
A(u) = Y wd®) | (4.9)
(=2 pnt
By multiplicativity, we may write
Pl w? C(u)
= 1 :Z = . 4.1
Au) 1;[( P T ) = 200 = s (410)

Inserting (4.10) into (4.7) and (4.8), we see that the integrals in the terms Mg 1, My 2, My_11 and
M1 2 are precisely the terms My, My, -Ms and —Mjy stated in Proposition 4.1. Using (4.1), the
Proposition follows. n

10
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5 Contribution from V-square

Let
S(V=0)=8(V=0)+S8%V =n)
where
S°(V=0)=8,(V=0)-8,(V=0)+Sg_ (V=0)-871,(V=0)
and

S(WV=0)=81(V=0)-82(V=0)+S,_1:(V=0) -8 .,(V=0).

In this section we will evaluate the term S(V =0). The next Proposition is the main result in this

section.

Proposition 5.1. Using the same notation as before, we have that

S(V=0)=8(V=0)+S(V=0)+S5(V=0)+S(V =0) +q 5 R(2g+2) +0(¢51*9),

where
IR cw
SV =0) = @) mi 5£u| Ry(1 - qu)2(qu)l3] .
Y cw
S(V=0)= Ca(2) 2mi ygm R (1 - qu)2(qu) (5] a,
) 392+3 1 C(u) ’
S(V=0)= ¢a(2) 2mi quu| Ry(l-u)(1- qu)u% !
and ,
L T2 C(u) "
S4(V ) CA(Q) 27” ‘ﬁ”:R u(l - u)(l —qu)u[%]d ’

with 1< R<q and

C(u) = rp[( |P7(P) (1- u)H( |P|)u(t|i§|)_ud(p>))'

Furthermore R is a linear polynomial that can be explicitly calculated, (see formulas (5.35)-(5.38)).

Before we prove Proposition 5.1, we need the following notation and subsequent results.

2| > ¢72, let
Bzw)= 3 w'DAp() [T~ [P 1)

feA+ P|f

where )
G(
Af(z) = ). Zd(l)—( ’Xf).
leA+ |f]
Then we have the following results.
11
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Lemma 5.2. For |z| > ¢”2, we have

B(z,w) = Z(2)Z(w)Z(qu?z) l;[ Bp(z,w), (5.4)

where

wd(P) _ (Zw2)d(P)’P|2 _ (z2w)d(P)‘P|2 + (Z2w3)d(P)’P‘2 + (zw2)d(P)‘P’ _ (zw3)d(P)|P’

Bp(z,w) =1+ AP |PE -1

Moreover T1p Bp(z,w) converges absolutely for |w| < q|z|, |w| < g2 and lwz| < ¢t
Proof. See [9], Lemma 6.2. ]

Lemma 5.3. We have

[]8r(uw) -2 (;j—z) 2(w?) [ Pp(z0), (5.5)
where
Dp(z,w)
M - + et IR ) - () OIPP + () - (Pt O

(z4P)| P12 - 1) (1 + wiP))
Moreover Dp(z,w) converges absolutely for |w|? < q|z|,|lw| < ¢®|2%, |w| < 1 and |wz| < ¢~*.
Proof. See [9], Lemma 6.3 ]

Outline of the Proof of Proposition 5.1: From the Poisson summation formula the sum over
square polynomials V will occur when the degree of f is even and when the degree of f is odd. In
the next two subsections, we will find two integrals for each Sj ,(V = 0O) corresponding to simple

poles at w = ¢~! and w = ¢z. In the third subsection we will manipulate the integrals corresponding
to the pole at w = ¢~!, similar to that done in section 6 [9], which will yield the main terms. In the
final subsection, we will evaluate the integrals corresponding to the pole at w = gz, which will yield
the secondary main term.

5.1 Degree f even

In this subsection, we prove the following result.
Lemma 5.4. We have

SUV =0) = Af = A+ A5y = Ay o+ Bl =B o+ By = By 5+ 0(g2"9), (5.6)
where .A;E and B;e are the integrals stated at the end of the subsection.

Proof. From (3.13) and using the function field analogue of Perron’s formula, we obtain

9(qg-1 -1)A
211 J|z|=q1-< g(1- Z)Z@ﬂz((,*)
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Also, using the fact that (see [9], Proof of Lemma 6.1),

1 —d(P)| p|-2y~1 (e-1)
> ooy =11 -2 [PI")" +O0(¢"*)
2.d(C) H( s
Clf= ICP?= P|f
S |

we have, for ke {g,g-1},

¢ #(g-1)(gz-1) g
e _ _ He d 2(1+e)
’Sk‘,l(v ) 2710 ﬁ‘ gl q(l—Z) k,l(z) Z+O(q2 )7

where

¢ Ag(2) 2 —d(P)\—
Hiy(2)= Y —Cgy [TA- 1P O)
feal, |flz72 PIf
d(f) even
Similarly we have
49-k+3
g 9(g-1)(gz - 1
Stav=m =T FCDED e gz 08009,
’ 2mi J|zl=q q(1-2) :

where A,(2)
e z — — —
Hio(2)= Y —LoTI@- P2
feAd, \/‘f‘z 2 PIf

d(f) even
Using the function field analogue of Perron’s formula, we have for £ € {1,2}
1 B(z,w) 1 > 2wB(z,w)
Hﬁ,e(2)=—.§l§ O w——~j§ BErEETE
2mi Jwl=ra w(1 - ¢3~Lzw?) (g3 ézwz) 5] 2w Jjwl=ry  1-¢°~f2w

dw. (5.7)

For each k€ {g,g—1} and £ € {1,2}, the second integral in (5.7), is zero since the integrand has no
poles inside the circle |w| = ro < g7, Therefore we have

Ag-Dlz-DBEW)
A s g1 =) (1~ oty gyl O

2g+2

52,1(‘/ =0) = (2772)2

and

4g-k+3

2(qg-1)(gz-1)B(z, w)

e _ _q 2 s I (1+e)
Sio(V=0o _—,515 515 dwdz + O(q2 .
k’2( ) (27[-2)2 |z[=g=1=¢ J|w|=ra qw(l — z)(l — qzw2)(qzw2)[§] ( )

Using equation (5.4) in Lemma 5.2 we obtain

yg f 29(q-1)T1p Bp(z,w) _dwdz + 0(q5(1+9)
lzl=a~ lwl=r2 g (1 - 2)(1 - qw)(1 - q2zw2)2(q22w2)[§]

2g+2

(271'1)2

Sls,l(v =0) =

and

4g9-k+3

o #9(q =) T1p Br(z,w) s
KL b TRRR M e s o 1

+0(q21*9),

13
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Using equation (5.5) in Lemma 5.3, we obtain

— (¢~ 1)(1 - qu?) [1p Dp(z,w) e
Sl =00~z B S (1= 2)(1 - qu)(1- £)(1- Eeut 2t
+0(q2179)
and
[ 2(q - 1)(1 - qu?) [1p D (2,w) s
oV =)=~ B S w1201 - )1~ geu) (1 ) (g
+0(q21*9).

Shrinking the contour |z| = ¢™17¢ to |2| = q_%, we do not encounter any poles. Enlarging the contour

_1 . _
lw| = ro < ¢! to |w| = 717, we encounter two simple poles, one at w = ¢~* and one at w = qz.

Evaluating the residues at w = ¢~ and w = ¢z and writing
Sto(V =0) = Af g+ B+ iy + O(219), (5.8)

whilst using Lemma 6.3 where we have for each k, ¢, C,iz < qg(l“), then we have

9,1~

: a(1-2)%:l4]
yg ) 29(q-1)(1-¢*2*)[1p Dp(z,q2)
lel=a™% (1 - 2) (1~ g22)(1 - ¢423)2(g423) 3]

e q2g*295 29(q-1)TpBp(z,q7")
|z|=¢

dz
. 3 )
21 o

2g+2
e _ 97

1= = .
g 2mi

i

3g+3
e g2 95 29(q-1)T1pBp(z,q7") g
o= ‘

. .
9:2 2mi 3

P g(1-22(1-g ) (g )l

S yg 29(q-1)(1 - ¢*2*) [1p Dp(2, q2)
9,2 211 Jz|=¢q

)

dz,

o

(1= 2)(1-@22)(1- g323) (1 - ¢'23) (¢33 3]

e q29*2y§ #(qa-DTpBr(zq") ,
g-11=~ - _3 o1 2
21 J|z|=q" 2 q(l—Z)3Z[ 7]
c __q29+2y§ 2(¢-1)(1-¢*2*) [1p Dp(2,42)
e (I g(1 = 2)(1 - 22)(1 - g423)2(¢123)[ 5]
and
3
A q2g+2j§ 2(q-1)T1pBp(z.q7") d-
-12 — = . _3 )
o 2mi e g(1-2)2(1- ¢12) (1) 7]
3
. _ngﬂyg 2(q-1)(1-¢22)[1p Dp(2,q2) &
-1,2 — . _3 .
T 2w e (1o 2)(1- @22)(1- 228) (1 - ¢128) (¢35 [T ]
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5.2 Degree f odd
In this subsection, we prove the following result.

Lemma 5.5. We have

o o o o o 0 0 0 0 2 (1+e
S(V=0)=Ag1 - Ago+ Ag 11— A 1o+ Bg 1 —Bga+ By 11 -Bg1a2+ 0(q2"9), (5.9)

where Az,z and By, , are the integrals stated at the end of the subsection.
Proof. From (3.7) and using the function field analogue of Perron’s formula, we have

Ap(2)292(qz -1
S0 0) =g f AT,

2mi q L4 a0

Also, using the fact that (see, [9], Proof of Lemma 6.1),

1 —d(P)| p|-2y-1 (e-1)
>, e = LA -2 OIPA) T 0@,
A 1CP=1D
CeAgg
we have , )
29+3 9-3 -1
spav=m =20 f  FHE D g i 0(g800),
’ 211 Jlz|=q1-e q ’
where

H,‘j’l(z) _ Z Af(d'::f)) H(l _ |P|_2Z_d(P))_l.

feAl, |flz72 PIf
d(f) odd
Similarly we have
49-k o g-1 1
spav=o)= T f  FHED g gz 0(g800),
’ 271 |z|=g—1-¢ q ’

where 1 ( )
(o} Z — — —
Hpy(2)= Y LTI - P2y,
fEA:k \V/ |f|ZT PIf

d(f) odd

Using the function field analogue of Perron’s formula, we have for ¢ € {1,2},

3-¢ 1
1 1 2 22
Hgoé(z) = — §I§ R B(z,w) ) dw——,jlg %dw (5.10)
’ 27 Jjw|=ra gz z2w?(1- q3_ezw2)(q3_£zw2)[7] 21t Jjwl=ra 1 - g3 2w
and
3-¢ 1 3-¢ 1
0 (2) = Lyg ¢z 22B(zw) dw_iyg g2 22Bzw) 51
g-1.t 2mi Jjul=rs (1 - 3L2002) (g3~ 202) 5] 211 Jjwl=ro 1 -¢3tzw? '

For each ¢ € {1,2}, the second integrals in (5.10) and (5.11) are zero since the integrands have no
poles inside the circle |w| = ro < ¢~1. Therefore we have

2g+§ k—(—l)g_k _
0 oy g7 < (g2 - 1)B(z,w)
Skvl(v =0)= (2mi)? —9I§ZIZ¢1"1_6 —9|§w|:7“2

g €
k-(-1)9-k ] dwdz+0(q> 1+ ))

q2(k=a+1)qp2(k=g+1) (1 — qzsz)(q22w2)[ 2
15
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and

¢ - “2(k=g+1) =17 (g
_ 2w < gz - 1)B(z,w) Z(1+€)
Sko(V=0)= (2m)2 j%;‘ v y%' o [k_(_ng—k] dwdz + O(q2 ).
(1-qzw?)(qzw?)l 2

Using equation (5.4) in Lemma 5.2 we have

S . q29+g
0 =0)=- — —
ka ) (271)2 ylilzq‘l“ j|§w|=7”2

+0(g207))

D T Bp(z,w)

dwdz
2(k g+1)q2(k~ g+1)(1 quw)(1-gq zw2)(q zw2)[

k(l)g k]

and

49- k-3 —2(k-g+1) Jk—(-1)97F
_ q’ 2w z HPBP(Zaw)
Sia(V =0) = (2772)2 j|§z| jgw - TR R
" 2(1—qw><1—qzw?)(l—q?zw?)(qzw%[ >

+0(q2(1*9),
Using equation (5.5) in Lemma 5.3, we have

A D71 = qu?) T1p Dp (2, w)

Svem--L
O O T

P00 s (1 - qu)(1 - 2)(1 - g2zt (@zut)|

+0(g2 )

and

Sy = 49 - j _%w_Q(k_ngl)zk‘(‘l)g_k(l - qu?) [1p Dp(z,w)

k 2(V 0)=- ——=dwdz
(27‘1’2)2 |z|=q~ |w|=r2 [k—(—l)g ]
(1-qu)(1-2)(A - gzw?)(1 - ¢*2w?) (qzw?)L 7

+0(g2(1%9).

Shrinking the contour |z| = ¢717¢ to || = % we do not encounter any poles. Enlarglng the contour

1_
lw| =2 < ¢! to |w| = ¢777¢, we encounter two simple poles, one at w = ¢~! and one at w = gz.

Evaluating the residues at w = ¢~! and w = ¢z and writing
Sp(V =0) = A+ B +CFy + O(q219), (5.12)

whilst using Lemma 6.3 where we have for each k, /¢, C,‘;E < q%(l“), then we have

5
o _ 03 §’§ 2 Tlp Br(z,47")
9! 2mi |z|=¢"2 q(l — z)2z[%] ’

5
B - q29+2y§ 29_2(1 q322)]_[PDp(z qz)
9,1 =
|z]

; 3 1
2mi Jela? g3(1 - q22) (1 - ¢128)2(*23) 1 7]

16
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3
0 g3+ 95 297 p Bp(z,q7") &
= ’

, gh (1= 2)(1=-g12) (g 12)[F]
B° q%gﬁ 95 2972(1-¢*2*) [1p Dp(2, qz)
R (- ) (- ¢8) (1 - 48 (¢%)| 7 )

dz,

o __q29+g % ZgHPBP(Zaq_l)d

g-LL™ om |z\:q_% q(l - 2)22[%] ’

. __q29+% 515 ng+1(1—q322) [1pDp(2,qz2)
ST i Tl (12 g22)(1 - ga3)2(gh28) 3]

and

39+5

0 :_Eﬁﬁ 2 T1pBr(z,47")

9-1.2 omi Jizl=q 3 qg(l -2)(1- q*lz)(q’lz)[g]
0 ¢ ¢229"1 (1 ¢*2%) T1p Dp(2,42)
9-12 " "ong §1|§Z|:q—% (1-q22)(1 - ¢323) (1 - ¢*23)(g323)L5]

dz,

dz.

5.3 Contribution from A Terms

In this subsection, we will focus on evaluating the A terms which corresponds to the pole at w = ¢~ *,
these will give the main terms in Proposition 5.1. Let

A= AZ,l - Az,z + AZ—I,l - AZ—1,2 + A§,1 - Ag,z + A§71,1 - 271,27
then, the main result in this subsection is the following.
Lemma 5.6. Using the same notation as before, we have
A=8(V=0)+8(V=0)+S3(V=0)+8(V =0),

where, in particular, the terms S1(V =0),S2(V =0),S3(V = 0) and S4(V = 0O) are the integrals
stated in Proposition 5.1.

Proof. For each k€ {g,g - 1}, rewrite AZJ as

. __q29+2¢~ Zg(q_%"'%_l)HPBP(Z’q_l)dz
= - 3 :
k,1 2wt J|z|=q"2 q(l - 2)32[5]
Let
App = A+ Ag e
where
. ) q2g+2 Zg(l_qiz)HPBP(Z7q_1)
BT 7000 DS (3] )
zl=q (1-2)3zL2

17
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and

A¢ _ _q29+2 f ngl I_IP BP(z7q71)
k1,2 2mi Jlz q7% q(]_ — 2;)22;[2]

Using the change of variables z = (qu)~!, the contour of integration becomes the circle around
the origin |u| = \/g and note that (from Lemma 5.2) [1p Bp(qu7 1) is absolutely convergent for

¢! <|u| < g. Thus, we have

C 2 (-wleBp (R 1) (1-4)
k1,1~ o §|§u\ v [k_(_l)g_k] du.
u(1-qu)?(qu)t 2

Using the fact (see [9], section 6) that

(1-u) I;IBP (qiu 3) (1 - qiu)l = Ci((l;))’ (5.13)

we get that e e
Ao = By o fu i (1 g (g5 (5:14)

e R C(u)
LT (2) 2mi ﬁm Vi u(1 - qu)2(qu)l3 - (5.15)

We see that that (5.14) and (5.15) are precisely the terms S;(V = 0) and S2(V = 0) given in the
statement of Lemma 5.6. Similarly, using the substitution z = (qu)~! we have

g9+ [1r Bp (qiu %)
k12 =" - 55 s du
- 2mi Jul-ya ) [H?- ]
(1-qu)?(qu)
and
29+3 [TpBpr |,
AZ L= _q : % (q Q) k du
2mi Sl (qu)+(1 - qu)?(qu)l2]
Using a variant of (5.13) we have
2g+2 1 C(u)
q
AS L, = ——515 du, 5.16
B2 Cu(2) 2mi Sul-va [ ] 19
qu(1 - u)(1 - qu)(qu)
and _
2g9+3
A, =2 L yf Cw) _du. (5.17)
© (@) 270 Suva (qu)a k(1 - w) (1 - qu) (qu)l2]

M o
Rewrite 'Ag—171 as

o ngli C(u)(1-qu+qu) y
Ag te CA(Q) 271 »9511\ \/_q u2(1 u)(l QU)(qu) gT du. (5.18)

18
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Then, we let
o e o
g-1,1 = Ag—1,1,1 + Ag—l,l,Q?

r _ q29+gif C(u) du.
g-1,1,1 Ca(2) 2mi lul=v/a qu(1 - u)(1 - qU)(qu)qT

where

and

29+§
0 g7 1 Clu)
A B = d '
g-1,1,2 Ca(2) 2mi ygm Va (1 -u)(qu) s '

Combining A7 | and Ag_ ; 5, we have

01+ . . q29+2L9§ C(u)(1+q%) du.
9, TN Ca(2) 2 Tul=va qu(1 - w) (1 - qu) (qu)lE]

Using the fact that (see [13], Proof of Main Theorem)

Legi =g s Bl 250, (5.19)
we have o .
2g+2 _g-1l.]9g 91141
A;1+A;_112:q Lﬁg C(u)(g 2 "2 +q2 zg )du_
; T a(2) 2wt Jful=vq qu(l—-u)(1-qu)(qu) (5]
Let A A
Ag 1+ Ay 110 = A1+ Ag,
where -
A - 1
€ (2) 270 vt (1~ u) (1 - qu)ul?]
and .34[251] 4 ;
~ 2 3
A=t 75 () AR
() 2mi S (1= u)(1 - qu) (qu)E
Similarly combining A7_; ; ; and A ; 5, and using (5.19), we have
Agiaa+Ag12= A+ Ay,
where .
=42
A= ng C(u) Sy o1
Ca(2) 270 Jjul= Va (1 -u)(1 - qu)u 1]
and et ]
e
Ay = ui yé- C(u) = du, 522
Ca(2) 2mi Jju=ya 7(1-u)(1- qu)(qu) 1]+

We see that that A; and A, are precisely the terms S3(V = 0) and S4(V = 0) given in the statement
of Lemma 5.6. From (4.3), we have that C(1) = 0, thus, inside the circle |u] = \/g, Aj_; ; , has a

pole of order [ ] +2 at uw=0. Using the Residue Theorem we have that

. q29+*—[g] [ ]+ C(”)(O)
1127 Ty 7;) — (5.23)
19
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Similarly, inside the circle |u| = /g, the integrals Ay and Ay have a simple pole at u = ¢!

pole at w = 0 of order [2] +1 and [ ] + 1 respectively. Thus we have

R q%gﬂ—z[g] (4] ¢ (0) [¢]-n . q52g+3+[g o1

Az = 7 YIS
ONC) R S (L Ca(2)(¢-1)
d
an 5g+1_2[g:1] [g:l] [2:1]_n 3g9+5 g
- q 2 2 2 C(n)(()) 2 k q 2 +[4]
2= e VT
Ca(2) noo ! k=0 Ca(2)(g-1)
For the remaining integrals, we rewrite “4272 as
Az,z = A2,2,1 + Az,z,z
where e . .
Aigl‘—Q492 56‘ (1= ) e Bp(z,q7) s
- . 3
= 2w Jlzl=q 2 (1—z)2(1—q*12)(q*12)[§]
and
. q4g—2k+3 Zg_l HP BP(Z q_l)
J4k,22 = - o jz; B _% E dz.
i Sl g(1-2)(1- g712) (g1 2) ]

Using the substitution z = (qu)~! we have

Y (- )T Br (5 7)
Ak21= 55 lul=/a B
(1-qu)?(1 - ¢*u)(q*u)
e q%ﬂ HPBP(qu Q)
Appp =~ o 5‘% v [k Coe- k]
(1-qu)(1 - ¢*u)(q?u)
and
%fﬂw yg HPBP(qLu’%) du.
T 2w v (@u)s k(1 - qu) (1 - ¢?u) (q?u)l =]

Using a variant of (5.13), we have

6g9—k+7

4 - C(u)
A =1 — .
k,2,1 Ca(2) 2mi y|§u|=\/§ , , [,c,(g)g_k]ﬂ u
(1-qu)(1 - ¢*u)(¢*u)
6g—k+5
qugffgi (Z(TL)
A, =1— —— du,
o CA(2) 2m ﬁ”:ﬁ 2 2 [ki(ié)g_k]‘*l b
(1= w)(1 - 2u)(g?u)
and
6g—k+7
qugffgi 1 (Z(lt)
A2 = "5y omi du.

20
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(5.24)

(5.25)

(5.26)



Inside the circle |u| = /g, the integrals all have poles at u = 0,u =¢~" and u = ¢~2 of varying orders,
thus using the Residue Theorem, we have that

Rl C(")(O) RS a1 U I Ui S
921 w(2) = k=([52]-n) a(2) -1 CA(Q) q-1" '
5g+1 -17 [9=1 9-17_p, 59+5
o 52 Iz ] e gy ] e g C(q ) (5.28)
NN C) N = A TR ) (2) ¢ -
9 g1- 5g 5
. _ q2 2+2-2[ 4] (%] C(n)(o) 2([22]: n) qk_ e C(q ) N q79+3 C(q—2) (5 29)
R oY) = RN cA(z) ¢-1 G2 ¢-1"
5 g 9 n
e q Qg+1 2[ ] [22:] C(Tl)(o) [2] qQk q 2 +3 C(q ) (530)
L2270 0) & ol k=0 a(2) ¢2-
59+3 g 91-n 5 +7
., g [Z] ¢ (0) [% L Clr ) (5.31)
92T G@) S o & C (2) ¢*-
and
o AR e R g g (5.32)
_ = - q - .
9712 Ca(2) n=0 n! k=0 a(2) ¢*-1
To complete the proof, we want to show that
Ag—1,1,2 +Ap+ Ay - -A;,Z,l - AZ,2,2 - A§—1,2,1 - A§—1,2,2 - Ag,2 - 3—1,27 (5.33)
equals zero. Using the fact that (see [14], section 1)
qg_[%] — q[%]+1 =0 and qg_[%] — q[%]+l = O, (534)

we see that the terms corresponding to residue at u = ¢! and u = ¢~2 equal zero. Finally, we use
induction on g (see appendix) to show that the terms corresponding to the residue at u = 0 equals
zero. Thus (5.33) equals zero. ]

5.4 Contribution from B Terms

We will now focus on evaluating the B terms which corresponds to the pole at w = gz, these will
give the secondary main term in Proposition 5.1. Let

B=By,-Bgo+By11-By1o+Bg1 -8B+ By i1-Bg 1o
then, the main result in this subsection is the following.
Lemma 5.7. Using the same notation as before, we have that
B=q5 R(2g+2)+0(q51+9),

where R is a polynomial of degree 1 which can be explicitly calculated (see formulas (5.35)-(5.38)).

21
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Proof. For each j € {o,e} and k€ {g,g -1}, we write

) q2g+2 ) q37g+2
B =- yﬁ- , F! (2)dz and B, =- yg 2)dz.
k.1 21 Jizl=q” b (2) k.2 21 Jlzl=q 2( )
Enlarging the contour |z| = q_% to || = ¢"'7¢ we encounter a double pole at z = % of F,g ,(#) and

a simple pole at z = q_% of F]z 5(2). From Lemma 5.3, [1p Dp(2,qz) is absolutely convergent when

q 2 <|z| < ¢7t. Then, we have

2g+2 .
2 2 .
Bil o ReS(Fj (2);2=¢q 3)_ o ﬁ‘zq%%ﬂil(z)dz

and
39 +2

Bin =q2* ReS(F];;]72(Z); z = 3) - 2m y‘%:qilie Fg,Q(z)dz

where the second terms are bounded by O(g2(*9)). Then

2g+2 2g+2
=49 Ru(g)+0(a2")),  Byii=q 5 Ra(g)+0(q?""9),
2g+2 2042
°1=q 8 Rs(g) +0(q2"*)) and Bo_; 1 =q 3 Ra(g)+O0(q21*9).

where each R; is a linear polynomial whose coefficients can be computed explicitly. Let

2g+2 2g+2 2g+2 2g+2 2g+2
¢ % Ri(29+2)=q 3 Ri(9)+q 3 Ra(g9)+q 3 Rs(g9)+q 3 Ru(g),

where
CA(%) A(%) 1 [m QngiHPDP(Z qz) ]
Ri(x) = D 3, C3-Cy - = 4
1(z) st (d) A [1Dr(a75,q7%) 2O T D) -4
7 1
C3=l-q-qo+qs
and

Cy =4C3( (g) - CsCa (g) + 2(q+);&(§) +d(g-1) +2¢5¢, (g) (1+q).

Also we write

@Q

o2 = -t Blop+ 0(509), By, =gt 1T o5+ 0(g509),
232 = % +[5 ]CO T O(q2(1+e)) and B o= _q%Jr[g]Cg " O(q%(lﬁ)).
where each Cg are constants that can be explicitly computed. Let

C1=CS+CY and Cy = Cf + (3,

then we have

é Z 2 1 7 4 4 1
Cy = CA(?’)CA(E)CA( )(fﬂ—cf6 +¢ -1 ][[Dp(a73.q°%)
a(3) P
. (26 (D)6
Cy = 2223 Af R @ -g 3 +q5 —) [[Dr(a3,47%).
¢a(3) P
22
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Moreover,

4 2 1
|P|5 +|P|5 +|P|5 + 1)

[1Pr(475,475) = l;[ (1

P (IP|3 +|PI)?
and
1 EMeDe(aas) 5 AP (P57 +1)
¢ TpDp(zaz) =t ™ & (p—1y(|P)3 + (P2
Letting
¢ R(20+2)=q 5 Ri(29+2) + Crgt 8]+ Chgfrl7] (5.38)
proves the Lemma. "

Proposition 5.1 is immediate from Lemma 5.4, Lemma 5.5, Lemma 5.6, Lemma 5.7 and (5.1).

6 Error From Non-Square V

Let
S(V+o)=8°(V=o)+S(V+n), (6.1)
where
SO(V * D) = Sg’I(V * D) - 85’2(‘/ * D) + Sg_l,l(V * D) _33_172(‘/ * D) (62)
and
Se(V * D) = 8571(V * D) - S;’Q(V * D) + 8571’1(‘/ * D) - 8967172(‘/ * D) (63)

Then, in this section we will bound the term S(V # 0). The next Proposition is the main result in
this section.

Proposition 6.1. Using the notation described previously, we have, for any € > 0,
S(V #0) « q2(1+9). (6.4)

To prove Proposition 6.1, we will need the following results (see [9], section 7). We have

1 1 1
—_—= — d 6.5
i IC]2 ~ 2mi j?u‘:m q2mym+1 HP|f(1 _ ud(P)) Uu (6.5)
CeA},
with r; < 1. For a non-square V € A™ and positive integer n, let
G(V.xy)
Svm(u)= 3 / o
feas VIfI T pp (1 = ud()
Then, if |u| = ¢”¢, then we have
|6y ()] << g2 (7). (6.6)
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6.1 Bounding S§¢(V #0D)

For each k€ {g,g— 1} and £ € {1,2}, we have
SE,E(V * D) = S;im(V * D) + SE,E,Q(V * D).
Write ) R
Seea(V#0)=8;1(V#0) -8 1(V #0)
and . )
Sko2(V#0)=8; o(V#0) =S o (V #0),
where 327&1(1/ + O0), and Sgw(v # O) denote the sum over non-square V of degree d(V) <
d(f)-2g-4+2d(C) and d(V) < d(f) —2g — 2+ 2d(C) respectively. Similarly 3,?7&2(1/ #0) and

321572(1/ # 0) denote the sum over V with d(V') = d(f)-2g—-1+2d(C) and d(V') = d(f)-2g9-3+2d(C)
respectively. Then, by (6.5), we can write

g
_ (q_l)q29+2 [2] 1 9 1
Sgaa(V#0) = ———— 95 2 gl ) Ovian(u)d,
[ul=r1 n=0 47 m=g=n+2 4 O#VeAL, 29 1:2a(C)
(3] g
. q- 1)q2g+1 2 1 1
Sc11(V+o)= (—yg om, m+1 0van (u)du
g,1, 27T7/ ’LL| r1 o q2]€ m gZ_:n+ q2mum+1 OV eAt Z 341

<2n-2g-2+2d(C)

and

- 429+ 3] | 1
851V #0) =7 fu Lo X w2 Oven(u)du,

211 r _
| L n= m—g—n+1 q VEAgn 2g-1+2m

R 29+2
5967172(‘/ * D) =

0
[2] 1 9 1
- Ovon(u)du,
j’% oy 2, =% g2k 2mymtl 2 vien(u)

n=0 mgn+q by

2mi .
2n-2g-3+2m

with 71 < 1. Using (6.6), we can bound &y .2,(u) and trivially bounding the sum over V, we get
that S¢1,(V # 0) « 209, 8¢ (V2 0) « ¢2(1"9, 8¢ o(V # 0) « ¢2(*) and 8¢ ,(V =
0) « ¢2(%9) thus SEI(V +0) « ¢2(1*9)_ Using the same calculations, we can bound Sgo(V #
0),S;_11(V #0) and Sy_; (V' #0) by q20%9_ hence S¢(V #0) « ¢2(1+9)

6.2 Bounding S°(V #0O)
For ke {g,g-1},0€{1,2}, let
Spo(V #0) = SI?,Z(V #0) - Sl?,e(v +0),

where S? 1o and SH denotes the sum over non-square V with d(V') = d(f) - 29 - 3 + 2d(C) and
d(V) = d(f) 2g — 1+ 2d(C) respectively. Then, using (6.5), we have

_ q2g+§ (%] 1 g 1
o —_—
g (V#0) = — jﬁ‘:r 2 Tt X T > Ovizn+1 (u)du
b n=0 q m7g7n+1 q D¢V€A2n 2g-2+2m
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and

. q2g+% (%] 1 g 1
o (V+0) = o 515 Y T Y > dvion+1 (u)du
T Il 0 @ megen O paveny

with 7 < 1. Using (6.6) to bound 0y .2,+1(u) and trivially bounding the sum over V, we get
that SO, (V # 0) « ¢2(1%9 and 82, (V # 0) < q%“*) Thus S, (V # 0) « ¢(*9. Similar
calculations can be used to bound S7,(V # 0), Sy (V # 0) and o-12(V # 0) by g2+,
Therefore S(V # 0) « ¢2(1*9) which proves Prop081t10n 6.1.

7 Proof of Theorem 1.4

We combine the results from the previous sections to prove Theorem 1.4.

Proof of Theorem 1.4. Using (3.1), we have
1
> L(‘yXD) =8g1 - S8g2+8g-1,1 = Syg-1,2- (7.1)
DeHagio 2
Using equations in previous sections, we can rewrite (7.1) as
1
5 L(—,XD):M+S(V:D)+S(V¢D). (7.2)
DeHagi2 2
g9

Using Proposition 4.1, Proposition 5.1 and Proposition 6.1, we have

> L(%aXD) = M+ Mo+ Mz +My+ S (V=0)+8(V=0)+S(V=0)+S5(V=0)
DeHagyo

1 g5 R(2g+2) + O(qE 149,

By Remark 4.2, C(u) has an analytic continuation for |u| < ¢ and C(1) = 0, therefore between
the circles |u| = r and |u| = R, the integrands corresponding to the terms M, Mo, S1(V = 0) and
S>(V = O) have a double pole at u = ¢~*. Similarly the integrands corresponding to the terms
M3, My, S3(V =0) and S4(V = 0) have a simple pole at u = ¢~*. Computing the residue at u = ¢!,

we get that
2g+2 !
q g 1 P(1)
Si(V =0) + M = P(1)(H+1+ ,
a(2) 2 logq P(1)
2g+2 1 Pl(l)
a7
So(V=0)+ M, = 1)([ ] +1+ ),
AR loga P(D
39+5+ g
I (Y
83(V = D) + M3 =
a(2) (¢-1)
and 1]
+3+ =
1
S4(V:E|)+M4 C]2 ’ ()
a(2) (¢-1)
where C(u) = P(s) with the change of variables u = ¢”°. Putting everything together and using
equation (5.19) the Theorem follows. [ |
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A Completing the Proof of Lemma 5.6
In the appendix we prove the claim that
A i1+ Aet Ao = AG oy~ Ao s = AG 01— AG 00— Aga = A (A1)

equals zero. For the terms corresponding to the residues at u = ¢~' and u = ¢~ we have shown that
(A.1) equals zero, thus it remains to show that for the terms corresponding to the residue at u =0,
(A.1) equals zero. We prove this using induction on g. To do this we consider two cases, the first
when g is even and second when g is odd.

A.1 g even

Let g = 2m for m € Z, then we will show that (A.1) equals zero for all m > 1. For the base case,
m =1, we have that (A.1) is equal to

1

CA(Q)( %(C(O)JFC (O))+q (c (0)(1+q)+C’(O))+q%C(0) +Q§C(0)—q%6(0)

+q*(C(0) (g +4%) +C'(0)) - ¢ (C(0) (1 +¢*) +C'(0)) = 42 (C(0)(1 + ¢*) +C'(0))

—qS(C(O)(1+q2)+C'(0))), (A.2)

which when cancelling the terms equals zero, hence the base case is true. Assume that (A.1)=0,
for m =t. Then we have that

1 5103 = C(M(0) £ C(n)(o)t Nk 3t+3 = C(n)(o -
q 2 q +q
CA(2)( nzz%) n! Z =0 nz—%J Z::
. -1 C(n) 0 2(t-1-n) 5 t—1 C(n) 0 t—1-n t C(n) 0 2(t-n)
+q3t+2 Z '( ) qk _qSt+2 Z ‘( ) Z q2k +q3t+2 ‘( ) k
n=0 ™ k=t-1-n n=0 - k=0 n=0 T k=t-n
t n) 0 -n 3 L n) 0) t=n t C n) 0) t=n
3t+1 Z ( Z q2k t+2 Z ( ) 3t+2 Z '( ) q2k =0. (A.3)
n! S R L n=0 " k=0

It remains to show that (A.1) is equal to zero for m =t + 1. For m =t + 1, we have that (A.1) is
equal to

1 o 11 C(n) 0 t+1 C(n) 0) t+ln 1t C(n) 0) t=n
CA(2)((]3t+2 Z ( )+q3t+4 ( ) Z qk+q3t+2 Z ( ) zqk

w0 " S S U ) S A

5 o)) 2tn) (n) () t=n t+1 o(n) (o 2(t+1-n)
3t+13 ¢ (0) k_  3t+il ¢t (0) 3t+5 c'™(0) k
+tq 2 - q —q q +4q — q
7;) nl 52, r;) (L oo S (R A
t+1 C(n) 0) t+ln o i1 C(n) 0) t+ln t+1 C(n) 0) t+ln
_q3t+4 '( ) Z q2k: _q3t+2 Z '( ) Z q2k _q3t+5 '( ) Z q2k ) (A.4)
n=0 T k=0 n=0 T k=0 n=0 T k=0
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Rearranging (A.4), we have that (A.1) is equal to

q3 q3t+g Zt: C(n)(o) 3t+1 Zt: n)(o) = k q3t+g ti C(n)(o) t_in qk
Ca(2) noo ! k= 0 o S (L
;=1 o(n) (@) 2(t1-n) 5 =1 ¢ () t-dzn c( () 2tz
+q3t+2 Z '( ) Z qk q3t+ Z '( ) Z 3t+2 Z ( ) qk
n=0 " g=tZ1-n n=0 " k=0
£t Zt: (n)(o)t < 72— zt: ¢ (0) 2 — Z n)(o) tf 2k) (A.5)

n! ko i

k=t-n

k= O n=0

(t+1) t+1 p(n) t ~(n) t-1 p(n)
1 (?mgc ©, 1§ DO iron st 52 €70) i s §1E(0)

+ q
CA(2) (t+ 1)' n=0 n! n=0 n! n=0 n!

1 c™(0) 12C1(0) u & e (0)
3t+ 2(t n)-1 3t+ _ 3t+5 Q(t n)
nz‘{) n! (1+q)+q™> t! ¢ e T;) n!
5C*1(0)
(t+1)!

+q

3t+5 Z C( )(0) t n q3t+5 Zt: C(n)(o)q2(t7n)+1(1 +q) " q3t+

n!

304 2 CO7 )(0) 1) _ 0 3 CU(0) pipe1omy S & (o) St
Z a7 = n!

n=0 n! n=0

(A.6)

Using the inductive hypothesis, we have that (A.5) equals zero, therefore it remains to show that
(A.6) equals zero. Rearranging (A.6) we get that it is equal to

1 e Z ct )(0) Z20m 4 31:4CD(0) S ct )(0) Fs ti ¢ (0) R0
CA(2) n=0 n! (t + 1)‘ t! n=0 n!
(n) 5 C®) (n) (n)
+q3t Z 1 C (0) 2(t n) | 3t+§c '(O) _q3t+11 Z e (0) 2(t n) +q 3t+6 Z e (0) 2(t n)
= nl t! = n! !
3007 < CU(0) o4y AT ct )(0) ) _ gt & (o) LAt
g Y g Z
= n! n! = n!
_ 1 2(1+ 2+ " Q)ZC( )(0) 2(t n) _ 2(1+ 2+ + Z)ZC( )(0) 2(t n)
BADLE GZra+ar) ), — Gra+ar) ), —

Thus (A.1)=0 for m =t + 1 and so, by induction, (A.1)=0 for all g > 1, g even.

A.2 ¢ odd
Now let g = 2m + 1, then we want to show, using induction on m that (A.1) equals zero for all
m > 0. For the base case, m =0, we have that (A.1) is equal to

@%(m(qi(c:(o) +C'(0)) +42€(0) +4°C(0) +4'C(0) ~°C(0) + 42C(0) ~ 43C(0)

~4'C(0) - g% (C(0) (1 + ¢?) +C'(0))),
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which, when cancelling the terms equals zero, hence the base case is true. Assume that (A.1)=0
for m =t. Then we have that

1 (q3 350 Zc<"><o>f" i 3t+3zc<“><o>t“ A

¢a(2) no e N (L nl 5

ktn

¢ (0) b0 & e (o) 2
( Z 3t 5 Z ( ) qk

3t+4 3t+3
Z z—: k=0 n=0 n! k=t-n
C(n) 0) t=n n) 0) t= t+1 C(n) 0) t+ln
_q3t+g Z '( ) q2k _q3t+4 Z '( ) ¢ Z q2k _q3t+g Z '( ) Z q2k =0. (A7)
n=0 T k20 n=0 T k0 n=0 T k=0

It remains to show that (A.1) is equal to zero for m =t + 1. For m =t + 1, we have that (A.1) is
equal to

Ca(2) oo ! e S (1 s S £ B

1 1 142 C(n) 0 13 t+1 C(n) 0) t+ln t+1 C(n) 0) t+ln
(q3t 5 Z ( ) Z ( ) Z qk+q3t+6 ( ) Z qk
t+1 C(n) (0) 2(t+1-n)

4 q3t+7

t+1 C(n) 0) t+1n 15 t+1 C(n) 0 2(t+1-n)
qk_q3t+6 ( ) q 2k +q3t+ > Z ( ) qk

S S (1A no ! k=0 S S (1A e B

13 t+1 C(n) (0 t+1-n t+1 C(n) 0) ttln n t+2 C(n) 0) t+2n
_q3t+ 5 Z ‘ ) q2k: _q3t+7 ‘( ) Z q2k: _q3t+ 5 Z '( ) Z q2k ]
n=0 T k=0 n=0 T k=0 n=0 T k=0

(A.8)

Rearranging (A.8), we have that (A.1) is equal to

Ca(2)

no e S (1 k=0

¢ (q3 rtic(")(m ch(ow- , 3“32 “><0)t"qk

c<"><o> Y M,Z ”(0 Z” rgtrd y OIS
n! n!

k=t-n n=0 n=0 : k=t-n

3t+4 Z
7 C(n) 0) t=n n) 0) t=n 5 t+1 C(n) 0) t=n
_ PE Z ¢t (0) I Z ( ) L DS (0) 3 ¢ (A.9)

!

o S 0 nl iz o n=0 T k=0
" 1 q3t EE clr )(0) +13 s '8 C(n)(o) t+1 n q3t+6 B n)(o) t+1 -n _ 3t+7 Z cl )(O) t n
Ca(2) (t+2)! 2)' o ! no !

3t+7 Z C )(0) 2(t+1 n)— 1(1 n )+ 3t+7c(( ()0) q3t+ s C(n)(o) 2(t+1 n)
t+1)! = n!
3t+12 C(n)(o) ct )(0) 2 1-n)-1 15 C! 1)(0)
—¢*" Z g g E (rrtmm)- (1+Q)+q3t+*—(t+1)
n=0 n: n=0 n!
t+1 ~(n) +1 ~(n) t+2 o(n)
_ 3ti2 ¢ (0) 2(t+1 n) _ 3t+7 c'™(0) 2(t+1—n)_ +4 ¢ (0) 2(t+2 n)
e 7;] n! Z n! ¢ 7;) n!
(A.10)
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Using the inductive hypothesis, we have (A.9) equals zero. Thus it remains to show that (A.10)
equals zero. Rearranging (A.10), we have that it equals

1 _ 3t ti C(n)(o) 2(t+1 n) 4 +13 C(Hl)(o) Jrq?ﬂprﬁc(t+ )(0) 3t+6 Z c )(0) 2(t+1 n)
Ca(2) = n! (t+1)! (t+ 1)' -

3t+7 Z C( )(O) 2(t+1 n) q3t+7c(( )()0) q3t+6 jads C(n)(o) 2(t+1 n)
t+1)! = n!

+q3t Z C( )(0) 2(t+1 n) 4 Z ctn )(0) 2(t+1 n) L +12 C(t+1)(0)
= n! = n! (t+1)!
_q3t 13 tf ct )(0) 2(t+1 n) _ 3t+7 Hel )(0) 2(t+1 n))
n=0 n! n=0 n!
1 3t+6 s C(n)(o) 2(t+1 n) _ 3t+6 L 5, A C(n)(o) 2(t+1 n)
= 1 1 =0.
CA(Q)( ( +q2+q+q2)z o ( +Q2+q+q2)nz%) —

Thus (A.1)=0 for m =t + 1 and so by induction (A.1)=0 for all g > 1,¢ odd. This completes the
proof of Lemma 5.6.
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