
Attention-Based Bidirectional GRU Networks for

Efficient HTTPS Traffic Classification

Xun Liua,b, Junling Youa,∗, Yulei Wuc,∗, Tong Lia, Liangxiong Lia, Zheyuan
Zhanga,b, Jingguo Gea,b

aInstitute of Information Engineering, Chinese Academy of Sciences, Beijing, China
bSchool of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

cCollege of Engineering, Mathematics and Physical Sciences, University of Exeter,
Exeter, EX4 4QF, UK

Abstract

Distributed and pervasive web services have become a major platform for
sharing information. However, the hypertext transfer protocol secure (HTTPS),
which is a crucial web encryption technology for protecting the informa-
tion security of users, creates a supervisory burden for network manage-
ment (e.g., quality-of-service guarantees and traffic engineering). Identifying
various types of encrypted traffic is crucial for cyber security and network
management. In this paper, we propose a novel deep learning model called
BGRUA to identify the web services running on HTTPS connections ac-
curately. BGRUA utilizes a bidirectional gated recurrent unit (GRU) and
attention mechanism to improve the accuracy of HTTPS traffic classification.
The bidirectional GRU is used to extract the forward and backward features
of the byte sequences in a session. The attention mechanism is adopted to
assign weights to features according to their contributions to classification.
Additionally, we investigate the effects of different hyperparameters on the
performance of BGRUA and present a set of optimal values that can serve as
a basis for future relevant studies. Comparisons to existing methods based

?This work is supported by the National Key R&D Program of China (Grant No.
2017YFB0801801), Strategic Priority Research Program of the Chinese Academy of Sci-
ences (Grant No. XDC02070200), Strategic Priority Research Program of the Chinese
Academy of Sciences (Grant No. XDC02060400), and the CNTC (China National To-
bacco Corporation) Science and Technology Major Project under Grant No. 110201801020
(SJ-02).

∗Corresponding author

Preprint submitted to Information Sciences May 15, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/328832498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

on three typical datasets demonstrate that BGRUA outperforms state-of-the-
art encrypted traffic classification approaches in terms of accuracy, precision,
recall, and F1-score.

Keywords: Encrypted traffic classification, HTTPS, Transfer learning,
Bidirectional gated recurrent unit, Attention mechanism

1. Introduction

Based on the rapid development of web technologies, the number of differ-
ent types of web applications has increased dramatically. Such applications
include e-commerce [1], online banking, and instant messaging. The dis-
tributed and pervasive nature of web services is of particular importance for
people who wish to share and receive information in their daily lives [2]. Al-
though web applications are a major driving force in modern society, they
have introduced many security issues that cannot be ignored [3]. In the early
years of development, the mainstream protocol for web services was the hy-
pertext transfer protocol (HTTP). Because the data handled by web services
are transmitted in plaintext, they are naturally fragile and vulnerable. To
protect the information and privacy of users, web services now use the se-
cure HTTP (HTTPS) protocol for data transmission, which encapsulates the
HTTP in transport-layer security (TLS) tunnels for information encryption
[4].

Traffic analysis is an important tool for network management tasks [5],
such as congestion control and quality-of-service guarantees [6]. However,
HTTPS encryption introduces significant challenges for efficient traffic anal-
ysis. Encrypted traffic classification is a crucial task in the field of traffic
supervision and analysis. The server name indication (SNI) field carried
during the plaintext transmission phase of a TLS connection is an important
element that can be used to classify HTTPS services. An SNI-based firewall
maintains a blacklist to block unsafe HTTPS domains. The authors of [3]
verified that if an SNI field is modified maliciously, it is possible to bypass
a blacklist and establish a connection with a server. Many encrypted traffic
classification methods have been proposed in recent years. Network traffic
can be broadly divided into session-based and flow-based categories. The
former contains bidirectional traffic and the latter contains one-directional
traffic [7].

According to the granularity of traffic classification, existing research can

2

be divided into three categories [8]: protocol-level, page-level, and service-
level classification. Traditional protocol-level classification aims to identify
different types of protocols, such as secure sockets layer (SSL), secure shell,
and peer-to-peer (P2P) protocols [9]. Page-level approaches attempt to
classify specific web pages [10]. Such approaches operate at the page-level
based on static content, which is not suitable for modern websites contain-
ing dynamic content (e.g., content obtained from content delivery networks).
Service-level classification attempts to identify application types [11], allow-
ing network managers to obtain accurate traffic type and service provider
information. Consequently, service-level classification has become the main-
stream method.

From the perspective of classification methods, existing research can be
roughly divided into four categories: port-based, deep packet inspection
(DPI)-based, session-based, and packet-based research. Early internet appli-
cations typically used fixed port numbers, meaning traffic could be identified
based on port numbers. However, dynamic port numbers are now widely
used for web services [12]. Therefore, port-based methods are no longer ef-
fective. DPI methods analyze the content of packets by using predefined
patterns, such as keywords or regular expressions, as signatures to classify
traffic types. These types of methods have encountered significant difficulties
since the advent of encrypted traffic [13]. Session-based methods adopt sta-
tistical features and traditional machine learning algorithms (such as C4.5)
for classification. Their performance depends on feature selection [14], which
is a complicated and time-consuming process.

In recent years, deep neural networks (DNNs) have seen rapid devel-
opment for computer vision and natural language processing tasks. DNNs
possess excellent capabilities for feature extraction and can learn features
via training instead of manual selection. Packet-based approaches that use
neural networks to perform traffic classification have attracted significant
attention from both academia and industry. However, there are still two
major problems that significantly affect the performance of traffic classifica-
tion. First, traffic data easily becomes outdated (e.g., upgraded application
versions). Therefore, the data obtained in one time period may not follow
the same distribution in a later time period. Additionally, there is no single
traffic dataset that can represent all situations. Therefore, it is significant
to update models quickly based on existing data. Second, the efficiency of
DNNs is an important indicator of the performance of traffic classification.
A large number of parameters in a DNN model will reduce the efficiency

3

of traffic classification. One way to solve this problem is the adoption of
distributed computing (i.e., distributed model training) to overcome the per-
formance bottleneck of a single machine [15][16]. Another promising method
is transfer learning, which can accelerate convergence when training a new
model. Most existing models fail to address these two problems, which largely
determine whether a packet-based deep learning method can be developed
from academia to industry.

We propose a novel method called BGRUA, which is an HTTPS traffic
classification approach based on a bidirectional gated recurrent unit (GRU)
network and an attention mechanism. BGRUA learns the features of pack-
ets through forward and backward GRU operations. It uses an attention
mechanism to assign greater weights to useful features for encrypted traffic
classification. The final types of HTTPS services are classified using a fully
connected softmax layer. To improve the efficiency of model training on dif-
ferent datasets, we introduce the concept of transfer learning to the field of
traffic classification. For newly arriving traffic, our model only needs to adjust
the fully connected layer to achieve rapid model convergence. We validated
the accuracy of BGRUA on three datasets. Two of these datasets are open
HTTPS datasets and the third is a dataset collected from the backbone of
the China Science and Technology Network (CSTNET). Experimental results
demonstrate that BGRUA outperforms state-of-the-art baselines. Addition-
ally, instead of training models in new environments from scratch, BGRUA
can be trained on a new dataset very quickly through transfer learning. The
main contributions of this paper can be summarized as follows:

• HTTPS traffic encryption hinders effective network supervision. In this
paper, an original and novel framework is proposed to classify HTTPS
services accurately without decrypting communication contents. The
byte sequences of an HTTPS packet correspond to specific fields of a
protocol and contain rich distinctive features. We designed a bidirec-
tional GRU network to learn deep information from byte sequences au-
tomatically to facilitate classification. Traditional traffic classification
methods assign the same weight to all features, which is not conducive
to the extraction of important features. We combine a bidirectional
GRU network with an attention mechanism to allow our model to focus
on useful features that can contribute to effective traffic classification.
• Encrypted traffic classification has strict requirements in terms of ef-

ficiency for real-world application scenarios. However, existing deep

4

learning models are too time consuming to satisfy the requirements of
real-time analysis. The proposed BGRUA not only improves the accu-
racy of traffic classification, but also reduces the number of parameters
(i.e., weights) by a factor of seven compared to state-of-the-art mod-
els. This demonstrates that our method is more efficient for traffic
classification.
• Traditional classification models are only trained and evaluated on spe-

cific offline datasets, meaning they ignore the generation of new traffic
and updated application versions. We introduce the concept of transfer
learning into encrypted traffic classification. According to the diverse
nature of traffic types and application versions in real network environ-
ments, BGRUA can be trained based on current knowledge to achieve
rapid convergence. Experimental results demonstrate that the training
speed on a new dataset is more than twice as fast as that of a model
trained from scratch.

The remainder of this paper is organized as follows. Section 2 introduces
the background of the HTTPS. Section 3 discusses related work. Section
4 details the proposed model, including the data preprocessing layer, bidi-
rectional GRU layer, attention layer, and transfer learning layer. Section 5
presents experimental results and performance analysis. Finally, we conclude
this paper in Section 6.

2. HTTPS Background

The HTTPS guarantees secure communications for web services by wrap-
ping the original HTTP in a secure TLS/SSL protocol. The TLS protocol
aims to facilitate communication confidentiality and data integrity between
two or more communicating applications. This protocol consists of two lay-
ers: a TLS handshake protocol and TLS record protocol. A TLS handshake
occurs when a user retrieves information from an HTTPS website and the
browser starts to query the server of that website. During the TLS hand-
shake phase, communication parties exchange messages to confirm and verify
each other and negotiate encryption algorithms. The TLS record protocol
is used to encapsulate higher-level protocols. It is responsible for break-
ing down data from the application layer into fixed-length encrypted chunks.
The record protocol also provides data integrity using message authentication
codes, which are calculated based on an integrity key. The TLS handshake
phase can summarized as follows.

5

As shown in Figure 1, the handshake protocol is of great importance
because it is responsible for various configurations, such as cipher suite ne-
gotiation, authentication, and session key exchange. It can be divided into
the following phases:

1. A TLS handshake begins with a “ClientHello” message. In this mes-
sage, the client sends a supported cipher suite, which is a series of cryp-
tographic algorithms used to establish a secure communication connec-
tion. This message also carries the SNI field and a random number.

2. The server responds with a “ServerHello” message. This message in-
cludes the cipher suite selected by the server from the list provided by
the client. The server also sends a certificate with a session ID and a
random number.

3. When the client verifies the certificate sent by the server, it sends a
random byte string, also known as a “Pre-Master Secret”, and encrypts
the string using the public key from the certificate.

4. The communicating parties then generate a master key and session
keys, which are used for symmetric encryption.

5. The parties then exchange a “ChangeCipherSpec” message and switch
to symmetric encryption. The TLS handshake is concluded by sending
a “Finished” message.

3. Related Work

Recall that port-based and DPI-based methods are no longer applicable
to encrypted traffic classification. Therefore, session-based and packet-based
methods have become the mainstream methods. Previous studies on these
two types of methods are summarized in Tables 1 and 2, respectively. We
briefly discuss these existing studies below.

3.1. Encrypted traffic classification

3.1.1. Session-based methods

The general procedure for session-based methods is illustrated in Fig-
ure 2(a). Session-based methods require the manual extraction of session
features. These features are then used as inputs for a classifier. They are
also used to train classification algorithms, such as a support vector machine
(SVM), C4.5, or a random forest. Notably, it is not necessarily true that a

6

Client ServerClientHello
-SNI

-Session ID

-Random Number

-Supported Ciphers

ServerHello

Certificate
-SNI(Empty)

-Session ID

-Random Number

-Supported Ciphers

ServerKeyExchange

ServerHelloDone

ClientKeyExchange
-Pre-Master Secret

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

Figure 1: The TLS Handshake process.

greater number of features will result in better performance. Redundant and
useless features increase computational complexity and reduce the accuracy
of a classifier. Moore et al. [17] discussed 249 session-based and packet-based
features, including packet size, packet interval, packet numbers in a session,
and session duration. Subsequent traffic classification works have largely
focused on combinations of these 249 features.

Session-based methods for traffic classification tasks can be divided into
supervised learning, semi-supervised learning, and unsupervised learning meth-
ods. In supervised learning methods, encrypted sessions are labeled accord-
ing to traffic categories and classifiers classify sessions based on a set of
predefined categories. Supervised learning methods have developed rapidly
in the field of traffic classification. As early as 2005, the authors of [18] pro-
posed a Naive Bayes method to identify traffic and achieved an accuracy of
95%. Sun et al. [19] proposed a hybrid method for classifying encrypted
traffic. In this method, the SSL/TLS protocol was first recognized using a

7

Traffic

Session
Feature

1

Feature

2
... Label

1
2
3
...

A
B
C
...

...

...

...

...

Feature

selection Machine

learning

algorithms

Output

(a)

Traffic Packet bytes Output

DNNs

(b)

Figure 2: Comparison of two common classification methods for encrypted traffic: (a)
session-based methods and (b) packet-based methods.

signature matching method. A Naive Bayes machine learning algorithm was
then applied to identify encrypted applications under the SSL/TLS proto-
col. Okada et al. [20] proposed the estimated features method (EFM) and
evaluated the performance of three supervised learning algorithms (SVM,
Naive Bayes, and C4.5). Experimental results demonstrated that the EFM
with an SVM can achieve an overall accuracy of 97.2% for encrypted traffic.
The authors of [21] investigated the performance of C5.0, AdaBoost, and a
genetic programming (GP) algorithm for identifying voice over IP (VoIP)
traffic. Datasets for experiments were captured on their campus networks
(Univ2017 and Univ2019) and in their lab. They concluded that applying
suitable sampling and machine learning methods is of great significance for
classifying VoIP traffic. Shbair et al. [8] defined a new set of statistical fea-
tures and trained a multi-level random forest classifier to identify services in
HTTPS traffic. This method obtained a high accuracy of 93.10%.

In contrast, unsupervised learning methods are able to discover traffic pat-
terns without predefined labels. Traffic patterns with similar characteristics
tend to converge to the same cluster. Therefore, unsupervised learning can
discover and process unknown traffic patterns. McGregor et al. [22] used the
expectation maximization (EM) algorithm to verify that unsupervised learn-
ing can effectively evaluate cluster traffic. Erman et al. [23] evaluated three
classic clustering algorithms called AutoClass, DBSCAN, and K-Means. The

8

performances of these three algorithms were compared through various ex-
periments. Liu et al. [24] applied fuzzy C-means clustering technology to
automatic P2P traffic classification. Furthermore, they modified the objec-
tive function and distance function to decrease computational complexity.
Bernaille et al. [25] selected the size and direction of the first few packets
in a flow as features. They evaluated the performance of three clustering
algorithms: K-means, a Gaussian mixture model, and spectral clustering.
Finamore et al.[26] presented a modified K-means algorithm to determine
numbers of traffic clusters automatically. They selected the Kiss signatures
obtained from packet payloads as features. Experimental results demon-
strated the effectiveness of their clustering algorithm.

In semi-supervised learning, a set of labeled traffic is used to map clus-
ters to real applications. Erman et al. [27] used the K-Means method to
cluster traffic, where labeled data in the clusters were used to identify cluster
categories according to the majority principle. However, the results of the
K-Means algorithm are sensitive to the selection of initial cluster centers and
may converge to local optima. The authors for [28] considered the clustering
problem as an optimization problem and applied particle swarm optimiza-
tion (PSO) to identify the optimal centers of clusters. The goal of PSO is to
maximize the distance between clusters and minimize intra-cluster distance.
To improve classification performance when few labeled training samples are
available, Zhang et al. [29] proposed the incorporation of flow correlation
into both the training and testing stages.

3.1.2. Packet-based methods

As shown in Figure 2(b), unlike session-based methods, packet-based ap-
proaches eliminate the need for manual feature selection and use packet bytes
directly. Preprocessed packet bytes are fed into deep learning models for
feature extraction. A softmax classifier is typically used to calculate the
probability value of each category. Packet-based methods have attracted the
attention of researchers for several years. Wang et al. [30] selected the first
1000 payload bytes in a session as features and mined optimal features using
artificial neural networks (ANNs). Their classifier classified sessions with a
probability of less than 0.8 for unknown traffic. Lotfollahi et al. [31] de-
signed a framework called Deep Packet. They used 1500 byte vectors as the
inputs for Deep Packet, which combines a stacked autoencoder with CNNs
to classify network traffic. Deep Packet achieved a recall of 0.98 on an ap-
plication classification task. The authors of [7] trained a 1D CNN model

9

Table 1: Summary of existing session-based methods.

Ref. ID Features Classifiers Dataset Results

[8]
Average size,
25/50/75th
percentile size, etc.

Multi-level random
forest

Captured on their
lab

Accuracy: 93.1%

[18]
Session duration,
TCP Port, etc.

Naive Bayes Private datasets Accuracy: 95%

[19]
Packet length and
arrival time, etc.

Signature-based and
Bayesian method

Private and public
datasets

F-score for protocols
identification:94.52%

[20]
Packet size and
inter-arrival time, etc.

Estimated features
method

Captured on two major
ISPs in Japan

Accuracy: 97.2% (using
SVM)

[21]
Session-based
feature set

C5.0, AdaBoost and
GP

Univ2017, Univ2019 Evaluated three algorithms

[22]
Packet size statistics,
inter-arrival statistics, etc.

EM algorithm
From the University of
Auckland and Waikato

This method is very effective

[23] Transport layer statistics
AutoClass, K-Means,
DBSCAN

1. Auckland IV
2. Collected privately

Compared three algorithms

[24]
Session and packet
statistics

Fuzzy C-Means
Captured in an
empirical platform

Real-time and efficient

[25]
Size and direction of
first few packets

K-Means, Gaussian,
Mixture model,
Spectral clustering

Collected on 8
different networks

Accuracy: over 90%

[26] Kiss signatures Modified K-Means
ISP-Trace and
P2PTV-Trace

Accuracy: above 95%

[27] Attribute vectors K-Means Private dataset
A fast and accurate
classifiers with small
labeled data

[28] Three P2P traffic metrics PSO Established manually High precision

[29]
Session level
statistical properties

Incorporate flow
correlation

Public real-world
traffic dataset

Outperforms the
state-of-the-art methods

using the first 784 bytes of each flow or session. Their 1D CNN achieved
outstanding performance compared to the traditional C4.5 algorithm. Wang
et al. [32] applied deep learning methods to malware traffic classification.
They transformed packet bytes into 2D images and applied a 2D CNN to
perform classification. This approach only uses the spatial features of traffic
and ignores temporal features. Zou et al. [33] extracted the spatial features
inside packets using a 2D CNN and learned the temporal features contained
in flows using long short-term memory (LSTM). They evaluated their model
on the ISCX VPN-nonVPN traffic dataset. The results demonstrated that
this model can improve the accuracy of traffic classification by up to 6%
compared to a 1D CNN model.

Regarding unsupervised learning, Zhao et al. [34] proposed a novel un-
known traffic clustering scheme based on n-gram embeddings and DNNs.
They characterized traffic payloads using different lengths of n-gram embed-
dings and extracted features using a deep autoencoder. They achieved an
average clustering accuracy rate of 97.35%. Zhang et al. [35] proposed the

10

Table 2: A summary of existing packet-based methods.

Ref. ID Features Classifiers Dataset Results

[7] The first 784 bytes 1D-CNN ISCX VPN-nonVPN
Better than the C4.5
algorithm

[30]
The first 1000
payload bytes

ANN
From the internal
network

The model works very well

[31] 1500 payload bytes SAE, CNN ISCX VPN-nonVPN Recall: 98%
[32] The first 784 bytes CNN USTC-TFC2016 Average accuracy: 99.41%

[33]
First three 784
packet bytes

CNN-LSTM ISCX VPN-nonVPN
Accuracy improves 6% in
comparison with 1D-CNN

[34] Packet bytes
Autoencoder,
K-Means

Collected from
campus network

Clustering purity rate:
about 97.35%

[35] Deep Embedding
Deep Autoencoder,
PCKMeans

WIDE and ISP
Clustering purity rate:
94.81% (ISP), 91.48%
(WIDE)

[36]
Time-series properties
of packets

DCGAN
1. Self-collected QUIC
2. ISCX VPN-NonVPN

Accuracy: 89%(QUIC)
78%(ISCX)

DePCK method for classifying unknown traffic based on a deep autoencoder
and modified pairwise constrained PCKMeans algorithm. To improve perfor-
mance with few labeled samples, Iliyasu et al. [36] proposed a semi-supervised
learning approach based on a deep convolutional generative adversarial net-
work (DCGAN). They used samples generated by the DCGAN and unlabeled
traffic to improve classifier performance.

3.2. Transfer learning

Many session-based and packet-based methods perform well in cases where
training data and testing data follow the same distribution. However, when
a data distribution changes, most of these models must be retrained from
scratch based on newly collected data [37]. The purpose of transfer learning
is to solve problems quickly and precisely based on previously learned knowl-
edge. The concept of transfer learning was proposed in [38]. Since then,
many researchers have devoted significant attention to this concept. Several
studies have shown that transfer learning can increase the convergence speed
of model training. In object classification tasks, transfer learning signifi-
cantly reduces training time by approximately 92% compared to a baseline
method and reduces classification time by approximately 99% [39]. Lebedev
et al. [40] proposed a simple two-step approach to accelerating convolutional
layers within a large CNN based on tensor decomposition and discriminative
fine-tuning. The authors of [41] accelerated the learning processes of rein-
forcement learning by incorporating transfer learning. Transfer learning has

11

been successfully applied to text recognition [42], recommendation systems,
image processing [43] [44] [45], software defect classification [46], etc. How-
ever, transfer learning has received relatively little attention in the field of
encrypted traffic classification.

In summary, traditional session-based methods require manual feature
extraction, which is time consuming and inefficient. Some features can only
be obtained when a session ends, such as the session duration and total num-
ber of packets in a session, making such methods inapplicable for real-time
analysis. In existing deep learning methods, the numbers of parameters for
different models are very large and calculation complexity is high. Addition-
ally, existing models do not consider the performance degradation caused
by changes in traffic distributions. Considering the disadvantages of existing
methods, we propose a novel method that only requires the first three packets
in a session to classify HTTPS traffic, instead of requiring all packets from
a full session. The small number of parameters in our model significantly
improves classification speed. By adopting the concept of transfer learning,
our model can also converge quickly on newly collected data.

4. Proposed Model

In this section, we present the framework of BGRUA. As shown in Fig-
ure 3, the architecture of BGRUA consists of four layers: a data preprocessing
layer, bidirectional GRU layer, attention layer, and transfer learning layer.
Each of these layers is detailed in the following subsections.

4.1. Data Preprocessing Layer

Session/flow splitting. Raw traffic data contains multiple .pcap files ex-
tracted from a network. These files must be split into sessions according to
five-tuples (i.e., source IP, destination IP, source port, destination port, and
transport-layer protocol). In this study, we conducted experiments on three
datasets denoted as A, B, and C (see Section 5.1). Datasets A and C con-
tain full TLS sessions between a client and server, whereas Dataset B only
includes flows originating from a client.
Packet layer extraction. Packet-based classification methods typically
adopt packet payloads as the inputs for a neural network. A common practice
is to select the first P packets in a session, where each packet contains B
bytes. P and B are hyperparameters for neural network models and must be
defined prior to model training. In this study, P was set to three and B was

12

Convertion to vectors

Session/flow splitting

Packet layer extraction

...

GRU

...

Fully connected layer

GRU GRU GRU GRU GRU

Model A

Trainable

weights

Fixed weigths

 Model B

Raw traffic A Raw traffic B

1. Data

Preprocessing

Layer

2. Bidirectional

GRU Layer

3. Attention Layer
4. Transfer

Learning

Layer
GRU GRU GRU GRU GRU GRU

GRU Layer-2

GRU Layer-1

Figure 3: Overview of the proposed BGRUA model.

set to 900. In Section 5.4, we investigate the effects of the values of P and B
on the performance of BGRUA. Specifically, we extract packet bytes starting
from the transport layer and then perform truncation if the payload length
exceeds 900 and padding with zeros if the payload length is less than 900.
Additionally, we remove the SNI extension by replacing the corresponding
bytes with zeros. This prevents our network from learning features by relying
on the SNI field.
Conversion to vectors. For each session, we obtain three consecutive 900
byte packages (i.e., a total of 2700 bytes). Each byte can be converted into
an integer between 0 and 255. The inputs for the GRU networks are fixed-
dimension vectors xt at time step t. In our model, the dimension of xt is
150, meaning vectors are formed from 150 byte packages. We can derive 18
vectors as follows:

x1 = b1 ⊕ b2 ⊕ ...⊕ b150, (1)

x2 = b151 ⊕ b152 ⊕ ...⊕ b300 (2)

13

...

x18 = b2551 ⊕ b2552 ⊕ ...⊕ b2700, (3)

where ⊕ is a concatenation operator and b denotes a specific byte. The vector
sequence X = (x1,x2, ...,x18) is normalized to [0, 1] by dividing 255 and is
then fed into the bidirectional GRU networks for subsequent training and
testing.

+

+

+

+

1-

tanh

xt

rt
zt

Input packet vector

at time step t-1

xt+1xt-1

Output of forward

GRU at time step t-1
Output of forward

GRU at time step t

Output of forward

GRU at time step t+1

Input packet vector

at time step t

Input packet vector

at time step t+1

... ...

Figure 4: Structure of the forward GRU at time step t.

4.2. Bidirectional GRU Layer

Recurrent neural networks (RNNs) [47] have been successfully applied in
many fields. Because they contain self-connected hidden layers, RNNs can
use their internal states to process time-related sequences. The GRU is a
variant of an RNN that can overcome the issues of vanishing gradients and
gradient explosions in traditional RNNs. More importantly, a GRU can learn
both long-term and short-term dependences, unlike a traditional RNN.

Our recurrent network consists of two bidirectional GRU layers (i.e., GRU
layer-1 and GRU layer-2). As shown in Figure 3, each layer consists of a

14

forward GRU and a backward GRU. Each GRU includes an input layer and
self-connected hidden layer. In BGRUA, all states in each GRU are initialized
to zero, and the number of hidden units is set to 256. The forward GRU takes
the sequences X = (x1,x2, ...,x18) generated by the data preprocessing layer
as sequential inputs. As shown in Figure 4, at a time step t (0 < t ≤ 18), the
t-th vector xt of X is sent to the input layer of the forward GRU. The hidden

layer combines xt and the hidden state
−−→
ht−1 at time step t− 1 to perform a

series of linear operations and activation operations. There are two gates in
each GRU, namely an update gate zt and reset gate rt. The gate zt controls
how much previous information is retained in the current state and the gate
rt determines how strongly irrelevant bytes sequences are ignored, thereby
ensuring that important byte sequences are passed to the next step. All of
the relationships in the forward GRU can be defined as follows:

zt = σ(Wz[
−−→
ht−1,xt]), (4)

rt = σ(Wr[
−−→
ht−1,xt]), (5)

h̃t = tanh(W [rt
−−→
ht−1,xt]), (6)

−→
ht = (1− zt)

−−→
ht−1 + zth̃t, (7)

where xt and
−−→
ht−1 are the same as above, and Wz, Wr, and W are weight

matrices. σ represents the sigmoid activation function, which transforms

the intermediate state into the range of 0 − 1 to act as a gating signal.
−→
ht

indicates the hidden state at time step t.
The backward GRU takes the sequence X in reverse as an input. At time

step t, it performs a series of calculations similar to the forward GRU and

obtains a hidden state
←−
ht , which is spliced with

−→
ht to form the final output

ht, as indicated in Eq. (8). After the final time step, we have the final out-
put H = (h1, h2, ..., h18) of GRU layer-1. This bidirectional GRU scheme can
analyze the correlations of packet vectors and extract features more accu-
rately and comprehensively through forward and backward propagation. To
capture deeper information, H is fed into GRU layer-2, which has the same
structure as GRU layer-1. The output of GRU layer-2 is then used as the
input for the attention layer.

15

ht = [
−→
ht ,
←−
ht] (8)

4.3. Attention Layer

Not all packet vectors contribute equally to the classification of HTTPS
traffic. Therefore, greater attention should be assigned to more useful vectors.
As shown in Figure 5, the attention layer is utilized to learn a weight αt for
each hidden state ht obtained at time step t by the bidirectional GRU layer-
2. Because there are a total of 18 time steps, t is an integer number in the
range of [1,18]. The weighting vector α = (α1, α2, ..., α18) is calculated with
respect to the output sequence H = (h1, h2, ..., h18). The attention vector s
is computed as a weighted sum of these 18 hidden states as follows:

s =
18∑
t=1

αtht, (9)

where the weighting factors αt are calculated as follows:

αt =
exp(uTt uw)∑
t exp(u

T
t uw)

, (10)

ut = tanh(Wwht + bw), (11)

where Ww and uw denote weight matrices and bw denotes the bias. The
outputs of the attention layer are sent to the fully connected layer. The c-
way softmax function generates a probability over c class labels. The variable
c is the number of traffic classes in the dataset.

4.4. Transfer Learning Layer

HTTPS traffic easily becomes outdated based on upgrades to protocol
versions or web application versions. Therefore, the data distribution in one
time period may change in a later time period. In a real-world network
environment, there are many types of traffic and new traffic is frequently
created. Training a model from scratch is time consuming and inefficient.
Therefore, our transfer learning layer is designed to apply previously learned
knowledge to solve new problems more quickly and accurately.

As shown in Figure 3, following the data preprocessing layer, bidirectional
GRU layer, and attention layer, a well-trained model can be obtained for the
source domain DS = (xi, yi), where xi is the packet vector of the i-th session

16

h1

...

h2 ht h18...

s

...

... ...

Figure 5: Structure of the attention layer.

and yi is the corresponding label. We obtain a function fs through training
and use it to predict HTTPS services. Given a newly collected dataset from
the target domain DT , the transfer learning layer uses the existing knowledge
DS to assist DT to construct a new prediction function ft rapidly. To achieve
rapid reconstruction, the structure of the transfer learning layer only retrains
the weights of the fully connected layer. This is because more general features
can be extracted in the lower layers of a network and can be transferred to
other tasks. However, features become more task specific in nature in higher
layers [48].

Based on the four layers described above, BGRUA can not only be ap-
plied to specific classification tasks, but can also reuse pre-trained models for
similar new tasks.

5. Experimental Results and Evaluation

In this section, we evaluate the performance of the proposed BGRUA
model. All experiments were performed on a Dell R720 machine with an
Ubuntu operating system. TensorFlow was used as a software framework.
Table 3 provides a detailed description of our experimental configuration.
During training, the mini-batch size is 32 and the cost function is cross
entropy. We use the Adam optimizer with an initial learning rate of 1e-3
and a decay rate of 0.96 in every epoch. The training procedure runs for 20

17

Table 3: Experimental environment configuration.

Item Configuration
Operating System Linux 4.10.1-041001-generic #14.04.3-ubuntu
Hardware Dell R720, Intel(R) Xeon(R) CPU E5-2660
Configuration 2.20GHz, 94G
Python Version Python 3.5.2
TensorFlow Version TensorFlow 1.14.0

epochs.

5.1. Datasets

In this study, we considered two session-based datasets and one flow-based
dataset. The differences between these datasets are elaborated below.

Session-based Dataset A. The Open HTTPS Dataset [49], which was
published by the University of Lorraine, was selected to evaluate our pro-
posed model. This dataset was constructed in a well-controlled environment.
It contains full packets of TLS sessions crawled from the top 779 visited
websites through Firefox and Google Chrome Web browsers. It has a total
data size of 53.3 GB. The raw traffic is split into sessions according to five-
tuples. This dataset contains a total of 9,050 different services and 586,159
sessions. The SNI extension is used as the label for each HTTPS service.
To avoid over-differentiation of services and simplify the training process,
we removed numbers and special characters (e.g., dashes) to retain more
meaningful names. For example, “mt0.google.com” was transformed into
“mt.google.com.” Because many services contained only a small number of
sessions, we selected the services with session numbers greater than 500, 800,
1000, and 1500 to generate four sub-datasets denoted as A1, A2, A3, and
A4, respectively. Each sub-dataset was randomly divided it into 70% training
data, 20% testing data, and 10% verification data. Table 4 lists the details
of these four sub-datasets.

Flow-based Dataset B. In this dataset, traffic was collected from the
backbone of the CSTNET, which is an internet service provider in China.
This dataset only contains one-way traffic from clients to servers. As shown
in Table 5, we selected the top 12 services with the greatest numbers of flows
as experimental data, resulting in the selection of 49,574 flows. Similar to
Dataset A, the training data, testing data, and verification data were divided
in proportions of 7:2:1, representing 34689, 9882, and 4976 flows, respectively.

18

Table 4: Sub-datasets of Dataset A.

Dataset Description Class Session number
A1 Each class contains at least 500 sessions 92 129399
A2 Each class contains at least 800 sessions 72 111625
A3 Each class contains at least 1000 sessions 47 84245
A4 Each class contains at least 1500 sessions 13 43311

Table 5: The classes of Dataset B

Service Type
www.baidu.com pos.baidu.com pan.baidu.com hm.baidu.com
mobile.12306.cn www.12306.cn s.360.cn music.163.com
api.bilibili.com api.weibo.cn qing.wps.cn cn.bing.com

Session-based Dataset C for transfer learning. Dataset C [50] was
published by the team members of the Stratosphere IPS project, which is
supported by the CTU University of Prague in the Czech Republic. This
dataset contains malicious, mixed, and normal traffic. We used the “CTU-
Normal-20” to “CTU-Normal-32” normal captures, which include HTTPS
raw traffic generated by Frantisek Strasak. Following data preprocessing, we
selected 13 types of HTTPS traffic that were the same as those in Dataset
A4 and six types that were different from those in Dataset A4 to verify the
effectiveness of the transfer learning layer in the proposed model.

5.2. Comparisons to Baselines

To perform a comprehensive evaluation, we evaluated the effectiveness of
BGRUA on datasets A, B, and C by comparing it to the following baselines
in terms of accuracy, precision, recall, and F1-score (detailed in Section 5.3).

CNN-LSTM Model. This model was proposed in [33]. In this model,
a CNN is used to extract the features from a single packet and LSTM is
trained to pick out time sequence features between three consecutive packets
in a flow. The CNN-LSTM model is the current state-of-the-art deep learning
model for encrypted traffic classification.

Multi-Level Random Forest Method. The authors of [8] defined a
hierarchical structure based on random forest algorithms to identify HTTPS
services. Training data are grouped based on root domains (e.g., “google.com”)
and sub-domains (e.g., “maps.google.com”). For each partition, a fine-grained

19

classifier is trained to differentiate between services. This method is the cur-
rent state-of-the-art algorithmic method for HTTPS traffic classification.

Random Forest Method. To verify the effectiveness of the hierarchical
structure proposed in [8], we organized HTTPS domains horizontally and
performed training using a random forest algorithm.

5.3. Evaluation Metrics

We adopted four commonly used and recognized metrics that can ef-
fectively measure the performance of BGRUA, namely accuracy, precision,
recall, and F1-score. Accuracy represents the proportion of correctly classi-
fied sessions. Precision is defined as the number of sessions actually in class
A divided by total number of sessions classified as class A. Recall measures
the precision for a specific class. F1-score is a weighted average of precision
and recall that is formulated as follows:

F1− score =
2 ∗ precision ∗ recall
precision+ recall

. (12)

5.4. Model Comparison and Analysis

5.4.1. Model Comparisons on Dataset A

The performances of BGRUA and the three baseline methods on datasets
A1 to A4 are presented in Figure 6. The accuracy values of all the models
are greater than 94%. Our model outperforms the baseline models on all
metrics across all datasets. For Dataset A2, our model achieves a precision
of 98.2%, representing improvements of 2.3%, 2%, and 1.8% compared to the
multi-level random forest, random forest, and CNN-LSTM methods, respec-
tively. Regarding Dataset A1, which contains fewer sessions in each class,
these results demonstrate that our model performs well with few training
samples. With an increase in the number of training samples (i.e., Dataset
A4) the CNN-LSTM method achieves performance comparable to that of
BGRUA, indicating that the CNN-LSTM method is more suitable for large
numbers of training samples. This is because all features contribute equally
to HTTPS traffic classification in the CNN-LSTM method and more infor-
mative features can be extracted with a large number of training data. Our
method utilizes an attention mechanism to assign greater attention to more
important features. Additionally, the multi-level classification method based
on hierarchical structures is not as effective as a single-level classifier. In the
multi-level classification method, the top-level classifier identifies the service

20

provider and the second-level classifier identifies the services. If the root do-
main is incorrectly classified, then the sub-domain will also be misclassified.
Therefore, the classifier used to classify the root domain largely determines
the performance of the model.

In the following discussion, we analyze the performance of BGRUA on
various sub-datasets. There are many different categories in datasets A1 to
A4. For the sake of clarity, we generated 10 random numbers, and selected
categories corresponding to the random numbers. Because the results of a
single experiment may not be representative, the final results were generated
by averaging the results of five experiments. Tables 6 to 9 provide more
detailed comparisons between the three baselines. F1-score was selected as a
metric for this evaluation because it is a comprehensive measure of precision
and recall. In general, the deep learning models outperform the traditional
machine learning algorithms. The classical random forest algorithm outper-
forms the multi-level random forest algorithm. These results reveal a trend
similar to that shown in Figure 6. Specifically, among the 40 total categories,
the F1-score of BGRUA is the highest in 19 categories and reaches a value
of one in eight additional categories. For the two methods based on random
forests, the F1-score values fluctuate between 60% and 100%, indicating un-
stable performance. This is because both of these methods utilize session
statistical features for classification, such as packet intervals and session du-
rations. The numerical instability of these time-related features is apparent
when the network environment changes, resulting in degraded classification
performance. Although CNN-LSTM and BGRUA have lower score values
(i.e., 73% for “apis.google.com” on Dataset A1), they are relatively stable
on most categories. This is because these models select packet payloads as
features, which are not easily affected by changes in the network environ-
ment. Furthermore, the average F1-score of our model is 1.9% higher than
that of CNN-LSTM. This proves the validity of bidirectional GRU units and
attention mechanisms for encrypted traffic classification.

As shown in Figure 7, to explore the effects of different packet locations
within a flow or session as the inputs for our model, we selected packets in
four ways: 1) the first three packets in the encryption phase, 2) any three
packets in the encryption phase, 3) the first three packets in the full session,
and 4) any three packets at random locations. As shown in Figure 8, the
accuracy of the proposed model using the first three packets in a full session
as inputs is 99%, which is more than 10% higher than that when using the
first three packets in the encryption phase. This is mainly because the first

21

Figure 6: Accuracy, precision, recall, and F1-score comparisons between our model and
the three baseline models.

Table 6: F1-score comparisons on Dataset A1. MRF and RF represent the multi-level
random forest method and random forest method, respectively.

Domain MRF RF CNN-LSTM BGRUA
accounts.google.com 0.9641 0.9558 0.9400 0.9935
apis.google.com 0.6726 0.6156 0.6400 0.7336
batr.msn.com 0.9261 0.9280 0.9983 1.0000
cmg.doubleclick.net 0.7610 0.8237 0.9938 0.9927
fonts.googleapis.com 0.8590 0.8812 0.9951 0.9938
insight.adsrvr.org 0.9299 0.9422 0.9666 0.9744
s.adroll.com 0.8819 0.8657 0.8142 0.9957
match.adsrvr.org 0.9367 0.9510 0.9653 0.9779
www.google.com 0.9317 0.9403 1.0000 1.0000
www.facebook.com 0.9606 0.9629 1.0000 0.9991

22

Table 7: F1-score comparisons on Dataset A2.

Domain MRF RF CNN-LSTM BGRUA
accounts.google.com 0.9509 0.9544 0.9921 0.9930
ads.yahoo.com 0.9938 0.9959 1.0000 0.9990
l.betrad.com 0.9980 0.9988 0.8700 0.9541
pagead.googlesyndication.com 0.8718 0.8785 0.9811 0.9970
fonts.googleapis.com 0.8832 0.8908 0.9942 0.9959
ib.adnxs.com 0.7543 0.7630 1.0000 0.9990
www.livepartners.com 0.9914 0.9885 0.9984 0.9984
www.googleadservices.com 0.9197 0.9305 0.9705 0.9754
c.betrad.com 0.9019 0.9065 0.8450 0.9986
d.adroll.com 0.9907 0.9923 0.9682 0.9902

three packets in a session are in the handshake phase of the TLS connec-
tion. In this phase, the client and server exchange distinguishable features,
such as protocol versions, encryption methods, and compression methods.
However, in the phase of encrypted data transmission, packet payloads are
completely irregular based on encryption. For encrypted data, our model
can also effectively mine features and achieve an accuracy of 88%. Ran-
domly selecting three packets in a full session results in an accuracy of 92%,
where packets in the handshake phase account for 53%. These experimental
results demonstrate that the handshake phase of a flow or session prior to
encrypted transmission has a significant impact on the performance of traffic
classification.

Furthermore, we conducted experiments on Dataset A4 to explore the ef-
fects of different hyperparameters on the performance of BGRUA, including
U , B, and P . U represents the hidden units of the bidirectional GRU layer,
P denotes the first P packets selected in a session, and B is the number
of bytes in each packet. By default, we use the following parameter values:
U = 256, B = 900, and P = 3. For each experiment, we only changed one
parameter and used the default values for the other parameters. As shown
in Figure 9(a), the performance of our model is sensitive to the value of U .
When U is 64, our model achieves an accuracy of approximately 99%, which
is 6% higher than the case with U = 8. This is mainly because U implicitly
determines the memory capacity of the GRU. In practice, it is extremely
important to assign an appropriate value for U . As shown in Figure 9(b),
the accuracy of our model reaches 98% when the parameter B is equal to

23

Table 8: F1-score comparisons on Dataset A3.

Domain MRF RF CNN-LSTM BGRUA
tpc.googlesyndication.com 0.9168 0.9287 0.9638 0.9861
www.google.com 0.9489 0.9463 1.0000 0.9971
scontentxx.fbcdn.net 0.9466 0.9346 0.9425 0.9858
d.adroll.com 0.9931 0.9939 1.0000 0.9975
connect.facebook.net 0.9415 0.9345 0.9633 0.9850
r.nexac.com 0.9966 0.9978 1.0000 0.9916
spanalytics.yahoo.com 0.9929 0.9948 0.9978 0.9975
batr.msn.com 0.9274 0.9379 0.9286 0.9979
selfrepair.mozilla.org 0.9968 0.9906 1.0000 1.0000
www.facebook.com 0.9621 0.9529 0.9994 0.9944

Table 9: F1-score comparisons on Dataset A4.

Domain MRF RF CNN-LSTM BGRUA
beacon.krxd.net 0.9934 0.9943 0.9975 0.9983
secure.adnxs.com 0.9088 0.9212 0.9996 0.9997
www.google.com 0.8582 0.8526 0.9987 0.9992
www.facebook.com 0.9633 0.9622 1.0000 1.0000
pixel.quantserve.com 0.9990 0.9995 1.0000 1.0000
ib.adnxs.com 0.7483 0.7685 0.9989 0.9991
d.adroll.com 0.9960 0.9962 1.0000 1.0000
tags.tiqcdn.com 0.9869 0.9871 0.9991 0.9989
bat.bing.com 0.9935 0.9935 1.0000 1.0000
assets.adobedtm.com 0.9857 0.9857 1.0000 1.0000

24

Handshake phase Encryption phase

3

Handshake phase Encryption phase

Full session/flow

1

Handshake phase Encryption phase

Full session/flow

4

Handshake phase Encryption phase

Full session/flow

2

Full session/flow

Figure 7: Overview of packet locations in a flow or session. 1) The first three packets in
the encryption phase, 2) a random selection of three packets in the encryption phase, 3)
the first three packets in the full session, and 4) any three packets at random locations.

225. After increasing the value of B to 900, accuracy increases by 1%. This
indicates that although the first 225 bytes carry sufficient information, the
best results can be achieved by using 900 bytes for HTTPS traffic classifica-
tion. In Fig. 9(c), there is a dramatic increase in accuracy when the number
of packets increases from one to two. Other metrics exhibit similar trends,
indicating that at least two packets should be selected in practice.

Model complexity is another important metric for evaluating the perfor-
mance of our proposed model. Table 10 lists the main parameters of each
layer in BGRUA. As discussed in Section 4.2, the first two layers are con-
structed by stacking two basic bidirectional GRU cells. The 18 vectors with
150 dimensions form an 18× 150 tensor that is fed into GRU layer-1, which
contains 256 hidden units. The output (i.e., an 18×256 tensor) is sent to GRU
layer-2, which has the same structure as GRU layer-1. The output of GRU
layer-2 is weighted and summed by the attention layer and sent to the dense
layer to undergo fully connected operations. Table 11 compares the time
consumption and parameters between the CNN-LSTM and BGRUA models.
The average training and testing times in Table 11 represent datasets A1 to
A4. These experimental results demonstrate that the number of parameters
in our BGRUA model is reduced by more than seven times compared to
the CNN-LSTM model. Additionally, overall training time is reduced by ap-
proximately 11 times and testing time is reduced by approximately six times.

25

Figure 8: Effects of different packet locations selected in a flow or session on the perfor-
mance of our model. EF and EA represent the first three and random three packets in
the encryption phase. SF and SA denote the first three and random three packets in a
full session.

Figure 9: Effects of different hyperparameters values on experimental results.

26

Table 10: Detailed parameters of the proposed BGRUA model.

Layer Input Shape Output Shape Weight
GRU Layer-1 (18, 150) (18, 256) 214272
GRU Layer-2 (18, 256) (18, 256) 295680

Attention (18, 256) 256 274
Dense 256 13 3341

Total weights 513,567

Table 11: Time consumption of models

Model Parameters Training time/epoch Testing time
CNN-LSTM 3754k 188.58 ms 10s

BGRUA 514k 17.24ms 1.6s

These results indicate that the time consumption of classification is propor-
tional to the number of parameters. Therefore, reducing the complexity of
model parameters can improve the speed of classification.

5.4.2. Model Comparison on Dataset B

Regarding Dataset B, we only compared BGRUA to CNN-LSTM because
the random forest algorithms require features in two directions. For detailed
analysis, we have plotted heatmaps of the confusion matrices of BGRUA and
CNN-LSTM in Figures 10(a) and 10(b), respectively. One can see that the
11 classes on the diagonal exhibit a deeper blue color, demonstrating the
effective classification performance of both models for HTTPS services. It is
worth noting that the lightest blue colors on the diagonal indicate that both
models tend to misjudge the classes of “pos.baidu.com”, “pan.baidu.com,”
and “www.baidu.com.” This is because these three classes belong to the
same service provider. Similar patterns of services from the same provider
can easily confuse classifiers.

Figure 11 contains three subgraphs presenting the precision, recall, and
F1-score values for 12 classes in Dataset B. In Figure 11(a), the precision
values for 10 classes are greater than 90% and the average precision of our
BGRUA model is greater than that of the CNN-LSTM model by as much
as 2.51%. As shown in Fig. 11(b), for the class of “pos.baidu.com,” BGRUA
achieves a recall of 80%, representing an improvement of 11% compared to
CNN-LSTM. In Figure 11(c), among all 12 classes of HTTPS traffic, the F1-

27

Figure 10: Comparison of BGRUA and CNN-LSTM. Parts (a) and (b) represent the
confusion matrices of BGRUA and CNN-LSTM, respectively.

scores of four classes for our model are greater than those for the CNN-LSTM
model. There are six classes whose F1-scores are approximately equal. Both
models perform poorly on the “pos.baidu.com” class and unsatisfactorily on
the “mobile.12306.cn” class. This dataset contains multiple services from
the same service provider (e.g., four types of traffic from “baidu” and two
from “12306”). Because this flow-based dataset only contains traffic from
clients to servers, the information carried by the clients is insufficient for
distinguishing various services from the same service provider. However,
for services from different service providers, our model can achieve excellent
performance. These experimental results demonstrate that it is better to
consider full sessions to differentiate services from the same service provider.

5.4.3. Effects of transfer learning

First, a source model was trained on Dataset A4. Two groups of traffic
were then selected from Dataset C to evaluate the effects of transfer learning
by retraining the source model. The first group contained 13 categories that
were the same as the traffic categories in Dataset A4. The second group
contained six categories that were different from Dataset A4. We conducted
five experiments with new training data accounting for 5%, 10%, 20%, 50%,
and 80% of the total data. The experimental results for the first group of
data are presented in Figures 12(a) and 12(b). These figures present the
effects of the number of training samples on the accuracy and training speed
of the model, respectively. Overall, the model based on transfer learning has
higher accuracy and faster training speed. When the proportion of training

28

Figure 11: Comparison between our model and CNN-LSTM. The values of 0
to 11 on the x axis represent the classes of “api.bilibili.com,” “api.weibo.cn,”
“cn.bing.com,” “hm.baidu.com,” “mobile.12306.cn,” “music.163.com,” “pan.baidu.com,”
“pos.baidu.com,” “qing.wps.cn,” “s.360.cn,” “www.12306.cn,” and “www.baidu.com,” re-
spectively.

29

Figure 12: Evaluation of transfer learning. Parts (a) and (b) represent the changes in
accuracy and training time, respectively, with increasing amounts of training data.

data is relatively small (i.e., 5%), the accuracy of the fine-tuned model is 5%
higher than that of the model trained from scratch. This is because when
the number of training samples is small, the features in the training data
are insufficient to represent the real data distribution. Using relevant prior
knowledge to help learn new knowledge can compensate for this shortcoming.
Furthermore, for new learning tasks, the convergence speed of the model is
significantly increased by transfer learning. As shown in Figure 12(a), in the
cases with few training samples, the week generalization ability of the model
trained from scratch results in lower accuracy. In contrast, transfer learning
can use existing knowledge to assist in training, resulting in significantly
improved accuracy. When the proportion of training samples is relatively
large, the gap between the two training methods shrinks because the learning
ability of the model trained from scratch increases.

Evaluations of the second group are presented in Figures 12(c) and 12(d).

30

These figures exhibit similar trends compared to Figures 12(a) and 12(b). In
Figure 12(c), the accuracy of the transfer learning approach is greater than
that of training from scratch. This is because some new HTTPS services
samples are used that were not considered in the source model. When the
proportion of training samples increases, the results of training from scratch
exhibit greater accuracy. However, training time consumption increases much
more compared to the transfer learning method. For traffic that is not in-
cluded in the source dataset, the model based on transfer learning exhibits
excellent performance and efficiency, further demonstrating the effectiveness
of our method.

6. Conclusions

Encrypted HTTPS traffic has introduced new challenges into network
management and security analysis. In this paper, we proposed a novel
model based on bidirectional GRUs and an attention mechanism to clas-
sify encrypted HTTPS traffic automatically. Extensive experimental results
demonstrated that our model outperforms three state-of-the-art models. This
confirms that our model is more suitable for the classification of HTTPS traf-
fic. One of the most significant findings of this study is that deep learning
methods perform more stably than traditional machine learning methods.
This is mainly because the time-related features adopted in the traditional
methods are susceptible to changes in network environments, which affects
classification performance. Fluctuations in accuracy caused by changes in
packet locations proved that the TLS negotiation phase has a significant
impact on the performance of traffic classification. We analyzed the sen-
sitivity of the proposed BGRUA model to different hyperparameters and
obtained a set of reasonable values experimentally. To achieve optimal re-
sults, hyperparameters must be strictly controlled in practice. Furthermore,
comparative experiments between session-based and flow-based datasets re-
vealed that bidirectional HTTPS traffic contains richer features, which can
distinguish various services from the same service provider more accurately.
Additionally, we introduced the concept of transfer learning into encrypted
traffic classification. Experimental results demonstrated that training speed
on new datasets is significantly improved by transfer learning.

31

References

[1] Guoqing Xiao, Kenli Li, and Keqin Li. Reporting l most influential ob-
jects in uncertain databases based on probabilistic reverse top-k queries.
Inf. Sci., 405:207–226, 2017.

[2] Xu Zhou, Kenli Li, Yantao Zhou, and Keqin Li. Adaptive processing
for distributed skyline queries over uncertain data. IEEE Trans. Knowl.
Data Eng., 28(2):371–384, 2016.

[3] Wazen M Shbair, Thibault Cholez, Antoine Goichot, and Isabelle Chris-
ment. Efficiently bypassing sni-based https filtering. In 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM),
pages 990–995. IEEE, 2015.

[4] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunen-
berger, Marco Mellia, Maurizio Munafò, Konstantina Papagiannaki, and
Peter Steenkiste. The cost of the s in https. In Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies, pages 133–140. ACM, 2014.

[5] Hong-Ning Dai, Raymond Chi-Wing Wong, Hao Wang, Zibin Zheng,
and Athanasios V. Vasilakos. Big data analytics for large scale wireless
networks: Challenges and opportunities. CoRR, abs/1909.08069, 2019.

[6] Wazen M Shbair. Service-Level Monitoring of HTTPS Traffic. PhD
thesis, 2017.

[7] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang.
End-to-end encrypted traffic classification with one-dimensional convo-
lution neural networks. In 2017 IEEE International Conference on In-
telligence and Security Informatics (ISI), pages 43–48. IEEE, 2017.

[8] Wazen M Shbair, Thibault Cholez, Jerome Francois, and Isabelle Chris-
ment. A multi-level framework to identify https services. In NOMS
2016-2016 IEEE/IFIP Network Operations and Management Sympo-
sium, pages 240–248. IEEE, 2016.

[9] Dawei Wang, Luoshi Zhang, Zhenlong Yuan, Yibo Xue, and Yingfei
Dong. Characterizing application behaviors for classifying p2p traffic.

32

In 2014 International Conference on Computing, Networking and Com-
munications (ICNC), pages 21–25. IEEE, 2014.

[10] Heyning Cheng and Ron Avnur. Traffic analysis of ssl encrypted web
browsing. URL citeseer. ist. psu. edu/656522. html, 1998.

[11] Sung-Min Kim, Young-Hoon Goo, Myung-Sup Kim, Soo-Gil Choi, and
Mi-Jung Choi. A method for service identification of ssl/tls encrypted
traffic with the relation of session id and server ip. In 2015 17th Asia-
Pacific Network Operations and Management Symposium (APNOMS),
pages 487–490. IEEE, 2015.

[12] Riyad Alshammari and A Nur Zincir-Heywood. Machine learning based
encrypted traffic classification: Identifying ssh and skype. In 2009 IEEE
Symposium on Computational Intelligence for Security and Defense Ap-
plications, pages 1–8. IEEE, 2009.

[13] Thuy TT Nguyen and Grenville Armitage. A survey of techniques for
internet traffic classification using machine learning. IEEE communica-
tions surveys & tutorials, 10(4):56–76, 2008.

[14] Petr Velan, Milan Čermák, Pavel Čeleda, and Martin Drašar. A survey
of methods for encrypted traffic classification and analysis. International
Journal of Network Management, 25(5):355–374, 2015.

[15] Cen Chen, Kenli Li, Aijia Ouyang, Zeng Zeng, and Keqin Li. Gflink: An
in-memory computing architecture on heterogeneous CPU-GPU clusters
for big data. IEEE Trans. Parallel Distrib. Syst., 29(6):1275–1288, 2018.

[16] Guoqing Xiao, Kenli Li, Yuedan Chen, Wangquan He, Albert Zomaya,
and Tao Li. Caspmv: A customized and accelerative spmv framework for
the sunway taihulight. IEEE Transactions on Parallel and Distributed
Systems, pages 1–1, 2019.

[17] Andrew Moore, Denis Zuev, and Michael Crogan. Discriminators for
use in flow-based classification. Technical report, 2013.

[18] Andrew W. Moore and Denis Zuev. Internet traffic classification using
bayesian analysis techniques. In Proceedings of the 2005 ACM SIG-
METRICS International Conference on Measurement and Modeling of

33

Computer Systems, SIGMETRICS ’05, pages 50–60, New York, NY,
USA, 2005. ACM.

[19] G. Sun, Y. Xue, Y. Dong, D. Wang, and C. Li. An novel hybrid
method for effectively classifying encrypted traffic. In 2010 IEEE Global
Telecommunications Conference GLOBECOM 2010, pages 1–5, Dec
2010.

[20] Yohei Okada, Shingo Ata, Nobuyuki Nakamura, Yoshihiro Nakahira,
and Ikuo Oka. Comparisons of machine learning algorithms for appli-
cation identification of encrypted traffic. In 2011 10th International
Conference on Machine Learning and Applications and Workshops, vol-
ume 2, pages 358–361. IEEE, 2011.

[21] Riyad Alshammari and A. Nur Zincir-Heywood. Identification of voip
encrypted traffic using a machine learning approach. Journal of King
Saud University - Computer and Information Sciences, 27(1):77 – 92,
2015.

[22] Anthony McGregor, Mark Hall, Perry Lorier, and James Brunskill. Flow
clustering using machine learning techniques. In Chadi Barakat and Ian
Pratt, editors, Passive and Active Network Measurement, pages 205–
214, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[23] Jeffrey Erman, Martin F. Arlitt, and Anirban Mahanti. Traffic classi-
fication using clustering algorithms. In Proceedings of the 2nd Annual
ACM Workshop on Mining Network Data, MineNet 2006, Pisa, Italy,
September 15, 2006, pages 281–286, 2006.

[24] Duo Liu and Chung-Horng Lung. P2P traffic identification and opti-
mization using fuzzy c-means clustering. In FUZZ-IEEE 2011, IEEE In-
ternational Conference on Fuzzy Systems, Taipei, Taiwan, 27-30 June,
2011, Proceedings, pages 2245–2252, 2011.

[25] Laurent Bernaille, Renata Teixeira, and Kavé Salamatian. Early appli-
cation identification. In Proceedings of the 2006 ACM Conference on
Emerging Network Experiment and Technology, CoNEXT 2006, Lisboa,
Portugal, December 4-7, 2006, page 6, 2006.

34

[26] Alessandro Finamore, Marco Mellia, and Michela Meo. Mining unclas-
sified traffic using automatic clustering techniques. In Jordi Domingo-
Pascual, Yuval Shavitt, and Steve Uhlig, editors, Traffic Monitoring
and Analysis, pages 150–163, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[27] Jeffrey Erman, Anirban Mahanti, Martin Arlitt, Ira Cohen, and Carey
Williamson. Semi-supervised network traffic classification. SIGMET-
RICS Perform. Eval. Rev., 35(1):369–370, June 2007.

[28] Bin Liu. A semi-supervised clustering method for P2P traffic classifica-
tion. JNW, 6(3):424–431, 2011.

[29] Jun Zhang, Chao Chen, Yang Xiang, and Wanlei Zhou. Semi-supervised
and compound classification of network traffic. IJSN, 7(4):252–261,
2012.

[30] Zhanyi Wang. The applications of deep learning on traffic identification.
BlackHat USA, 24, 2015.

[31] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein
Zade, and Mohammdsadegh Saberian. Deep packet: A novel approach
for encrypted traffic classification using deep learning. Soft Computing,
pages 1–14, 2017.

[32] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng.
Malware traffic classification using convolutional neural network for rep-
resentation learning. In 2017 International Conference on Information
Networking (ICOIN), pages 712–717. IEEE, 2017.

[33] Zhuang Zou, Jingguo Ge, Hongbo Zheng, Yulei Wu, Chunjing Han,
and Zhongjiang Yao. Encrypted traffic classification with a con-
volutional long short-term memory neural network. In 2018 IEEE
20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City;
IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pages 329–334. IEEE, 2018.

[34] Shuyuan Zhao, Yongzheng Zhang, and Yafei Sang. Towards unknown
traffic identification via embeddings and deep autoencoders. In 26th In-

35

ternational Conference on Telecommunications, ICT 2019, Hanoi, Viet-
nam, April 8-10, 2019, pages 85–89, 2019.

[35] Yongzheng Zhang, Shuyuan Zhao, and Yafei Sang. Towards unknown
traffic identification using deep auto-encoder and constrained clustering.
In Computational Science - ICCS 2019 - 19th International Conference,
Faro, Portugal, June 12-14, 2019, Proceedings, Part I, pages 309–322,
2019.

[36] A. S. Iliyasu and H. Deng. Semi-supervised encrypted traffic classifi-
cation with deep convolutional generative adversarial networks. IEEE
Access, 8:118–126, 2020.

[37] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of
transfer learning. Journal of Big data, 3(1):9, 2016.

[38] R. Caruana, D. L. Silver, J. Baxter, T. M. Mitchell, L. Y. Pratt, and
S. Thrun. Learning to learn: knowledge consolidation and transfer in
inductive systems, 1995.

[39] A. Kawewong, S. Tangruamsub, P. Kankuekul, and O. Hasegawa. Fast
online incremental transfer learning for unseen object classification using
self-organizing incremental neural networks. In The 2011 International
Joint Conference on Neural Networks, pages 749–756, July 2011.

[40] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and
Victor Lempitsky. Speeding-up convolutional neural networks using fine-
tuned cp-decomposition. arXiv preprint arXiv:1412.6553, 2014.

[41] T. Takano, H. Takase, H. Kawanaka, and S. Tsuruoka. Transfer method
for reinforcement learning in same transition model – quick approach
and preferential exploration. In 2011 10th International Conference on
Machine Learning and Applications and Workshops, volume 1, pages
466–469, Dec 2011.

[42] Chang Wang and Sridhar Mahadevan. Heterogeneous domain adapta-
tion using manifold alignment. In Twenty-Second International Joint
Conference on Artificial Intelligence, 2011.

[43] Eric Eaton, Marie desJardins, and Terran Lane. Modeling transfer re-
lationships between learning tasks for improved inductive transfer. In

36

Walter Daelemans, Bart Goethals, and Katharina Morik, editors, Ma-
chine Learning and Knowledge Discovery in Databases, pages 317–332,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[44] B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you
get: Domain adaptation using asymmetric kernel transforms. In CVPR
2011, pages 1785–1792, June 2011.

[45] Yin Zhu, Yuqiang Chen, Zhongqi Lu, Sinno Jialin Pan, Gui-Rong Xue,
Yong Yu, and Qiang Yang. Heterogeneous transfer learning for image
classification. In Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence, AAAI’11, pages 1304–1309. AAAI Press, 2011.

[46] Jaechang Nam and Sunghun Kim. Heterogeneous defect prediction. In
Proceedings of the 2015 10th joint meeting on foundations of software
engineering, pages 508–519. ACM, 2015.

[47] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and
Sanjeev Khudanpur. Recurrent neural network based language model.
In Eleventh annual conference of the international speech communication
association, 2010.

[48] Analysis of transfer learning for deep neural network based plant classi-
fication models. Computers and Electronics in Agriculture, 158:20 – 29,
2019.

[49] Jerome Francois Isabelle Chrisment Wazen Shbair, Thibault Cholez.
Https websites dataset. http://betternet.lhs.loria.fr/datasets/

https/.

[50] Sebastian Garcia. Malware capture facility project. https://

stratosphereips.org.

37

