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Abstract

The hidden Markov framework is adapted to construct a compelling model for sim-

ulation of sub-daily rainfall, capable of capturing important characteristics of sub-daily

rainfall well, including: long dry periods or droughts; seasonal and temporal variation

in occurrence and intensity; and propensity for extreme values. These adaptations

include both clone states and temporally non-homogeneous state persistence probabil-

ities. Set in the Bayesian framework, a rich quantification of parametric and predictive

uncertainty is available, and thorough model checking is made possible through poste-

rior predictive analyses. Results from the model are highly interpretable, allowing for

meaningful examination of diurnal, seasonal and annual variation in sub-daily rainfall

occurrence and intensity. To demonstrate the effectiveness of this approach, both in

terms of model fit and interpretability, the model is applied to an 8-year long time

series of hourly observations.

Keywords: Extreme values; droughts; non-homogeneous; persistence; simulation; sub-

daily.
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1 Introduction

Severe flooding events, such as those that occurred in the UK in the winter of 2013-2014 and

the winter of 2015-2016, pose a great risk to society. For each winter, the total economic

damage caused by the flooding was estimated to be over one billion pounds (GBP) (Envi-

ronment Agency (2016), Environment Agency (2018)). Hydrological flood models play an

important role in mitigating this damage, for example by helping to inform the planning of

new flood defences and drainage systems, as well as integration with flood warning systems.

Typically, hydrological models are used to test the response of the hydrological system

to design-storms, which are intended to represent an idealised extreme rainfall scenario.

However, Chandler et al. (2014) argue that this approach is limited, in the first instance

because the temporal profile of the design-storm may fail to capture important characteristics

of system performance. Moreover, focusing on the response of the system to a single event

may be inadequate, as the risk of flooding posed by a single storm event depends strongly on

the antecedent conditions of the catchment (Chandler et al., 2014). For example, the risk of

flooding may depend on whether or not the catchment has already been saturated by recent

rainfall. For this reason, Chandler et al. (2014) argue that hydrological models should instead

use long rainfall time series generated from stochastic/probabilistic models as inputs, so that

the effects of both the rainfall intensity during a storm event and antecedent conditions can

be taken into account. In particular, Segond et al. (2007) argue that while daily rainfall

time series may be suitable as inputs for flood modelling in rural catchments, for urban

catchments a higher temporal resolution is necessary, as the response of the hydrological

system may develop on a shorter time-scale. This motivates the development of rainfall time

series models at sub-daily resolutions, e.g. hourly.

Modelling rainfall is challenging because its natural variability can dominate any seasonal

structures or long-term temporal trends, more so than other meteorological variables such

as temperature and wind (Chandler et al., 2014). For this reason, it is vitally important

to capture well the whole distribution of rainfall values, which is in itself a non-trivial task

due to the propensity of extremely high rainfall values. This is illustrated in the left plot

of Figure 1, which shows empirical quantiles of non-zero rainfall gauge observations from an

8-year hourly time series in Exeter, UK (Met Office, 2019). The heavy tail is especially clear

when comparing the highest hourly values (well over 20mm) to the 99% quantile, which is

only 5.2mm. Ensuring the model is capable of reproducing these extremes is essential in any

application where they are of great concern, such as surface flood modelling. An equivalent

return-level plot can be found in the supplementary material.

A further modelling challenge is the complex temporal structure in the occurrence of
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rainfall, which notably consists of long dry periods or droughts. To illustrate this, the right

plot in Figure 1 shows the empirical quantiles of dry period lengths (defined as periods

where the hourly rainfall value does not exceed 0.2mm). This distribution also has quite a

heavy tail, including several high values which may be considered extremes. Capturing these

extremes is equally important, particularly for applications where droughts are a concern,

such as agricultural planning.
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Figure 1: Left: Empirical quantiles of the hourly rainfall intensities (observations strictly

greater than 0mm) from the Exeter gauge time series. Right: Empirical quantiles of dry

period lengths (for this plot taken to be rainfall not exceeding 0.2mm in any given hour),

and theoretical quantiles of a Geometric fit (dashed line). Points: 99% empirical quantiles.

Finally, both rainfall intensity and occurrence can vary substantially by season. In the UK

for instance, summer rainfall extremes tend to be more severe than in the winter (Chandler

et al., 2014). For this reason, care should be taken to ensure model simulations accurately

reflect the time of year.

In this article we propose a flexible model, based on advanced hidden Markov latent

states, which is capable of capturing key features of sub-daily rainfall well:

• Diurnal (time of day), seasonal, and temporal variation in occurrence and intensity;

• Long dry periods (which vary with time and season);

• Extreme values (which vary with time and season).

Given that such stochastic rainfall models are often used in decision making (e.g. warnings)

or as inputs to physical models (e.g. hydrological), a further requirement is that parametric

uncertainty is fully quantified and propagated into the simulations. To achieve this we
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implement the proposed model in the Bayesian hierarchical framework. Applied to 8 years

of hourly rainfall gauge data, we demonstrate using posterior predictive model checking how

our proposed model performs well overall and specifically with respect to capturing these

three features.

The article is structured as follows: Section 2 gives an overview of existing approaches

to stochastic/statistical modelling of rainfall, highlighting their strengths and limitations.

In Section 3, we propose a flexible model for sub-daily rainfall gauge time series, which we

then apply to an 8-year long time series of hourly observations. In Section 4, we present

extensive model checking and an analysis of model output. Finally, the article ends with a

critical discussion of our approach in Section 5.

2 Background

In the previous section we outlined features of rainfall occurrence and intensity, namely long

dry periods and extremely high values, which make modelling challenging. The literature on

statistical modelling of rainfall is vast, and comprehensive reviews are available in Chandler

et al. (2014) and Wilks and Wilby (1999). Here we seek only to give a brief overview to

establish our contribution. To this end, we focus on approaches which take into account the

temporal structure of rainfall and those which model both occurrence and intensity. Most

of these can be roughly separated into two classes: direct and indirect rainfall models.

2.1 Direct rainfall models

The first way of modelling rainfall time series is to characterise the occurrence and amount

of rainfall at a given time as random quantities, arising directly from some probabilistic

framework – typically some form of regression.

One such approach (e.g. Yang et al. (2005)) consists of two Generalized Linear Models

(GLM) (Dobson and Barnett, 2018), one for occurrence and one for intensity. First the data

(typically daily rainfall) is transformed into a sequence of 0s (zero rainfall) and 1s (greater

than zero rainfall). The model for occurrence is then a logistic regression for the probability

of rain pi on time step i:

log

(
pi

1− pi

)
= x′iβ. (1)

where β is a vector of coefficients corresponding to covariates xi. Then, conditional on

the occurrence of rain, the mean amount of rain for wet day j is modelled by a Gamma
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regression:

log(λj) = ξ′jγ. (2)

where γ is a vector of coefficients corresponding to covariates ξj. The shape parameter is

assumed constant.

Covariates xi and ξj can include climatological variables such as the North Atlantic

Oscillation (NAO), and seasonal variation can be captured through covariates such as the

month. Temporal structure can be introduced in the model for occurrence by including in

xi binary variables representing the occurrence of rain in the previous k days, equivalent to

a k-order Markov model (Yang et al., 2005). Similarly, ξj can include the rainfall amount

from previous days to induce temporal structure in rainfall intensity.

An advantage of this approach is that, set in the GLM framework, models can be imple-

mented quickly, both in terms of the computational cost of fitting and the relatively little

coding required to construct and modify them. Furthermore, these models have been ex-

tended to incorporate spatial structures, for applications to data from multiple sites (Yang

et al., 2005). Further extensions involve temporally structured random effects (Glasbey and

Nevison, 1997) and distributions outside the exponential family (Serinaldi and Kilsby, 2012).

However, the main downside of this approach is that the models for occurrence and

intensity are separated. This may be a valid approach for coarser temporal resolutions (e.g.

daily rainfall), but for sub-daily rainfall it may result in failure to capture important patterns.

For example, following a period of no rainfall, the arrival of a storm might lead to initially

low rainfall intensity, which increases over a few hours before reaching a maximum and then

decreasing. Being able to simulate such patterns may be essential for testing the response

of a drainage system to a severe storm, for instance.

2.2 Indirect rainfall models

An alternative approach is to instead stochastically model the larger structures which gen-

erate rainfall, such as storm events. Given the occurrence of such structures, the amount of

rainfall over a time period is then deterministic, based on some simplifying assumptions (see

for instance Rodriguez-Iturbe et al. (1987)). Several parameters control different aspects of

the model, such as storm event duration, frequency of occurrence, and intensity. Through

these parameters, it is possible to tune the model to capture certain properties of the ob-

served data, such as the length of dry periods, temporal dependence and the distribution of

non-zero rainfall.

Whilst these approaches consist of few parameters and are in some sense based on physical

justification, the absence of a likelihood function on which to base inference makes imple-
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mentation challenging. Thus it is often necessary to rely on alternative methods of imple-

mentation, such as by maximising objective functions (potentially missing out on parametric

uncertainty) or by employing Approximate Bayesian Computation (ABC), which requires

the careful selection of summary statistics (Aryal and Jones, 2017). Furthermore, it is not

evident that these approaches are able to reproduce extreme rainfall values well, a feature

which Chandler et al. (2014) argue is lacking in the sub-daily rainfall modelling literature.

For comprehensively capturing multiple aspects of rainfall time series, we argue that di-

rect characterisation of the distribution offers a more flexible framework than indirect mod-

elling, for example by allowing different aspects of rainfall (e.g. the persistence of dry periods)

to be characterised as a function of various temporal structures, including seasonality. In

addition, model implementation, expansion, and checking are much more straightforward,

as illustrated in Section 4. For these reasons, we pursue a fully probabilistic framework to

directly model the distribution of rainfall in time.

2.3 Hidden Markov models (HMMs)

A further family of direct probabilistic models that has been used extensively for rainfall

data (e.g. Kim and Lee (2017), Rayner et al. (2016)), to capture temporal structures in

both rainfall occurrence and intensity, is hidden Markov models (HMMs). In HMMs, a

hidden, unobservable quantity zt varies over discrete time steps, alternating between a finite

number Z of values or states zt ∈ {S1, ...SZ}. Variable zt is a discrete Markov chain, whose

evolution over time is probabilistic, governed by a transition matrix P of probabilities. The

particular state the hidden variable is in at a given time step affects (the parameters of) the

conditional model for the observed quantity, which in the case of rainfall translates to the

model(s) for occurrence and intensity.

HMMs are useful for rainfall because they can capture its temporal behaviour through the

Markovian structure of the latent chain, without the need to explicitly include climatological

structures, such as the arrival of weather fronts, or other physical processes. However in the

same vain as indirect rainfall models they offer a high degree of interpretability, in that the

latent states can represent weather features such as dry periods or different stages in the

arrival of storms. This is aided by the fact that occurrence and intensity are both driven by

the same latent states.

Conventional HMMs for rainfall often suffer from a number of shortcomings, such as

underestimation of the length of long dry periods (Chandler et al., 2014). However, their

flexibility as a framework, afforded by the freedom to specify virtually any conditional model

for occurrence and intensity, means that it may be possible to address these issues through
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a number of extensions. Based on this idea, in the subsequent section we will present our

approach to modelling rainfall gauge data, which we argue is capable of capturing all the

key features of sub-daily rainfall time series identified in Section 1.

3 Methodology

It is instructive to begin by defining a basic and generic HMM for rainfall. Capturing the

whole distribution (tails and bulk) of rainfall well is challenging, but one way of doing so is

through a discrete mixture of, say Z = 3, distributions. These can be interpreted as rainfall

severity states, i.e. “dry”, “wet”, “wetter”. Here “dry” is defined as a period of zero or very

little rainfall, and “wet” is defined as a period of predominantly non-zero rainfall. A discrete

random quantity zt ∈ {1, 2, 3} is used to characterize the distribution of rainfall xt as:

p(xt) =
Z∑
j=1

1(zt = j)p(xt|zt). (3)

where 1 is the identity function, and p(xt|zt) is the conditional distribution of rainfall xt

for each state. HMMs allow for temporal dependence by assuming that zt is an unobserved

discrete Markov chain, so that temporal structure is introduced in the persistence of each

state. This is parametrised by a transition matrix P = {pi,j} where pi,j = Pr(zt = j|zt−1 = i).

Such models are conventionally homogeneous, meaning that the transition between states

in the HMM is time invariant. However, this does not allow for the effect of seasonal variation

or climatological covariates on the temporal structure of rainfall. Several articles (such as

Spezia (2006), Meligkotsidou and Dellaportas (2011) and Antonello and Roberto (2012)) have

instead presented non-homogeneous hidden Markov models (NHMMs), where covariates are

used to characterise the parameters of the transition matrix. This added flexibility could be

used to allow for seasonal or long term heterogeneity in the temporal structure of rainfall.

Additionally, HMMs are restricted by the fact that the number of time steps that the

hidden variable zt persists in a given state is implicitly Geometrically distributed. The right

plot of Figure 1 illustrates that Exeter’s dry period length distribution has a very heavy tail,

with several dry periods lasting hundreds of hours. This would be a concern if the HMM

consists of only one dry state and hence relies on an implicit Geometric model to capture

this distribution, which we illustrate by also plotting a method of moments Geometric fit to

the dry period lengths.

Including additional unique ‘dry states’, which the hidden state parameter could transi-

tion between, may introduce sufficient flexibility to capture the longest dry periods. However,
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this would impede the physical interpretability of the model and potentially introduce iden-

tifiability issues. In the case that the dry period distribution is seasonally varying, then some

improvement may be possible by introducing non-homogeneity in the dry state, though this

may still be insufficient.

A more potent solution would instead be to use a hidden semi-Markov model (HSMM),

where the persistence distribution is explicitly defined and thus can be chosen to have a

heavier tail. However, HSMMs are often impractical and too computationally expensive to

implement. This is especially true when the total number of time steps T is large, as many of

the implementation methods have an algorithmic order O(Z2T 2) or even O(Z2T 3), compared

to only order O(Z2T ) for HMMs. Often, an upper bound is imposed on the persistence time

distribution prior to fitting the model, to ensure computational feasibility (Economou et al.,

2014). However, this strong prior statement about the persistence distribution can lead

to invalid parameter estimates (Dewar et al., 2012). While this issue can be overcome by

making the restriction adaptive in the implementation process, the method is still of far

greater computational complexity than the basic HMM.

Once an appropriate choice of temporal structure is made, it remains to specify the

conditional rainfall model. This usually involves the mixture of a Bernoulli quantity, repre-

senting the occurrence of rainfall, and a strictly positive quantity, representing the intensity

of rainfall, conditional on occurrence. The choice of distribution for the intensity is made

difficult by the presence of extremely high observations. For many uses of output from a

statistical rainfall model, including urban flood modelling, the risk posed by these extreme

events are of particular concern. Furrer and Katz (2008) argue that the commonly used

Gamma distribution is not able to capture these extremes well. Other examples include the

Weibull distribution (Bruno et al., 2008), although Furrer and Katz (2008) concluded that

this distribution is also inadequate.

Several approaches, such as Li et al. (2012) aim to better capture extremes by mixing

a more typical distribution, in this case the Exponential distribution, with the Generalised

Pareto distribution for values above a given threshold, which is estimated by imposing a con-

tinuity constraint on the two distributions. However, Furrer and Katz (2008) also found that

these approaches, while still performing better than the Gamma and Weibull distributions,

are not able to capture well the likelihood of extreme values.

In what follows, we present an extended HMM-based framework that is flexible enough

to adequately capture both temporal persistence and extremes in rainfall while retaining

interpretability.
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3.1 Clone states and non-homogeneity

We begin by considering the basic three-state HMM introduced earlier. One state is intended

to capture dry periods, while the remaining two are intended to capture wet periods. These

wet states may end up representing periods of low and high rainfall intensity, respectively,

or may differ in how long they last or how often they occur. The HMM structure for zt is

defined by an initial state probability vector P0 and a transition matrix P :

P =

 p q1(1− p) q2(1− p)
r1,0 r1,1 r1,2

r2,0 r2,1 r2,2

 . (4)

For reasons that will soon be clear, we parametrise the first row (corresponding to the

dry state) in terms of the probability of remaining in the dry state (p), and the conditional

(on a transition out of the dry state) probabilities of transitioning into each wet state, q1

and q2 such that q1 + q2 = 1. As discussed in Section 2, a restriction of this model is that

the length of time spent in the dry state has an implicit Geometric(p) distribution, which

may not be sufficiently flexible to capture long dry periods. For a long time series, such

as t = 1, . . . , 70128 hours in our application later on, an HSMM framework is prohibitively

computationally expensive, so here we look for ways to retain the practicality of HMMs while

making them more flexible in terms of capturing long persistence periods.

Zucchini et al. (2017) present a way of achieving a more flexible persistence distribution

for a given state, without losing the convenience of the HMM framework, which we discuss

here in the context of the basic HMM for rainfall. For clarity of exposition, denote the dry

state as d and the wet states as wj, for j = 1, 2. The idea is to introduce a number of “clone”

dry states d1, . . . , dD, which are all identical to each other and to the original dry state d

in the sense that they all have the same conditional model. The transition matrix is then

defined in such a way that transitions from wj are only possible to the first clone state d1.

From here, the hidden chain can persist in the first clone state d1 with probability p1, or

transition to wj, or transition to the second clone state d2. If the chain transitions to d2, it

can remain there with probability p2, or transition to wj, or to the next clone state d3, and

so on. The motivation behind this approach is that, while the number of time steps spent

in each of the clone states is still Geometric, the total amount of time spent in any of the

clone states before transitioning to another unique state wj is a more flexible distribution –

essentially a weighted sum of Geometric distributions. Note that the dry state d is now only

implicitly defined in the sense that all clone states relate to the same conditional model for

“dryness” (low or zero rainfall).
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Here we also employ an approach that is based on the introduction of clone states.

However, our formulation is such that it allows for modelling flexibility, particularly in terms

of introducing temporal non-stationarity in the persistence of the dry state. To that end we

consider the following constrained transition matrix:

P =



p1 0 . . . 0 q1(1− p1) q2(1− p1)
0 p2 . . . 0 q1(1− p2) q2(1− p2)
...

...
. . .

...
...

...

0 0 . . . pD q1(1− pD) q2(1− pD)

v1r1,0 v2r1,0 . . . vDr1,0 r1,1 r1,2

v1r2,0 v2r2,0 . . . vDr2,0 r2,1 r2,2


. (5)

Here, transitions are possible from wet states wj into any of the clone dry states di, while

no transitions between the clone states are possible. The latter is achieved by constraining

the off-diagonal entries of the first D rows and columns to be zero. As such, while the dry

state persistence distributions are each Geometric(p), parameter p can now be thought of

as a (categorical) random quantity taking values in {p1, p2, . . . , pD} such that the marginal

distribution for the time spent in the implicit dry state is, like the approach in Zucchini et al.

(2017), a more flexible Geometric mixture.

To ensure that it is possible to interpret the clone dry states as a single state, further

constraints are imposed on the transition matrix: First, conditional on a transition from

a dry state to a wet state, the transition probabilities (q1 and q2) into each wet state are

invariant of the dry state. Second, conditional on a transition from a wet state to a dry

state, the transition probabilities (v1, ..., vD) into each dry state are invariant of the wet state.

These are in addition to the constraint that the conditional model for rainfall occurrence

and intensity is the same for all of the dry states.

This approach is equivalently flexible to the one from Zucchini et al. (2017), in the sense

that it can better capture heavy tailed persistence distributions. This implies that, without

sacrificing the physical interpretability of having only one dry state, or the practicality of the

HMM framework, extra flexibility is afforded to potentially better capture the longest dry

periods. However, as the parameters of the transition matrix are time-constant, the model

can’t capture seasonal or annual variation in the expected length of dry periods which may

be, for example, longer on average in the summer than in the winter. The advantage of our

approach is that it is straightforward to directly model the dry state persistence probabilities

p1, ..., pD as temporally-varying. One way of achieving this is a logistic model for the dry
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state persistence probabilities:

log

(
pd(t)

1− pd(t)

)
= u(t, d). (6)

Here u(t, d) represents a general model of time t = 1, ..., T and hidden state d = 1, ..., D,

which may also include covariate effects, including large-scale climate indices such as the

North Atlantic Oscillation (NAO).

For our application to the Exeter data, we characterise u(t, d) by combining an intercept

term ι(d), which is different for each clone dry state, and a number of penalised splines and

random effects which are common across clone states:

u(t, d) = ι(d) + a1(t) + a2(t) +ma(t) + ya(t). (7)

Function a1(t) is a cyclic (the two end points have equal value) cubic spline of the time-

of-day, which is intended to capture the diurnal cycle in the dry period length. Function

a2(t) is also cyclic but for the time-of-year, aimed at capturing smooth seasonal variation,

while ma ∼ N(0, δ2ma) are i.i.d. monthly random effects (one for each month, e.g. the

‘January’ effect is shared across all Januaries in the time series), which aim to capture non-

smooth within-year structured variability. Lastly, ya ∼ N(0, δ2ya) are i.i.d. yearly random

effects aimed at capturing non-smooth between-year variability. The use of both splines and

random effects affords the model flexibility to capture different (smooth and non-smooth)

dry period persistence structures which may occur in different climatic conditions, but also

to better capture very long dry periods.

Choosing the number of latent states is, to a certain degree, subjective. In general,

more states will result in a better fit to the data, but care needs to be taken to avoid over-

parametrisation and over-fitting. In general, we advocate starting with the smallest number

of states appropriate to the application (e.g. one dry state and one wet state), to be increased

only in response to model checking inadequacy. The aim is to choose the smallest number

of clone states with which the observed dry-state persistence is captured well, and also the

smallest number of wet states with which the marginal rainfall distribution is captured well.

3.2 Conditional rainfall model

Having specified a non-stationary (non-homogeneous) and essentially semi-Markovian latent

structure, it remains to define a conditional model for rainfall occurrence and intensity. First

recall the notation zt, the latent state at any given time point. Continuing with our three

state example, zt takes only 3 values (dry, wet, wetter), noting that the dry state is made
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up of D clone dry states, among which the conditional model is the same.

As zero rainfall is generally a common observation (approximately 88% of all observations

in the Exeter time series), it makes sense to mix a continuous distribution for rainfall intensity

with a probability mass at zero. This probability of zero rainfall, πt, should vary with the

latent state zt – for example it should be higher in the dry state than in the wet states – and

may also vary with time and/or climatological covariates. We achieve this by employing a

logistic model for πt:

log

(
πt

1− πt

)
= v(t, zt). (8)

For our application to the Exeter gauge, we once again employ a combination of random

effects and smoothing splines:

v(t, zt = dry) = η(dry) + b1(t) + b2(t) +mb(t) + yb(t); (9)

v(t, zt = wet) = η(wet); (10)

v(t, zt = wetter) = η(wetter), (11)

where in the same vain as (7) the dry state zero-probability is a sum of a smooth time-of-day

spline b1(t), a smooth time-of-year spline b2(t), monthly i.i.d. Gaussian random effects mb(t)

with variance δ2mb , and yearly random effects yb(t) with variance δ2yb . Parameter η(zt) is an

intercept term, noting that the two wet states do not have any temporal structure in the

model for the zero probability. This modelling choice was made after including equivalent

temporal structures in (10)–(11) as in (9), but concluding these were not capturing anything

on the basis of credible interval widths.

As discussed previously, there are many choices for the distribution of rainfall intensity,

including Gamma, Weibull, Log-Normal and hybrid distributions. One of the key advantages

of the approach we advocate is that it is possible to choose from any of these or other

distributions, even using different distributions for each state if desired. Recalling that one

of our key modelling aims is to capture extreme values well, we opt for a zero-location

(zero-threshold) Generalized Pareto distribution (GPD) model, with scale parameter σt:

log
(
σt(zt = dry)

)
= α(dry); (12)

log
(
σt(zt = wet)

)
= α(wet) + c1(t,wet) + c2(t,wet) +mc(t,wet) + yc(t,wet); (13)

log
(
σt(zt = wetter)

)
= α(wetter) + c1(t,wetter) + c2(t,wetter) +mc(t,wetter) (14)

+ yc(t,wetter);
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and with shape parameter ξt:

ξt(zt = dry) = γ(dry); (15)

ξt(zt = wet) = γ(wet) + g1(t,wet) + g2(t,wet) +mg(t,wet) + yg(t,wet); (16)

ξt(zt = wetter) = γ(wetter) + g1(t,wetter) + g2(t,wetter) +mg(t,wetter) (17)

+ yg(t,wetter).

Once more we make use of time-of-day (c1(t, zt) and g1(t, zt)) and time-of-year (c2(t, zt)

and g2(t, zt)) smooth splines, alongside monthly (mc(t, zt) and mg(t, zt)) and yearly (yc(t, zt)

and yg(t, zt)) random effects, to capture inhomogeneity. Note that no temporal structure is

assumed for the shape and scale parameters in the dry state, again a choice made in response

to model checking.

The inclusion of independent splines and random effects for each state in all of the

parameters of the conditional model (in this case πt, σt and ξt) offers a high degree of

flexibility for capturing diurnal, seasonal and temporal variation in the rainfall distribution.

Moreover, capturing between-year variability with random effects (both here and in the dry

state persistence) presents the opportunity to simulate effects for ‘new’ years from N(0, δ2y).

This allows for a broader understanding of how rainfall, and any hydrological consequences,

may vary in ‘mild’ and ‘severe’ years, compared to simulating new years with identical annual

properties to the data.

In our dataset, the hourly observations are rounded to the nearest 0.2mm, which means

that the likelihood should be adjusted accordingly. For example, if a rainfall observation

is 2mm, the contribution to the likelihood should not just be the GPD density f(2mm; ...),

but should instead be P (1.9mm < X ≤ 2.1mm | ...). Furthermore, we truncate the GPD at

0.1mm such that the zero probability accounts for all values less than 0.1mm (which would

be rounded to zero), such that the complete density function is:

f(x; π, σ, ξ) =

π x = 0

(1− π)F (x+0.1)−F (x−0.1)
1−F (0.1)

x = 0.2, 0.4, ...
(18)

F (x;σ, ξ) = 1−
(

1 +
ξx

σ

)− 1
ξ

, (19)

where F is the cumulative distribution function of the zero-location GPD.
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3.3 Prior distributions and implementation

We apply the model to hourly observations from the Exeter International Airport rainfall

gauge, a time series of 70128 values spanning the 8-year period 2010 to 2017. To keep

the model as general as possible, we specified uniform Dirichlet(1) prior distributions for

transition matrix parameters q, v, r1 = {r1,0, r1,1, r1,2} and r2. We also specified non-

informative Normal(0, 102) prior distributions for the intercept parameters ι(d), η(zt), α(zt),

and γ(zt), where we use d = 1, 2, 3 clone dry states. However, a common problem with

hidden Markov models is label switching, where the conditional models of one or more

states swap. When this happens, the overall model is the same but parameter inference

is convoluted, especially in a Bayesian implementation where Markov Chain Monte Carlo

(MCMC) is employed. To prevent this, we impose the following constraints on the intercept

parameters:

ι(1) > ι(2) > ι(3); (20)

η(dry) > max(η(wet), η(wetter)); (21)

σ0(wetter)(2ξ0(wetter) − 1)ξ0(wetter)−1 > σ0(wet)(2ξ0(wet) − 1)ξ0(wet)−1. (22)

These constraints relate to the intercepts, i.e. constrain what happens on average (since

all temporal structures are centered at zero). They do not really restrict the model, they

simply a) order the clone dry states (20), b) specify that the dry state will on average have

higher probability of zero rainfall than the two wet states (21), and c) ensure the overall

median rainfall implied by the intercepts (i.e. σ0 = exp(α) and ξ0 = γ) is higher in the

wetter state than in the wet state (22).

All splines were set up using the jagam function in the mgcv package for the programming

language R (R Core Team, 2019). We specified 8 equidistant knots for the time-of-day splines

and 6 for the time-of-year splines. For each spline, the coefficients are assigned Multivariate-

Normal priors (Wood, 2016) where the covariance matrix is scaled by a parameter ν2 (unique

for each spline), which acts as a smoothing penalty (where smaller values of ν2 correspond

to a stricter penalty or more smoothing). More generally, this penalty is intended to avoid

over-fitting, but here we would like spline effects to be quite smooth, leaving any non-

smooth structured variability to be captured by the monthly and yearly random effects, and

any short to medium term variability to be captured by the HMM latent state zt. Thus for

each ν we specified a Half-Normal(0,
√

2
2
) prior, which corresponds to a modest smoothness

penalty. The same Half-Normal priors were assigned to the random effect standard deviation

parameters (δmb and so on).
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The model was implemented using the nimble package (de Valpine et al., 2017), a com-

prehensive suite for flexible MCMC inference. In this case, we needed to create a custom

likelihood function that incorporates a version of the recursive forward algorithm used to

compute the marginal likelihood in HMMs (Scott, 2002), thus avoiding sampling the latent

states. The algorithm was adapted to allow for a temporally-varying transition matrix. We

ran four MCMC chains in parallel, each for a total of 20k iterations, and discarded the first

10k as burn-in. After thinning by 10, we obtain 4000 samples in total. Owing to the com-

plexity and size of the model (70128 hours of data), the model takes just over 12 hours to

run on a high-end desktop in 2019. Each chain was randomly initialised and was assigned

a different random number generator seed. Convergence of the four chains was assessed by

visual inspection of trace plots and by computing the Potential Scale Reduction Factor (MP-

SRF) (Brooks and Gelman, 1998) for the following parameters: the initial state probability

P0; static transition matrix parameters (q, v, r1 and r2), all the intercepts (ι, η, α and γ);

and all the spline coefficients and random effects. This metric compares the within-chain

and between-chain variance. Similar variance values typically result in a PSRF close to 1.

Starting from different initial values and obtaining a PSRF close to 1 (less than 1.05 by

convention) is a good indication of convergence. Here, the median PSRF across this set of

parameters was 1.00, with a mean of 1.01, suggesting the chains have converged. All of the

code to prepare and run the model is provided as supplementary material.

4 Model Checking and Results

In this section we assess model performance through comprehensive model checking and

analysis of some key results. We simulate a new time series of length 70128, x̃, from each

posterior sample to obtain 4000 simulated time series. The general principle of model check-

ing then relies on assessing whether certain characteristics of the observed values x are

extreme relative to simulations from the model (Gelman et al., 2014).

4.1 Persistence and temporal dependence

We begin by assessing long dry periods, one of the three key characteristics of rainfall identi-

fied as important in Section 1. We define dry periods in two ways: 1) periods of consecutive

zero rainfall values and 2) periods where rainfall does not exceed 0.2mm in any hour. Then,

for each simulated time series x̃, we calculate the quantiles (in increments of 0.5%) of the

dry period durations. Figure 2 shows the median predicted dry period quantiles, with 95%

prediction intervals, compared to the observed quantiles for both dry-period definitions. The

15



model generally captures the dry-period duration distributions very well, with the median

values tracking the observed values (diagonal line) closely up until the last few quantiles,

which are still contained within the 95% prediction intervals.
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Figure 2: Median simulated quantiles of the durations of periods of zero rainfall (left),

periods where rainfall does not exceed 0.2mm in any one hour (centre) and periods of non-

zero rainfall (right), compared to observed duration quantiles for each, and with associated

95% prediction intervals.

In developing our approach, we found that the inclusion of ‘clone’ dry states made a

dramatic improvement over the baseline HMM in capturing these distributions well – in fact

the baseline was not able to capture any part of these distributions remotely well. However,

it wasn’t quite good enough until we allowed the dry persistence probabilities to vary with

time. Recall that we did not include any clone wet states or non-stationarity in the ‘wet’

part of the transition matrix, so it is also important to check that the persistence of wet

periods (defined as periods of consecutive non-zero rainfall values) is captured well. The

median predicted quantiles of wet period durations are also shown in Figure 2 (right), and

once more the whole distribution is captured very well.

We move on to assessing the temporal dependency structure, by considering the joint

probability of rainfall exceeding some level l (mm) at two different time points separated

by a lag of k ≥ 1 hours, i.e. ωl,k = P (Xt > l,Xt+k > l). We estimate this quantity for

the observed data as the associated empirical frequency termed ω̂l,k and also for each of the

j = 1, . . . , 4000 simulated rainfall time series, termed ω̃
(j)
l,k . For each l and k, ω̂l,k is compared

to the posterior predictive distribution constructed from ω̃
(j)
l,k . To that end, the proportion of

simulated values less than or equal to the observed value, hl,k = (1/4000)
∑4000

j=1 1(ω̃
(j)
l,k ≤ ω̂l,k),

is calculated and then converted to a tail area probability by taking 1− hl,k if hl,k > 0.5. As

such, values of hl,k close to zero indicate ωl,k is not well-captured. E.g., hl,k < 2.5% means
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that ω̂l,k is outside the 95% prediction interval. Figure 3 shows the tail area probabilities

for l = 0.2, 0.4, . . . , 5.2mm, where 5.2mm is the 99% quantile of the observed non-zero

rainfall value, and for k = 1, 2, . . . , 12 hours. Different colours/shades represent different hl,k

values, while solid, dashed and dotted lines are contours at 2.5%, 5% and 10%, respectively.

Generally, we would be concerned by values systematically less than 2.5% (the solid line),

while values greater than 10% (the dotted line) are well within the bulk (80% prediction

interval) of the predictive distribution. The leftmost region of the plot indicates a large

area, encompassing one hour and two hour lags, where hl,k is close to zero. Specifically,

the simulated joint probabilities in this region are too low, suggesting short-term temporal

dependence is too weak. Elsewhere, however, hl,k is higher (with the exception of a few non-

systematic patches, where the simulated joint probabilities are too high), meaning that apart

from the very short term (1-2 hours), the model is generally able to capture the temporal

dependency structure of the rainfall data well. We discuss one consequence of not capturing

short-term dependence and how it might be improved in Section 5.

4.2 Seasonal and annual distributions

Whilst capturing the whole distribution of hourly rainfall values well, including extremes, can

be challenging in itself, an even greater challenge is capturing this distribution as it varies by

season. For example, many models overestimate extremes in the winter and underestimate

them in the summer (Chandler et al., 2014).

First we check that the model is able to capture seasonal variation in the occurrence of

rainfall. Figure 4 shows density plots of the proportion of zero values in each calendar season

from the simulated time series x̃, compared to the proportions in the observed values. All of
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Figure 4: Density plots of the proportion of hours with zero rainfall, from 4000 simulated

8-year time series, by calendar season. The vertical lines represent the observed proportions.

the observed values are captured quite well. For example, the model captures the increased

proportion of zeros in the summer compared to the winter, so it’s clear that the model is

able to reproduce seasonal variation in rainfall occurrence.

Next we check whether the model is able to capture seasonal variation in rainfall intensity.

We do this for each season, by looking at quantile-quantile (Q-Q) plots of the sample quantiles

(x-axis) and predicted quantiles (y-axis), defined as the median of the predictive distribution

of each quantile. We also include the 95% prediction interval of each quantile and a 45◦ line.

For adequate model fit, we would expect the points to be close to (but not exactly on) the

line, and the line to be within the 95% prediction intervals. Figure 5 shows such a Q-Q plot

for hourly rainfall values in each season. Clearly the distribution of rainfall values varies

greatly by season, with higher (and more extreme) rainfall values in the summer and the

autumn than in the winter and the spring. Despite this variation, the model is able to

capture each season’s distribution very well, all the way up to the extremes, especially given

only two wet states were used. The model also performs generally well in capturing the

distribution of hourly rainfall grouped by calendar month, owing to the inclusion of random

effects, as illustrated by relevant Q-Q plots provided as supplementary material.

Lastly, Q-Q plots for rainfall values within each of the 8 years are shown in Figure 6.

We note that all points are within the 95% prediction intervals and that there are a similar

number of years where the few highest simulated quantiles are too high (2011, 2013) and years

where the quantiles are too low (2010, 2014, 2016), suggesting the model is fitting individual

years well, but not necessarily reproducing the data exactly. To check for over-fitting, one

option would be to compare data from an out-of-sample year to simulations generated with

new yearly effects y (drawn from their corresponding random effect distributions N(0, δ2y)

using Monte Carlo).
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Figure 5: Median simulated versus observed non-zero rainfall quantiles (in increments of

0.1%), from 4000 simulated 8-year time series, by calendar season and with associated 95%

prediction intervals.

4.3 Daily and monthly rainfall checking

For some applications it may also be important to check that the model captures the cu-

mulative rainfall over a longer time period, such as a day, or a month. To assess this, we

aggregate both the observed time series x and each simulated time series x̃ (as detailed in

Section 4) into daily and monthly totals. We can then assess whether the aggregated data

(xdaily and xmonthly) is extreme with respect to the simulated data (x̃daily and x̃monthly).

First we check that the model captures the distribution of daily rainfall intensity well.

The left panel of Figure 7 shows the corresponding Q-Q plot, indicating that the model

captures the distribution very well, with surprisingly little deviation between the median

predicted and observed daily values. The right panel of of Figure 7 shows the monthly Q-Q

plot, which indicates that the model also captures the distribution of monthly values well,

the only exception being the penultimate quantile, which we consider to be an acceptable

deviation given that these are 95% prediction intervals. Indeed, both of these results are

19
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Figure 6: Median simulated versus observed non-zero rainfall quantiles (in increments of

0.1%), from 4000 simulated 8-year time series, by calendar year and with associated 95%

prediction intervals.
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Figure 7: Median simulated daily (left) and monthly (right) versus observed non-zero rainfall

quantiles (in increments of 1% for daily rainfall and 5% for monthly rainfall), with 95%

prediction intervals.
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impressive given that the model does not ‘see’ the daily or monthly totals, instead modelling

them indirectly only through the hourly values.

4.4 Temporal effects

As well as aiding in fitting the data better, the temporal effects can indicate how different

characteristics of rainfall vary with time-of-day, time-of-year, and between years. Figure

8 shows the posterior median predicted effects of time-of-day (left), time-of-year (middle)

and year (right) on the expected persistence time of dry periods, as defined by (7). The

time-of-day effect indicates a considerable dip in the persistence probability around midday,

implying shorter dry periods in the afternoon. The time-of-year plot shows the smooth

function a2(t) as a line and the sum of this and the monthly random effects (a2(t) +ma(t))

as a box plot. This indicates the expected behaviour – longer dry periods in the warmer

months (May-September) – while not much monthly variability beyond what is explained

by a2(t) (since boxes do not deviate much from the line). The yearly random effects show

a fair amount of year-to-year variability with 2012 and 2014 exhibiting shorter dry period

lengths compared to the other years. Notably, the time-of-year effect appears to dominate

the others in terms of capturing variability in the dry-state persistence probability, indicated

by its larger magnitude.
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Figure 8: Posterior median predicted time-of-day (left), time-of-year (middle), and year-to-

year (right) effects on the dry state persistence probability, along with 95% credible intervals.

Figure 9 shows the effects of time-of-day (left), time-of-year (middle) and year (right),

on the conditional probability of zero rainfall (top row) and the distribution of rainfall

intensity, through the Generalized Pareto scale and shape parameters (central and bottom

rows, respectively) – see equations (12)–(17). We discuss these effects and their implications

row-wise. Dry state zero-probability (logit(πt)): Clearly there is a strong diurnal cycle
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with a substantial drop in the zero-probability following midnight which slowly increases

after midday. There is also a significant seasonal cycle, which as expected is highest during

the summer months. Combined with the seasonal effect in Figure 8, the model suggests dry

periods both last longer and have a higher probability of zero rainfall in the summer than

in the winter. The yearly random effects indicate substantial but non-systematic variability

across the 8 years. Scale parameters (log(σt)): The plots demonstrate strong but different

diurnal cycles for both wet states, in addition to a fairly substantial seasonal cycle for the

wetter state. While for the wet state the smooth seasonal spline is weak, the monthly random

effects show noteworthy variability. Some year-to-year variability is also evident in both wet

states. Shape parameters (ξt): There is a strong diurnal cycle for the wetter state, which

in conjunction with the scale parameter diurnal cycle implies lower median rainfall values in

the afternoon but with a longer tail. A drop can be seen in the smooth seasonal cycles for

both wet states in February and March, with substantial monthly deviation from the smooth

line for the wetter state. Significant year-to-year variability is also evident, particularly for

the wetter state.

4.5 Marginal rainfall distribution

Analysis of the spline and random effects in the previous subsection offers a clear ‘under the

hood’ view of how the model captures different aspects of temporal variation. However, a

better understanding of how simulations from the model behave over time can be obtained by

analysing the marginal distribution of rainfall. For example, the GPD scale and shape effects

work together to induce temporal variation in rainfall intensity, which can be summarised

by investigating the marginal distribution of non-zero rainfall simulations.

Figure 10 shows how exceedance probabilities (conditional on the occurrence of rainfall)

for hourly values simulated from the model (x̃) vary with time of year. Notably, the median

hourly value (exceedance probability of 0.5) does not change much over the coarse of the year,

but the upper tail of the distribution is far heavier during the summer-autumn period than

during the winter-spring period. In particular, the shape of the 0.05 exceedance probability

line matches the seasonal splines for the scale and shape parameter in the wetter state,

highlighting the link between the temporal effects and the marginal distribution of simulated

rainfall.

Similarly, the zero-probability and dry state persistence effects work together to induce

temporal variation in the occurrence of rainfall. Figure 10 also illustrates how the probability

of rainfall in the hourly simulations varies with time of year. Here, the occurrence of rainfall

is much less likely in the summer than in the winter. Notably, the shape of the curve is
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Figure 9: Posterior median predicted effects of time-of-day (left column), time-of-year (mid-

dle column) and year-to-year (right column) on the conditional probability of zero rainfall

(top row), and the Generalized Pareto scale and shape parameters (central and bottom rows,

respectively), by hidden Markov state and with 95% credible intervals.

more similar to the time-of-year/monthly effect in the dry persistence probability, including

the kink in August, than the effect in the zero probability, suggesting the persistence of dry

periods may play a greater role in the occurrence of rainfall. A plot equivalent to Figure 10

but for time-of-day is provided as supplementary material.

5 Discussion

In this article we discussed the role of stochastic rainfall modelling in the context of hydro-

logical applications, such as urban flood modelling. We illustrated how the flexibility of the

hidden Markov model framework allowed us to construct a compelling model for sub-daily
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rainfall, which is able to capture all of the following crucial features: seasonal variation in

rainfall occurrence and intensity; long dry periods; and extreme values. Our model incorpo-

rates several innovations compared to conventional approaches. These include clone states

and temporal non-homogeneity in the transition matrix, which together allow the model to

capture even the longest dry periods. Set in the Bayesian framework, our model also allows

for a rich quantification of parametric and predictive uncertainty, meaning we can use pos-

terior predictive checking to verify our model captures important characteristics of the data.

In addition, the application to hourly rainfall data illustrates the applicability of the model

in situations with high (temporal) resolution, something that is noticeably absent from the

literature on direct rainfall models.

To demonstrate the effectiveness of our approach, we applied a relatively simple model

comprising 3 clone dry states and 2 wet states to an 8-year long time series of hourly values

from a rainfall gauge in Exeter, UK. We found that the model is able to capture well the

distribution of dry period lengths, seasonal and annual variation in occurrence and intensity

(including extreme values) and the distribution of intensity when aggregated to daily and

monthly resolutions. We also illustrated how the model output can be interpreted in terms

of how the rainfall occurrence and intensity change over the course of the day and year.

Although results were compelling, there remains some room for improvement. Most

notably, simulations from the model displayed insufficient short-term (1-2 hours) temporal

dependence. One consequence of this is that when aggregating hourly values into 3-hourly

values, the model was able to capture the bulk of the distribution well but simulations in the

upper-tail were systematically too low (as illustrated in Q-Q plots provided as supplemen-

tary material). This can be potentially improved by simply including more rainfall states,
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although we suggest avoiding that in the interest of model interpretability. Alternatively, the

model could be extended to incorporate an explicit dependency structure in the conditional

models or indeed using “post-processing” ideas such as Gaussian anamorphosis. In addi-

tion, the model could be improved to better capture the most extreme values in some years

(e.g. 2010, 2016) by utilising distributions that are more flexible compared to the GPD. For

instance, Philippe et al. (2016), Chowdhury et al. (2017), or Tencaliec et al. (2018) are all

approaches that aim to capture the entire range of rainfall (the bulk and extremes at either

end).

We opted to apply the model to the particular time series from Exeter as it is situated

in a region where floods pose a real risk to society, and because of the presence of several

extreme values (arising from severe storms) which make modelling challenging. The inclusion

of splines and random effects in potentially every part of the model affords a high degree of

flexibility, in the sense that the states can change completely for different times of day and

year, but also between years. That said, it is possible that there are some climates where

the specific model we used to illustrate the framework may not be sufficiently flexible. In

this case, the advantage of our approach is that it is fairly trivial to add more wet states, use

alternative conditional distributions or indeed combine different conditional distributions, or

incorporate more complex temporal structures (e.g. an interaction between the time-of-day

and time-of-year splines), to name just a few potential adaptations. However, as with many

statistical endeavours, this comes at the cost of increased complexity, so a balance must be

struck to find a model which performs well enough without being impractical.

To that end, for new applications we advocate starting with the simplest possible version

of the model presented here, such as a two state (dry, wet) HMM with some zero-inflated

conditional models (e.g. zero-inflated GPD). Posterior predictive model checking should

then indicate aspects of the data that the model does not capture adequately well. These

inadequacies can then be addressed by a number of targeted model expansions (e.g. temporal

structures to capture non-homogeneity, clone states to better capture the persistence of dry

and wet periods), so as to avoid adding unnecessary complexity. The version of the model

presented in this paper resulted from of a number of such iterations, including the addition

of random effects and structured diurnal variability at the revision stage.

Finally, in this article we have focused on modelling the time series from one spatial

location. To cater for applications where simulations at more than one location are required,

future research will involve combining the innovations presented in this article with methods

such as coupled hidden Markov models (Pohle et al., 2018), so that dependence between

multiple spatial locations can be captured.
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Supplementary Material

All R code required to implement the model is provided as supplementary material, alongside

a simulated 8-year time series. Hourly rainfall data from the Exeter International Airport

gauge is available upon registration at

http://dx.doi.org/10.5285/7aaa582fb00246b794dc85950f1be265.
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