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ABSTRACT
Concolic testing combines program execution and symbolic anal-
ysis to explore the execution paths of a software program. This
paper presents the first concolic testing approach for Deep Neural
Networks (DNNs). More specifically, we formalise coverage criteria
for DNNs that have been studied in the literature, and then develop
a coherent method for performing concolic testing to increase test
coverage. Our experimental results show the effectiveness of the
concolic testing approach in both achieving high coverage and
finding adversarial examples.
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1 INTRODUCTION
Deep neural networks (DNNs) have been instrumental in solving a
range of hard problems in AI, e.g., the ancient game of Go, image
classification, and natural language processing. As a result, many
potential applications are envisaged. However, major concerns have
been raised about the suitability of this technique for safety- and
security-critical systems, where faulty behaviour carries the risk
of endangering human lives or financial damage. To address these
concerns, a (safety or security) critical system comprising DNN-
based components needs to be validated thoroughly.
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The software industry relies on testing as a primary means to
provide stakeholders with information about the quality of the
software product or service under test [12]. So far, there have been
only few attempts to test DNNs systematically [15, 18, 23, 25, 30].
These are either based on concrete execution, e.g., Monte Carlo tree
search [30] or gradient-based search [15, 18, 25], or symbolic execu-
tion in combination with solvers for linear arithmetic [23]. Together
with these test-input generation algorithms, several test coverage
criteria have been presented, including neuron coverage [18], a
criterion that is inspired by MC/DC [23], and criteria to capture
particular neuron activation values to identify corner cases [15].
None of these approaches implement concolic testing [8, 22], which
combines concrete execution and symbolic analysis to explore the
execution paths of a program that are hard to cover by techniques
such as random testing.

We hypothesise that concolic testing is particularly well-suited
for DNNs. The input space of a DNN is usually high dimensional,
whichmakes random testing difficult. For instance, a DNN for image
classification takes tens of thousands of pixels as input. Moreover,
owing to the widespread use of the ReLU activation function for
hidden neurons, the number of “execution paths" in a DNN is simply
too large to be completely covered by symbolic execution. Concolic
testing can mitigate this complexity by directing the symbolic anal-
ysis to particular execution paths, through concretely evaluating
given properties of the DNN.

In this paper, we present the first concolic testing method for
DNNs. The method is parameterised using a set of coverage re-
quirements, which we express using Quantified Linear Arithmetic
over Rationals (QLAR). For a given set R of coverage requirements,
we incrementally generate a set of test inputs to improve coverage
by alternating between concrete execution and symbolic analysis.
Given an unsatisfied test requirement r , we identify a test input
t within our current test suite such that t is close to satisfying r
according to an evaluation based on concrete execution. After that,
symbolic analysis is applied to obtain a new test input t ′ that satis-
fies r . The test input t ′ is then added to the test suite. This process
is iterated until we reach a satisfactory level of coverage.

Finally, the generated test suite is passed to a robustness ora-
cle, which determines whether the test suite includes adversarial
examples [24], i.e., pairs of test cases that disagree on their clas-
sification labels when close to each other with respect to a given
distance metric. The lack of robustness has been viewed as a major
weakness of DNNs, and the discovery of adversarial examples and
the robustness problem are studied actively in several domains,
including machine learning, automated verification, cyber security,
and software testing.
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Overall, the main contributions of this paper are threefold:
(1) We develop the first concolic testing method for DNNs.
(2) We evaluate the method with a broad range of test coverage

requirements, including Lipschitz continuity [1, 3, 20, 29, 30]
and several structural coverage metrics [15, 18, 23]. We show
experimentally that our new algorithm supports this broad
range of properties in a coherent way.

(3) We implement the concolic testing method in the software
tool DeepConcolic1. Experimental results show that Deep-
Concolic achieves high coverage and that it is able to discover
a significant number of adversarial examples.

2 RELATEDWORK
We briefly review existing efforts for assessing the robustness of
DNNs and the state of the art in concolic testing.

2.1 Robustness of DNNs
Current work on the robustness of DNNs can be categorised as
offensive or defensive. Offensive approaches focus on heuristic
search algorithms (mainly guided by the forward gradient or cost
gradient of the DNN) to find adversarial examples that are as close
as possible to a correctly classified input. On the other hand, the
goal of defensive work is to increase the robustness of DNNs. There
is an arms race between offensive and defensive techniques.

In this paper we focus on defensive methods. A promising ap-
proach is automated verification, which aims to provide robust-
ness guarantees for DNNs. The main relevant techniques include a
layer-by-layer exhaustive search [11], methods that use constraint
solvers [14], global optimisation approaches [20] and abstract inter-
pretation [7, 16] to over-approximate a DNN’s behavior. Exhaustive
search suffers from the state-space explosion problem, which can
be alleviated by Monte Carlo tree search [30]. Constraint-based
approaches are limited to small DNNs with hundreds of neurons.
Global optimisation improves over constraint-based approaches
through its ability to work with large DNNs, but its capacity is sen-
sitive to the number of input dimensions that need to be perturbed.
The results of over-approximating analyses can be pessimistic be-
cause of false alarms.

The application of traditional testing techniques to DNNs is dif-
ficult, and work that attempts to do so is more recent, e.g., [15, 18,
23, 25, 30]. Methods inspired by software testing methodologies
typically employ coverage criteria to guide the generation of test
cases; the resulting test suite is then searched for adversarial ex-
amples by querying an oracle. The coverage criteria considered
include neuron coverage [18], which resembles traditional statement
coverage. A set of criteria inspired by MD/DC coverage [10] is used
in [23]; Ma et al. [15] present criteria that are designed to capture
particular values of neuron activations. Tian et al. [25] study the
utility of neuron coverage for detecting adversarial examples in
DNNs for the Udacity-Didi Self-Driving Car Challenge.

We now discuss algorithms for test input generation. Wicker et
al. [30] aim to cover the input space by exhaustive mutation testing
that has theoretical guarantees, while in [15, 18, 25] gradient-based
search algorithms are applied to solve optimisation problems, and
Sun et al. [23] apply linear programming. None of these consider
1 https://github.com/TrustAI/DeepConcolic

concolic testing and a general means for modeling test coverage
requirements as we do in this paper.

2.2 Concolic Testing
By concretely executing the program with particular inputs, which
includes random testing, a large number of inputs can be tested at
low cost. However, without guidance, the generated test cases may
be restricted to a subset of the execution paths of the program and
the probability of exploring execution paths that contain bugs can
be extremely low. In symbolic execution [5, 26, 32], an execution
path is encoded symbolically. Modern constraint solvers can deter-
mine feasibility of the encoding effectively, although performance
still degrades as the size of the symbolic representation increases.
Concolic testing [8, 22] is an effective approach to automated test
input generation. It is a hybrid software testing technique that alter-
nates between concrete execution, i.e., testing on particular inputs,
and symbolic execution, a classical technique that treats program
variables as symbolic values [13].

Concolic testing has been applied routinely in software testing,
and a wide range of tools is available, e.g., [4, 8, 22]. It starts by
executing the program with a concrete input. At the end of the
concrete run, another execution path must be selected heuristically.
This new execution path is then encoded symbolically and the
resulting formula is solved by a constraint solver, to yield a new
concrete input. The concrete execution and the symbolic analysis
alternate until a desired level of structural coverage is reached.

The key factor that affects the performance of concolic testing is
the heuristics used to select the next execution path.While there are
simple approaches such as random search and depth-first search,
more carefully designed heuristics can achieve better coverage [4, 9].
Automated generation of search heuristics for concolic testing is
an active area of research [6, 27].

2.3 Comparison with Related Work
We briefly summarise the similarities and differences between
our concolic testing method, named DeepConcolic, and other ex-
isting coverage-driven DNN testing methods: DeepXplore [18],
DeepTest [25], DeepCover [23], and DeepGauge [15]. The details
are presented in Table 1, where NC, SSC, and NBC are short for
Neuron Coverage, SS Coverage, and Neuron Boundary Coverage,
respectively. In addition to the concolic nature of DeepConcolic,
we observe the following differences.
• DeepConcolic is generic, and is able to take coverage re-
quirements as input; the other methods are ad hoc, and are
tailored to specific requirements.
• DeepXplore requires a set of DNNs to explore multiple gradi-
ent directions. The other methods, including DeepConcolic,
need a single DNN only.
• In contrast to the other methods, DeepConcolic can achieve
good coverage by starting from a single input; the other
methods need a non-trivial set of inputs.
• Until now, there is no conclusion on the best distance metric.
DeepConcolic can be parameterized with a desired norm
distance metric | | · | |.

Moreover, DeepConcolic features a clean separation between the
generation of test inputs and the test oracle. This is a good fit for
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Table 1: Comparison with different coverage-driven DNN testing methods

DeepConcolic DeepXplore [18] DeepTest [25] DeepCover [23] DeepGauge [15]
Coverage criteria NC, SSC, NBC etc. NC NC MC/DC NBC etc.
Test generation concolic dual-optimisation greedy search symbolic execution gradient descent methods
DNN inputs single multiple single single single
Image inputs single/multiple multiple multiple multiple multiple
Distance metric L∞ and L0-norm L1-norm Jaccard distance L∞-norm L∞-norm

traditional test case generation. The other methods use the oracle
as part of their objectives to guide the generation of test inputs.

3 DEEP NEURAL NETWORKS
A (feedforward and deep) neural network, or DNN, is a tuple N =
(L,T ,Φ) such that L = {Lk |k ∈ {1, . . . ,K}} is a set of layers, T ⊆
L × L is a set of connections between layers, and Φ = {ϕk |k ∈
{2, . . . ,K}} is a set of activation functions. Each layer Lk consists of
sk neurons, and the l-th neuron of layer k is denoted by nk,l . We use
vk,l to denote the value of nk,l . Values of neurons in hidden layers
(with 1 < k < K) need to pass through a Rectified Linear Unit
(ReLU) [17]. For convenience, we explicitly denote the activation
value before the ReLU as uk,l such that

vk,l = ReLU (uk,l ) =

{
uk,l if uk,l ≥ 0
0 otherwise

(1)

ReLU is the most popular activation function for neural networks.
Except for inputs, every neuron is connected to neurons in the

preceding layer by pre-defined weights such that ∀1 < k ≤ K ,∀1 ≤
l ≤ sk ,

uk,l =
∑

1≤h≤sk−1

{wk−1,h,l · vk−1,h } + bk,l (2)

where wk−1,h,l is the pre-trained weight for the connection be-
tween nk−1,h (i.e., the h-th neuron of layer k − 1) and nk,l (i.e., the
l-th neuron of layer k), and bk,l is the bias.

Finally, for any input, the neural network assigns a label, that
is, the index of the neuron of the output layer that has the largest
value, i.e., label = argmax1≤l ≤sK {vK,l }.

Due to the existence of ReLU, the neural network is a highly
non-linear function. In this paper, we use variable x to range over
all possible inputs in the input domain DL1 and use t , t1, t2, ... to
denote concrete inputs. Given a particular input t , we say that the
DNN N is instantiated and we use N[t] to denote this instance of
the network.
• Given a network instance N[t], the activation values of
each neuron nk,l of the network before and after ReLU are
denoted as u[t]k,l and v[t]k,l , respectively, and the final
classification label is label[t]. We write u[t]k and v[t]k for
1 ≤ k ≤ sk to denote the vectors of activations for neurons
in layer k .
• When the input is given, the activation or deactivation of
each ReLU operator in the DNN is determined.

We remark that, while for simplicity the definition focuses on
DNNs with fully connected and convolutional layers, as shown

in the experiments (Section 10) our method also applies to other
popular layers, e.g., maxpooling, used in state-of-the-art DNNs.

4 TEST COVERAGE FOR DNNS
4.1 Activation Patterns
A software program has a set of concrete execution paths. Similarly,
a DNN has a set of linear behaviours called activation patterns [23].

Definition 4.1 (Activation Pattern). Given a network N and an
input t , the activation pattern of N[t] is a function ap[N , t] that
maps the set of hidden neurons to {true, false}. We write ap[t] for
ap[N , t] if N is clear from the context. For an activation pattern
ap[t], we use ap[t]k,i to denote whether the ReLU operator of the
neuron nk,i is activated or not. Formally,

ap[t]k,l = false ≡ u[t]k,l < v[t]k,l
ap[t]k,l = true ≡ u[t]k,l = v[t]k,l

(3)

Intuitively, ap[t]k,l = true if the ReLU of the neuron nk,l is
activated, and ap[t]k,l = false otherwise.

Given a DNN instanceN[t], each ReLU operator’s behaviour (i.e.,
each ap[t]k,l ) is fixed and this results in the particular activation
pattern ap[t], which can be encoded by using a Linear Programming
(LP) model [23].

Computing a test suite that covers all activation patterns of
a DNN is intractable owing to the large number of neurons in
pratically-relevant DNNs. Therefore, we identify a subset of the
activation patterns according to certain coverage criteria, and then
generate test inputs that cover these activation patterns.

4.2 Formalizing Test Coverage Criteria
We use a specific fragment of Quantified Linear Arithmetic over
Rationals (QLAR) to express the coverage requirements on the test
suite for a given DNN. This enables us to give a single test input
generation algorithm (Section 8) for a variety of coverage criteria.
We denote the set of formulas in our fragment by DR.

Definition 4.2. Given a network N , we write IV = {x ,x1,x2, ...}
for a set of variables that range over the all inputs DL1 of the
network. We define V = {u[x]k,l ,v[x]k,l | 1 ≤ k ≤ K , 1 ≤ l ≤
sk ,x ∈ IV } to be a set of variables that range over the rationals. We
fix the following syntax for DR formulas:

r ::= Qx .e | Qx1,x2.e
e ::= a ▷◁ 0 | e ∧ e | ¬e | |{e1, ..., em }| ▷◁ q
a ::= w | c ·w | p | a + a | a − a

(4)

where Q ∈ {∃,∀}, w ∈ V , c,p ∈ R, q ∈ N, ▷◁∈ {≤, <,=, >, ≥},
and x ,x1,x2 ∈ IV . We call r a coverage requirement, e a Boolean
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formula, and a an arithmetic formula. We call the logic DR+ if the
negation operator ¬ is not allowed. We use R to denote a set of
coverage requirement formulas.

The formula ∃x .e expresses that there exists an input x such that
e is true, while ∀x .e expresses that e is true for all inputs x . The
formulas ∃x1,x2.e and ∀x1,x2.e have similar meaning, except that
they quantify over two inputs x1 and x2. The Boolean expression
|{e1, ..., em }| ▷◁ q is true if the number of true Boolean expressions
in the set {e1, ..., em } is in relation ▷◁ with q. The other operators
in Boolean and arithmetic formulas have their standard meaning.

Although V does not include variables to specify an activation
pattern ap[x], we may write

ap[x1]k,l = ap[x2]k,l and ap[x1]k,l , ap[x2]k,l (5)

to require that x1 and x2 have, respectively, the same and different
activation behaviours on neuron nk,l . These conditions can be
expressed in the syntax above using the expressions in Equation (3).
Moreover, some norm-based distances between two inputs can be
expressed using our syntax. For example, we can use the set of
constraints

{x1(i) − x2(i) ≤ q, x2(i) − x1(i) ≤ q | i ∈ {1, . . . , s1}} (6)

to express | |x1 − x2 | |∞ ≤ q, i.e., we can constrain the Chebyshev
distance L∞ between two inputs x1 and x2, where x(i) is the i-th
dimension of the input vector x .

Semantics. We define the satisfiability of a coverage requirement r
by a test suite T .

Definition 4.3. Given a set T of test inputs and a coverage re-
quirement r , the satisfiability relation T |= r is defined as follows.

• T |= ∃x .e if there exists some test t ∈ T such that T |=
e[x 7→ t], where e[x 7→ t] denotes the expression e in which
the occurrences of x are replaced by t .
• T |= ∃x1,x2.e if there exist two tests t1, t2 ∈ T such that
T |= e[x1 7→ t1][x2 7→ t2]

The cases for ∀ formulas are similar. For the evaluation of Boolean
expression e over an input t , we have

• T |= a ▷◁ 0 if a ▷◁ 0
• T |= e1 ∧ e2 if T |= e1 and T |= e2
• T |= ¬e if not T |= e
• T |= |{e1, ..., em }| ▷◁ q if |{ei | T |= ei , i ∈ {1, ...,m}}| ▷◁ q

For the evaluation of arithmetic expression a over an input t ,

• u[t]k,l and v[t]k,l derive their values from the activation
patters of the DNN for test t , and c · u[t]k,l and c · v[t]k,l
have the standard meaning where c is a coefficient,
• p, a1 + a2, and a1 − a2 have the standard semantics.

Note that T is finite. It is trivial to extend the definition of the
satisfaction relation to an infinite subspace of inputs.

Complexity. Given a networkN , a DR requirement formula r , and a
test suite T , checking T |= r can be done in time that is polynomial
in the size of T . Determining whether there exists a test suite T
with T |= r is NP-complete.

4.3 Test Coverage Metrics
Now we can define test coverage criteria by providing a set of
requirements on the test suite. The coverage metric is defined in
the standard way as the percentage of the test requirements that
are satisfied by the test cases in the test suite T .

Definition 4.4 (Coverage Metric). Given a network N , a set R of
test coverage requirements expressed as DR formulas, and a test
suite T , the test coverage metricM(R,T) is as follows:

M(R,T) =
|{r ∈ R | T |= r }|

|R|
(7)

The coverage is used as a proxy metric for the confidence in the
safety of the DNN under test.

5 SPECIFIC COVERAGE REQUIREMENTS
In this section, we giveDR+ formulas for several important coverage
criteria for DNNs, including Lipschitz continuity [1, 3, 20, 29, 30]
and test coverage criteria from the literature [15, 18, 23]. The criteria
we consider have syntactical similarity with structural test coverage
criteria in conventional software testing. Lipschitz continuity is
semantic, specific to DNNs, and has been shown to be closely related
to the theoretical understanding of convolutional DNNs [29] and
the robustness of both DNNs [20, 30] and Generative Adversarial
Networks [1]. These criteria have been studied in the literature
using a variety of formalisms and approaches.

Each test coverage criterion gives rise to a set of test coverage
requirements. In the following, we discuss the three coverage cri-
teria from [15, 18, 23], respectively. We use | |t1 − t2 | |q to denote
the distance between two inputs t1 and t2 with respect to a given
distance metric | | · | |q . The metric | | · | |q can be, e.g., a norm-based
metric such as the L0-norm (the Hamming distance), the L2-norm
(the Euclidean distance), or the L∞-norm (the Chebyshev distance),
or a structural similarity distance, such as SSIM [28]. In the follow-
ing, we fix a distance metric and simply write | |t1 − t2 | |. Section 10
elaborates on the particular metrics we use for our experiments.

Wemay consider requirements for a set of input subspaces. Given
a real number b, we can generate a finite set S(DL1 ,b) of subspaces
of DL1 such that for all inputs x1,x2 ∈ DL1 , if | |x1 − x2 | | ≤ b,
then there exists a subspace X ∈ S(DL1 ,b) such that x1,x2 ∈ X .
The subspaces can be overlapping. Usually, every subspace X ∈
S(DL1 ,b) can be represented with a box constraint, e.g.,X = [l ,u]

s1 ,
and therefore t ∈ X can be expressed with a Boolean expression as
follows.

s1∧
i=1

x(i) − u ≤ 0 ∧ x(i) − l ≥ 0 (8)

5.1 Lipschitz Continuity
In [20, 24], Lipschitz continuity has been shown to hold for a large
class of DNNs, including DNNs for image classification.

Definition 5.1 (Lipschitz Continuity). A network N is said to be
Lipschitz continuous if there exists a real constant c ≥ 0 such that,
for all x1,x2 ∈ DL1 :

| |v[x1]1 −v[x2]1 | | ≤ c · | |x1 − x2 | | (9)

Recall that v[x]1 denotes the vector of activation values of the neu-
rons in the input layer. The value c is called the Lipschitz constant,
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and the smallest such c is called the best Lipschitz constant, denoted
as cbest .

Since the computation of cbest is an NP-hard problem and a
smaller c can significantly improve the performance of verification
algorithms [20, 30, 31], it is interesting to determine whether a
given c is a Lipschitz constant, either for the entire input space
DL1 or for some subspace. Testing for Lipschitz continuity can be
guided using the following requirements.

Definition 5.2 (Lipschitz Coverage). Given a real c > 0 and an inte-
ger b > 0, the set RLip (b, c) of requirements for Lipschitz coverage
is

{∃x1,x2.(| |v[x1]1 −v[x2]1 | | − c · | |x1 − x2 | | > 0)
∧x1,x2 ∈ X | X ∈ S(DL1 ,b)}

(10)

where the S(DL1 ,b) are given input subspaces.

Intuitively, for each X ∈ S(DL1 ,b), this requirement expresses
the existence of two inputs x1 and x2 that refute that c is a Lipschitz
constant for N . It is typically impossible to obtain full Lipschitz
coverage, because there may exist inconsistent r ∈ RLip (b, c). Thus,
the goal for a test case generation algorithm is to produce a test
suite T that satisfies the criterion as much as possible.

5.2 Neuron Coverage
Neuron Coverage (NC) [18] is an adaptation of statement coverage
in conventional software testing to DNNs. It is defined as follows.

Definition 5.3. Neuron coverage for a DNN N requires a test
suite T such that, for any hidden neuron nk,i , there exists test case
t ∈ T such that ap[t]k,i = true.

This is formalised with the following requirements RNC , each
of which expresses that there is a test with an input x that activates
the neuron nk,i , i.e., ap[x]k,i = true.

Definition 5.4 (NC Requirements). The set RNC of coverage re-
quirements for Neuron Coverage is

{∃x .ap[x]k,i = true | 2 ≤ k ≤ K − 1, 1 ≤ i ≤ sk } (11)

5.3 Modified Condition/Decision (MC/DC)
Coverage

In [23], a family of four test criteria is proposed, inspired by MC/DC
coverage in conventional software testing. We will restrict the
discussion here to Sign-Sign Coverage (SSC). According to [23],
each neuron nk+1, j can be seen as a decision where the neurons in
the previous layer (i.e., the k-th layer) are conditions that define its
activation value, as in Equation (2). Adapting MC/DC to DNNs, we
must show that all condition neurons can determine the outcome
of the decision neuron independently. In the case of SSC coverage
we say that the value of a decision or condition neuron changes
if the sign of its activation function changes. Consequently, the
requirements for SSC coverage are defined by the following set.

Definition 5.5 (SSC Requirements). For SCC coverage, we first de-
fine a requirement RSSC (α) for a pair of neurons α = (nk,i ,nk+1, j ):

{∃x1,x2. ap[x1]k,i , ap[x2]k,i ∧ ap[x1]k+1, j , ap[x2]k+1, j∧∧
1≤l ≤sk ,l,i ap[x1]k,l − ap[x2]k,l = 0}

(12)

and we get

RSSC =
⋃

2≤k≤K−2,1≤i≤sk ,1≤j≤sk+1

RSSC ((nk,i ,nk+1, j )) (13)

That is, for each pair (nk,i ,nk+1, j ) of neurons in two adjacent
layers k and k + 1, we need two inputs x1 and x2 such that the
sign change of nk,i independently affects the sign change of nk+1, j .
Other neurons at layer k are required to maintain their signs be-
tween x1 and x2 to ensure that the change is independent. The idea
of SS Coverage (and all other criteria in [23]) is to ensure that not
only the existence of a feature needs to be tested but also the effects
of less complex features on a more complex feature must be tested.

5.4 Neuron Boundary Coverage
Neuron Boundary Coverage (NBC) [15] aims at covering neuron
activation values that exceed a given bound. It can be formulated
as follows.

Definition 5.6 (Neuron Boundary Coverage Requirements). Given
two sets of bounds h = {hk,i |2 ≤ k ≤ K − 1, 1 ≤ i ≤ sk } and l =
{lk,i |2 ≤ k ≤ K − 1, 1 ≤ i ≤ sk }, the requirements RNBC(h, l) are

{∃x . u[x]k,i − hk,i > 0, ∃x . u[x]k,i − lk,i < 0 |
2 ≤ k ≤ K − 1, 1 ≤ i ≤ sk }

(14)

wherehk,i and lk,i are the upper and lower bounds on the activation
value of a neuron nk,i .

6 OVERVIEW OF OUR APPROACH
This section gives an overview of our method for generating a test
suite for a given DNN. Our method alternates between concrete
evaluation of the activation patterns of the DNN and symbolic
generation of new inputs. The pseudocode for our method is given
as Algorithm 1. It is visualised in Figure 1.

{t0}: seed input
T

R: coverage requirements,
δ : a heuristic

δ (R)

concrete
execution

t , r
new

input t ′

Oracle adversarial examples

Algorithm 1

top
ranked

symbolic
analysis

Figure 1: Overview of our concolic testing method

Algorithm 1 takes as inputs a DNN N , an input t0 for the DNN,
a heuristic δ , and a set R of coverage requirements, and produces a
test suite T as output. The test suite T initially only contains the
given test input t0. The algorithm removes a requirement r ∈ R
from R once it is satisfied by T , i.e., T |= r .

The function requirement_evaluation (Line 7), whose details are
given in Section 7, looks for a pair (t , r ) 2 of input and requirement
that, according to our concrete evaluation, is the most promising
2For some requirements, we might return two inputs t1 and t2 . Here, for simplicity, we
describe the case for a single input. The generalisation to two inputs is straightforward.
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Algorithm 1 Concolic Testing for DNNs

INPUT: N ,R,δ , t0
OUTPUT: T
1: T ← {t0} and F = {}
2: t ← t0
3: while R \ S , ∅ do
4: for each r ∈ R do
5: if T |= r then R← R \ {r }
6: while true do
7: t , r ← requirement_evaluation(T ,δ (R))
8: t ′ ← symbolic_analysis(t , r )
9: if validity_check(t ′) = true then
10: T ← T ∪ {t ′}
11: break
12: else if cost exceeded then
13: F ← F ∪ {r }
14: break
15: return T

candidate for a new test case t ′ that satisfies the requirement r . The
heuristic δ is a transformation function that maps a formula r with
operator ∃ to an optimisation problem. This step relies on concrete
execution.

After obtaining (t , r ), symbolic_analysis (Line 8), whose details
are in Section 8, is applied to obtain a new concrete input t ′. Then
a function validity_check (Line 9), whose details are given in Sec-
tion 9, is applied to check whether the new input is valid or not.
If so, the test is added to the test suite. Otherwise, ranking and
symbolic input generation are repeated until a given computational
cost is exceeded, after which test generation for the requirement is
deemed to have failed. This is recorded in the set F .

The algorithm terminates when either all test requirements have
been satisfied, i.e., R = ∅, or no further requirement in R can be
satisfied, i.e., F = R. It then returns the current test suite T .

Finally, as illustrated in Figure 1, the test suite T generated
by Algorithm 1, is passed to an oracle in order to evaluate the
robustness of the DNN. The details of the oracle are in Section 9.

7 RANKING COVERAGE REQUIREMENTS
This section presents our approach for Line 7 of Algorithm 1. Given
a set of requirementsR that have not yet been satisfied, a heuristic δ ,
and the current set T of test inputs, the goal is to select a concrete
input t ∈ T together with a requirement r ∈ R, both of which will
be used later in a symbolic approach to compute the next concrete
input t ′ (to be given in Section 8). The selection of t and r is done
by means of a series of concrete executions.

The general idea is as follows. For all requirements r ∈ R,
we transform r into δ (r ) by utilising operators argopt for opt ∈
{max,min} that will be evaluated by concretely executing tests
in T . As R may contain more than one requirement, we return the
pair (t , r ) such that

r = arg max
r
{val(t ,δ (r )) | r ∈ R}. (15)

Note that, when evaluating argopt formulas (e.g., arg minx a : e),
if an input t ∈ T is returned, we may need the value (minx a : e)

as well. We use val(t ,δ (r )) to denote such a value for the returned
input t and the requirement formula r .

The formula δ (r ) is an optimisation objective together with a set
of constraints. We will give several examples later in Section 7.1. In
the following, we extend the semantics in Definition 4.3 to work
with formulas with argopt operators for opt ∈ {max,min}, includ-
ing argoptxa : e and argoptx1,x2a : e . Intuitively, arg maxx a : e
(arg minx a : e , resp.) determines the input x among those satisfy-
ing the Boolean formula e that maximises (minimises) the value of
the arithmetic formula a. Formally,
• the evaluation of arg minx a : e on T returns an input t ∈ T
such that, T |= e[x 7→ t] and for all t ′ ∈ T such that
T |= e[x 7→ t ′] we have a[x 7→ t] ≤ a[x 7→ t ′].
• the evaluation of T |= arg minx1,x2 a : e on T returns two
inputs t1, t1 ∈ T such that, T |= e[x1 7→ t1][x2 7→ t2] and
for all t ′1, t

′
2 ∈ T such that T |= e[x1 7→ t ′1][x2 7→ t ′2] we

have a[x1 7→ t1][x2 7→ t2] ≤ a[x1 7→ t ′1][x2 7→ t ′2].
The cases for arg max formulas are similar to those for arg min, by
replacing ≤ with ≥. Similarly to Definition 4.3, the semantics is
for a set T of test cases and we can adapt it to a continuous input
subspace X ⊆ DL1 .

7.1 Heuristics
We present the heuristics δ we use the coverage requirements dis-
cussed in Section 5. We remark that, since δ is a heuristic, there
exist alternatives. The following definitions work well in our ex-
periments.

7.1.1 Lipschitz Continuity. When a Lipschitz requirement r as in
Equation (10) is not satisfied by T , we transform it into δ (r ) as
follows:

arg max
x1,x2

.| |v[x1]1 −v[x2]1 | | − c ∗ ||x1 − x2 | | : x1,x2 ∈ X (16)

I.e., the aim is to find the best t1 and t2 in T to make | |v[t1]1 −
v[t2]1 | | − c · | |t1 − t2 | | as large as possible. As described, we also
need to compute val(t1, t2, r ) = | |v[t1]1 −v[t2]1 | | − c · | |t1 − t2 | |.

7.1.2 Neuron Cover. When a requirement r as in Equation (11) is
not satisfied by T , we transform it into the following requirement
δ (r ):

arg max
x

ck · uk,i [x] : true (17)

We obtain the input t ∈ T that has the maximal value for ck ·uk,i [x].
The coefficient ck is a per-layer constant. It motivated by the

following observation. With the propagation of signals in the DNN,
activation values at each layer can be of different magnitudes. For
example, if the minimum activation value of neurons at layer k
and k + 1 are −10 and −100, respectively, then even when a neuron
u[x]k,i = −1 > −2 = u[x]k+1, j , we may still regard nk+1, j as
being closer to be activated than uk,i is. Consequently, we define a
layer factor ck for each layer that normalises the average activation
valuations of neurons at different layers into the same magnitude
level. It is estimated by sampling a sufficiently large input dataset.

7.1.3 SS Coverage. In SS Coverage, given a decision neuron nk+1, j ,
the concrete evaluation aims to select one of its condition neurons
nk,i at layer k such that the test input that is generated negates the
signs of nk,i and nk+1, j while the remainder of nk+1, j ’s condition
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neurons preserve their respective signs. This is achieved by the
following δ (r ):

arg max
x
−ck · |u[x]k,i | : true (18)

Intuitively, given the decision neuron nk+1, j , Equation (18) selects
the condition that is closest to the change of activation sign (i.e.,
yields the smallest |u[x]k,i |).

7.1.4 Neuron Boundary Coverage. We transform the requirement r
in Equation (19) into the following δ (r )when it is not satisfied by T ;
it selects the neuron that is closest to either the higher or lower
boundary.

arg maxx ck · (u[x]k,i − hk,i ) : true
arg maxx ck · (lk,i − u[x]k,i ) : true (19)

8 SYMBOLIC GENERATION OF NEW
CONCRETE INPUTS

This section presents our approach for Line 8 of Algorithm 1. That
is, given a concrete input t and a requirement r , we need to find
the next concrete input t ′ by symbolic analysis. This new t ′ will
be added into the test suite (Line 10 of Algorithm 1). The symbolic
analysis techniques to be considered include the linear program-
ming in [23], global optimisation for the L0 norm in [21], and a new
optimisation algorithm that will be introduced below. We regard
optimisation algorithms as symbolic analysis methods because, sim-
ilarly to constraint solving methods, they work with a set of test
cases in a single run.

To simplify the presentation, the following description may, for
each algorithm, focus on some specific coverage requirements, but
we remark that all algorithms can work with all the requirements
given in Section 5.

8.1 Symbolic Analysis using Linear
Programming

As explained in Section 4, given an input x , the DNN instance
N[x] maps to an activation pattern ap[x] that can be modeled
using Linear Programming (LP). In particular, the following linear
constraints [23] yield a set of inputs that exhibit the same ReLU
behaviour as x :

{uk, i =
∑

1≤j≤sk−1

{wk−1, j,i · vk−1, j} + bk,i | k ∈ [2,K], i ∈ [1..sk ]} (20)

{uk, i ≥ 0 ∧ uk, i = vk, i | ap[x]k,i = true,k ∈ [2,K), i ∈ [1..sk ]}
∪{uk, i < 0 ∧ vk, i = 0 | ap[x]k,i = false,k ∈ [2,K), i ∈ [1..sk ]}

(21)

Continuous variables in the LP model are emphasized in bold.
• The activation value of each neuron is encoded by the linear
constraint in (20), which is a symbolic version of Equation (2)
that calculates a neuron’s activation value.
• Given a particular input x , the activation pattern (Definition
4.1) ap[x] is known: ap[x]k,i is either true or false, which
indicates whether the ReLU is activated or not for the neu-
ron nk,i . Following (3) and the definition of ReLU in (1), for
every neuron nk,i , the linear constraints in (21) encode ReLU
activation (when ap[x]k,i = true) or deactivation (when
ap[x]k,i = false).

The linear model (denoted as C) given by (20) and (21) represents
an input set that results in the same activation pattern as encoded.
Consequently, the symbolic analysis for finding a new input t ′ from
a pair (t , r ) of input and requirement is equivalent to finding a new
activation pattern. Note that, to make sure that the obtained test case
is meaningful, an objective is added to the LP model that minimizes
the distance between t and t ′. Thus, the use of LP requires that the
distance metric is linear. For instance, this applies to the L∞-norm
in (6), but not to the L2-norm.

8.1.1 Neuron Coverage. The symbolic analysis of neuron coverage
takes the input test case t and requirement r on the activation of
neuronnk,i , and returns a new test t ′ such that the test requirement
is satisfied by the network instance N[t ′]. We have the activation
pattern ap[t] of the given N[t], and can build up a new activation
pattern ap′ such that

{ap′k,i = ¬ap[t]k,i ∧∀k1 < k :
∧

0≤i1≤sk1

ap′k1,i1
= ap[t]k1,i1 } (22)

This activation pattern specifies the following conditions.

• nk,i ’s activation sign is negated: this encodes the goal to
activate nk,i .
• In the new activation pattern ap′, the neurons before layer k
preserve their activation signs as in ap[t]. Though there may
exist multiple activation patterns that make nk,i activated,
for the use of LP modeling one particular combination of
activation signs must be pre-determined.
• Other neurons are irrelevant, as the sign of nk,i is only af-
fected by the activation values of those neurons in previous
layers.

Finally, the new activation pattern ap′ defined in (22) is encoded
by the LP model C using (20) and (21), and if there exists a feasible
solution, then the new test input t ′, which satisfies the require-
ment r , can be extracted from that solution.

8.1.2 SS Coverage. To satisfy an SS Coverage requirement r , we
need to find a new test case such that, with respect to the input t ,
the activation signs of nk+1, j and nk,i are negated, while other
signs of other neurons at layer k are equal to those for input t .

To achieve this, the following activation pattern ap′ is con-
structed.

{ap′k,i = ¬ap[t]k,i ∧ ap
′
k+1, j = ¬ap[t]k+1, j

∧∀k1 < k :
∧

1≤i1≤sk1

ap′k1,i1
= ap[t]k1,i1 }

8.1.3 Neuron Boundary Coverage. In case of the neuron boundary
coverage, the symbolic analysis aims to find an input t ′ such that
the activation value of neuron nk,i exceeds either its higher bound
hk,i or its lower bound lk,i .

To achieve this, while preserving the DNN activation pattern
ap[t], we add one of the following constraints to the LP program.

• If u[x]k,i − hk,i > lk,i − u[x]k,i : uk,i > hk,i ;
• otherwise: uk,i < lk,i .
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8.2 Symbolic Analysis using Global
Optimisation

The symbolic analysis for finding a new input can also be imple-
mented by solving the global optimisation problem in [21]. That is,
by specifying the test requirement as an optimisation objective, we
apply global optimisation to compute a test case that satisfies the
test coverage requirement.
• For Neuron Coverage, the objective is to find a t ′ such that
the specified neuron nk,i has ap[t ′]k,i =true.
• In case of SS Coverage, given the neuron pair (nk,i ,nk+1, j )
and the original input t , the optimisation objective becomes

ap[t ′]k,i , ap[t]k,i ∧ ap[t
′]k+1, j ,

ap[t]k+1, j ∧
∧
i′,i

ap[t ′]k,i′ = ap[t]k,i

• Regarding the Neuron Boundary Coverage, depending on
whether the higher bound or lower bound for the activation
of nk,i is considered, the objective of finding a new input t ′
is either u[t ′]k,i > hk,i or u[t ′]k,i < lk,i .

Readers are referred to [21] for the details of the algorithm.

8.3 Lipschitz Test Case Generation
Given a coverage requirement as in Equation (10) for a subspace X ,
we let t0 ∈ Rn be the representative point of the subspace X to
which t1 and t2 belong. The optimisation problem is to generate
two inputs t1 and t2 such that

| |v[t1]1 −v[t2]1 | |D1 − c · | |t1 − t2 | |D1 > 0
s.t. | |t1 − t0 | |D2 ≤ ∆, | |t2 − t0 | |D2 ≤ ∆

(23)

where | | ∗ | |D1 and | | ∗ | |D2 denote normmetrics such as the L0-norm,
L2-norm or L∞-norm, and ∆ is the radius of a norm ball (for the L1
and L2-norm) or the size of a hypercube (for the L∞-norm) centered
on t0. The constant ∆ is a hyper-parameter of the algorithm.

The above problem can be efficiently solved by a novel alternating
compass search scheme. Specifically, we alternate between solving
the following two optimisation problems through relaxation [19],
i.e., maximizing the lower bound of the original Lipschitz constant
instead of directly maximizing the Lipschitz constant itself. To do so,
we reformulate the original non-linear proportional optimisation
as a linear problem when both norm metrics | | ∗ | |D1 and | | ∗ | |D2
are the L∞-norm.

8.3.1 Stage One. We solve
min
t1

F (t1, t0) = −||v[t1]1 −v[t0]1 | |D1

s.t. | |t1 − t0 | |D2 ≤ ∆
(24)

The objective above enables the algorithm to search for an optimal
t1 in the space of a norm ball or hypercube centered on t0 with
radius ∆, maximising the norm distance of v[t1]1 and v[t0]1. The
constraint implies that sup | |t1−t0 | |D2 ≤∆

| |t1 − t0 | |D2 = ∆. Thus, a
smaller F (t1, t0) yields a larger Lipschitz constant, considering that
Lip(t1, t0) = −F (t1, t0)/| |t1− t0 | |D2 ≥ −F (t1, t0)/∆, i.e., −F (t1, t0)/∆
is the lower bound of Lip(t1, t0). Therefore, the search for a trace
that minimises F (t1, t0) increases the Lipschitz constant.

To solve the problem above we use the compass searchmethod [2],
which is efficient, derivative-free, and guaranteed to provide first-
order global convergence. Because we aim to find an input pair that

refutes the given Lipschitz constant c instead of finding the largest
possible Lipschitz constant, along each iteration, when we get t̄1,
we check whether Lip(t̄1, t0) > c . If it holds, we find an input pair
t̄1 and t0 that satisfies the test requirement; otherwise, we continue
the compass search until convergence or a satisfiable input pair
is generated. If Equation (24) is convergent and we can find an
optimal t1 as

t∗1 = arg min
t1

F (t1, t0) s.t. | |t1 − t0 | |D2 ≤ ∆

but we still cannot find a satisfiable input pair, we perform the Stage
Two optimisation.

8.3.2 Stage Two. We solve

min
t2

F (t∗1 , t2) = −||v[t2]1 −v[t
∗
1 ]1 | |D1

s.t. | |t2 − t0 | |D2 ≤ ∆
(25)

Similarly, we use derivative-free compass search to solve the above
problem and check whether Lip(t∗1 , t2) > c holds at each iterative
optimisation trace t̄2. If it holds, we return the image pair t∗1 and
t̄2 that satisfies the test requirement; otherwise, we continue the
optimisation until convergence or a satisfiable input pair is gener-
ated. If Equation (25) is convergent at t∗2 , and we still cannot find
such a input pair, we modify the objective function again by letting
t∗1 = t∗2 in Equation (25) and continue the search and satisfiability
checking procedure.

8.3.3 Stage Three. If the function Lip(t∗1 , t
∗
2 ) fails to make progress

in Stage Two, we treat the whole search procedure as convergent
and have failed to find an input pair that can refute the given
Lipschitz constant c . In this case, we return the best input pair
we found so far, i.e., t∗1 and t∗2 , and the largest Lipschitz constant
Lip(t∗1 , t2) observed. Note that the returned constant is smaller
than c .

In summary, the proposed method is an alternating optimisation
scheme based on compass search. Basically, we start from the given
t0 to search for an image t1 in a norm ball or hypercube, where
the optimisation trajectory on the norm ball space is denoted as
S(t0,∆(t0))) such that Lip(t0, t1) > c (this step is symbolic execu-
tion); if we cannot find it, we modify the optimisation objective
function by replacing t0 with t∗1 (the best concrete input found in
this optimisation run) to initiate another optimisation trajectory on
the space, i.e., S(t∗1 ,∆(t0)). This process is repeated until we have
gradually covered the entire space S(∆(t0)) of the norm ball.

9 TEST ORACLE
We provide details about the validity checking performed for the
generated test inputs (Line 9 of Algorithm 1) and how the test suite
is finally used to quantify the safety of the DNN.

Definition 9.1 (Valid test input). We are given a setO of inputs for
which we assume to have a correct classification (e.g., the training
dataset). Given a real number b, a test input t ′ ∈ T is said to be
valid if

∃t ∈ O : | |t − t ′ | | ≤ b . (26)

Intuitively, a test case t is valid if it is close to some of the inputs
for which we have a classification. Given a test input t ′ ∈ T , we
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Figure 2: Adversarial images, with L∞-norm for MNIST (top
row) and L0-norm for CIFAR-10 (bottom row), generated by
DeepConcolic and DeepXplore, the latter with image con-
straints ‘light’, ‘occlusion’, and ‘blackout’.

write O(t ′) for the input t ∈ O that has the smallest distance to t ′
among all inputs in O .

To quantify the quality of the DNN using a test suite T , we use
the following robustness criterion.

Definition 9.2 (Robustness Oracle). Given a set O of classified
inputs, a test case t ′ passes the robustness oracle if

arg maxj v[t ′]K, j = arg maxj v[O(t ′)]K, j (27)

Whenever we identify a test input t ′ that fails to pass this oracle,
then it serves as evidence that the DNN lacks robustness.

10 EXPERIMENTAL RESULTS
We have implemented the concolic testing approach presented in
this paper in a tool we have named DeepConcolic3. We compare it
with other tools for testing DNNs. The experiments are run on a
machine with 24 core Intel(R) Xeon(R) CPU E5-2620 v3 and 2.4 GHz
and 125GB memory. We use a timeout of 12 h. All coverage results
are averaged over 10 runs or more.

10.1 Comparison with DeepXplore
We now compare DeepConcolic and DeepXplore [18] on DNNs
obtained from the MNIST and CIFAR-10 datasets. We remark that
DeepXplore has been applied to further datasets.

For each tool, we start neuron cover testing from a randomly
sampled image input. Note that, since DeepXplore requires more
than one DNN, we designate our trained DNN as the target model
and utilise the other two default models provided by DeepXplore.
Table 2 gives the neuron coverage obtained by the two tools. We
observe that DeepConcolic yields much higher neuron coverage
than DeepXplore in any of its three modes of operation (‘light’,
‘occlusion’, and ‘blackout’). On the other hand, DeepXplore is much
faster and terminates in seconds.

Table 2: Neuron coverage of DeepConcolic and DeepXplore

DeepConcolic DeepXplore
L∞-norm L0-norm light occlusion blackout

MNIST 97.60% 95.91% 80.77% 82.68% 81.61%
CIFAR-10 84.98% 98.63% 77.56% 81.48% 83.25%

3The implementation and all data in this section are available online at
https://github.com/TrustAI/DeepConcolic
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Figure 3: Coverage results for different criteria

Figure 2 presents several adversarial examples found by Deep-
Concolic (with L∞-norm and L0-norm) and DeepXplore. Although
DeepConcolic does not impose particular domain-specific con-
straints on the original image as DeepXplore does, concolic testing
generates images that resemble “human perception”. For example,
based on the L∞-norm, it produces adversarial examples (Figure 2,
top row) that gradually reverse the black and white colours. For
the L0-norm, DeepConcolic generates adversarial examples similar
to those of DeepXplore under the ‘blackout’ constraint, which is
essentially pixel manipulation.

10.2 Results for NC, SCC, and NBC
We give the results obtained with DeepConcolic using the coverage
criteria NC, SSC, and NBC. DeepConcolic starts NC testing with one
single seed input. For SSC and NBC, to improve the performance,
an initial set of 1000 images are sampled. Furthermore, we only test
a subset of the neurons for SSC and NBC. A distance upper bound
of 0.3 (L∞-norm) and 100 pixels (L0-norm) is set up for collecting
adversarial examples.

The full coverage report, including the average coverage and
standard derivation, is given in Figure 3. Table 3 contains the ad-
versarial example results. We have observed that the overhead for
the symbolic analysis with global optimisation (Section 8.2) is too
high. Thus, the SSC result with L0-norm is excluded.

Overall, DeepConcolic achieves high coverage and, using the
robustness check (Definition 9.2), detects a significant number of
adversarial examples. However, coverage of corner-case activation
values (i.e., NBC) is limited.

Concolic testing is able to find adversarial examples with the
minimum possible distance: that is, 1

255 ≈ 0.0039 for the L∞ norm
and 1 pixel for the L0 norm. Figure 4 gives the average distance of
adversarial examples (from one DeepConcolic run). Remarkably, for
the same network, the number of adversarial examples found with
NC can vary substantially when the distance metric is changed.
This observation suggests that, when designing coverage criteria
for DNNs, they need to be examined using a variety of distance
metrics.

10.3 Results for Lipschitz Constant Testing
This section reports experimental results for the Lipschitz constant
testing on DNNs. We test Lipschitz constants ranging over {0.01 :
0.01 : 20} on 50MNIST images and 50 CIFAR-10 images respectively.
Every image represents a subspace in DL1 and thus a requirement
in Equation (10).
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(a) (b)

Figure 4: (a) Distance of NC, SSC,
and NBC on MINIST and CIFAR-
10 datasets based on L∞ norm;
(b) Distance of NC andNBC on the
two datasets based on L0 norm.

(a) (b) (c)

Figure 5: (a) Lipschitz Constant Coverage generated by 1,000,000 randomly generated test
pairs and our concolic testing method for input image-1 on MNIST DNN; (b) Lipschitz
Constant Coverages generated by random testing and our method for 50 input images
on MNIST DNN; (c) Lipschitz Constant Coverage generated by random testing and our
method for 50 input images on CIFAR-10 DNN.

Table 3: Adversarial examples by test criteria, distance metrics, and DNN models

L∞-norm L0-norm
MNIST CIFAR-10 MNIST CIFAR-10

adversary % minimum dist. adversary % minimum dist. adversary % minimum dist. adversary % minimum dist.
NC 13.93% 0.0039 0.79% 0.0039 0.53% 1 5.59% 1
SSC 0.02% 0.1215 0.36% 0.0039 – – – –
NBC 0.20% 0.0806 7.71% 0.0113 0.09% 1 4.13% 1

10.3.1 Baseline Method. Since this paper is the first to test Lips-
chitz constants of DNNs, we compare our method with random
test case generation. For this specific test requirement, given a pre-
defined Lipschitz constant c , an input t0 and the radius of norm
ball (e.g., for L1 and L2 norms) or hypercube space (for L∞-norm)
∆, we randomly generate two test pairs t1 and t2 that satisfy the
space constraint (i.e., | |t1 − t0 | |D2 ≤ ∆ and | |t2 − t0 | |D2 ≤ ∆), and
then check whether Lip(t1, t2) > c holds. We repeat the random
generation until we find a satisfying test pair or the number of rep-
etitions is larger than a predefined threshold. We set such threshold
as Nrd = 1, 000, 000. Namely, if we randomly generate 1,000,000
test pairs and none of them can satisfy the Lipschitz constant re-
quirement > c , we treat this test as a failure and return the largest
Lipschitz constant found and the corresponding test pair; otherwise,
we treat it as successful and return the satisfying test pair.

10.3.2 Experimental Results. Figure 5 (a) depicts the Lipschitz Con-
stant Coverage generated by 1,000,000 random test pairs and our
concolic test generation method for image-1 on MNIST DNNs. As
we can see, even though we produce 1,000,000 test pairs by ran-
dom test generation, the maximum Lipschitz converage reaches
only 3.23 and most of the test pairs are in the range [0.01, 2]. Our
concolic method, on the other hand, can cover a Lipschitz range
of [0.01, 10.38], where most cases lie in [3.5, 10], which is poorly
covered by random test generation.

Figure 5 (b) and (c) compare the Lipschitz constant coverage of
test pairs from the random method and the concolic method on
both MNIST and CIFAR-10 models. Our method significantly out-
performs random test case generation.We note that covering a large
Lipschitz constant range for DNNs is a challenging problem since
most image pairs (within a certain high-dimensional space) can

produce small Lipschitz constants (such as 1 to 2). This explains the
reason why randomly generated test pairs concentrate in a range
of less than 3. However, for safety-critical applications such as
self-driving cars, a DNN with a large Lipschitz constant essentially
indicates it is more vulnerable to adversarial perturbations [20, 21].
As a result, a test method that can cover larger Lipschitz constants
provides a useful robustness indicator for a trained DNN. We ar-
gue that, for safety testing of DNNs, the concolic test method for
Lipschitz constant coverage can complement existing methods to
achieve significantly better coverage.

11 CONCLUSIONS
In this paper, we propose the first concolic testing method for DNNs.
We implement it in a software tool and apply the tool to evaluate the
robustness of well-known DNNs. The generation of the test inputs
can be guided by a variety of coverage metrics, including Lipschitz
continuity. Our experimental results confirm that the combination
of concrete execution and symbolic analysis delivers both coverage
and automates the discovery of adversarial examples.
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