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Abstract
We consider auctions where bidders’ valuations are positively correlated with their 
productivity in a second-stage aftermarket. We test in the lab whether bidders rec-
ognize the opportunity to signal their productivity through their bidding and, condi-
tional on them doing so, whether disclosing different information about the auction 
outcomes affects their signaling behavior. Our results confirm that bidders recognize 
the signaling opportunities they face and also react to differences in the way their 
bidding behavior is disclosed, although not always in a way that is consistent with 
theoretical predictions.
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JEL Classification  C92 · D44 · D82

1  Introduction

Often, bidders care about the reputational effects of their bidding. For instance, this 
is the case when managers bid on behalf of shareholders for a takeover of another 
firm. Imagine that the value of the target firm to each bidding firm has a (private) 
component which depends on their management’s ability. That is, the higher this 
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ability, the better the potential acquisition would be managed and the more valuable 
it would be. Thus, how much a bidding manager is willing to pay is a function of 
her ability as a manager. Insofar as managers’ career prospects and future rewards 
depend on the post-auction inferences of markets about managerial ability to evalu-
ate and manage assets, and managers are aware of this, the type of information that 
is disclosed at the end of the auction will influence their bidding. In other words, 
managers with career concerns will use their bids to publicly signal their ability. The 
same argument applies to bidding for spectrum auctions, sports agents bidding for 
a free player, or collectors, who also offer consultancy services, when bidding for a 
work of art to add to their collection.

In such environments, auction disclosure rules that pre-specify the type of infor-
mation released at the end of the auction become important. They may have an 
impact on auction revenues, the bidders’ careers prospects and/or the level and dis-
tribution of post-auction wages and managerial compensations. These effects will in 
turn influence government revenues from license auctions, the interaction of market 
discipline and performance of managers of potential targeted firms, the regulation 
of art auctions, the scope of salary caps and existence of undisclosed fees in sports 
transfer markets, to mention but a few. The significance of these makes it impera-
tive to understand the effects of various disclosure rules on auction and post-auction 
outcomes.

This paper is an experimental investigation of the implications of disclosure rules 
on bidding behavior, auction outcomes and remuneration of bidders’ post-auction 
services. To study these effects, we frame the incentives between the auction and 
the possible longer-term effects in a setting where bidders valuations in the auction 
are also linked to their productivity as workers. We chose this setting, which maps 
closely with the example of takeovers described above, because it is easy to explain 
to the participants in our experiment. As the structure of the experiment should 
clarify, however, the incentives in the experiment also apply to all of the examples 
described above.

Specifically, we consider a setting with two stages. In the first stage, we run 
sealed-bid first-price auctions for a single object between two bidders. In the second 
stage, the bidders from the first-price auction take on the role of workers in a labor 
market where their wages are determined. In the latter market, two firms may hire 
any number of workers (who can work for only one firm) and each firm bids a wage 
for each worker’s services. The benefits to firms from hiring bidders/workers are the 
same, and proportional to the bidders’ valuations of the auctioned object. This is 
effectively Bertrand competition between firms for the services of any given worker. 
Throughout, valuations are private information of workers and at the end of the first 
stage, the winning worker’s identity is publicly disclosed. Treatments differ in terms 
of the information released to everyone at the end of the auction about submitted 
bids before the wage-setting market takes place.

An important benefit of this setting is that it maps very closely with the theo-
retical framework in Giovannoni and Makris (2014), from which we derive predic-
tions. In particular, we consider four disclosure rules. We have disclosure rule A 
(for “all”), where all the bids and the corresponding bidder’s identity are revealed; 
disclosure rule N  (for “none”) where the winner’s identity is revealed but none of 
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the bids are; disclosure rule W (for “winner”) where only the winning bid (and the 
winner’s identity) is disclosed, and disclosure rule S (for “second”) where only the 
losing bid (and the winner’s identity) are disclosed.1 We also consider as controls 
the disclosure rule B (for “base”) where no second-stage wage-setting market takes 
place, and the situation (disclosure rule T, for “transparent”) where a second-stage 
wage-setting market takes place but valuations are revealed at the end of the first-
stage auction. In both treatments, there is no theoretical scope for signaling through 
bids.

We address two main questions. The first question is whether bidders recognize 
the signaling opportunities created by the presence of the aftermarket. If they do rec-
ognize these signaling opportunities, the second question is whether their behavior 
conforms to the different incentives implied by the different disclosure rules. We 
also ask, to the extent that the results do not conform to the theoretical predictions, 
what might explain the deviations from predicted behavior.

Our results suggest that subjects’ behavior provide a positive answer to the first 
question. In particular, workers bid higher than they would in the absence of an 
aftermarket to signal their productivity: we call this overbidding. With respect to the 
second question, subjects do not show the full sophistication needed for confirming 
(expected) revenue comparisons across treatments. We show how, for treatments A , 
W and N  , but not for S , the amount of a particular worker’s overbidding is indeed 
related to how likely it is that such bid is revealed. This shows an understanding of 
the underlying incentives, with the exception of the S treatment.

These results imply that signaling incentives in auctions are fairly robust, and the 
impact of these effects should be taken into account when setting up or studying 
auction markets. Our results also suggest, however, that precise predictions on the 
effect of specific disclosure rules should be made with a degree of caution. In par-
ticular, we do find that revenue is higher when there are signaling incentives, a natu-
ral consequence of overbidding. However, while subjects understand the differences 
in signaling opportunities across disclosure rules, they do not do so to the extent that 
revenues are affected as predicted by theory.

For example, if we compare the W treatment with the A treatment, theory pre-
dicts a steeper bidding function in the former, but overall higher expected revenues 
in the latter because incentives to overbid across individuals are higher. Our results 
find that the empirical bidding function in the W treatment is indeed steeper than 
that in the A treatment, but expected revenues are not significantly different across 
treatments. This indicates that bidders understand the relative differences but not the 
absolute ones across incentives. Put another way, bidders seem to understand the 
comparative statics but are not sophisticated enough to conform to the point predic-
tions. We can show that most of these failures can be explained by the behavior of 
bidders whose valuations are quite low or quite high, whereas bidders with interme-
diate valuations tend to conform more to theoretical predictions.

1  Put another way, because we have two bidders in each auction, in all disclosure rules the identities of 
the winner and the loser are revealed. Each rule differ solely in the set of bids which are revealed.
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There is a theoretical literature that deals with cases where reputational effects 
distort bidding behavior. Das Varma (2003), Haile (2003), Goeree (2003), and 
Salmon and Wilson (2008) discuss the effects of external incentives on bidding 
behavior. Their focus is on the comparison of various price mechanisms for a given 
disclosure rule. In our experiment, all our treatments instead fix the first-stage price 
mechanism (first-price auction) and vary the disclosure rules. This is because Gio-
vannoni and Makris (2014) show that in an environment where external incentives 
introduce solely signaling incentives, disclosure rules are the crucial component in 
terms of expected revenue comparisons. Katzman and Rhodes-Kropf (2008) and 
Molnar and Virag (2008) also recognize the importance of disclosure rules but their 
results are more ambiguous than those in Giovannoni and Makris (2014).2 Finally, 
Dworczak (2017) studies the problem of optimal disclosure rules, allowing for much 
more generality in the disclosure of information, but does not allow for reputational 
concerns for the losers in the auction.

Our paper also relates to a few strands of literature within experimental game 
theory. In the first instance, this work is the latest in a line of research exploring 
the motives for overbidding in auctions. A long-standing literature on experimen-
tal auctions studies the role of informational feedback and overbidding in first-price 
auctions. Isaac and Walker (1985) first studied this question. They compared the 
case where the winner’s bid was revealed to the case where all bids were revealed; 
they found more overbidding in the former treatment than the latter. More recently, 
Dufwenberg and Gneezy (2002) and Ockenfels and Selten (2005) have extended the 
literature on informational feedback. One possible behavioral explanation as to why 
different modes of feedback can result in different levels of bidding relative to the 
risk neutral Nash equilibrium is regret. This behavioral explanation was first pro-
posed by Engelbrecht-Wiggans (1989), and extended by Engelbrecht-Wiggans and 
Katok (2005). Filiz-Ozbay and Ozbay (2007) propose a model of anticipated regret 
to explain why different informational conditions lead to overbidding. Another lit-
erature that explores overbidding in auctions is that on auctions with resale. Over-
bidding relative to the “standard” case occurs in this environment because bidders 
whose private values are low have the opportunity to recoup any losses incurred in 
the first auction through reselling the object (see Lange et al. 2011; Georganas 2011 
and Georganas and Kagel 2011; Filiz-Ozbay et al. 2015; Pagnozzi and Saral 2017, 
for recent experimental investigations).

In our paper, bid disclosure affects bidding behavior not for behavioral reasons, 
but as the profit-maximizing response to career concerns. Our paper thus contributes 
to the relatively small experimental literature on signaling. Miller and Plott (1985) 
study a product quality signaling game; Cooper et  al. (1997) study limit pricing 
games. More recent studies include Cooper and Kagel (2005; 2009), who study indi-
vidual vs team play in signaling games, Kübler et al. (2008), who study job market 
signaling in the lab and Jeitschko and Normann (2012), who study signaling games 
with deterministic vs stochastic signals. Dodonova and Khoroshilov (2014) examine 

2  Giovannoni and Makris (2014) discuss these differences in detail.
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the signalling hypothesis proposed by Fishman (1988) behind jump bidding in take-
over auctions with entry costs.

The innovation in our paper is that we study signaling through auctions which 
introduces an additional layer of complexity. In some of our treatments, the informa-
tion that becomes publicly available depends on the behavior of other agents: when 
only the winner’s bid is disclosed, for example, any bidder is never certain that her 
bid will be disclosed. Our paper is closely related to Bos et al. (2018), who exper-
imentally investigate the role of an external observer on behavior in a two-player 
aftermarket. The external observer in their experiment performs the same role as 
the firms in our experiment, in that payoffs to bidders may depend on the observer’s 
valuation. The experiment varies the auction format (first-price vs. ∼second-price), 
information to the external observer about the winner’s payoffs, and whether the 
observer’s estimates of bidders’ private values affects bidders’ payoffs. Similar to 
our results, the authors find that signaling opportunities affect bidding behavior in 
the auction, even though bidding is not as aggressive as predicted by theory. They 
also find that the first-price auction when winner’s payment is revealed outperforms 
all other treatments in terms of revenue and efficiency. This paper complements our 
research in two dimensions. It compares two auction formats under one disclosure 
rule, while we focus on multiple disclosure rules under the first-price auction. It also 
considers a different implementation of the aftermarket stage.

In the next section, we introduce the theory and hypotheses behind our experi-
ment. Section 3 describes the experiment and Sect. 4 collects our results. In the lat-
ter Section we also provide a discussion of the results. Section 5 concludes while the 
Appendix contains some more theoretical details as well as detailed instructions for 
the experiment.

2 � Theory and hypotheses

Giovannoni and Makris (2014) provide a general analysis of the theoretical setting, 
but in that paper, the second-stage market is not explicitly modeled. In our experi-
mental analysis, however, we have subjects explicitly participating in the second-
stage market. Therefore, in this paper, we need to formally model these interactions. 
In this section we introduce the model, and describe the main results together with 
the hypotheses we will test in the experiments. We leave some of the details for the 
Appendix.

The Giovannoni and Makris (2014) framework applies to many different situations 
where bidding behavior, by revealing information about the underlying valuations of 
the bidders, may also affect the latter’s opportunities in a future market interaction. 
For example, consultants in art markets will be aware that their bidding (advice) will 
reveal their expertise to future clients, or CEOs of firms that take over another firm will 
know that their bids will be a signal of their managerial ability.3 For the purposes of the 
experiment, however, and to make the underlying situations as simple and transparent 

3  See Giovannoni and Makris (2014) for further discussion of possible applications of their framework.
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as possible to participants, we consider a situation where bidders are “workers” whose 
valuation for a good in the first-stage auction is also an indicator of the productivity in a 
second-stage labor market where they are employed by “firms”.

In particular, we have two auction stages with two bidders in each stage. In the 
first stage there is a first-price auction where two “workers” bid for a single unit of 
an indivisible good in a standard independent private value (IPV) setting. Each bid-
der i ∈ {1, 2} has a valuation xi for the good and the valuations are independently and 
uniformly distributed on [0, 100] . Let bi be the bid of worker i. We denote � =

(
x1, x2

)
 

and � =
(
b1, b2

)
 , while capital letters denote random variables and small letters their 

realizations.
In the second stage, there is a market (“the aftermarket”) that determines which 

worker is employed, and at what wage, by existing firms. Firms are symmetric; their 
valuation for worker i’s employment is �xi , 𝛼 > 0 , while they obtain zero if they do not 
employ a worker. Thus, we assume that a worker’s willingness to pay for the object in 
the first-stage auction is proportional to her productivity for firms in the second period.

We will consider several versions of this model, corresponding to different treat-
ments in our experiment and these versions differ from each other according to how 
much information is publicly disclosed at the end of the first-stage auction about work-
ers’ valuations. Throughout, we will consider Perfect Bayesian Equilibria where, in the 
first-stage auctions, bidding functions are symmetric and monotone. We will simply 
refer to them as equilibria.

2.1 � Disclosure rules

We begin with describing the aftermarket, which will be the basis for our comparisons 
across different disclosure procedures. It consists of two parallel first-price auctions. 
In second-stage auction 1, two “firms” A and B bid for worker 1’s employment while 
in second-stage auction 2, the same two “firms” A and B bid for worker 2’s employ-
ment. Workers, at this stage, simply receive the highest bid in second-stage auction i 
as a wage. Let wi

l
 be the wage offer from firm l ∈ {A,B} to worker i (i.e. firm l′s bid 

in second-stage auction i) and let �l =
(
w1
l
,w2

l

)
 be the wage profile offered by firm l. 

Then, the utility for firm l in this stage if she offers �l and the other firm m offers �m is 
equal to

where 1A represents the indicator function that takes value 1 iff A is true. Given the 
above, the total utility for worker i over the two stages, given xi , � =

(
bi, bj

)
 , j ≠ i , 

j = 1, 2 , and �i =
(
wi
A
,wi

B

)
 is equal to

ul
(
�l,�m, �

)
=

[
1(w1

l
>w1

m)
+

1

2
×1(w1

l
=w1

m)

](
𝛼x1 − w1

l

)

+

[
1(w2

l
>w2

m)
+

1

2
×1(w2

l
=w2

m)

](
𝛼x2 − w2

l

)

Ui

(
�

i, �, xi
)
=

[
1(bi>bj) +

1

2
×1(bi=bj)

](
xi − bi

)
+max

{
wi
A
,wi

B

}
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Note that winning or losing the first-period auction has no consequence for the sec-
ond-stage wages in itself. However, as we shall discuss shortly, it may affect what 
firms know about the workers’ valuations and hence the wage offers they will be 
willing to make. We will denote with I� the information available to everyone in 
the second-stage market under disclosure rule � . Since this is publicly available 
information, it will be common knowledge amongst the firms and the workers. Let 
� ∈ {1, 2} denote the winner of the first-stage auction and −� denote the loser. The 
disclosure rules are: 

1.	 Transparent: � = T  . Here x1 and x2 are publicly revealed and so IT = �.

2.	 All bids: � = A . Here b1 and b2 are publicly revealed and so IA = (�,�).
3.	 Winner’s bid: � = W . Here only the identity of the winner and her bid are pub-

licly revealed and so IW =
(
�, b�

)
.

4.	 Second bid: � = S . Here only the identity of the winner and the loser’s bid are 
publicly revealed and so IS =

(
�, b−�

)
.

5.	 No bids: � = N  . Here only the identity of the winner is publicly revealed and so 
I
N = �.

We also consider the benchmark case � = B, where no aftermarket exists, which 
corresponds to the standard IPV setting. The information available at the end of the 
auction is obviously irrelevant in this case.4

We start our analysis from the second stage. Here the uninformed parties (the 
firms) make the offers in the second-stage auctions. Risk neutrality and independ-
ence of the valuations mean that the value of employing a worker is a fraction � of 
the worker’s valuation of the good in the first stage. Since information at the end 
of the first-stage auction is publicly available, both firms form the same expecta-
tion, E

(
Xi|I�

)
 , for each worker i, when they contemplate their offers. The following 

proposition follows immediately:

Proposition  In any equilibrium, and conditional on the disclosure rule � , there is a 
unique profile of wages 

(
�A(�),�B(�)

)
 offered by firms in the aftermarket, where for 

each worker i = 1, 2

The intuition here is that firms are involved, in effect, in symmetric Bertrand 
competition. As a result, workers are able to extract all the expected (from the firms’ 
point of view) surplus they can generate for firms. We can now turn to the study of 
the first-stage auction. Given the proposition, the procedure follows that of Giovan-
noni and Makris (2014), which we summarize here (more details are given in the 
Appendix). The analysis entails first putting a simple restriction on off-the-equilib-
rium-path beliefs, which in turn allows us to define bidder effective valuations under 

wi
A
(�) = wi

B
(�) = �E

(
Xi|I�

)

4  Some auctions can be even more secretive, so that the identity of the winner is unknown. Obviously, in 
such cases there is no scope for using the first-stage auction as a signaling device.
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each disclosure rule. An effective valuation is a function of the standard valuation xi 
that captures all that is at stake for a bidder in the first-stage auction given equilib-
rium play in the aftermarket. In more detail, we have the direct utility from winning 
the auction xi , but also the reputational returns that i can expect in the second-stage 
auction(s) as a function of her valuation. These reputational returns are divided into 
two further components: one that captures the net reputational gain to the bidder 
from winning the auction, and one that captures the additional reputational net gain 
from marginally increasing the bid. As shown in Giovannoni and Makris (2014), the 
optimal bidding function in the first-stage auction is the standard first-price bidding 
function in the IPV setting but with effective valuations replacing standard valua-
tions. Letting �� denote such bidding functions, we get that the equilibrium bidding 
functions are:

Figure  1 plots the theoretical bidding functions. The intuition for the bidding 
functions �B and �T  is straightforward: in the first case there is no aftermarket and 
we have the standard IPV result. In the second case, valuations are publicly revealed 

�B(xi) = �T(xi) =
1

2
xi;

�A(xi) =
1

2
xi + 100�;

�W(xi) =
1

2

(
1 +

3

2
�
)
xi;

�S(xi) =
1

2

(
1 −

3

2
�
)
xi + 150�;

�N(xi) =
1

2
xi + 50�

0
20

40
60

80
10

0

0 20 40 60 80 100
Value

Transparent Winner Second
enoNllA

Fig. 1   Theoretical bidding functions
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at the end of the first-stage auction, and so bidders have no incentive to use bids as 
a signaling device. As a consequence, we obtain again the behavior of the standard 
IPV setting.

All other disclosure rules imply overbidding relative to �B and �T  because now 
being perceived to have high valuations is beneficial.5 Furthermore, the way over-
bidding obtains depends on the disclosure rule. To understand how overbidding is 
shaped, we begin with a comparison between �A and �W . For �A , note first that in a 
monotone equilibrium bids reveal exactly a bidder’s valuation and so other bidders’ 
bids have no impact on reputational returns. In contrast, in auctions where the dis-
closure rule is W , winning or losing does matter for inferences about xi because if 
i wins then bi becomes known, while if i loses then firms believe bi to be below the 
competing (disclosed) bid. In addition to the reputational gain from winning, there 
is also a reputational gain (relative to the increase in the likelihood of winning the 
auction) for bidder i from increasing her bid marginally, because, by doing so, she 
might increase marginally the perception of firm(s) about her valuation.

For disclosure rules A and W , this relative gain is the same conditional on own 
bid being disclosed. However, in the former case, all bids are always disclosed, while 
in the latter case, the only disclosed bid is the winner’s. The result is that in auctions 
where the disclosure rule is A , bidders with different valuations have similar incentives 
for overbidding. With disclosure rule W , in contrast, the incentive to overbid is much 
higher for workers with high valuations (who are more likely to win and have their pre-
cise bids publicly revealed) than for workers with low valuations (who are more likely 
to lose and for whom all that will be known is that their bid is below the winner’s bid).6

The intuition for S auctions is the opposite to that in W auctions: now it is bid-
ders with low valuations whose bids are more likely to be disclosed and such bidders 
have a greater incentive to overbid.7 Finally, with disclosure rule N  , only the iden-
tity of the winner is disclosed so that signaling only comes from winning or losing 
the auction. In particular, because none of the bids is disclosed, the net reputational 
gain from winning the auction must be constant, and so bidders of all valuations have 
the same incentive to overbid. Still, there is less overbidding under N  than under A 
(where incentives to overbid are also constant across types). Under disclosure rule 
N  , no bid is ever disclosed and thereby the relative net reputational returns bidders 
can expect from marginally increasing their bid do not exist with disclosure rule N .

5  Giovannoni and Makris (2014) show that if being perceived to have a low valuation is beneficial then 
underbidding will occur in equilibrium. The same could be obtained here by assuming that worker pro-
ductivity for the firm is �

(
100 − xi

)
.

6  The fact that in A auctions the overbidding incentives are exactly the same across valuations is a con-
sequence of the fact that we have two bidders and a uniform distribution (which is also responsible for 
the linearity in the bidding functions).
7  Thus, for disclosure rule S the incentive to overbid for low types “flattens” the bidding function. It is 
easy to see that these incentives cannot be too great otherwise the bidding function would no longer be 
increasing and the equilibrium we focus on would not exist. With our parameterization this means that 
we need 𝛼 < 2

3
.
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Finally, it is also easy to calculate expected revenues in each treatment using the 
formula

We summarize these results in the following set of hypotheses. Our two main points 
of interest in the first-stage auction are i) whether there is overbidding as predicted 
by the theory and ii) whether, conditional on such overbidding, the comparative stat-
ics for disclosure rules A,S,W,N  apply. We begin by looking at expected revenues:

Hypothesis 1  Expected revenues are highest in the A and S treatments, and lowest in 
the B and T  treatments, with the W and N  treatments being the intermediate case.

Hypothesis 1 is not, however, the only possible test of the theory. Even if our results 
confirm the hypothesis, this may happen with bidding functions that differ significantly 
from the predicted ones. As is well known in the experimental literature on auctions 
(Kagel 1995; Kagel and Levin 2008), bidding generally does not conform to point pre-
dictions made by the theory. Thus, we will also consider a different hypothesis that com-
pares bidding functions across different disclosure rules qualitatively, and allows us to see 
whether bidders understand the different nature of the signaling opportunities generated 
by the type of disclosure they face. Our theoretical bidding functions are linear in valu-
ations and so can be fully summarized by the slope and their vertical intercept. Simple 
inspection of the slope and vertical intercept of each of these bidding functions will then 
give predictions for how low types should bid in one disclosure rule over another and how 
rapidly bids should increase in one disclosure rule over another as valuations increase:

Hypothesis 2  (a) The empirical bidding functions for the treatment are ranked 
as follows in terms of slope: W > B = T = A = N > S . (b) The empirical bid-
ding functions for the treatment are ranked as follows in terms of intercept: 
S > A > N > W = B = T .

Our model also generates predictions with respect to second-stage outcomes. 
We first look at workers’ wages. Recall that wages should be equal to the expected 
productivity of each worker (conditional on the publicly available information at 
the end of the first-stage auction). We can then write wages w�

i
 for i as a function 

of her bid bi and her opponent’s bid bj8:

ER
� = 2∫

100

0

��(x
i
)

�
x
i

10000

�
dx

i
=

⎧⎪⎪⎨⎪⎪⎩

100

3
if � = B, T

100

3
+ 100� if � = A,S

100

3
+ 50� if � = W,N

⎫⎪⎪⎬⎪⎪⎭

8  See the appendix for details, keeping in mind that in the T  treatments, the valuations are known to the 
firms so that bids are irrelevant. Also, note that in the experimental setting we cannot in principle exclude 
that two workers bid the same amount in the first-stage auction and this creates the issue of how to define 
a winner in the event of a tie. This matters particularly for wage determination with disclosure rules W,S 
and N  . We resolve the problem by determining the winner via a lottery and providing the information 
according to the disclosure rule. For example, with disclosure rule W , if bi = bj but i wins the lottery, 
only her bid is disclosed.
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These results can be summarized by a second set of hypotheses. We begin with a 
simple consequence of the fact that across disclosure rules, we predict bidding func-
tions that are increasing in valuations and we disclose the identity of the winner. 
Since we also predict that wages will be a function of expected valuations, then we 
expect:

Hypothesis 3  Across disclosure rules, winners receive higher wages than losers.

To test more precise predictions regarding wages, we again rely on comparisons 
across disclosure rules:9

Hypothesis 4  With disclosure rules T  and A , the two workers share the same wage 
function.10 With disclosure rule W , the winner’s wage is more responsive than the 
loser’s wage to the winner’s bid, while with disclosure rule S the loser’s wage is 
more responsive than the winner’s wage to the loser’s bid.11

These predictions are intuitive if one recalls that wages are only a function of the 
aftermarket’s expectation about workers’ productivity. The immediate consequence 
is that with disclosure rules T  and A , a worker’s wage is based on her own valuation 
or bid, while with disclosure rules W or S , the wage must be based on the only bid 
that is observed: respectively, the winner’s or the loser’s. In each of these last two 
cases, the impact on wages will depend on whose bid is the one that is disclosed. 
As one would expect, the marginal effect of the publicly observed bid on the wage 
of the bidding worker must be stronger than the marginal effect on her opponent’s 

wT

i

�
xi, xj

�
= �xi;

wA

i

�
bi, bj

�
= 2�bi − 200�2;

wW

i

�
bi, bj

�
=

⎧
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4�bi
2+3�

if i wins

2�bj

2+3�
if i loses

;

wS

i

�
bi, bj

�
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⎧
⎪⎨⎪⎩

2�
bj+50−225�

2−3�
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4�
bi−150�

2−3�
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;
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i

�
bi, bj

�
=
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75� if i wins

25� if i loses

9  Recall that in the B treatment, there is no aftermarket.
10  Of course, in the T  case, such wage function is a function of the bidder’s valuation xi while in the A 
case, it must be a function of her bid bi. In fact, wA

i
(�A(xi), �

A(xj)) = wT

i
(xi, xj).

11  In the N  treatment, bids are not disclosed, so the wage functions under this treatment cannot be part 
of the comparisons in Hypothesis 4.
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wage. This explains the differences in the wage functions of the winner and loser 
under W or S.

Finally, one last testable implication of our model is that it predicts that, condi-
tional on a given expected valuation, all the surplus (as expected by firms) will go to 
the workers. In other words:

Hypothesis 5  Under all disclosure rules, firms will make zero profits.

Notice that this hypothesis requires both that firms can form correct beliefs about 
the workers’ valuations and that they conform to Bertrand competition. In the case 
of disclosure rules T  , firms know the workers’ valuations while in all other cases, 
they do not and have to form beliefs relying on disclosed bidding behavior. We will 
use this difference to investigate Hypothesis 5 further.

3 � Experimental design and procedures

Our experiment implements the model laid out in Section 2 in a between-subjects 
design. Table 1 outlines the experimental design. We consider six treatments. Five 
treatments differ in the information revealed after the first stage auction: in T  , 
both workers’ private values are revealed; in W , only the winning worker’s bid is 
revealed; in S , only the losing worker’s bid is revealed; in A , both workers’ bids are 
revealed; and in N  , neither values nor bids are revealed. Finally, in B , we consider a 
standard first price auction without an aftermarket.

Upon arrival to the laboratory, subjects sat in individual computer booths. Verbal 
communication was not allowed at any time. We gave written copies of the instruc-
tion sets to subjects (reproduced in the Appendix), and we publicly announced that 
everybody in a given role was reading the same set of instructions. Subjects had a 
maximum of 10 min in which to read the instructions; after that time elapsed, sub-
jects had the opportunity to ask clarification questions in private. Once all queries 
were answered, the experiment started.

Subjects were assigned to the role of firm or worker at the beginning of the exper-
iment, and they kept their roles until the end of the experiment. Subjects had five 
practice periods in which to familiarize themselves with the software interface and 
the auction environment. Once the five practice periods were concluded, the experi-
menters made a public announcement that all further rounds would be incentivized. 
In every period of the experiment (including the practice periods), subjects were 
randomly matched with other participants in the session.

Table 1   Experimental design

(# sessions, # subjects)

T W S A N B

(3, 36) (3, 36) (3, 36) (3, 36) (3, 36) (3, 36)
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In all treatments, the first-stage auction had two workers bidding for a 
prize, whose value was an i.i.d. draw from a uniform distribution with support 
{0.01, 0.02,… , 100.00} , as is standard in the experimental literature on private-
value auctions (c.f. Goeree and Holt 2002; Güth et al. 2005). Applying an i.i.d. draw 
for each participant in a given session is closest to the spirit of the theory. When 
the support of the distribution of private values is large relative to the number of 
draws, it ensures that the results will be based on (in expectation) a larger set of 
realizations. The main alternative to this approach would be to use a pre-randomized 
sequence of private values. Its main advantage is comparability of behavior, and less 
variability across sessions. This advantage translates into more statistical power. 
However, given that the set of possible private values is very large (10,000 possi-
ble values), we feel that using the same sequence of only 35 realizations per bidder 
would make our results unrepresentative.

Worker bids could be made from the set {0.00, 0.01, 0.02,… , 100.00}.12 After 
both workers placed their bids, a screen provided feedback to the workers and firms; 
the type of feedback was a function of the disclosure rule. The second-stage auc-
tion followed the feedback screen. The two firms made a wage offer for each of the 
two workers, also from the set {0.00, 0.01, 0.02,… , 100.00} . A worker would be 
assigned to the firm who made the highest wage offer; it was therefore possible for 
one firm to hire both workers. The value to firms from hiring a worker was equal to 
40% of the worker’s private valuation of the object on sale in the first-stage auction. 
In other words, the value of the parameter � was set to 0.4.

There were a total of 35 incentivized periods in the experiment. The payment 
was the payoff from three randomly picked periods, plus a show-up fee. Since our 
theory predicted firms would earn significantly lower payoffs than workers, we set 
the show-up fee for workers to be equal to £5, and the show-up fee for firms to be 
£10. We conducted three sessions with 12 participants in each session. Each session 
implemented one condition. No participant took part in more than one session.

Our subjects were recruited from a pool of volunteers, all of whom were under-
graduate students from a wide range of disciplines using the lab’s ORSEE system 
(Greiner 2015). The experiment was programmed using Z-Tree (Fischbacher 2007). 
A total of 216 subjects took part, none of whom had ever taken part in an auction or 
market experiment before. Sessions lasted on average 90 minutes, and the average 
payment was approximately £18.50 (which is more than twice the minimum hourly 
wage in the UK).

12  We only allowed bidding up to the maximum private value, as this was comfortably in excess of the 
maximum predicted bid: 90 (with a private value of 100 in A. It is possible that this could have censored 
our data if there were bidders who wished to bid in excess of 100. We only recorded 23 out of 4410 (less 
than 0.5%) observations with bids in excess of 90 and only 1 bid of 100.
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4 � Results

The unit of analysis is the bidding decision by an individual (firm or worker) in an 
incentivized experimental period (our analysis is robust to the inclusion of the five 
practice periods), or an individual’s per period revenue. Unless otherwise noted, we 
will employ random effects estimators with clustered standard errors at the session 
level, to account for the random matching protocol. We also consider extended mod-
els that include a linear time trend. We replicate our analysis by considering only 
the final 20 rounds, to control for any learning that may have taken place in the first 
third of the experiment. Our results are robust both quantitatively and qualitatively. 
Results are available upon request.

4.1 � First‑stage auction bidding

We start by looking at revenue in the first-stage auction, summarized in Table 2.13

Result 1: Limited disclosure generally leads to overbidding but there is weak 
support for our revenue predictions.

Support: We find partial confirmation of our theoretical predictions. Hypothesis 1 
stated revenues should be lowest in T  and B . Average revenue is indeed very similar 
in T  and B ( �2(1) = 0.04, p = 0.836 ), as predicted. While average revenue in all 
other treatments is nominally higher, it is only significantly higher in the case of 

Table 2   First-stage auction 
revenue

Omitted category is B . In the N  treatment we collected 12 
workers per session, as there were no firms. In all other treat-
ments, we collected only 6 workers per session. As a result, 
N = (35 × 6 × 15) + (35 × 12 × 3) = 4410

∗∗∗,∗∗ ∶ p < 0.01, p < 0.05 . Session-level clustered SEs in parenthe-
ses

DV: Stage 1 revenue (1) (2)

T − 0.41 (1.95) − 0.41 (1.95)
W 5.91∗∗∗ (1.03) 5.91∗∗∗ (1.03)
S 2.64 (1.88) 2.64 (1.88)
A 5.68∗∗∗ (1.83) 5.68∗∗∗ (1.83)
N 4.50 (2.84) 4.50 (2.84)
Period – − 0.07∗∗ (0.03)
Constant 50.00 (0.99) 51.30 (1.14)
N 4,410 4410
R2 0.02 0.02

13  The attentive reader may wonder why the sample size is 4410. Since there were no firms in the N  
treatment, we were able to collect 12 workers bidding in the first stage auction, as opposed to only 6 in 
the other five treatments. This means that we collected (35 × 6 × 15) + (35 × 12 × 3) = 4410 observa-
tions.
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W ( W = T ∶ 𝜒2(1) = 13.74, p < 0.001 ; W = B ∶ 𝜒2(1) = 32.77, p < 0.001 ) and A 
( A = T ∶ �2(1) = 7.15, p = 0.008 ; A = B ∶ �2(1) = 9.64, p = 0.002 ). In all other 
cases, we find no significant differences (a full breakdown of all tests is in Table 8 
in the Appendix) between treatments without signaling opportunities ( B and T) and 
treatment with such opportunities (all others). With respect to the latter group of 
treatments, with the exception of W and S ( �2(1) = 4.06, p = 0.044 ), we find no 
significant differences in average revenue across treatments.

While our theory predicted revenue equivalence between some disclosure rules, 
it did not predict it for others. We now turn to the bidding functions themselves. 
Table 3 shows results from regressions of the bid placed by worker i in experimental 
period t, bi,t , on that worker’s private value in that period, Xi,t , and dummy inter-
actions with the relevant treatments and their corresponding dummy intercepts. In 
order to facilitate the interpretation of the table and for ease of comparison with 
point predictions, we present estimated coefficients directly, rather than the esti-
mated dummy interaction coefficients. Table 9 in the Appendix shows results from 
the same regression in the traditional format.14

Result 2: The empirical bidding functions are ranked in terms of slopes as fol-
lows: W > B = N = A = T = S . The empirical bidding functions are ranked in 
terms of intercepts as follows: A = S = N > W = T > B.

Support: We start by comparing estimates of slopes. The first part of Hypoth-
esis 2 pertains to the equality of estimated slope coefficients in the B , T  , N  and 
A treatments. We fail to reject the null of equality for all pairwise tests of equality 
slope of slope coefficients ( �2(1) ≤ 1.96, p ≥ 0.161 ) (see Table 10 for all pairwise 
test results). We also fail to reject a joint test of equality of the estimated coeffi-
cients ( �2(3) = 2.23, p = 0.526 ). The next part of Hypothesis 2 stated that the esti-
mated slope on the S treatment is smaller than all other estimated slope coefficients. 
However, the slope coefficients in the S and T  treatments are virtually the same 
and not statistically significantly different ( �2(1) = 0.08, p = 0.781 ). When com-
paring A and S , the slope coefficients are nominally different but statistically not 

Table 3   Estimated workers’ 
bidding functions in each 
treatment

Predicted coefficients in square brackets
Session-clustered SEs in parentheses. ∗∗∗,∗∗ p < 0.01, p < 0.05

DV: b
i,t T W A S N B

xi,t 0.68∗∗∗ 0.78∗∗∗ 0.71∗∗∗ 0.67∗∗∗ 0.72∗∗∗ 0.75∗∗∗

[0.50] [0.80] [0.50] [0.20] [0.5] [0.5]
(0.04) (0.01) (0.04) (0.01) (0.003) (0.02)

Constant 2.70∗∗ 3.49∗∗∗ 9.08∗∗∗ 7.71∗∗∗ 6.69∗∗∗ 0.31
[0] [0] [40] [60] [0] [0]
(1.12) (0.45) (1.34) (1.24) (1.51) (0.33)

R2 ∶ 0.87

14  We also include in the Appendix tests of the point predictions of the model.



	 M. A. Fonseca et al.

1 3

significantly different ( �2(1) = 0.98, p = 0.322 ). We note that the estimated coef-
ficients are very tightly bound, so this lack of statistical significance is unlikely 
to be from noise. In all other pairwise comparisons, the differences in estimated 
slope coefficients were highly significant ( �2(1) ≥ 9.06, p ≤ 0.003 ). Furthermore 
a joint test of equality across all pairwise comparisons with S yielded a signifi-
cant difference ( 𝜒2(4) = 21.21, p < 0.001 ). The final comparative static prediction 
was that the slope of the bidding function in W was steeper than in other treat-
ments. With the exception of the comparison with B ( �2(1) = 2.60, p = 0.107 ), 
all pairwise tests were significant ( A = W : �2(1) = 3.41, p = 0.065 ; T = W : 
�2(1) = 6.30, p = 0.012 ; N = W : 𝜒2(1) = 35.04, p < 0.001 ); a joint test of equality 
was also highly significant ( 𝜒2(4) = 37.21, p < 0.001).

We proceed with estimated intercept comparisons. The model predicts that 
the estimated bidding functions for W , B and T  have the same intercept. We 
reject that hypothesis ( 𝜒2(2) = 33.25, p < 0.001 ). The model also predicts that 
the S will have the highest intercept; while the estimated intercept for S is sig-
nificantly larger than B ( 𝜒2(1) = 33.23, p < 0.001 ), T  ( �2(1) = 9.00, p = 0.003 ) 
and W ( �2(1) = 10.21, p = 0.001 ), it is not statistically significantly different 
to that of N  ( �2(1) = 0.27, p = 0.600 ) or A ( �2(1) = 0.57, p = 0.452 ); a joint 
test of equality of intercepts was highly significant ( 𝜒2(5) = 96.10, p < 0.001 ). 
The second highest intercept is predicted by the model to be that of A ; while 
the estimated coefficient in A is indeed significantly larger than that of W , B , 
and T  (all comparisons, 𝜒2(1) ≥ 13.42, p < 0.001 ), it is not significantly differ-
ent to that of N  ( �2(1) = 1.41, p = 0.235 ); a joint test of significance yielded 
a significant difference ( 𝜒2(4) = 74.92, p < 0.001 ). Finally, the model predicts 
that the empirical bidding function in N  will have a higher intercept than that of 
W , B and T  . We find significant differences in estimated intercepts in all pair-
wise comparisons ( W ∶ �2(1) = 4.12, p = 0.042 ; B ∶ 𝜒2(1) = 17.04, p < 0.001 ; 
T ∶ �2(1) = 4.52, p = 0.034 ); a joint test of equality of intercepts was highly signifi-
cant ( 𝜒2(4) = 67.96, p < 0.001).

4.1.1 � Wages

We now turn to the effect of different disclosure rules on wages. Our third hypothesis 
stated that workers that win the first-stage auction should receive a higher wage than 
workers that lose it. Table 4 summarizes the estimates of a regression of wage offer 

Table 4   Worker wages

Session-level clustered SEs in parentheses

T W S A N

Winning worker 24.87 23.72 21.89 22.46 20.63
(0.51) (0.37) (1.80) (0.61) (1.61)

Losing worker 12.46 10.55 12.98 12.91 11.11
(0.36) (0.56) (1.45) (0.55) (0.84)

N: 3150



1 3

Auctions with external incentives: experimental evidence﻿	

Ta
bl

e 
5  

F
ix

ed
 e

ffe
ct

s e
sti

m
at

es
 o

f w
or

ke
rs

’ w
ag

e 
fu

nc
tio

n

Se
ss

io
n-

le
ve

l c
lu

ste
re

d 
SE

s i
n 

pa
re

nt
he

se
s

 ∗∗
∗
,∗
∗
,∗
∶
p
<
0
.0
1
,
p
<
0
.0
5
,
p
<
0
.1
0

D
V:

T
W

S
A

N

w
W i,
t

w
L i,
t

w
W i,
t

w
L i,
t

w
W i,
t

w
L i,
t

w
W i,
t

w
L i,
t

w
W i,
t

w
L i,
t

vW ij
0.

36
6∗

∗
∗

(0
.0

05
)

b
W ij

0.
38

1∗
∗
∗

0.
13

9∗
∗
∗

0.
38

0∗
∗
∗

0.
02

4
(0

.0
25

)
(0

.0
05

)
(0

.0
23

)
(0

.0
18

)
vL ij

0.
37

5∗
∗
∗

(0
.0

08
)

b
L ij

0.
38

8∗
0.

46
2∗

∗
∗

0.
01

6
0.

39
0∗

∗
∗

(0
.1

10
)

(0
.0

57
)

(0
.0

26
)

(0
.0

25
)

C
on

st
an

t
0.

74
0∗

0.
18

8
2.

24
5

2.
69

7∗
∗

11
.3

05
∗

0.
21

8
0.

82
1

−
 0

.4
30

20
.6

29
∗
∗
∗

11
.1

14
∗
∗
∗

(0
.0

60
)

(0
.2

92
)

(1
.0

53
)

(0
.8

08
)

(2
.9

64
)

(1
.9

75
)

(1
.5

69
)

(1
.6

11
)

(0
.4

64
)

(0
.4

64
)

N
63

0
63

0
63

0
63

0
63

0
R
2

0.
90

0.
80

0.
73

0.
76

0.
68



	 M. A. Fonseca et al.

1 3

in stage 2 on a series of treatment dummies interacted with a dummy for stage-1 
auction winner. As before, we present the directly estimated coefficients for ease of 
exposition. Table 11 displays regression estimates of the dummy coefficients.

Result 3: Workers who win the first-stage auction receive higher wages than 
workers who do not win the first-stage auction.

Support: Winning workers earn substantially higher wages than los-
ers, as demonstrated by Table  4. The difference is always statistically sig-
nificant ( T  : 𝜒2(1) = 209.04, p < 0.001 ; W : 𝜒2(1) = 204.85, p < 0.001 ; 
S : 𝜒2(1) = 55.76, p < 0.001 ; A : 𝜒2(1) = 18776.37, p < 0.001 ; N  : 
𝜒2(1) = 148.48, p < 0.001).

We now turn to Hypothesis 4, which pertained to the shape of the wage function 
for the two workers. Table 5 summarizes the results from estimations of the wage 
equations for the winning worker and losing worker in each treatment as a function 
of the relevant stage-one auction variables.

Result 4: (a) The estimated wage functions for the winning worker in T  and A 
have similar slopes to those of the losing workers’ but higher intercepts. (b) In dis-
closure rule W , the winning worker’s wage is more responsive than the losing work-
er’s wage to the winning worker’s bid. (c) In disclosure rule S the losing worker’s 
wage is not significantly more responsive than the winning worker’s wage to the los-
ing worker’s bid. (d) Average wages are higher for the winning worker than for the 
losing worker in the N  treatment.

Support: (a) In the T  treatment, the estimated intercept for the winning work-
er’s wage function is larger but not significantly different than that of the los-
ing worker’s ( F(1, 2) = 5.53, p = 0.143 ); the slope coefficient of the losing work-
er’s wage function is marginally significantly different to the winning worker’s 
( F(1, 2) = 10.46, p = 0.084 ). A joint test of equality of slope and intercept is 
only marginally significant ( F(1, 2) = 10.94, p = 0.084 ). In the A treatment, the 
comparisons of interest is on the coefficient on the winning worker’s own bid 
versus the coefficient on the losing workers’ bid, as well as both workers’ inter-
cept coefficients. The former test yields a non statistically significant difference 
( F(1, 2) = 0.09, p = 0.794 ), but the latter yields a statistically significant difference 
( F(1, 2) = 29.15, p = 0.033 ). (b) In the W treatment, the estimated slope coefficients 
are statistically significantly different ( F(1, 2) = 104.56, p = 0.009 ). (c) In the S 
treatment, the estimated slope coefficients are not statistically significantly differ-
ent ( F(1, 2) = 1.63, p = 0.330 ). (d) In the N  , we observe a significant difference in 
average wages ( �2(1) = 105.26, p = 0.009).

Table 6   Firm profits

Session-level clustered SEs in parentheses.
∗∗∗,∗∗ ,∗ ∶ p < 0.01, p < 0.05, p < 0.10

T W S A N

1.06∗∗∗ 2.44∗∗∗ 1.84 1.48∗ 3.67∗∗∗

(0.13) (0.18) (1.25) (0.80) (1.14)
N: 3150
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We conclude this subsection with the fifth hypothesis, which stated that firms 
should make zero profits in all disclosure conditions. Table 6 summarizes esti-
mated average profits across all relevant conditions from a GLS regression of 
firm profits on treatment dummies.

Result 5: In all treatments except S , firms make positive profits. In S , firms 
make zero profits.

Support: We find positive estimates of profits across all treatments. How-
ever, they are only significant in the case of T  ( 𝜒2(1) = 63.00, p < 0.001 ), 
W ( 𝜒2(1) = 177.30, p < 0.001 ) A ( �2(1) = 3.47, p = 0.062 ) and N  
( �2(1) = 10.39, p = 0.001 ); in the case of S , the estimated profit was not signifi-
cantly different than zero ( �2(1) = 2.18, p = 0.140).

One interesting feature of our data is that firms are not making zero profits, as 
theory predicts. Empirical data on Bertrand duopolies (Dufwenberg and Gneezy 
2000; Fonseca and Normann 2012) suggests that subjects may not reach the Ber-
trand–Nash equilibrium, particularly when the number of players is low, as is the 
case in our paper. In the case of our specific experiment, there is a potential addi-
tional reason why, on average, profits end up being positive: firms may form the 
wrong beliefs about workers’ private values. That explanation should be valid 
if profits are significantly higher in the limited disclosure treatments than in T  . 
In fact, we see mixed evidence in favor of that explanation. There is no statisti-
cally significant difference in profits between T  and S ( �2(1) = 0.39, p = 0.534 ), 
or A ( �2(1) = 0.28, p = 0.599 ) but, firms make higher profits on average in W 
( 𝜒2(1) = 37.12, p < 0.001 ). and N  ( �2(1) = 5.18, p = 0.023).
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Fig. 2   Firm profits as a function of workers’ private values
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4.2 � The role of interim beliefs

The above results apply when we average over the valuations, so that it is worth con-
sidering whether matters change for particular valuations. Figure 2 displays estimates 
of firm profits conditional on the private value of the hired worker and its square 
value for each of our treatments where there was an aftermarket. In T  , firm profits 
are consistently close to zero, as predicted. In contrast, in the limited disclosure treat-
ments, firms consistently make losses on workers whose private values were low, but 
make reasonably large profits when private values are high. The most extreme case is 
the N  treatment, while the other treatments lie somewhere in between. This suggests 
that firms were also unable to correctly infer worker types from their bidding behav-
ior in stage 1 at either end of the distribution of private values.

The only way to be sure incorrect beliefs were at the heart of incorrect bidding 
for particular types, as opposed to alternative explanations such as decision error, we 
needed explicit data on beliefs. However, we did not include belief elicitation in our 
original design, as we felt it would be detrimental to decision quality in an already 
complex environment.

In order to understand to what extent bidding behavior in the first-stage auction 
lead to correct beliefs about valuations, we conducted an additional experiment. The 
purpose of this experiment is to see to what extent firms offer or accept wages using 
correct information. We recruited a separate sample of subjects from the same subject 
pool as the main treatments. Upon arrival to the laboratory, subjects sat in individual 
computer booths, and verbal communication was not allowed at any time. Subjects 
were told they were taking part in an individual choice experiment. The instructions 
told subjects they would observe a sequence of bids placed by subjects in the first-
stage of the earlier A treatment. Their task was to guess the private values of each of 
the two workers in each period. The instructions included a copy of the instruction 
set used in the A treatment.15 See the Appendix for the instructions for this treatment.

To make the guesses incentive-compatible, we employed a quadratic scoring rule 
of the form:

Quadratic scoring rules are incentive-compatible if subjects are risk-neutral, 
expected utility maximizers (Offerman et al. 2009). Those assumptions are the ones 
made by our theoretical model, hence this belief elicitation method is suitable to our 
set up. We conducted two sessions with 18 participants in each session. This means 
that two subjects in the belief elicitation sessions observed the same sequence of 
bids—this allowed us to test for the consistency of guesses. Indeed, beliefs were 
very consistent: the average Spearman correlation for pairs of “guessing partici-
pants” was 0.84, with only two cases having a Spearman correlation below 0.75. We 
are therefore confident that the elicited beliefs are reliable measures of the predicted 
workers’ private values.

10,000 − (true value − predicted value)2

15  Of course, these subjects did not observe any outcomes from the second stage.
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Note that the theoretical bidding function here is given by 1
2
xi + 40 , which implies 

that we should not observe bids below 40 or above 90. Any such bids are off-the-
equilibrium path behavior and, as required by the equilibrium under consideration, 
any bids below 40 should lead to beliefs that put probability one on type zero while 
any beliefs above 90 should lead to beliefs that put probability one on type 100. In 
our treatment, 19% (68%) of bids by the winning (losing) worker were below 40, 
but only 1% (0%) of bids by the winning (losing) worker were above 90. Table 7 
presents estimation results of elicited beliefs as a function of observed bids by the 
winning and losing worker in the first-stage auction from the A sessions. To capture 
the piecewise linear nature of the predicted belief function, that is

we regressed the belief about worker value on bij with dummies for the case when 
bij > 90 and bij < 40 , and their interactions with bij . In addition, we ran a linear 
specification. We consider three samples: the beliefs on the winning worker value, 
the losing worker, and the pooled data (since the belief function should be the same 
for both workers).

It is important to note that the linear function performs equally well as the piece-
wise model, as can be noted by the R2 for both models (regardless of whether we look 
at the winning worker, losing worker or the pooled data). Figure  3 (left) plots the 
theoretical belief function for both winning and losing workers in the A treatment; it 

0 if b < 40

2b − 80 if 40 ≤ b ≤ 90

100 if b > 90

Table 7   Estimates of firm beliefs as a function of observed bids

∗∗∗p < 0.01 . Individual-level clustered standard errors in parentheses

Winning worker Losing Worker Pooled

(W1) (W2) (L1) (L2) (P1) (P2)

bij × I(bij < 40) 0.18∗∗∗ − 0.06 0.02
(0.06) (0.03) (0.02)

I(bij < 40) − 7.85∗∗∗ 0.67 − 3.03∗∗∗

(1.76) (0.74) (0.98)
bij × I(bij > 90) − 4.67∗∗ − 4.71∗∗

(2.12) (2.11)
I(bij > 90) 430.83∗∗ 434.84

(196.47) (196.18)
bij 0.93∗∗∗ 0.97∗∗∗ 0.99∗∗∗ 0.99∗∗∗ 0.98∗∗∗ 1.02∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.01)
Constant 8.02∗∗∗ 5.40∗∗∗ 0.82 0.81 4.01∗∗∗ 1.03∗∗

(1.40) (0.99) (0.59) (0.54) (1.05) (0.50)
N 1260 1260 2520
R2 0.84 0.83 0.88 0.83 0.90 0.90
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also plots the two estimated belief functions: the piecewise linear model that corre-
sponds to the theoretical model and a simple linear specification, as per Table 7.

Two aspects are noteworthy: firstly, both empirical belief functions are practi-
cally indistinguishable, which suggests that the more parsimonious specification is 
the better model for the belief data. Secondly, both empirical belief functions dif-
fer substantially from the theoretical belief function for observed bids below 40—
off-equilibrium behavior. This suggests that firms in the main experiment expected 
workers with low private values to overbid less than suggested by the theory (which, 
if anticipated by workers, then removed their strategic incentive to do so).

This leads us to ask: were firms able to predict bidding behavior well? Figure 3 
(right) plots the inverted belief function (linear specification) against the empirical 
bidding function from workers in the A treatment. The empirical bidding function 
(blue) is slightly flatter than the inverted belief function and it has a higher intercept. 
In the discussion of Result 5 at the beginning of this subsection, we highlighted how 
firms choose wages that produce profits closer to theoretical predictions for interme-
diate valuations and farther from those predictions for extreme valuations. In that 
context we suggested that it may be difficult for the aftermarket to predict bidding 
behavior in these circumstances. Figure  3 (right) confirms that suggestion: firms 
may have underestimated both the degree to which workers bid in excess of their 
private value when the draw was low, as well as the extent to which they bid below 
their private value when their draw was high.
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Figure 3 (bottom) further confirms this conjecture; it plots the prediction error for 
each belief elicitation data point against the true private value. Most predictions are 
quite accurate: the median absolute error in predicted values was 6.75 ECU, and 75% 
of observations had an absolute error lower than 13.2 ECU. However, the most extreme 
cases of prediction error are at the extremes of the domain of private values. We verify 
this by running a regression of the absolute error in prediction on private value and 
private value squared. We obtain a constant coefficient of 10.86 (robust s.e. 0.63), a 
coefficient of −0.26 (robust s.e. 0.03) on private value and a coefficient of 0.004 (robust 
s.e. 0.0004) on the square of private value ( N = 2520,R2 = 0.16 ). Thus, the highest 
errors in prediction come from the extremes of the private value distribution.

4.3 � Discussion

The results of the experiment partly confirm the theoretical predictions of the model. 
In particular, comparing the bidding behavior in the B and T  treatments with the 
other treatments suggests that workers realize that they are participating in a signal-
ing game and (over)bid accordingly. In particular, the bidding behavior of workers in 
the A , W and N  treatments suggests that individuals grasped the basic incentives. 
When queried in a non-incentivized, open ended questionnaire about how they made 
their bidding decisions, 48% of workers reported bidding higher than their private 
value when the realization was ‘low’, and bidding below their private value when 
the realization was ‘high’. Just under 50% of workers in these treatments explained 
their bidding behavior as a function of second-stage outcomes, either as responding 
to expected wage offers, or even explaining their behavior as signaling a particular 
type. However, subjects also stated reducing their overbidding in periods where they 
drew a higher private value. This is a plausible explanation as to why the treatment 
effects are weaker than what theory would predict.16

In the S treatment, bidding behavior was not what we would expect from the the-
ory. This is not entirely surprising, as this is certainly the most difficult disclosure 
rule to think about, for two main reasons. The first is that the disclosure rule itself 
may be difficult to interpret since we have a first-price auction, but only the losers’ 
bid is disclosed. The second reason is that in the symmetric and monotone equilib-
rium, workers with low valuations face a trade-off between bidding low given their 
valuation of the object and bidding high for signaling purposes (as their valuation 

16  This post-experimental questionnaire response is a case in point: “Whether I made a bid higher or 
lower than the value of the prize depended on how high the value of the prize was. If the value was high 
then I was more likely to bid lower than the prize value, as I was still likely to win the auction, and I 
decided that the underestimate of the prize would give me a greater profit than the higher offer the firms 
would make me in the result of a higher bid, as they want to keep their offers as low as possible in order 
to maximise their own profit. If the prize value was low however, I tended to bid more than the prize 
value, as this would entice the firms to give me a higher offer, which would hopefully offset the loss 
I’d made at the auction (this was a mistake when the prize value was exceptionally low however, as the 
offers from the firms were also extremely low). If the price value was in the middle range, I tended to 
still bid lower than the prize value, as I decided the risk of losing the auction was still worth taking for a 
higher profit from the auction.”
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is likely to be revealed if they do not overbid), while workers with high valuations 
face the reverse trade-off. In other words, in the S treatment workers face a trade-off 
between their standard auction incentives and their signaling incentives, and equi-
librium bidding behavior requires them to finely balance these opposing incentives. 
This does not happen with the other disclosure rules where the incentives to overbid 
are (weakly) monotonic in the valuations: in the A and N  treatments, these incen-
tives are the same regardless of the valuation whereas in the W treatment, the higher 
the valuation, the higher the incentive to overbid. All of this implies that bidding in 
the S treatment is significantly more complex than in the other treatments. As such, 
it should not be too surprising that even if the incentives are correctly understood, 
their implementation in the bidding process may fail.

Regarding wage-setting in the second stage, the model’s predictions are also 
broadly confirmed, with S data again diverging the most from theoretical predic-
tions. It is particularly interesting to note that bidders seem to understand that if a 
worker’s bid is disclosed, that should have a greater impact on this worker’s wage 
than on the wage of a worker whose bid is not disclosed. Over 53% of firm subjects 
stated in the post-experimental questionnaire that they had discriminated between 
the winning and the losing worker in their wage offers across all treatments. In the 
W and S that proportion was 92% and 67%, respectively. Notably, very few firm 
subjects expressed concerns about over- or under-bidding by workers (8% and 12%) 
respectively—most observations of both types of concerns came from firms in the S 
treatment, which suggests this was the treatment in which behavior was most noisy. 
A substantial number of firm subjects reported applying a differential mark-down 
based on the observed bids (e.g. “As a Firm I decided to bid below 40% of the work-
ers bid price if it was winner. If it was a loser then I bid at 20% or less. My main aim 
was to offer the lowest price possible for a worker, but still trying to beat the other 
firm. I had base my bids off past bids other firms made.”)

Risk aversion has been often raised as a possible explanation for over-bidding in 
private value auctions in the lab (c.f. Cox et al. 1985, 1988; Smith and Walker 1993; 
Goeree and Holt 2002). We feel that this is an implausible reason for deviations 
from our theoretical benchmark which explicitly assumes risk neutrality. The main 
basis for our position is theoretical in nature. Arrow (1971) and Rabin (2000) show 
that risk aversion as postulated by expected utility theory must imply risk neutral 
behavior for small stakes—such as those typically used in laboratory experiments. 
As such, we feel that the traditional definition of risk aversion, which relies on the 
concavity of one’s utility function, is not a good candidate for the deviations.

We conclude our discussion by revisiting the data on beliefs. The estimated belief 
function was qualitatively similar to predictions for the range of bids one would expect 
to observe in equilibrium, but it differed dramatically for ranges of bids that are out-
of-equilibrium. In particular, subjects seemed to discount the incentive to overbid by 
low types: recall that in theory such incentive should be such that no subject would bid 
below 40 in equilibrium. This may have removed the incentive by workers to overbid 
to the extent predicted by theory when drawing a low private value. These results also 
confirm that the explanation for excess profits in our treatments may be partly attribut-
able to firms not being able to correctly guess valuations, when they are extreme, from 
bidding behavior.
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5 � Conclusions

This paper is the first to present an experimental analysis of signaling through auctions 
and does so in a context where bidders’ valuations in a first-stage auction are positively 
correlated with the expected returns in an aftermarket. To do so, we adopt the frame-
work in Giovannoni and Makris (2014) which allows for easily testable implications. 
We interpret the aftermarket as a labor market where the first-stage bidders (workers) 
have a productivity that is a linear function of their first-stage valuations. We model 
the labor aftermarket in such a way that in equilibrium workers take all the surplus 
(as expected by firms) and equilibrium wages are therefore equal to what the firms 
believe to be their expected productivity. The theory predicts overbidding in the first-
stage auction under limited disclosure and, more interestingly, that different disclosure 
rules about what is known about bidding at the end of the first-stage auction influence 
bidding in the first-stage auction and wages in the second-stage auction. We test the 
theoretical predictions in an experiment, focusing on differences across disclosure 
rules. The results show that bidders understand the possibility of signaling their pro-
ductivity through their bids and, further, that they also understand some of the quali-
tative differences in the signaling opportunities that arise from the various disclosure 
rules. Several predictions about wages in the aftermarket are also confirmed. However, 
our results also show that bidder behavior differs sufficiently from theoretical predic-
tions to invalidate the predicted effect of different disclosure rules on revenue and firm 
profits. In particular, there is not as much overbidding for low valuation types as one 
would predict, although our belief elicitation analysis also shows that this behavior is 
to some degree (but not completely) anticipated from firms. From a revenue efficiency 
perspective, theory predicted that disclosing the losing bid would generate the highest 
level of revenue alongside the treatment where both bids are revealed. In contrast, our 
results suggest that revealing the winning bid can be, for the seller, equally beneficial 
to revealing all the bids and strictly better than revealing the losing bid. Our data sug-
gests that the losing-bid disclosure rule should be used in practice with caution. It is the 
most cognitive demanding environment as argued earlier, and it leads to less consistent 
behavior relative to theoretical benchmarks.
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Appendix

A.1 Equilibria

In this part of the appendix, we provide a more detailed treatment of the theory dis-
cussed in Sect. 2. Following Giovannoni and Makris (2014), we make the following 
restriction on off-the-equilibrium-path beliefs, which we will apply to both aftermar-
ket settings:17

Assumption A  We assume that in any such equilibrium, any bid bi lower than ��(0) 
is believed to come from valuation xi = 0 and any bid bi higher than ��(100) is 
believed to come from valuation xi = 100. Further, if there is a bid bi and a valuation 
x̂ such that bi ∈

(
limxi→x̂− �

�
(
xi
)
, limxi→x̂+ �

�
(
xi
))

 then bi is believed to come from 
valuation xi = x̂.

Proposition in the main text allows us to rewrite the expected utility for worker i 
as

Assumption A, in turn, allows us to associate to each vector of bids � a correspond-
ing vector � of valuations, which we refer to as announcements.18 For convenience, 
we will define the functions

as the firms’ expectations about i’s productivity at the end of the first-stage auction, 
given the disclosure rule and the fact that i won or lost the auction. This notation 
emphasizes that these beliefs may be, in equilibrium, a function of the other bid-
der’s valuation and i’s own announcement.19 Then, following an announcement zi , 
the expected payoff for bidder i as a function of zi and valuation xi is

EUi

(
�, xi,𝜙

)
=

[
Pr

(
bi > bj

)
+

1

2
Pr

(
bi = bj

)](
xi − bi

)
+ 𝛼E

(
Xi|I𝜙

)

v�
�
(xj, zi) = E

(
Xi|I�,� = i

)

v�
−�

(xj, zi) = E
(
Xi|I�,−� = i

)

17  See Giovannoni and Makris (2014) for a discussion of assumption A and the focus on these equilibria.
18  That is, with zi such that 

(
��

)−1
(bi) = zi if bi ∈ ��

(
Xi

)
 , zi = 100 if bi > 𝛽𝜙(100) and zi = x̂ if 

bi ∈
(
limx→x̂− �

�(x), limx→x̂+ �
�(x)

)
.

19  For example, if � = A then

whereas if if � = W then

The others follows analogously.

vA
�
(xj, zi) = vA

−�
(xj, zi) = zi

vW
𝜔
(xj, zi) = zi

vW
−𝜔

(xj, zi) = E
(
Xi|Xi < xj

)
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where we emphasize that this is an expectation with respect to j’s valuation, condi-
tional on equilibrium play from her. We define an effective valuation as

We call these effective valuations because they capture all that is at stake for indi-
vidual i in the first-stage auction (assuming equilibrium play in the second stage). 
Specifically, we have the direct utility from winning the auction xi , but also the repu-
tational returns that i can expect in the second-stage auction as a function of her val-
uation. The component �v�� − �v

�
−� captures the net reputational gain to the bidder 

from winning the auction, while the remaining term in the square brackets captures 
the additional reputational net gain from marginally increasing the announcement. 
This definition allows us to state, following on from Giovannoni and Makris (2014), 
the following proposition:

Proposition A  Given assumption A, equilibrium bidding functions �� of the first-
price sealed-bid auction are given by20

Proof  Define

and note that

is the expected utility of valuation xifrom bidding �(zi) . Suppose now that a symmetric 
and strictly increasing equilibrium � exists. Note then that in a such an equilibrium

EUi

(
zi, xi,�

)
=

1

100

[
∫

zi

0

(
xi + �v�

�
(Xj, zi) − ��

(
zi
))
dXj + ∫

100

zi

�v�
−�

(Xj, zi)dXj

]

��
�
xi
�
= xi + �v�

�
(xi, xi) − �v�

−�
(xi, xi)

+ �
⎡
⎢⎢⎣∫

xi

0

⎛
⎜⎜⎝
�v

�
�(Xj, zi)

�zi

������zi=xi

⎞
⎟⎟⎠
dXj + ∫

100

xi

⎛
⎜⎜⎝
�v

�
−�(Xj, zi)

�zi

������zi=xi

⎞
⎟⎟⎠
dXj

⎤
⎥⎥⎦

��
(
xi
)
=

1

xi ∫
xi

0

��(s)ds, xi ∈ [0, 100]

Ψ�
(
xi, xj, zi

)
= xi + �v�

�
(xj, zi) − �v�

−�
(xj, zi)

EUi(xi, zi,�) ≡ 1

100

⎡⎢⎢⎣

zi

�
0

�
Ψ�

�
xi,Xj, zi

�
− �(zi)

�
dXj + �

100

0

�v�
−�

(Xj, zi)dXj

⎤⎥⎥⎦

1

100

⎡⎢⎢⎢⎣

�−1(bi)

∫
0

�
Ψ�

�
xi,Xj, �

−1
�
bi
��

− bi
�
dXj + ∫

100

0

�v�
−�

(Xj, �
−1
�
bi
�
)dXj

⎤⎥⎥⎥⎦

20  Given that N = 2 and that we have a uniform distribution, the bidding function is well-defined at 
xi = 0.
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is the expected profit of bidder with valuation xi from bidding bi ≥ 0,with, by 
assumption A, �−1(bi) ≡ 0 if bi < 𝛽−1(0) , �−1(bi) ≡ 100 if bi ≥ �−1(100),and 
�−1(bi) ≡ x̂ if bi ∈

(
limxi→x̂− �

−1
(
xi
)
, limxi→x̂+ �

−1
(
xi
))
. Moreover, � being strictly 

increasing, is almost everywhere differentiable. The first-order condition (FOC) for 
a maximum of the expected profit of bidder with valuation xi is (except in points of 
non-differentiability of �(.))

So, if � is a symmetric and strictly increasing equilibrium, then it must be that 
bi = �(xi), with 𝛽(xi) > 0 for any xi > 0, and hence

almost everywhere in x ∈ (0, 100]. One can easily see that if � is a symmetric and 
strictly increasing equilibrium, then it must be continuous: if x̂ was a jump point 
then bidding limx→x̂−𝛽(x) is preferred to bidding limx→x̂+𝛽(x) by bidder of valuation 
x̂ (resp. x̂ + 𝜀, where � is arbitrarily small) when limx→x̂+𝛽(x) = 𝛽(x̂) (resp. when 
limx→x̂−𝛽(x) = 𝛽(x̂));   such deviation does not have an effect on the auction’s out-
come and the reputational return, but leads to lower price upon winning. Note also 
that in any symmetric and strictly increasing equilibrium, �(0)x0 = 0. Continuity of 
�, and hence �(xi)xi, implies, therefore, that the differential equation

with the boundary condition �(0)x0 = 0 has a unique solution, for any x ∈ [0, 100], 
to the proposed equilibrium:

It remains thus to show that �
(
xi
)
 is indeed an equilibrium. To this end, note first 

that, given that competitors deploy �
(
xi
)
, any bidder is indifferent over any bid 

weakly lower than �(0) . Also, any bidder strictly prefers �(100) to any higher bid. 
We have that

Ψ�
(
xi, �

−1
(
bi
)
, �−1

(
bi
))

− bi

+ � ∫
�−1(bi)

0

�

�zi
v�
�
(Xj, �

−1(bi))dXj + � ∫
100

�−1(bi)

�

�zi
v�
−�

(Xj, �
−1(bi))dXj

= �−1(bi)�
�(�−1(bi))

Ψ�(xi, xi, xi) − �(xi) + � ∫
xi

0

�

�zi
v�
�
(Xj, xi)dXj + � ∫

100

xi

�

�z
v�
−�

(Xj, xi)dXj = ��(xi)xi

Ψ�(xi, xi, xi) + � ∫
xi

0

�

�zi
v�
�
(Xj, xi)dXj

+ � ∫
100

xi

�

�z
v�
−�

(Xj, xi)dXj =
d[�(xi)xi]

dxi
, xi ∈ (0, 100]

�
(
xi
)
=
1

xi ∫
xi

0

[
Ψ�(s, s, s) + � ∫

s

0

�

�zi
v�
�
(Xj, s)dXj + � ∫

100

s

�

�z
v�
−�

(Xj, s)dXj

]
ds

=
1

xi ∫
xi

0

[
s + �v�

�
(s, s) − �v�

−�
(s, s) + � ∫

s

0

�

�zi
v�
�
(Xj, s)dXj

+� ∫
100

s

�

�zi
v�
−�

(Xj, s)dXj

]
ds =

1

xi ∫
xi

0

��(s)ds
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So,

Given that Ψ�(xi, zi, zi) is strictly increasing in xi, we have that if zi < xi then 
𝜕EUi(xi,zi,𝜙)

𝜕zi
>

𝜕EUi(zi,zi,𝜙)

𝜕zi
, and vice versa. That is, �EUi(xi,zi,�)

�zi
 is strictly increasing in xi. 

Note also that �
(
zi
)
 satisfies �EUi(zi,zi,�)

�zi
= 0 for any zi ∈ (0, 100]. These, in turn, imply 

that for any zi and xi such that 0 < zi < xi ≤ 100 we have 𝜕EUi(xi,zi,𝜙)

𝜕zi
> 0, while for any 

zi and xi such that 0 ≤ xi < zi ≤ 100 we have 𝜕EUi(xi,zi,𝜙)

𝜕zi
< 0 . Note also that for any 

xi > 0 bidding �(0) is not optimal. To see this, note first that from the above we have 
that �EUi(xi,zi,�)

�zi
≥ 0 for any zi = � where � is arbitrarily small. So, it will be enough to 

show that EUi(xi, 0,�) ≤ limzi→0+ EUi(xi, zi,�). This holds as an equality by continu-
ity of v�−�(xj, zi). Thus, zi = xi is indeed indeed a global maximum of EUi(xi, zi,�), for 
any x ∈ [0, 100], given that competitors deploy � . Thus, � is an equilibrium. 	�  ◻

A.2 Bidding and wage functions

We calculate bidding and wage functions for all our treatments. Define

then it is easy to see that21

�EUi(xi, zi,�)

�zi
=

1

100

[
Ψ�(xi, zi, zi) − �(zi) −

d��(zi)

dzi
zi

+� ∫
zi

0

�

�zi
v�
�
(Xj, zi)dXj + � ∫

100

zi

�

�zi
v�
�
(Xj, zi)dXj

]

�EUi(xi, zi,�)

�zi
−

�EUi(zi, zi,�)

�zi
=

1

100

[
Ψ�(xi, zi, zi) − Ψ�(zi, zi, zi)

]
.

M(x) =E
[
Xi|Xi > x

]
=

1

1 −
x

100
∫

100

x

Xi

1

100
dXi =

1

2
(x + 100)

Λ(x) =E
[
Xi|Xi < x

]
=

1
x

100
∫

x

0

Xi

1

100
dXi =

1

2
x

vT�(xj, zi) = vT
−�(xj, zi) = vT�(xj, xi) = vT

−�(xj, xi) = xi

vA� (xj, zi) = zi; v
A
−�(xj, zi) = zi

vW� (xj, zi) = zi; v
W
−�(xj, zi) =

1

2
xj

vS�(xj, zi) =
1

2

(
xj + 100

)
; vS

−�(xj, zi) = zi

vN� (xj, zi) =
1

100 ∫
100

0

(
1

2
(y + 100)

)
dy = 75;

vN
−�(xj, zi) =

1

100 ∫
100

0

(
1

2
y
)
dy = 25

21  The � = B case is the standard IPV case, so that we already know that for this case the effective valu-
ation is the standard valuation xi.
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which gives

and this leads to the bidding functions presented in the main text. These and Propo-
sition 1 imply (using the definition that I

(
xi, xj

)
= 1 if xi > xj and zero otherwise) 

that

and since for all disclosure rules � ≠ T  , it must be that x =
(
��

)−1
(b), we have the 

wages described in the main text.

A.3 Instruction set

We reproduce the instructions used in our experiment. All instructions included 
screenshots of the different stages of the experiment to facilitate comprehension of 
the experimental environment. The instructions for the different treatments differed 
only in a key sentence and screenshot in the third page, as well as how the informa-
tion was revealed in the examples at the end. The key sentence was always under-
lined in every version shown to subjects.

To minimize the number of pages, we reproduce the different key page 3 sen-
tences below:

A : “Firms only know the bids of both workers and the identity of the winner and 
loser.”

W : “Firms only know the winning bid and the identity of the winner.”
S : “Firms only know the losing bid and the identity of the loser.”
T  : “Firms will know what the value of the stage 1 prize to either worker is.”
N  : “Firms only know the identity of the winner and loser.”

�T(xi) = xi

�A(xi) = xi + 100�

�W(xi) = xi

(
3

2
� + 1

)

�S(xi) = xi

(
1 −

3

2
�
)
+ 150�

�N(xi) = xi + 50�

wT

i

(
xi, xj

)
= �xi

wA

i

(
xi, xj

)
= �xi

wW

i

(
xi, xj

)
= �xiI

(
xi, xj

)
+

�

2
xj
(
1 − I

(
xi, xj

))

wS

i

(
xi, xj

)
=

�

2

(
xj + 100

)
I
(
xi, xj

)
+ �xi

(
1 − I

(
xi, xj

))

wN

i

(
xi, xj

)
= 75�I

(
xi, xj

)
+ 25�

(
1 − I

(
xi, xj

))
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The instructions for the B treatment did not include (or make a reference to) Stage 
2, or firms. The examples had the same private values and bids, but no stage 2 mar-
ket, and payoffs in the examples were adjusted accordingly.

We present the instructions used for the T  treatment, as well as the instructions 
for the belief elicitation treatment. The instruction set for the latter treatment incor-
porated the instructions for the original treatment; we will not reproduce that section 
for the sake of brevity.

A.3.1 Instruction set: T

Instruction set

Welcome to our experiment. Please read these instructions carefully, as your pay-
ment will depend on your decisions, as well as the decisions of other people in the 
room.

Your payoffs during the experiment will be denominated in Experimental Cur-
rency Units (ECU). Once the experiment is finished, we will convert your payoff 
from ECU to pounds and pay you in cash. 3 ECU are worth £1. You will also receive 
£10 for participating.

This experiment will be divided into 5 practice rounds and 35 real rounds. The 
experiment you are about to participate in will involve four people, two workers 
(worker A and worker B) and two firms (firm 1 and firm 2).

Your role in this experiment will be that of a firm. You will retain that role 
throughout the experiment.

At the beginning of each round, the computer will randomly match two workers 
and two firms. It is possible, though very unlikely, that you will be paired with the 
same three people in consecutive rounds.

All rounds of the experiment will work in the same way. We will now describe 
the way in which each round of the experiment works.

Each round of the experiment is divided into two stages. We now describe each 
stage in turn.

Stage 1

Workers bid for the prize in an auction. Workers can bid any amount between 0.00 
and 100.00 (maximum of two decimal places). The winner of the auction is the per-
son who bids the highest amount.

If there is a tie, the computer will flip a virtual coin to decide which worker wins 
the auction.

When bidding, each worker will know his own value of the prize, but each worker 
will not know the other worker’s value.

The value of the prize to either worker is determined randomly by the computer. 
This value is a number between 0.01 and 100.00 (in increments of 0.01), where each 
number is equally likely to be drawn.
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The payoff to the winner of the auction will be equal to the value of the prize 
minus the bid.

The payoff to the loser of the auction will be zero.

Stage 2

In Stage 2, the firms will enter an auction to hire the workers.
They will be told of all the bids in Stage 1’s auction and the corresponding 

bidders.
They will offer wages to both the winner and the loser of the Stage 1 auction.
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The firm that makes the highest wage offer to a given worker will hire that 
worker and pay him/her that wage.

It is possible for a firm to hire both workers, if that firm makes the highest 
wage bid for both workers.

If a firm hires a worker, that firm will gain a payoff equal to 40% the value that 
worker assigns to the stage 1 prize. For example, if a worker values the prize at 
30 ECU, that worker is worth 12 ECU to a firm.

However, the firms do not know what the value of the stage 1 prize to either 
worker is. Firms only know the bids of both workers and the identity of the winner 
and loser.

The two firms must make a separate wage bid for the winner and the loser of 
the first stage auction. The firm that makes the highest bid for a given worker will 
hire that worker and pay the worker that wage. The firm that makes the lowest bid 
for a given worker will not hire that worker. In case of a tie, the computer will flip 
a virtual coin to decide which firm hires that worker.

At the end of the round, firms and workers will receive information about the 
outcome of the auctions and their final payoffs.
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The following is the final payoff screen for a worker at the end of a period:

And the following is the payoff screen for a firm at the end of a period:
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To fix ideas, consider the following examples.

Example 1:
In Stage 1, worker A has a value of 65 and worker B has a value of 70. Worker 

A bids 80 and worker B bids 62. Worker A wins the auction and pays 80, thus 
having a net payoff of 65 − 80 = −15 . Worker B lost the auction and has a payoff 
of 0.

In Stage 2, both firms observe the two bids and the corresponding bidders. 
That is, they know worker A bid 80 and worker B bid 62. Firm 1 makes a bid of 
43 for worker A and a bid of 24 for worker B. Firm 2 bids 30 for worker A and 
bids 25 for worker B.

Firm 1 had the highest bid for worker A, therefore it hires worker A. Firm 2 
made the highest bid for worker B, therefore it hires worker B. The final payoffs 
for the four players are:

•	 Worker A gets a payoff of −15 from Stage 1 and a payoff of 43 from Stage 2 
for a total of 28.

•	 Worker B gets a payoff of 0 from Stage 1 and a payoff of 25 from Stage 2 for a 
total of 25.

•	 Firm 1 gets a payoff of (0.40 × 65) − 43 = −17.
•	 Firm 2 gets a payoff of (0.4 × 70) − 25 = 3.

Example 2:
In Stage 1, worker A has a value of 54 and worker B has a value of 17. Worker A 

bids 46 and worker B bids 10. Worker A wins the auction and pays 46, thus having a 
net payoff of 54 − 46 = 8 . Worker B lost the auction and has a payoff of 0.

In Stage 2, both firms observe the two bids and the corresponding bidders. That 
is, they know worker A bid 46 and worker B bid 10. Firm 1 makes a bid of 15 for 
worker A and a bid of 6 for worker B. Firm 2 bids 12 for worker A and bids 5 for 
worker B.

Firm 1 had the highest bid for worker A, therefore it hires worker A. Firm 1 also 
made the highest bid for worker B, therefore it hires worker B. The final payoffs for 
the four players are:

•	 Worker A gets a payoff of 8 from Stage 1 and a payoff of 15 from Stage 2 for a 
total of 23.

•	 Worker B gets a payoff of 0 from Stage 1 and a payoff of 6 from Stage 2 for a 
total of 6.

•	 Firm 1 gets a payoff of (0.40 × 54) − 15 + (0.40 × 17) − 6 = 6.6 + 0.8 = 7.4.
•	 Firm 2 gets a payoff of 0.

Example 3:
In Stage 1, worker A has a value of 33 and worker B has a value of 48. Worker A 

bids 46 and worker B bids 55. Worker B wins the auction and pays 55, thus having a 
net payoff of 48 − 55 = −7 . Worker A lost the auction and has a payoff of 0.
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In Stage 2, both firms observe the two bids and the corresponding bidders. That 
is, they know worker A bid 46 and worker B bid 55. Firm 1 makes a bid of 5 for 
worker A and a bid of 6 for worker B. Firm 2 bids 4 for worker A and bids 7 for 
worker B.

Firm 1 had the highest bid for worker A, therefore it hires worker A. Firm 2 made 
the highest bid for worker B, therefore it hires worker B. The final payoffs for the 
four players are:

•	 Worker A gets a payoff of 0 from Stage 1 and a payoff of 5 from Stage 2 for a 
total of 5.

•	 Worker B gets a payoff of −7 from Stage 1 and a payoff of 7 from Stage 2 for a 
total of 0.

•	 Firm 1 gets a payoff of (0.40 × 33) − 5 = 8.2.
•	 Firm 2 gets a payoff of (0.40 × 48) − 7 = 12.2.

Your payment for this experiment will be the sum of payments from three rounds, 
which the computer will draw at random. Each round is equally likely to be chosen. 

A.3.2 Instruction set: belief elicitation

Instruction set

Welcome to our experiment. Please read these instructions carefully, as your pay-
ment will depend on your decisions.

Your task in this experiment will be to make predictions on the basis of choices 
made by people who took part in an earlier experiment.

You will be paid for the accuracy of your predictions: the more accurate your 
guesses are, the more money you will earn.

Before we explain what you will have to predict, we would like you to read the 
instructions the people who took part in the original experiment read. Those instruc-
tions follow this page. They are printed in yellow paper.

Please take 10 min to read the original instructions. The instructions for your task 
follow at the end.

In the present experiment, you will be playing the role of the firm. However, you 
will not be interacting with anyone in the room.

In each period, you will see the bids from the Stage 1 auction from participants who 
played the role of worker in an experimental session that took place sometime between 
December 2013 and January 2014. These participants are not present in this room.

In each period, you will have to make two predictions: one for the value of the prize 
to the winning worker, and another for the value of the prize to the losing worker. You 
will be able to see the bids that each worker made in Stage 1 of that round before you 
make your predictions.

The closer your prediction is to the actual value of the prize for a given worker, the 
more money you will earn.

Your payoff from each prediction is calculated based on the following formula:
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Prediction payoff (in tokens): 10,000 − (true value − predicted value)2

For example, suppose that you guessed that, in a given period, the value to a worker 
was 35.

–	 If the true value was 35, then your payoff = 10,000 − (35 − 35)2 = 10,000.
–	 If the true value was 15, then your payoff = 10,000 − (15 − 35)2 = 10,000

−400 = 9600.
–	 If the true value was 90, then your payoff = 10,000 − (90 − 35)2 = 10,000

−3025 = 6975.

At the end of each period, you will receive feedback about what the actual value of the 
prize was for both workers, and your payoff for that period.

You will see the same sequence of bids that an actual participant playing the role of 
a firm saw over the course of the 35 experimental periods.

Once you make predictions for each of the 35 periods in the original experiment, the 
computer will select three periods at random, which will be the basis for your payment.

This means you will be paid on the basis of six predictions. 10,000 tokens = £1. You 
will also earn £4 for participating.

A.4 Supplementary analysis

Table  8 displays the Chi-squared values and p values from revenue comparisons 
related to the estimates from specification (1) in Table 2.

Table 9 displays GLS regression estimates of the bid placed by worker i in exper-
imental period t, bi,t on that worker’s private value in that period, vi,t , and dummy 
interactions with the relevant treatments and their corresponding dummy intercepts; 
the omitted treatment is B . The first specification only includes treatment dummies 
and their interactions with vi,t . The second specification also includes a linear time 
trend. The estimated coefficients are unchanged, but we do detect a significant time 
trend. We rely on the first specification for hypothesis testing purposes, as we test 
differences in intercepts and the presence of the time trend will alter the economic 
interpretation of the intercept.

Our main interest, as explained in the text, is on comparative static effects of dis-
closure rules. For the sake of completeness, we include the tests for the point predic-
tions of the model. We find that the empirical bidding functions are significantly 
different from their theoretical counterparts; in particular the intercepts of the esti-
mated bidding functions from limited disclosure treatments are significantly smaller 
than predicted.

We start by looking at the B treatment, which is the omitted category in the 
regression results. A joint test of equality of the coefficient and slope to the bench-
mark predictions (0 and 0.5, respectively) yielded statistically significant differences 
( 𝜒2(2) = 1769.03, p < 0.001 ). Given that the estimated constant is not significantly 
different to zero ( �2(2) = 0.91, p = 0.340 ), the likely source of the difference is the 
estimated slope ( 𝜒2(2) = 126.10, p < 0.001).
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We find that the estimated bidding function in T  is significantly different to pre-
dictions ( 𝜒2(2) = 262.58, p < 0.001 ). This difference is caused by significant differ-
ences between predicted and estimated intercept ( �2(2) = 5.79, p = 0.016 ), as well 
as slope ( 𝜒2(2) = 21.65, p < 0.001).

We also find that the estimated bidding function in W is significantly different to 
predictions ( 𝜒2(2) = 17815.69, p < 0.001 ). The critical difference appears to come 
from the estimated intercept (3.49, 𝜒2(2) = 58.87, p < 0.001 ), which is significantly 
different from the point prediction, although the estimated slope is quite close to 
prediction (0.8, �2(2) = 2.40, p = 0.121).

In the case of S , the empirical bidding function is different from prediction 
( 𝜒2(2) = 2067.43, p < 0.001 ), but here the qualitative nature of the difference is 
rather different: the empirical bidding function is steeper than predicted (0.67 vs.   
0.2, 𝜒2(2) = 1693.49, p < 0.001 ), but the estimated intercept is much smaller than 

Table 8   Chi-squared values and p values from revenue comparisons

T W S A N

B (0.04; 0.836) (32.77; 0.000) (1.97; 0.161) (9.64; 0.002) (2.51; 0.113)
T (13.74; 0.000) (1.73; 0.189) (7.15; 0.008) (2.43; 0.119)
W (4.06; 0.044) (0.02; 0.881) (0.28; 0.600)
S (1.88; 0.171) (0.36; 0.549)
A (0.15, 0.703)

Table 9   Random Effect GLS 
estimates of workers’ bidding 
function for each treatment

Session-level clustered SEs in parentheses
∗∗∗,∗∗ ∶ p < 0.01, p < 0.05

DV: b
i,t (1) (2)

T × vi,t − 0.06 (0.04) − 0.06 (0.04)
T 2.38∗∗ (1.17) 2.42∗∗ (1.14)
W × vi,t 0.04 (0.02) 0.04∗∗∗ (0.02)
W 3.18∗∗∗ (0.56) 3.28∗∗∗ (0.59)
S × vi,t − 0.07∗∗∗ (0.02) − 0.07∗∗∗ (0.02)
S 7.40∗∗∗ (1.28) 7.39∗∗∗ (1.29)
A × vi,t − 0.03 (0.04) − 0.03 (0.04)
A 8.77∗∗∗ (1.38) 8.69∗∗∗ (1.35)
N × vi,t − 0.02 (0.02) − 0.02 (0.02)
N 6.37∗∗∗ (1.54) 6.33∗∗∗ (1.54)
vi,t 0.75∗∗∗ (0.02) 0.75∗∗∗ (0.02)
Period – − 0.08∗∗∗ (0.02)
Constant 0.31 (0.33) 1.75∗∗∗ (0.59)
N 4,410 4,410
R2 0.87 0.87
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what theory predicts (7.71 vs. 60, 𝜒2(2) = 1776.79, p < 0.001 ). In other words, 
workers are not overbidding by as much as they should when then get a bad private 
valuation for the stage 1 good.

The same is true for the A ; the joint test of equality of the estimated slope 
and intercept to the predicted values rejects the null at highly significant lev-
els ( 𝜒2(2) = 7080.02, p < 0.001 ). This is driven by a large difference between 
predicted and estimated intercept (40 vs.   9.08, 𝜒2(1) = 535.62, p < 0.001 ), as 
well as a large difference between predicted and estimated slope (0.5 vs.  0.71, 
𝜒2(1) = 30.15, p < 0.001).

Table 10 reports the test statistics and p values for all slope and intercept and joint 
test comparisons across all treatments.

Table 11 displays the GLS regression estimates of wages as a function of winning 
the stage 1 auction. We report on a specification with and without a time trend. T  
is the omitted category; Winner equals one if worker i won the stage-1 auction in 
period t.

Table 10   Hypothesis tests on worker bidding functions

Intercept

W S A N T

S 10.21, 0.001
A 15.70,< 0.001 0.57, 0.452
N 4.21, 0.042 0.27, 0.600 1.41, 0.235
T 0.43, 0.511 9.00, 0.003 13.42,< 0.001 4.52, 0.034
B 32.00,< 0.001 33.23,< 0.001 40.61,< 0.001 17.04,< 0.001 4.16, 0.041

Slope

W S A N T

S 54.90,< 0.001

A 3.41, 0.065 0.98, 0.322
N 35.04,< 0.001 18.87,< 0.001 0.09, 0.767
T 6.30, 0.012 0.08, 0.781 0.27, 0.606 1.02, 0.312
B 2.60, 0.107 9.06, 0.003 0.61, 0.435 1.10, 0.294 1.96, 0.161

Joint

W S A N T

S 63.17,< 0.001

A 51.09,< 0.001 7.46, 0.024
N 35.08,< 0.001 22.22,< 0.001 1.79, 0.409
T 53.92,< 0.001 16.52,< 0.001 114.63,< 0.001 11.56, 0.003
B 179.03,< 0.001 33.23,< 0.001 118.98,< 0.001 17.04,< 0.001 4.98, 0.083
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