
Layout Inference and Table
Detection in Spreadsheet

Documents

Dissertation

submitted April 20, 2020

by M.Sc. Elvis Koci
born May 09, 1987 in Sarande, Albania

at Technische Universität Dresden
and Universitat Politècnica de Catalunya

Supervisors:
Prof. Dr.-Ing. Wolfgang Lehner
Assoc. Prof. Dr. Oscar Romero

T BII

D C

2

THESIS DETAILS

Thesis Title: Layout Inference and Table Detection in Spreadsheet Documents
Ph.D. Student: Elvis Koci
Supervisors: Prof. Dr.-Ing. Wolfgang Lehner, Technische Universität Dresden

Assoc. Prof. Dr. Oscar Romero, Universitat Politècnica de Catalunya

The main body of this thesis consists of the following peer-reviewed publications:

1. Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. A machine learning
approach for layout inference in spreadsheets. In IC3K 2016: The 8th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Man-
agement: volume 1: KDIR, pages 77–88. SciTePress, 2016

2. Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. Cell classification for
layout recognition in spreadsheets. In Ana Fred, Jan Dietz, David Aveiro, Kecheng
Liu, Jorge Bernardino, and Joaquim Filipe, editors, Knowledge Discovery, Knowledge
Engineering and Knowledge Management (IC3K ‘16: Revised Selected Papers), volume
914 of Communications in Computer and Information Science, pages 78–100. Springer,
Cham, 2019

3. Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. Table identification
and reconstruction in spreadsheets. In the International Conference on Advanced Infor-
mation Systems Engineering (CAiSE), pages 527–541. Springer, 2017

4. Elvis Koci, Maik Thiele, Wolfgang Lehner, and Oscar Romero. Table recognition in
spreadsheets via a graph representation. In the 13th IAPR International Workshop on
Document Analysis Systems (DAS), pages 139–144. IEEE, 2018

5. Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. A genetic-based
search for adaptive table recognition in spreadsheets. In 2019 International Confer-
ence on Document Analysis and Recognition, ICDAR 2019, Sydney, Australia, September
20-25, 2019, pages 1274–1279. IEEE, 2019

6. Elvis Koci, Maik Thiele, Josephine Rehak, Oscar Romero, and Wolfgang Lehner.
DECO: A dataset of annotated spreadsheets for layout and table recognition. In
2019 International Conference on Document Analysis and Recognition, ICDAR 2019, Syd-
ney, Australia, September 20-25, 2019, pages 1280–1285. IEEE, 2019

7. Elvis Koci, Dana Kuban, Nico Luettig, Dominik Olwig, Maik Thiele, Julius Gonsior,
Wolfgang Lehner, and Oscar Romero. Xlindy: Interactive recognition and informa-
tion extraction in spreadsheets. In Sonja Schimmler and Uwe M. Borghoff, editors,
Proceedings of the ACM Symposium on Document Engineering 2019, Berlin, Germany,
September 23-26, 2019, pages 25:1–25:4. ACM, 2019

This thesis is jointly submitted to the Faculty of Computer Science at Technische Univer-
sität Dresden (TUD) and the Department of Service and Information System Engineering
(ESSI) at Universitat Politècnica de Catalunya (UPC), in partial fulfillment of the require-
ments within the scope of the IT4BI-DC program for the joint Ph.D. degree in computer
science (TUD: Dr.-Ing., UPC: Ph.D. in Computer Science). The thesis is not submitted to
any other organization at the same time. The author has obtained the rights to include
parts of the already published articles in the thesis.

3

4

ABSTRACT

Spreadsheet applications have evolved to be a tool of great importance for businesses,
open data, and scientific communities. Using these applications, users can perform var-
ious transformations, generate new content, analyze and format data such that they are
visually comprehensive. The same data can be presented in different ways, depending
on the preferences and the intentions of the user.

These functionalities make spreadsheets user-friendly, but not as much machine-friendly.
When it comes to integrating with other sources, the free-for-all nature of spreadsheets
is disadvantageous. It is rather difficult to algorithmically infer the structure of the data
when they are intermingled with formatting, formulas, layout artifacts, and textual meta-
data. Therefore, user involvement is often required, which results in cumbersome and
time-consuming tasks. Overall, the lack of automatic processing methods limits our abil-
ity to explore and reuse a great amount of rich data stored into partially-structured doc-
uments such as spreadsheets.

In this thesis, we tackle this open challenge, which so far has been scarcely investigated
in literature. Specifically, we are interested in extracting tabular data from spreadsheets,
since they hold concise, factual, and to a large extend structured information. It is easier
to process such information, in order to make it available to other applications. For in-
stance, spreadsheet (tabular) data can be loaded into databases. Thus, these data would
become instantly available to existing or new business processes. Furthermore, we can
eliminate the risk of losing valuable company knowledge, by moving data or integrating
spreadsheets with other more sophisticated information management systems.

To achieve the aforementioned objectives and advancements, in this thesis, we develop a
spreadsheet processing pipeline. The requirements for this pipeline were derived from a
large scale empirical analysis of real-world spreadsheets, from business and Web settings.
Specifically, we propose a series of specialized steps that build on top of each other with
the goal of discovering the structure of data in spreadsheet documents. Our approach
is bottom-up, as it starts from the smallest unit (i.e., the cell) to ultimately arrive at the
individual tables of the sheet.

Additionally, this thesis makes use of sophisticated machine learning and optimization
techniques. In particular, we apply these techniques for layout analysis and table de-
tection in spreadsheets. We target highly diverse sheet layouts, with one or multiple ta-
bles and arbitrary arrangement of contents. Moreover, we foresee the presence of textual
metadata and other non-tabular data in the sheet. Furthermore, we work even with prob-
lematic tables (e.g., containing empty rows/columns and missing values). Finally, we
bring flexibility to our approach. This not only allows us to tackle the above-mentioned
challenges but also to reuse our solution for different (spreadsheet) datasets.

5

6

CONTENTS

1 INTRODUCTION 13

1.1 Motivation . 14

1.2 Contributions . 15

1.3 Outline . 16

2 FOUNDATIONS AND RELATED WORK 19

2.1 The Evolution of Spreadsheet Documents 20
2.1.1 Spreadsheet User Interface and Functionalities 21

2.1.2 Spreadsheet File Formats . 22

2.1.3 Spreadsheets Are Partially-Structured 23

2.2 Analysis and Recognition in Electronic Documents 23
2.2.1 A General Overview of DAR . 23

2.2.2 DAR in Spreadsheets . 26

2.3 Spreadsheet Research Areas . 26
2.3.1 Layout Inference and Table Recognition 27

2.3.2 Unifying Databases and Spreadsheets 29

2.3.3 Spreadsheet Software Engineering 30

2.3.4 Data Wrangling Approaches . 31

3 AN EMPIRICAL STUDY OF SPREADSHEET DOCUMENTS 33

3.1 Available Corpora . 34

3.2 Creating a Gold Standard Dataset . 36
3.2.1 Initial Selection . 36

3.2.2 Annotation Methodology . 37

3.3 Dataset Analysis . 42
3.3.1 Takeaways from Business Spreadsheets 42

3.3.2 Comparison Between Domains . 47

3.4 Summary and Discussion . 50
3.4.1 Datasets for Experimental Evaluation 52

3.4.2 A Processing Pipeline . 52

4 LAYOUT ANALYSIS 55

4.1 A Method for Layout Analysis in Spreadsheets 56

7

4.2 Feature Extraction . 58
4.2.1 Content Features . 58

4.2.2 Style Features . 59

4.2.3 Font Features . 60

4.2.4 Formula and Reference Features 60

4.2.5 Spatial Features . 61

4.2.6 Geometrical Features . 63

4.3 Cell Classification . 63
4.3.1 Classification Datasets . 64

4.3.2 Classifiers and Assessment Methods 65

4.3.3 Optimum Under-Sampling . 66

4.3.4 Feature Selection . 68

4.3.5 Parameter Tuning . 71

4.3.6 Classification Evaluation . 72

4.4 Layout Regions . 79

4.5 Summary and Discussions . 82

5 CLASSIFICATION POST-PROCESSING 83

5.1 Dataset for Post-Processing . 84

5.2 Pattern-Based Revisions . 85
5.2.1 Misclassification Patterns . 86

5.2.2 Relabeling Cells . 87

5.2.3 Evaluating the Patterns . 87

5.3 Region-Based Revisions . 88
5.3.1 Standardization Procedure . 88

5.3.2 Extracting Features from Regions 91

5.3.3 Identifying Misclassified Regions . 94

5.3.4 Relabeling Misclassified Regions . 96

5.4 Summary and Discussion . 97

6 TABLE DETECTION 99

6.1 A Method for Table Detection in Spreadsheets 100

6.2 Preliminaries . 102
6.2.1 Introducing a Graph Model . 102

6.2.2 Graph Partitioning for Table Detection 105

6.2.3 Pre-Processing for Table Detection 105

6.3 Rule-Based Detection . 108
6.3.1 Remove and Conquer . 109

6.4 Genetic-Based Detection . 114
6.4.1 Undirected Graph . 114

6.4.2 Header Cluster . 114

8 CONTENTS

6.4.3 Quality Metrics . 115

6.4.4 Objective Function . 117

6.4.5 Weight Tuning . 118

6.4.6 Genetic Search . 119

6.5 Experimental Evaluation . 120
6.5.1 Testing Datasets . 120

6.5.2 Training Datasets . 120

6.5.3 Tuning Rounds . 122

6.5.4 Search and Assessment . 122

6.5.5 Evaluation Results . 123

6.6 Summary and Discussions . 125

7 XLINDY: A RESEARCH PROTOTYPE 127

7.1 Interface and Functionalities . 128
7.1.1 Front-end Walkthrough . 128

7.2 Implementation Details . 129
7.2.1 Interoperability . 130

7.2.2 Efficient Reads . 130

7.3 Information Extraction . 131

7.4 Summary and Discussions . 132

8 CONCLUSION 133

8.1 Summary of Contributions . 134

8.2 Directions of Future Work . 135

BIBLIOGRAPHY 139

LIST OF FIGURES 149

LIST OF TABLES 153

A ANALYSIS OF REDUCED SAMPLES 155

B TABLE DETECTION WITH TIRS 157

B.1 Tables in TIRS . 157

B.2 Pairing Fences with Data Regions . 158

B.3 Heuristics Framework . 158

CONTENTS 9

10 CONTENTS

ACKNOWLEDGMENTS

This dissertation would not have been possible without the help and support of many
colleagues, friends, and family members. First and foremost, I would like to thank Prof.
Wolfgang Lehner for giving me the opportunity to pursue my PhD studies as a part of
his research group. I am especially grateful for his welcoming and supportive nature.
In crucial moments, he was there to provide his guidance and help. I am very thankful
to my second supervisor, Assoc. Prof. Oscar Romero, from Universitat Politècnica de
Catalunya (UPC). Despite the distance and unconventional nature of this research topic,
he trusted, believed, and supported me, during my PhD studies. Moreover, I would like
to acknowledge the hospitality that he and the other members of the team showed during
my several visits to UPC. Special thanks go to Prof. Jordi Vitrià, from the University of
Barcelona. His suggestions and advice were a catalyst for many of the ideas that later be-
came a core part of this thesis. This PhD would have not been possible, without the help
and encouragement of Maik Thiele. Not only was he my closest collaborator, but also a
true friend. He supported me and believed in me, even when I did not. It is especially
because of him and Ulrike Schöbel that I felt part of the group. Nevertheless, I would like
to thank all my colleagues from Database Systems Group, Technische Universität Dres-
den (TUD). Throughout the last five years, we have shared some wonderful movements.
Most importantly, I thank them for the countless times they were there to answer my
questions, sometimes stupid ones. One can only imagine the confusion a foreign student
has when moving to a new unknown environment. An especially warm thank you to
my parents, Sotiris and Glikeria, as well as to my brother, Anastasis. Throughout the last
three decades, I could always count on them. They have always supported my dreams,
and they have always been by my side in good and rough times. Last, I want to thank
my wonderful wife, Elena, and my newborn son, Alexandros. You are the joys of my life.
I am looking forward to all the beautiful moments and adventures that lay ahead of us.

Elvis Koci
Dresden, 20 April 2020

11

12 CONTENTS

1
INTRODUCTION

1.1 Motivation

1.2 Contributions

1.3 Outline

1.1 MOTIVATION

Spreadsheets have found wide use in many different domains and settings. They pro-
vide a broad range of both basic and advanced functionalities, which enable data col-
lection, transformation, analysis, and reporting. Nevertheless, at the same time spread-
sheets maintain a friendly and intuitive interface. In addition, they entail a very low cost.
Well-known spreadsheet applications, such as OpenOffice [58], LibreOffice [60], Google
Sheets [76], and Gnumeric [103], are free to use. Moreover, Microsoft Excel [35] is widely
available, with unofficial estimations putting the number of users to 1.2 billion1. Thus,
spreadsheets are not only powerful tools, but also easily accessible. For these reasons,
among others, they have become very popular with novices and professionals alike.

As a result, a large volume of valuable data resides in spreadsheet documents. In in-
dustry, internal business knowledge is stored and managed in this format. Eckerson and
Sherman estimate that 41% of Spreadmarts (i.e. reporting or analysis systems running
on desktop software) are built on top of Microsoft Excel [47]. Moreover, governmental
agencies, nonprofit organizations, and other institutions collect and make available data
with spreadsheets (e.g., in open data platforms [29]). In science, spreadsheets act as lab
books, or even as sophisticated calculators and simulators [107].

Seeing the wide use and the concentration of valuable data in spreadsheets, industry and
research have recognized the need for automatic processing of these documents. This
need is more evident, at a time when data is considered “the new oil” [4]. Nowadays, the
demand for comprehensive and accurate analysis (of data) has increased. New concepts
have emerged, such as big data and data lakes [96, 100]. It has become more and more
apparent that being able to integrate and reuse data from different formats and sources
can be very beneficial.

From spreadsheets, of particular interest are data coming in tabular form, since they
provide concise, factual, and to a large extend structured information. In this regard,
databases seem to be one of the natural progressions for spreadsheet data. After all, tables
are a fundamental concept for both spreadsheets and databases. However, as noted in
the following paragraphs, spreadsheet tables often carry more (implicit) information than
database tables. Thus, transferring data from one format to the other is not as straightfor-
ward. In fact, there is a need for sophisticated transformations. Nevertheless, by bringing
these two worlds closer we can open the door to many applications. This would allow
spreadsheets to become a direct source of data for existing or new business processes. It
would be easier to digest them into data warehouses, and in general integrate them with
other sources. Most importantly, it will prevent information silos, i.e., data and knowl-
edge being isolated and scattered in multiple spreadsheet files.

Besides databases, there are other means to work with spreadsheet data. New paradigms,
like NoDB [12], advocate querying directly from raw documents. Going one step further,
spreadsheets together with other raw documents can be stored in a sophisticated cen-
tralized repository, i.e., a data lake [100]. Yet, this still leaves an open question: how to
automatically understand the spreadsheet contents?

In fact, there are considerable challenges to such automatic understanding. After all,
spreadsheets are designed primarily for human consumption, and as such, they favor
customization and visual comprehension. Data are often intermingled with formatting,
formulas, layout artifacts, and textual metadata, which carry domain-specific or even

1https://www.windowscentral.com/there-are-now-12-billion-office-users-60-million-office-365-
commercial-customers)

14 Chapter 1 Introduction

user-specific information (i.e., personal preferences). Multiple tables, with different lay-
out and structure, can be found on the same sheet. Most importantly, the structure of the
tables is not known, i.e., not explicitly given by the spreadsheet document. Altogether,
spreadsheets are better described as partially structured, with a significant degree of im-
plicit information.

In literature, the automatic understanding of spreadsheet data has only been scarcely
investigated, often assuming just the same uniform table layout across all spreadsheets.
However, due to the manifold possibilities to structure tabular data within a spreadsheet,
the assumption of a uniform layout either excludes a substantial number of tables from
the extraction process or leads to inaccurate results.

Therefore, in this thesis, we address two fundamental tasks that can lead to accurate in-
formation extraction from spreadsheets. Namely, we propose intuitive and effective ap-
proaches for layout analysis and table detection in spreadsheets. One of our main goals
is to eliminate most of the assumptions from related work. Instead, we target highly
diverse sheet layouts, with one or multiple tables. Nevertheless, we also foresee the pres-
ence of textual metadata and other non-tabular data in the sheet. Furthermore, we make
use of sophisticated machine learning and optimization techniques. This brings flexibil-
ity to our approach, allowing it to work even with complex or problematic tables (e.g.,
containing empty cells and missing values). Moreover, the intended flexibility makes
our approaches transferable to new spreadsheet datasets. Thus, we are not bounded to
specific domains or settings.

1.2 CONTRIBUTIONS

This thesis aims at automatic processing methods for spreadsheets, based on the insight
that data stored in these documents could be transformed in other more structured forms.
Therefore, we propose a processing pipeline for spreadsheet documents. The input sheet
goes through a series of steps that gradually infer its structure, and then expose it for
further processing. Below, we provide a detailed list of our contributions:

1. We study the history of spreadsheet documents and review a broad body of liter-
ature from research on these and other similar documents. Nevertheless, the main
focus is on existing approaches in layout analysis and table detection. In particu-
lar, we consider works from the Document Analysis and Recognition (DAR) field.
We bring well-established concepts and approaches from this field to spreadsheets.
(Chapter 2)

2. We perform a large scale analysis of real-world spreadsheets. We put into test claims
from related work and discover challenges that were so far overlooked. For this
analysis, we consider spreadsheets from both the Web and business domain. The
results are visualized and thoroughly discussed in the form of takeaways. Besides
the common characteristics, we highlight the differences between the two domains,
Web and business. (Chapter 3)

3. Due to the lack of publicly available benchmarks, we develop an annotation tool,
which is used to create two datasets. The selection of the files, pre-processing, and
annotation procedure are described in a comprehensive manner. The tool and the
datasets are made publicly available. (Chapter 3)

1.2 Contributions 15

4. We propose a machine learning approach for layout analysis in spreadsheet doc-
uments. To the best of our knowledge, we are the first to attempt this at the cell
level. This approach allows us to capture much more diverse layouts than related
work. A large portion of the features implemented for classification are original to
this work. We prove that these features are among the most relevant during classi-
fication. (Chapter 4). Last, we discuss two methods that correct misclassifications,
by studying the immediate and distant neighborhood of the cell (Chapter 5)

5. We propose a formal model to represent the layout of a sheet, after cell classifi-
cation. This includes a well-defined and motivated procedure for the creation of
layout (uniform) regions. (Chapter 4) Moreover, we introduce a graph model that
encodes precisely the characteristics of the regions, and their spatial arrangement in
the sheet. (Chapter 6)

6. Our work includes two novel and effective table detection approaches. We formu-
late the detection task as a graph partitioning problem. Besides rules and heuristics,
we incorporate genetic algorithms and optimization techniques. For this purpose,
we define an objective function that quantifies the merit of a candidate table, with
the help of ten specialized metrics. Moreover, these functions can be tuned to match
the characteristics of new (unseen) datasets. To the best of our knowledge, there is
no other work in literature incorporating such methods for table detection, both in
spreadsheets and other similar documents. (Chapter 6)

7. We develop a research prototype (Excel add-in) that allows us to test and improve
the aforementioned method. Currently, this prototype provides some support for
information extraction. (Chapter 7)

1.3 OUTLINE

The structure of this thesis is visualized in Figure 1.1. In Chapter 2, we discuss funda-
mental aspects of spreadsheet documents: interface, functionalities, and file format (i.e.,

Chapter 1
Introduction

Chapter 2
Foundations and Related Work

Chapter 3
Empirical Study of Spreadsheet Documents

Chapter 4
Layout Analysis

Chapter 5
Classification

Post-Processing

Chapter 6
Table Detection

Chapter 7
XLIndy: A Research Prototype

Chapter 8
Conclusion

Figure 1.1: Organization of the chapters in this thesis.

16 Chapter 1 Introduction

how data is encoded). Additionally, we review related works from spreadsheets and
the broad area of Document Analysis and Recognition. In Chapter 3, we outline the
methods, tools, and results from our empirical analysis of real-world spreadsheet docu-
ments. Based on this analysis we derive open challenges (requirements) and define the
objectives and scope of this thesis (Section 3.4.2). The next three chapters discuss spe-
cific parts of our proposed processing pipeline for layout analysis and table detection in
spreadsheets. Specifically, Chapter 4 outlines how we infer the layout of the sheet via
cell classification. Chapter 5 discusses an optional step of the pipeline, which attempts
to eliminate cell misclassifications prior to table detection. Chapter 6 summarizes our
actual contributions with regard to detecting tables in spreadsheets. In fact, we propose
multiple approaches for this task. Next, in Chapter 7, we present XLIndy, an Excel add-in
that implements the proposed processing pipeline. This tool not only allows us to run
the proposed approaches, but also visualize the results, review them, and test different
settings. We conclude this thesis in Chapter 8, where we summarize our contributions
and lay the ground for future work.

The chapters of this thesis map to our published papers in the following way: Chapter 3
encompasses one of our recent publications from ICDAR’19, which concerns the anno-
tated dataset of spreadsheets [84]. Chapter 4 is based on our publication from KDIR’16
[85]. Chapter 5 incorporates the work originally discussed in the CCIS book chapter [87]
and part of the work from the KDIR’16 paper [85]. Next, Chapter 6 is based on three
of our publications: CAiSE’17 [83], DAS’18 [86], ICDAR’19 [88]. Finally, our DocEng’19
publication [82] is discussed in Chapter 7.

1.3 Outline 17

18 Chapter 1 Introduction

2
FOUNDATIONS AND RELATED WORK

2.1 The Evolution of Spread-
sheet Documents

2.2 Analysis and Recognition
in Electronic Documents

2.3 Spreadsheet Research Ar-
eas

In this chapter, we discuss the fundamental concepts and works that are relevant to this
thesis. We begin with Section 2.1, where we outline the evolution of spreadsheet docu-
ments and highlight their unique technical characteristics. Subsequently, in Section 2.2,
we review literature for layout inference and table recognition approaches, especially
within the field of Document Analysis and Recognition. Finally, in Section 2.3, we cover
actual research in spreadsheets. Besides, layout inference and table recognition, we dis-
cuss topics such as formula debugging, database-spreadsheet unification, spreadsheet
modeling, etc. Although some of these works do not share the same scope with this the-
sis, they share similar challenges. Therefore, their findings and proposed approaches are
relevant.

2.1 THE EVOLUTION OF SPREADSHEET DOCUMENTS

Spreadsheets can be simply described as electronic counterparts of paper-based account-
ing worksheets. It is believed that the latter originate from the 15th century, initially
proposed by Italian mathematician Luca Pacioli, often referred to as the father of book-
keeping [61, 112]. However, the idea of organizing data into rows and columns has been
around for several Millennia (see Plimpton 322, a Babylonian tablet from 1800BC [28, 62]).

Modern electronic spreadsheets brought this ancient but natural way of organizing data
into new heights. The two-dimensional grid of rows and columns was enhanced with
an abundance of functionalities [69, 115, 137] and the inherent flexibility of the electronic
format. In this easy-to-use and highly expressive environment, users have become infor-
mal designers and programmers, with the ability to shape data according to their needs.
Consequently, modern spreadsheets have become an essential tool for many companies,
supporting a broad range of internal tasks.

In 1979, the first commercially successful spreadsheet software, VisiCalc, was developed
by Dan Bricklin and Bob Frankston [25, 26, 120]. Initially, it was released for Apple 2 com-
puter. A version for MS-DOS on the IBM PC followed soon after, in 1981. The success of
VisiCalc inspired the development of other similar software, notably Lotus 1-2-3 [111],
SuperCalc [128], and Multiplan [127]. In 1983, soon after its release, Lotus 1-2-3 overtook
the market. To this contributed its ability to handle larger spreadsheets, while simul-
taneously being faster than its competitors [69]. However, in the early 90s, Microsoft
Excel [35] became the market leader, a position that it has maintained ever since. Excel
offered additional functionalities (especially with respect to formatting), improved us-
ability, and faster recalculations [69]. Nowadays, besides Microsoft Excel, we find open-
source spreadsheet software, such as Gnumeric [103] and LibreOffice [60]. The market
has also introduced web-based collaborative spreadsheet programs. Google Sheets [76]
is the most successful example of such an application. In the last years, Microsoft is de-
veloping a similar functionality within its Office 365 suite [34, 36].

For an extended view on the history of spreadsheets, refer to the book "Spreadsheet Im-
plementation Technology" [115], Felliene Hermans’ dissertation [69], the related article
[137] in ACM Interactions magazine, and survey papers [5, 22].

20 Chapter 2 Foundations and Related Work

(a) Microsoft Excel 2016 (b) Google Sheets

(c) LibreOffice v6.3 (d) Gnumeric v1.12

Figure 2.1: User Interfaces for Different Spreadsheet Vendors

2.1.1 Spreadsheet User Interface and Functionalities

Modern spreadsheet applications share some essential characteristics, although they tar-
get slightly different market segments. Here, we discuss the user experience (interface
and functionalities) and define some basic spreadsheet concepts. More information can
be found online in the respective user manuals and help pages: Microsoft Excel [35],
LibreOffice [59], Google Sheet [76], and Gnumeric [104].

In the main window, the user interacts with a menu bar, which provides access to the
functionalities of the spreadsheet application (see Figure 2.1). Below this bar, the user
finds a two-dimensional grid, referred to as sheet or worksheet. A spreadsheet file (also
known as workbook) can contain one or many related sheets. The basic unit of every such
sheet is the cell, i.e., the intersection between a column and a row. Cells can be empty or
contain various types of data: string, numeric, boolean, date, and formula.

Notably, spreadsheets provide an ample number of build-in formulas for arithmetic cal-
culations, statistical analysis, operations with string and dates, and various other utili-
ties. With such formulas, users can reduce large problems into a series of simple com-
putational steps. Furthermore, in an interactive fashion, users can alter the input values
(i.e, cell contents) and spreadsheets will recalculate on the fly the new output [115]. This
enables “what-if” analysis, which is regarded as one of the most useful features of spread-
sheets.

Clearly, for the aforementioned operations, formulas need to reference the contents of
other cells or even ranges of cells (i.e., a rectangular area of the sheet). In spreadsheets,
the most common referencing system is the A1-style, which can be seen in Figure 2.1. Re-
spectively from left to right and top to bottom, the columns are labeled with letters (A, B,
C, ..., Z, AA, AB, ...) and the rows with numbers (1, 2, 3,...). Some example references are
B3, Z18, and C10:F12. Note, the last one is a range of cells.

2.1 The Evolution of Spreadsheet Documents 21

Besides formulas and interactive recalculations, spreadsheets provide other useful func-
tionalities. Users can filter, sort, find/replace, and rearrange data easily. Built-in charts and
diagrams enable data visualization and analysis. Many and various formatting options
allow users to personalize the way data is displayed. For instance, users can change the
font color and font size of a (cell) value, the borders and alignment of the cell itself, and
up to the column widths and row heights. Another related feature is conditional format-
ting, which allows applying formats on multiple cells in one action, based on predefined
or user-defined conditions. In this way, one can quickly format and most importantly
analyze visually large amounts of data.

Overall, spreadsheets are intuitive, expressive, flexible, and powerful. Naturally, these
characteristics made spreadsheets popular with novices and professionals alike. There-
fore, nowadays they are used in many different domains and settings.

2.1.2 Spreadsheet File Formats

In spreadsheets, user-generated content such as values, formatting, and settings, are en-
coded by the application in a specific format. In fact, vendors have developed their own
file format [89], which allows them to efficiently write/read spreadsheet contents. Be-
low, we outline the history of file formats for office applications (including spreadsheets),
based on [89].

During the 1990s, the vast majority of spreadsheet vendors used proprietary binary file
formats. This made it difficult for third-parties to develop their own custom applications
on top of spreadsheets. It also hindered interoperability between spreadsheet applica-
tions.

Starting from the late 1990s, there have been attempts to create an XML-based open stan-
dard for spreadsheets, and office documents in general. In 2006, the Open Document For-
mat for Office Applications (ODF) [99], was accepted as an ISO and IEC standard. Nowa-
days, ODF is native to LibreOffice and OpenOffice, while being supported by all the
other major vendors. Microsoft independently developed an alternative format, called
Office Open XML (OOXML) [77], which was approved as an ISO/IEC standard in 2008.
Commercially, it was introduced with the release of Microsoft Office 2007. All Excel doc-
uments created with this or newer versions have a .xlsx file extension. Prior to this, Excel
documents had the extension .xls (i.e., a binary-based format). Nevertheless, both .xls and
.xlsx formats are currently supported by other spreadsheet and enterprise applications.

ODF and OOXML have many characteristics in common. Most importantly, the file for-
mats are zip archives that typically contain multiple XML files. Each such file is spe-
cialized to store specific aspects of the user-generated content (e.g., values, styling, and
settings). Nevertheless, an XML file can also reference other files within the zip archive.
The archive itself is organized in a hierarchical way, grouping files into folders and sub-
folders. Besides the XML files, the achieve will contain other media, such as images, if
the user had previously inserted them in the spreadsheet document. In order to recover
(decode) the original document, a spreadsheet application needs to parse the XML files
(considering the dependencies between them) and subsequently load any linked media.

Overall, due to these open standards, machine processing of spreadsheets has become
easier and computationally efficient. In fact, most of the popular programming languages
already have specialized libraries to work with ODF and OOXML formats [57, 64, 121].
Equipped with these tools and the detailed technical documentation of the standards,
one can easily create custom extensions on top of spreadsheets. This is beneficial not
only for businesses but also for the research community who aims at experimenting with
innovative techniques on these documents.

22 Chapter 2 Foundations and Related Work

2.1.3 Spreadsheets Are Partially-Structured

The introduction of XML-based file formats brought the needed standardization and in-
teroperability. Yet, vendors have not accounted for a formal and systematic way to cap-
ture the layout (physical and logical) of the whole sheet and that of the individual tables.
Therefore, spreadsheets are still in the realm of partially-structured documents.

There are ways for the users to label indirectly parts of the sheet. However, this makes
any sophisticated analysis of spreadsheets highly dependent on user input. For exam-
ple, Microsoft Excel provides the option to create pivot tables [35]. In such cases, the .xlsx
document (i.e., a zip archive) will contain designated XML files that record the physi-
cal structure of these tables: column index, row index, and value areas. Similarly, ODF
treats pivot tables in a specific way within its XML-based format. Another instance of
indirect labeling is the use of build-in styles [35, 59]. These are intended for special cells
(e.g., notes, headings, calculations, etc.) or even entire tables. Again, any usage of such
styles will be encoded into the saved spreadsheet file. Thus, users can definitely provide
hints that would be valuable to any algorithm attempting automatic spreadsheet analy-
sis. However, in reality, users do not commonly employ the aforementioned options (as
is shown in Section 3.3 and in [78]). On the contrary, they often apply custom formatting,
as it feels more personalized and/or suitable for the occasion. At times, they might not
apply formatting at all.

In fact, not only formatting but also the arrangement of contents is under the full control
of the user. This often results in complex sheets, which do not necessarily follow a prede-
fined model or template. Such sheets might be difficult to understand even by humans
(see Section 3.2.2), let alone machines. Thus, automatic spreadsheet processing is not a
trivial task. Spreadsheets face similar challenges to other well-studied documents in lit-
erature (refer to Section 2.2). As a result, specialized and advanced algorithmic steps are
required to automatically handle arbitrary spreadsheets.

2.2 ANALYSIS AND RECOGNITION IN ELECTRONIC DOCUMENTS

Document Analysis and Recognition (DAR) is an established field, with well-defined
tasks. Below we summarize this field’s contributions, based on three surveys [94, 95, 97].
In particular, we discuss DAR tasks that are relevant to this thesis. Namely, we highlight
methods for layout analysis and table detection in electronic documents. Later, we adopt
these methods for spreadsheet documents.

2.2.1 A General Overview of DAR

The DAR field concerns itself with the automatic extraction of information, from docu-
ment formats that are primarily designed for human comprehension, into formats that
are standardized and machine-readable [95]. Typically, research in this field addresses
scanned documents (also known as document images [94, 97]). However, in recent years
more diverse document types are considered, such as PDFs, HTML, and digital im-
ages [95].

DAR techniques are applied to a variety of tasks, most commonly found in business set-
tings. A well-known application is the automatic sorting of mail, where machines recog-
nize and process the address section on the envelopes [95, 97]. Another application is the

2.2 Analysis and Recognition in Electronic Documents 23

Figure 2.2: The Document Analysis and Recognition Process

automatic processing of business documents, such as invoices, checks, and forms [95].
DAR techniques are also used for research purposes, like the analysis of old manuscripts
and ancient artifacts, found in digital libraries [95].

Marinai [95] identifies four principal steps in a DAR system: pre-processing, object seg-
mentation, object recognition, and post-processing. We illustrate them in Figure 2.2. Pre-
processing concerns techniques that bring input documents into formats that are more
suitable to work with. For instance, with respect to images, one could apply binarization
and noise reduction techniques, in order to improve their quality. Object segmentation
aims at dividing the document into smaller homogeneous regions. As stated by Mari-
nai, this task can be performed at different granularities. Some systems are concerned
with segmentation at the character or word level. Others seek larger regions, such as text
blocks and figures. The third step, object recognition, attempts to categorize the resulting
regions. Specifically, it assigns logical or functional labels, such as title, caption, footnote,
etc. The last step, post-processing, decides the next recommended actions based on the
recognition results. The available options depend on the design and purpose of the spe-
cific DAR system. Overall, these four steps provide a high-level view of a DAR system.
However, in reality, such systems are often composed of multiple processes, each one
engaging to some extent with the aforementioned steps.

Layout Analysis

Layout analysis1 is one of the essential processes in DAR [94, 95, 97]. It aims at discov-
ering the overall structure of the document or discovering specific regions of interest.
In particular, layout analysis is associated with the detection and recognition of larger
document components [95], such as text blocks, figures, and tables. Processes operating
at a lower level (e.g., Optical Character Recognition) often precede and provide input
to layout analysis. Literature differentiates between physical and logical analysis of the
layout. The former addresses geometry and spatial arrangement, while the latter is con-
cerned with function and meaning. In other terms, physical analysis falls under the object
segmentation step, and logical analysis under the object recognition step. Typically, the
output of layout analysis is a tree structure, which describes the hierarchical organization
of the layout regions [94, 97]. However, for some applications, attribute graphs are more
suitable as they are better at encapsulating the properties of the individual regions and
the relationships between them [97].

There are three approaches to layout analysis: bottom-up, top-down, and hybrid [94,
97]. In the bottom-up approach, smaller components are iteratively merged to form larger
elaborate structures. Contrary, the top-down approach will start from the whole document
and iteratively segment it into smaller components. The hybrid approach combines the
first two, in an attempt to get faster and better results. According to Marinai [95], the
bottom-up approach is more effective when little is known about the document structure.
If there is pre-existing knowledge, the top-down approach should be used instead.

1This is a widely accepted term within the DAR community. However, in this thesis, we make often use
of the term “layout inference”, following precedent from previous works in spreadsheet documents.

24 Chapter 2 Foundations and Related Work

Table Detection and Recognition

The detection and recognition of tables are often seen as sub-tasks of layout analysis [94, 95].
The detection task identifies regions that correspond to distinct tables. While the recog-
nition task goes deeper into the analysis of the table structure. Specifically, it recognizes
the individual components that make up a detected table, i.e., performs a logical analy-
sis. Some works add an extra step to recognition, which aims at finding the relationship
between the table components. This completes the automatic understanding of the table
and subsequently facilitates accurate information extraction.

Intuitively, one needs to answer “what is a table?”, before even starting any detection and
recognition process. In literature, there have been multiple attempts to formally define
tables, discussed by Embley et al. [49]. The definition varies depending on the domain
and application. Therefore, instead of a clear cut definition, here we discuss the Wang
model [126], which is widely accepted within the DAR community [37, 75, 134].

Figure 2.3: The Wang Model [134]

Figure 2.3 displays the model proposed by Wang, together with a few additions from
Zanibbi et al. [134]. This model provides terminology to describe the general table anatomy.
It identifies physical components: Cell, Row, Column, Block, and Separator. Moreover, it
names logical components: Stub Head, Boxhead (Column Headers), Stub (Row Headers),
and Body. However, as stated by Zanibbi et al., the model omits titles, footnotes, com-
ments, and other text regions that often surround tables.

Nevertheless, Wang describes a non-trivial table structure. It is characterized by nested
headers (i.e., hierarchies), on the top (Boxhead) and the left (Stub). In fact, these can be
seen as composite indices that point to values in the Body. In addition, the table in Figure
2.3, has an evident use of spaces (i.e., visual artifacts). These spaces are there to make
the top/left hierarchies even more apparent. As well as, they divide the table into three
logical sections (i.e., Assignments, Examinations, and Final Grade). Clearly, tables like
this one are designed for human consumption. Therefore, they come in a compact form
and carry visual clues.

This differs substantially from tables found in relational databases [93]. There, the recip-
ients are not only users but also other applications. Moreover, relational databases are
concerned with issues such as efficient execution, concurrent access, and data integrity.

2.2 Analysis and Recognition in Electronic Documents 25

Thus, these databases require tables to be in a canonical form, i.e., following principles
outlined by a formal mathematical model (i.e., the relational model).

However, bringing arbitrary tables (like the one in Figure 2.3) into a canonical form re-
quires substantial reasoning capabilities. According to [75], with regards to table recog-
nition, there are disagreements even between human “experts”. Without proper knowl-
edge and context, one can misinterpret or overinterpret the structure of the table and its
contents. Therefore, table recognition is often regarded as one of the most difficult tasks
in (automatic) layout analysis [95, 49].

2.2.2 DAR in Spreadsheets

Despite the differences between electronic documents, when it comes to analysis and
recognition, the fundamental principles remain the same. Thus, research on other doc-
uments is still very relevant to this thesis. Nevertheless, one has to specialize the four
DAR steps (refer to Section 2.2.1), when working with spreadsheet documents. For ex-
ample, unlike scanned documents, there is not much need for noise removal in spread-
sheets. Instead, most of the pre-processing effort goes towards the collection of informa-
tion (styling features, textual features, etc.) relevant for layout analysis [11, 29, 85].

Like other documents, spreadsheets can be described by means of both physical and logi-
cal layout. In this case, the type of certain constructs is known, since it is already encoded
into the document format (see Section 2.1.2). Most notably, spreadsheet applications treat
figures, charts, and shapes separately from cell contents. Yet, the seemingly simple two-
dimensional grid of cells can yield a variety of elaborate structures (as pointed out in
Section 2.1.1). In order to extract information from spreadsheets, we still need to identify
regions (i.e., cell ranges) of interest, such as titles, footnotes, comments, calculations, and
tables. Moreover, any automatic analysis must also discover the relationships between
these regions, to enable accurate interpretation of the contents.

In particular, as is experimentally shown in Section 3.3, spreadsheet tables are often com-
plex. Intuitively, top/left hierarchies, like the one in Figure 2.3, can be easily constructed
in spreadsheets. In addition, users can apply many different styling options (refer to Sec-
tion 2.1.1) and make use of spaces (empty cells, rows, and columns). Therefore, any au-
tomatic approach needs to handle a big variety of user-generated content, which makes
analysis and recognition in spreadsheets rather challenging.

At the end of Chapter 3, we outline the approach proposed by this thesis, based on a thor-
ough analysis of real-world spreadsheets. Specifically, we propose a processing pipeline
that follows the bottom-up paradigm. It starts with the smallest unit of a sheet, i.e., the
cell, and gradually builds up to tables and other coherent layout regions.

2.3 SPREADSHEET RESEARCH AREAS

Research in spreadsheet documents has focused on different topics. We first visit works
that are the most relevant for this thesis, discussing layout inference, table detection,
table recognition, and information extraction in spreadsheets (refer to Section 2.3.1). We
examine the technical characteristic of these works and make a preliminary assessment.
Subsequently, in Sections 2.3.2 - 2.3.4, we outline a broad spectrum of research works that
are to some extent relevant. They cover topics such as database-spreadsheet unification,
software engineering practices in spreadsheets, and efficient data wrangling methods.
Nonetheless, we draw parallels with these works and study how they have approached
similar challenges in spreadsheet documents.

26 Chapter 2 Foundations and Related Work

2.3.1 Layout Inference and Table Recognition

In the last decade, the number of works tackling layout inference, table detection, ta-
ble recognition, and information extraction in spreadsheets has significantly increased.
These works utilize different methods: machine learning, domain-specific languages,
rules, and heuristics. Below we visit specific works for each one of these methods. Note,
we cover these works again in the subsequent chapters, where we discuss specific aspects
in more detail while comparing with the proposed approach.

Figure 2.4: Chen et al.: Automatic Web Spreadsheet Data Extraction [29]

Chen et al. [29, 30, 31, 32] worked on the automatic extraction of relational data from
spreadsheets. They focus on a specific construct they call data frame2. These are regions in
a sheet that have attributes on the top rows and/or left columns (i.e., roughly correspond-
ing to row/column headers in the Wang model [134]). The remaining cells of the region
hold numeric values (see Figure 2.4). In particular, the authors are interested in data
frames containing hierarchies (i.e., nested attributes on the left or top). Overall, they use
machine learning techniques and few heuristics (i) to recognize the layout of the sheet,
(ii) find the data frames, (iii) extract hierarchies from attributes, and (iv) build relational
tuples. The overall process is illustrated in Figure 2.4. For the first step, the authors go
from the top row to the last row and assign to each one a label: Title, Header, Data, or
Footnote [29]. They make use of Conditional Random Field (CRF) classifiers, which are
suitable for sequential classification. CRFs take into account additional features from pre-
vious elements (rows) in the sequence, to predict the class of the current element (row).
The second step, data frame detection, is performed based on rules [29]. The presence of
a Header indicates the start of a new data frame, unless the previous row was as well a
Header. Subsequently, columns with strings, located on the left side of the data frame,
are marked as left attributes. While, Header rows, on the top of the data frame, constitute
the top attributes. Chen et al. have proposed multiple approaches to extract the attribute
hierarchies, i.e., the third step. In [29] the authors generate parent-child candidates and
then collect features to predict the true pairs via classification (SVM and EN-SVM). In a
follow-up work [30], Chen et al. used probabilistic graphical models to encode the poten-
tial of individual parent-child candidates and the correlations between them. Moreover,
the authors have developed a tool for interactive user repair. This enables continuous
learning, as user feedback is incorporated back into the probabilistic graphical model.
Furthermore, for the last step (i.e., relational tuple builder) the authors propose two ap-
proaches. The first one relies entirely on the inferred hierarchy. For each (numeric) value,
the system maps the attributes from the top hierarchy and then from the left hierarchy to
build a relational tuple [29]. Nonetheless, in their latest publication [32], Chen et al. at-
tempt to address more complex scenarios. Their method couples machine learning with
active learning to identify properties of data frames, such as aggregation columns, ag-
gregation rows, split tables (i.e., multiple tables under the same header), and others. The
authors hope to perform more accurate data extraction, once additional properties are
known about the data frame. Finally, in [31], Chen et al. present Senbazuru, a proto-
type system showcasing most of the above-mentioned steps and methods. Additionally,
Senbazuru supports select and join queries on a collection of Web-crawled spreadsheets.

2The authors are reluctant to name these constructs as tables.

2.3 Spreadsheet Research Areas 27

Adelfio and Samet have worked on schema extraction from Web tabular data, consider-
ing both spreadsheets and HTML tables [11]. Similar to Chen et al., the authors start
by assigning a label (function) to rows, using supervised machine learning. They ex-
perimented with various algorithms, and Conditional Random Field proved to be the
most accurate. However, Adelfio and Samet go one step further, by coupling CRF with a
novel way to encode the individual cell features into row features. This encoding, called
logarithmic binning, ensures that rows having roughly the same cell features and length
will end up in the same bin (i.e., grouped closely together). Ultimately, logarithmic bin-
ning enables the creation of more accurate classification models, as it becomes easier
to discriminate among the training instances (i.e., annotated rows). Besides encoding,
the authors differ from Chen et al. with regards to the processing steps. Adelfio and
Samet capture hierarchies and aggregations during layout inference, instead of introduc-
ing designated steps later in the process (e.g., hierarchy extraction [29, 30] and property
detection [32]). Therefore, they have defined specialized row labels, bringing them to
seven in total. Nonetheless, after layout inference, the table detection step is performed
in a similar fashion to Chen et al., i.e., using Header rows as delimiters. This concludes
the overall process, proposed by Adelfio and Samet. The structure of the detected tables
is described by the enclosed rows, which were previously classified. According to the
authors, this can already facilitate schema and information extraction from the detected
tables.

Recently, the Spreadsheets Intelligence group, part of Microsoft Research Asia, published
a paper focused entirely on the task of table detection in spreadsheets [43]. The architec-
ture of the proposed framework, TableSense, has three principal modules: a cell featuriza-
tion, a Convolutional Neural Network (CNN), and a table boundary detection module.
The cell featurization module extracts 20 predefined features from each considered cell.
Subsequently, the input to the CNN module is a h × w × 20 tensor. In other terms, the
framework operates on a h×w matrix of cells (i.e. the input sheet), and 20 channels, one
per extracted feature. The CNN module then learns how to create a high-level represen-
tation of the matrix and additionally to capture spatial correlations. The output of CNN
is fed to the boundary detection module, which starts with candidate table regions, pro-
gressively refines them, and eventually outputs those for which it has high confidence.
The authors postpone any further analysis on the detected tables for future work.

Shigarov et al. [117, 118, 119] have focused on the task of table understanding (recog-
nition and interpretation), under the assumption that the location of the table is given.
The authors introduce their own table model, i.e., naming the distinct table components
[118]. Nevertheless, their main contribution is a domain-specific language, which is re-
ferred to as CRL (Cells Rule Language). As the name indicates, CRL operates directly at
the cell level. The defined rules “map explicit features (layout, style, and text of cells) of
an arbitrary table into its implicit semantics (entries, labels, and categories)” [118]. Fur-
thermore, the authors have developed TabbyXL [117], a tool that loads the defined rules
and subsequently uses them to bring tables into canonical (relational) form. Their eval-
uation shows that the tool performs well on a domain-specific dataset [118]. However,
we note that the authors themselves defined the rules used for this evaluation. There is
no report of experiments with other users, who might have different familiarity with the
given domain, the relational model, and the rule language itself.

The paper [46] introduces DeExcelerator, a framework which takes as input partially
structured documents, including spreadsheets, and automatically transforms them into
first normal form relations. The authors go beyond the standard DAR tasks (see Section
2.2.1). Besides table detection and recognition, they address data quality and structural
issues: value extrapolation, (data) type recognition, and removal of layout elements (i.e.,
distortions introduced by user formatting). Their approach works based on a set of rules,
which resulted from an empirical study on real-world examples. These rules have a pre-
defined order and can apply to individual cells, rows, or columns. For instance, “the start

28 Chapter 2 Foundations and Related Work

of a numeric sequence in one column signals the start of the data segment [and the end
of header segment]”. In comparison to Shigarov et al., DeExcelerator operates on hard-
coded rules. Thus any change requires modification of the existing implementation.

In summary, the above mention works differ not only in the employed methods, but also
with regards to the scope, underlined assumptions, and processing steps. Most notably,
there is no universal table model within this research community. Furthermore, related
works have a different understanding of the overall sheet layout (i.e., logical compo-
nents). In addition, each work introduces its own evaluation dataset (refer to Section 3.1).
These datasets differ substantially in size, composition, and annotation methodology. In
Chapter 3 we address this ambiguity, by performing a thorough analysis on a large col-
lection of real-world spreadsheets, originating from both business and Web settings. We
test the various assumptions and claims from related works. As well as, we identify chal-
lenges that are so far overlooked. Subsequently, based on the results from this analysis,
we define the scope of the thesis and outline the proposed solution (in Section 3.4).

2.3.2 Unifying Databases and Spreadsheets

Cunha et al. [40] present their approach for bidirectional data transformation from spread-
sheets to relational databases and back. They are able to construct a normalized rela-
tional database schema, by discovering the functional dependencies in spreadsheet tab-
ular data. Subsequently, they define a set of data refinement rules that guide the trans-
formation process. The process can be reversed, by reusing the same rules one can bring
the database tables back to the original spreadsheet form. Note that the authors assume
the location of the table to be known. Moreover, they presume that the top row of the
table contains attributes and the remaining ones contain data records. Namely, their
approach works on database-like tables, which do not exhibit complex hierarchies or ir-
regular structures.

Bendre et al. [18, 19, 20] aim at a system that holistically unifies spreadsheets with re-
lational databases. Note, the authors are not interested in bringing data into a normal-
ized (canonical) form, but rather enabling spreadsheets to work with massive amounts of
data. In other terms, instead of XML-formats (see Section 2.1.2), Bendre et al. propose to
store spreadsheet data on a backend database. Nevertheless, at the same time, the system
retains the typical spreadsheet user interface and functionalities. As outlined by Bendre
et al., there are several challenges to be considered. Notably, the underlying database
needs to record not only the values but also their current position (i.e., the cell address)
in the sheet. Storing the positions is a necessity, but also brings considerable overhead.
For example, the insertion or deletion of a row/column can be very costly, since it might
trigger cascading updates in the remaining records in the database. Therefore, the au-
thors propose a positional mapping, which instead of the real row/column numbers it
uses proxy keys. Any insertion or deletion will result only in an update of the mappings
(proxy keys to records). Additionally, the authors discuss efficient schemes for storing
the actual spreadsheet data. Each one of these schemes has advantages and disadvan-
tages, depending on the orientation (mostly columns or mostly rows) and sparsity of
data. To find a good representation, Bendre et al. proposes a cost model, which takes into
consideration storage size, and execution time for fetch (select) and update operations.
These model and other features of the system, together with the complexity of different
operations, the overall architecture, and experimental evaluation, are described in detail
in [19]. The tool is currently publicly available for download in [17].

There are additional works attempting to unify spreadsheets with relational databases.
Witkowski et al. attempt to bring spreadsheet flavor into relational databases [129, 130].

2.3 Spreadsheet Research Areas 29

They propose SQL extensions to support calculations over rows and columns in a similar
fashion to how users apply formulas in spreadsheets. In [131], the same authors present
a tool with an Excel interface and a database engine at the backend. Users fetch data from
the database but define the calculations (formulas) via the interface. The system trans-
lates these calculations into SQL and subsequently stores them as views in the database.
These views can be loaded back to Excel or can be used by other applications sharing
access to this database. However, at the moment, their approach supports only a limited
subset of Excel formulas, which have correspondents in SQL. Liu and Jagadish propose
a similar system, with a spreadsheet-like interface, for a step-by-step manipulation of
data stored in a database [92]. Their system targets non-technical users. Thus, they put a
strong emphasis on usability. Nevertheless, their main contribution is a new spreadsheet
algebra that can support incremental and interactive analysis, while at the same time it
keeps strong ties with SQL and RDBMS. The author of [124] has implemented all rela-
tional algebra operators using only Excel formulas. The aim of this work is to prove that
standard spreadsheets can indeed act as stand-alone relational database engines.

From the aforementioned, the works of Cunha et al. and Bendre et al. are the closest to
this thesis. The former can be adopted and extended to work with more generic tables in
spreadsheets. Nevertheless, it would still require significant input from preceding steps,
such as table detection and recognition. While from the work of Bendre et al. we single
out their analysis of table arrangements and data sparsity (density) in spreadsheets [20].

2.3.3 Spreadsheet Software Engineering

In literature we find researchers viewing spreadsheets as a development tool and spread-
sheet users as programmers. As such, software engineering practices apply. Topics like
spreadsheet usability, modeling, governance, versioning, and formula debugging are
covered by this community.

UCheck [8] detects unit errors in spreadsheets. The tool uses several heuristic-based
algorithms to performs spatial (layout) analysis [6]. The results from these algorithms are
combined, based on a weighting scheme, with the purpose of categorizing the individual
cells. They recognize four types of cells: Header, Footer (aggregations), Core (table data),
and Filler (blank cells with formatting). Based on this information, UCheck detects the
table boundaries and then uses another set of formal rules to infers units and detect errors
associated with them. Nevertheless, the authors limit their approach to database-like
tables. Moreover, for cell categorization and table detection, the rules are hard-coded
(i.e., fixed). It is not known how these rules perform in the general case, as the evaluation
was done on a small dataset of 28 spreadsheets. Regardless, the UCheck approach has
been adopted by other works targeting related topics in spreadsheets [7, 73, 74].

There are works that attempt to model or even reverse-engineer from spreadsheets. In
[50] the authors motivate the need for object-oriented models to guide the design of
appropriate and error-free spreadsheet solutions (which involve tables). They propose
ClassSheets, a modeling language for spreadsheets that can be described as an extension
of UML class diagrams. ClassSheets models can be transformed into ViTSL templates
[9]. Essentially, the ViTSL templates are a collection of formal specifications, that are
used to validate user-generated tables, ensuring they comply with the defined models.
In [7] the authors discuss the automatic inference (reverse-engineering) of such templates
from legacy spreadsheets. Cunha et al. adopt and extend the above-mentioned works in
MDSheet [39], a framework for model-driven spreadsheet engineering. In particular, the
framework is enriched with methods that keep ClassSheets models and their instances
synchronized (co-evolution) [41]. As well as, the framework explores the functional

30 Chapter 2 Foundations and Related Work

dependencies in tables while performing automatic extraction of models from existing
sheets [38]. Hermans et al. propose an alternative approach that extracts UML class
diagrams from spreadsheet tables [73]. Their goal is the elicitation of implicit domain
knowledge, for the development of not only better spreadsheet solutions but also better
enterprise systems. Concretely, using a formal pattern grammar, the authors define five
common (table) patterns in spreadsheets. When a region in the sheet matches a pattern,
a parse tree is generated. Subsequently, a class diagram is extracted from this tree, based
on formalized transformation rules. Roughly, in this approach, titles become class names,
headers are used for class attributes, and formulas are associated with class methods.

Multiple papers discuss research on tools and techniques that decrease the risk of logical
formula errors in spreadsheets. As cataloged by [51], such errors have costed compa-
nies up to millions of dollars. In [74] the authors have defined metrics to automatically
identify formula smells, i.e., formulas that might be difficult to read or error-prone. Their
implementation generates a spreadsheet risk map that makes the user aware of the smells
and their severity. A tool that supports seven refactoring actions for spreadsheet formulas
is presented in [15]. While refactoring, this tool will re-write formulas and if needed in-
troduce new cells or an entire column. It also supports the creation of drop-down menus
from textual columns, in order to constrain the accepted values. A collaboration between
authors of the two aforementioned papers yielded another tool for formula refactoring,
called BumbleBee [70]. This tool allows users to define and execute their own refactoring
rules, via a transformation language that is based on spreadsheet formula syntax. Finally,
in [114] worksheet contents are decomposed into fragments (regions) with the objective
to enable faster and focused debugging of formula cells. The authors make use of genetic
algorithms, to identify the optimum fragmentation.

In this thesis, we acknowledge that formulas can give insights about spreadsheet con-
tents. For instance, aggregation formulas, such as SUM and AVERAGE, typically refer to
cells located inside tables, rather than outside them. We can explore such hints while per-
forming layout analysis. However, before that, we need to ensure that formulas are not
erroneous. In this regard, we can make use of the above-mentioned works to improve
the quality of spreadsheets, prior to our analysis. The other way around, the methods
proposed by this thesis can serve the aforementioned works. At the moment, most of
them make simplified assumptions. However, this thesis and other similar works can
provide the actual table structure and the overall sheet layout.

2.3.4 Data Wrangling Approaches

Here, we discuss two tools that enable efficient wrangling (transformations, cleaning,
mapping, etc.) on data coming from different sources, including spreadsheet documents.
We visit these tools since they adopt an alternative approach to information extraction
from partially-structured documents. OpenRefine [125] enables various transformations
and addresses data quality issues on the imported dataset/s. Some of these operations
are offered via Graphical User Interface (GUI), others have to be defined using OpenRe-
fine’s programming language. The tool maintains a history of the performed operations,
which can be exported and reused for other similar projects. Moreover, OpenRefine can
fetch data from web services and incorporate Freebase for entity resolution. Wrangler
[79] offers similar functionalities, but with a strong emphasis on usability. It incorpo-
rates techniques from Human-Computer Interaction, such as programming by demon-
stration, natural language description of operations, visual previews and interactive his-
tory viewer. Based on user selection and history, Wrangler will suggest the most relevant
transformations. It employs a declarative language that among others includes operators
for lookups, joins, complex table reshaping, and semantic role assignment. Experimen-
tal evaluation with multiple users shows that Wrangler has the potential to considerably

2.3 Spreadsheet Research Areas 31

speed up data transformations. However, the authors admit that users need to have some
level of familiarity before starting to use Wrangler efficiently. In contrast to both Wrangler
and OpenRefine, we aim at a predefined processing pipeline that can be applied offline
to a large corpus of spreadsheets. The users can still provide feedback, but their general
involvement should be kept at a minimum.

32 Chapter 2 Foundations and Related Work

3
AN EMPIRICAL STUDY OF SPREADSHEET

DOCUMENTS

3.1 Available Corpora

3.2 Creating a Gold Standard
Dataset

3.3 Dataset Analysis

3.4 Summary and Discussion

We begin this chapter with a discussion of the available spreadsheet corpora in literature
(see Section 3.1). Some of them contain raw spreadsheet files, which are not annotated
for a specific task. Other contain spreadsheets annotated for layout analysis and table
recognition. However, these annotations are not made publicly available. Therefore,
in Section 3.2, we describe our efforts to build a gold standard dataset of spreadsheets,
which is used in the subsequent chapters of this thesis for the experimental evaluation.
Unlike related work, we provide a detailed summary of our annotation methodology
and make our annotations available to the research community [84]. Section 3.3 reports
our findings, following a thorough analysis of the resulting annotations. We show that
some of the assumptions held by previous works do not hold. In fact, we observe that
many challenges are rather overlooked. Based on these findings, we outline the solution
proposed by this thesis, in Section 3.4.

3.1 AVAILABLE CORPORA

There are multiple spreadsheet corpora in literature. These have almost entirely focused
on Microsoft Excel files, as it is the most popular spreadsheet application. Furthermore,
such files are typically crawled from the Web, where a considerable amount of spread-
sheets is publicly available; for instance, in open data platforms.

We begin our discussion with three well-known spreadsheet corpora: Euses [52], En-
ron [72], and Fuse [16]. Euses was created with the help of search engines, issuing queries
containing keywords such as “financial" and “inventory", together with file type “.xls”.
Overall, it comprises of 4, 498 unique spreadsheets, organized into categories based on
the used keywords. The more recent Enron corpus contains 15, 770 spreadsheets, ex-
tracted from the Enron email archive [98]. This corpus is unique, for its exclusive view
on the use of spreadsheets in business settings. All the files were used internally by the
Enron company, from August 2000 to December 2001. Overall, these files relate to one
or more of the 130 distinct employees, from the email records. Another recent corpus
is Fuse [16], which comprises of 249, 376 unique spreadsheets, extracted from Common
Crawl [55]. Each spreadsheet is accompanied by a JSON file, which includes NLP tokens
and metrics describing the use of formulas.

Researchers viewing spreadsheets from a software engineering perspective (refer to Sec-
tion 2.3.3) have already made use of these three corpora in their published works [7, 40,
44, 71, 73]. However, this is not the case for works tackling layout analysis and table
recognition. So far, such works have used other evaluation datasets, created indepen-
dently. These datasets differ substantially in size and composition. Among them, we
find annotated datasets, where the layout and tables are made explicit. However, the
annotations are not publicly available. All in all, there is a lack of benchmark/s in this
research community, which has made a comparison between the proposed approaches
rather difficult. Regardless, below we re-visit all relevant works in layout analysis and
table recognition (summarized in Section 2.3.1) and discuss the datasets used by them.

Chen et al. [29] extracted 410, 554 Microsoft Excel files from ClueWeb09, a large corpus of
crawled Web pages [105]. Most of the extracted files come from open data platforms,
hosted by U.S., Japanese, UK, or Canadian governments. The authors sampled ran-
domly 200 files, to perform a survey on Web spreadsheet. Based on the reported results,
dataframes (refer to Section 2.3.1) occur in half of the surveyed files. In 1/3 of the files
the authors find hierarchies (i.e., nested headers or nested values). To train and evaluate
their (CRF and SVM) classifiers, Chen et al. manually annotated another smaller sam-
ple, of 100 files. Rows were labeled as Title, Header, Data, or Footnote. Furthermore, the
authors marked the location of dataframes, and annotated the parent-child pairs in the

34 Chapter 3 An empirical study of spreadsheet documents

detected hierarchies. In subsequent works [30, 32], Chen et al. expanded their original
evaluation dataset with more files. In particular, their latest work [32], was evaluated on
a dataset of 400 Web spreadsheets, annotated with additional properties such as aggre-
gation rows/columns and split tables (i.e., multiple tables under the same header).

Adelfio and Samet [11] simultaneously deal with tables in spreadsheet files and HTML
pages. With regard to spreadsheets, the authors created a dataset of 1, 117 Microsoft
Excel files, crawled from the Web. They used search engines to find relevant websites,
containing “.xls” files. In their dataset, the .gov, .us, and .uk are the top contributing
domains. For training and evaluation, the authors annotated at the row level, similar to
Chen et al. However, as illustrated in Figure 3.1, they used seven layout labels: Header,
Data, Title, Group Header, Aggregate, Non-relational (Notes), and Blank. Furthermore, the
authors differentiate between tables. When a table contains at least one Header and one
Data row, they mark it as relational. Otherwise, it is annotated as non-relational.

Figure 3.1: Row Labels as Defined by Adelfio and Samet [10]

Like the aforementioned works, Dong et al. (part of Microsoft Research Asia) test their
table detection approach on web-crawled spreadsheets [43]. In fact, the authors created
two datasets: WebSheet10K and WebSheet400. Both datasets were hand-labeled by human
annotators (judges). Specifically, the judges mark the table regions with the correspond-
ing bounding box. However, it is not known, if the judges annotated the layout of the
tables, as well. This is not stated in the paper. Regardless, the WebSheet10K dataset, com-
prising of 10, 220 spreadsheets, was entirely used for training the TableSense framework.
While the second dataset, WebSheet400, was used for testing the proposed approach. It
comprises of 400 distinct sheets, not overlapping with WebSheet10K.

Shigarov et al. use a collection of 200 spreadsheet files, which contain statistical data that
originate from governmental websites [118]. The authors have not annotated the files per
se. Instead, they test the performance of their rule-based approach, by measuring how
the output (i.e., extracted data) compares to that of a human expert.

The authors of the DeExcelerator framework [46], evaluate the performance manually
per file. Specifically, the assessment was done by a group of 10 database students, on a
sample of 50 spreadsheets extracted from data.gov. The students score the performance
of the framework per file, on various tasks (phases), using a scale from 1 to 5.

3.1 Available Corpora 35

3.2 CREATING A GOLD STANDARD DATASET

As discussed in the previous section, in related works the authors have created their
own datasets, primarily by crawling spreadsheets from the Web. Nevertheless, we ob-
serve that these datasets differ substantially in size. Most importantly, none of the large
datasets [11, 32, 43], containing ≥ 400 files, is publicly available. Thus, we can not use
them to perform a thorough and wide-reaching study of spreadsheet layouts and tables.
Moreover, we can not confirm the claims made by related work, or directly compare the
performance of our approach with theirs.

To tackle these challenges, we have created two datasets, annotated for layout analysis
and table recognition. The first one is a random sample of 1, 160 files from the Enron cor-
pus [72]. In this way, unlike any of the related works, we address business spreadsheets.
In fact, to the best of our knowledge, we are the first to annotate such a large collec-
tion of business spreadsheets and perform a thorough analysis on them. Secondly, we
annotated a smaller random sample of 406 files from the Fuse corpus (containing web-
crawled spreadsheets). In Fuse the .org (29.5%), and .gov (27.7%) domains are the most
common [16]. Thus, the composition of our annotated sample is to some extent similar
to the datasets from related works. This means we can indirectly compare the work from
this thesis with that from related publications.

In the following sections, we outline the creation of these two datasets. Note, unlike
related works, we provide a detailed description of the annotation process and method-
ology. We discuss the initial selection of files, annotation tools, and annotation phases.
The annotated files themselves are made publicly available1, for future research works.

3.2.1 Initial Selection

Files of the original Enron corpus [72] underwent an initial filtering, after which a con-
siderable number was omitted. The maximum size of the file was limited to 5MB. Ad-
ditionally, files with macros were filtered out. Moreover, we omitted those having bro-
ken external links to other files. Furthermore, we inspected the encoding, keeping only
those having character set ANSI (Windows-1252)2. This makes it more probable that the
selected files have English string values. In addition, we filtered out files that have a
similar name (Levenshtein distance ≤ 4) with one of those already selected. This step
eliminated the biggest chunk of files but also decreased the chance of having duplicates
or near-duplicates. Lastly, some files were eliminated due to exceptions occurring while
processing them with Apache POI v3.17 [57]. Overall, the reduced corpus consisted of
5,483 files, from 128 distinct employees. There is a minimum of one file per employee.
Yet, we find 15 employees with more than 100 files (with a maximum of 246).

From Fuse we drew a random sample of roughly 1000 files, making sure to balance the
occurrence of “.xls” and “.xlsx” extensions. We applied some of the preprocessing filters,
used in Enron. With the help of the Apache POI library, we automatically eliminated files
that were large, containing macros, external links, and character set other than ANSI.
However, the names of the original files in Fuse are hashed. Therefore, we could not ap-
ply the Levenshtein distance. In fact, part of the filtering happened during the annotation
of the files. As reported in Section 3.3.2, the judges discovered many near-duplicates and
non-English files.

1https://wwwdb.inf.tu-dresden.de/research-projects/deexcelarator/
2The default encoding, for US-based systems

36 Chapter 3 An empirical study of spreadsheet documents

3.2.2 Annotation Methodology

Here, we present the methods and tools that were used to create the gold standard
datasets. We start with the definition of two types of annotation labels, one used at the
cell level and the other at sheet level. Subsequently, we describe the tool that was devel-
oped specifically to assist the judges (annotators). Based on this, we outline the task of
annotating a single spreadsheet file. Afterward, we report on the overall annotation pro-
cess. In particular, we describe the measures we took to ensure consistency (i.e., common
understanding of the annotation labels) among the judges.

Cell Labels

We use seven labels for non-empty cells (i.e., filled with a value). We follow closely the
labels proposed by Adelfio and Samet [11] since we believe that they are comprehensive
and can be mapped to the Wang model [126, 134]. Nevertheless, unlike Adelfio and
Samet, we do not annotate at the row level. Our empirical study (refer to Section 3.3.1)
shows that cells of the same row can have a different function (label). Therefore, we
annotate individual cells or ranges of cells. In this way, we can capture arbitrary sheet
layouts. For the same reason, we introduce the label Other, which can be used for cells
that do not match any of the typical cell functions, proposed by related work. Below, we
define each one of the proposed labels. Additionally, we illustrate them in Figure 3.2,
with examples.

Figure 3.2: Cell Annotation Labels

The basic ingredients for tables are Headers and Data. In relational terms, Headers corre-
spond to the attributes, while Data represent the collection of tuples (entries). However,
in spreadsheets, Headers can be nested occupying several consecutive rows, as shown
in Figure 3.2. Nevertheless, even in spreadsheets, Data follow the structure defined by
Headers. Likewise, Data cells are the main payload of a spreadsheet table.

Titles and Notes provide additional information, effectively improving the understanding
of sheet contents. Titles give a name to specific sections (such as a table), or to the sheet
as a whole. Notes provide comments and clarifications, which again can apply globally
or locally. Typically, Notes take the form of complete or almost complete sentences. On
the other hand, Titles can consist of just a single word.

3.2 Creating a Gold Standard Dataset 37

GroupHeaders (also referred to as GHead) are reserved for hierarchical structures on the left
of a table. In such cases, values in the left column/s are nested, implying parent-child
relationships. When such hierarchies are detected, we annotate the parents as Group-
Headers, while the children as Data.

Derived cells are aggregation isles of Data values. Here, we specifically focus on aggrega-
tions “interrupting” the Data rows of a table. They act as sums, products, and averages,
for the rows above. On the right of these aggregations, we usually find a cell with a
string value, which gives a name to the aggregation. Typically, this string contains the
word “Total”. All in all, we annotate as Derived not only the aggregations but also the
accompanying name cell/s. Note, it is important to distinguish Derived cells since they
clearly affect (break) the structure of the table. On the contrary, row-wise aggregations,
such as sums of multiple Data cells in the same row, have a minimal impact. They tend
to follow the structure specified by the Headers, the same as Data cells. Therefore, we
annotate row-wise aggregations simply as Data (see Figure 3.2).

The label Other is a placeholder for everything else, not fitting to the aforementioned
cell labels. Additionally, we use the label Other to annotate ranges of cells (regions) that
do not comply with our definition of a table. For instance, occasionally we find regions
of “Data” values that are not preceded by a Header row/column. Another example is
regions containing key-value pairs. Such pairs can introduce parameters, which are later
used for calculations in the sheet. Clearly, the purpose of these key-value regions does
not match that of tables.

Finally, a Table is annotated with the minimum bounding rectangle (MBR) enclosing all
non-empty cells that compose it. In this work, we require that tables contain at least one
Header and one Data row, otherwise they are not valid3. In the case that the table is
transposed, then there must be at least one column each for Header and Data.

All in all, some labels can only be found inside table annotations. GroupHeader is one
of them, besides Header and Data. With regards to Derived, they are primarily found in
tables. However, when Derived are used to aggregate Data from multiple tables of the
sheet, we leave them outside. Moreover, Titles and Notes can refer to the whole sheet.
Thus, they are not necessarily an integral part of a single table. Lastly, being a versatile
label, Other can be found both in and outside of table borders.

Sheet Labels

Besides cells, we annotate non-empty sheets of a spreadsheet file. Here, we focus on
those that do not contain tables, which we refer to as Not-Applicable (N/A). These kinds
of sheets are flagged with one of the following labels: Form-Template, Report-Balance,
Chart-Diagram, List, NoHeader, and Other. We define Form-Templates as sheets intended
to be re-used again for similar tasks (e.g., collecting data, performing specialized calcu-
lations). Therefore, they are usually accompanied by instructions on how to use them.
They might be filled with example values or not. Balance-Reports are typically used to
summarize financial performance. They might report on the company’s assets, liabilities,
and shareholders’ equity. Often, data in these sheets are not organized in a strictly tabu-
lar fashion. Next, the label List is used for sheets that have all values placed in a single
column. NoHeader applies when we do not find Header cells in the sheet, even though
there are values in multiple rows and columns. Chart-Diagrams are sheets that contain
plots/diagrams and the source values (if any). Note, the source can not be a proper ta-
ble, otherwise, the sheet is applicable and has to be annotated as such (see Section 3.2.2).
Finally, we introduce the label Other, for sheets that do not match any of the aforemen-
tioned N/A labels.

3Unlike Adelfio and Samet, we differentiate between valid and non-valid tables, rather than between
relational and non-relational.

38 Chapter 3 An empirical study of spreadsheet documents

Annotation Tool

For this work, we created a specialized annotation tool [85], shown in Figure 3.3. It was
developed in Java programming language, using the Eclipse SWT library [56]. Specifi-
cally, the tool loads an Excel file inside an SWT OLEFrame. Within this controlled en-
vironment, Excel functionalities that are needed for the annotation are enabled, while
the rest are blocked. Essentially, the aim is to prevent any alteration of the original con-
tents and formatting. At the same time, we attempt to simplify the annotation steps, by
supporting the user throughout the process.

(a) User Interface and Menus (b) Saved Annotation Data

Figure 3.3: Screenshots from the Annotation Tool

The tool supports the labels defined in the previous sections. Cells are annotated by first
selecting a rectangular range from the main window and then a label from the designated
sub-menu (see Figure 3.3.a). Likewise, the active sheet itself can be labeled using options
from the menu (Annotations->Sheet As->...). Nevertheless, users can perform the same
actions with shortcuts, which can speed up the annotation process.

The tool is designed for interactive annotation. We use build-in Excel shapes, to display
annotations made by the current user. Table annotations are visualized as rectangles,
having blue borders but no fill color. While, for other cell annotations, we use semi-
transparent rectangles. Their fill color depends on the assigned label (e.g., green for Data,
blue for Header, etc.). These shapes overlay the existing content. Thus, they do not
interfere with the original data and formatting. On the contrary, they allow the user to
keep track of existing annotations, and simultaneously reason on the remaining parts
of the sheet. Options from the menu, like delete and undo, allow the user to change
annotations if that is necessary.

Additionally, the tool runs background checks, ensuring annotation integrity and enforc-
ing our annotation logic (refer to Section 3.2.2). For example, we prevent the user from
annotating regions that overlap with existing annotations. Moreover, we make sure that
certain dependencies are satisfied. For instance, labels such as Header and Data are only
allowed inside a region previously annotated as Table (see Section 3.2.2). Some back-
ground checks occur when the user saves or changes the status of a sheet. Among others,
we check if there are non-empty cells without annotation (i.e., unlabeled cells), and raise
a warning if so. All in all, background checks like the ones listed above, together with
the intuitive interface of the tool, improve the quality of annotations.

When a user saves, the annotations are stored inside the loaded Excel file. For this pur-
pose, the tool creates two hidden and protected sheets. The “Range_Annotations_Data”

3.2 Creating a Gold Standard Dataset 39

sheet stores information related to cell annotations. As can be seen in Figure 3.3.b, for an
annotated region we store its location (sheet name and address) and the assigned label.
We also record the parent of each annotation, which later can be used to build a hier-
archical tree representation of the overall layout. The sheet is always the root node in
this hierarchy, while tables typically act as parents for Data, Header, GroupHeader, and
Derived regions. Furthermore, the status of the overall file and the labels of the individ-
ual sheets are recorded in another hidden sheet, named “Annotation_Status_Data”4. As
detailed in Section 3.2.2, the status remains In-Progress unless the user indicates from the
menu that the file is either Completed or Not-Applicable.

Files that are saved and not In-Progress are organized by the tool into folders. They end
up in the “completed” or “not-applicable” folder, based on the respective status. The not-
applicable folder is divided further into subfolders, which correspond to the predefined
N/A labels (see Section 3.2.2). This with the exception of the multi-na subfolder, which
holds files with multiple N/A sheets, but flagged with a different label.

Annotation Logic

In this section, we describe the process of annotating a single spreadsheet file. In addi-
tion to the constraints mentioned in Section 3.2.2, the user follows predefined annotation
steps. These are illustrated with a simplified diagram in Figure 3.4, and as well summa-
rized in the following paragraph.

Figure 3.4: Annotation Steps

A judge (annotator) inspects the provided spreadsheet file for table/s. When the file does
not contain any table, all the sheets must be flagged with the appropriate N/A label (see
Section 3.2.2). Subsequently, the status of the file itself must be changed to Not-Applicable,
before saving it. In the opposite case, the file has one or more sheets with tables. In an
effort to reduce duplicate (repetitive) annotations, we ask the judges to annotate only
the first sheet (FS), among those having table/s. To determine FS, the judges follow the
order of the tabs from left to right. All the tables and non-empty cells in FS are annotated
using the labels from Section 3.2.2. Subsequently, the status of FS is changed manually
to Completed. Furthermore, all the sheets without a table, coming before FS, have to be
annotated5 with the appropriate N/A label. The judge omits the sheets coming after FS.
The task concludes when the judge changes the overall status of the file to Completed and
then saves it.

4The “Annotation_Status_Data” sheet is not displayed in Figure 3.3
5This forces the judge to justify his/her decision for skipping sheets coming before FS

40 Chapter 3 An empirical study of spreadsheet documents

Judges and Annotation Phases

Three judges participated in the creation of the gold standard dataset. All of them are
students in STEM fields. They had various degree of familiarity with Excel, prior to this
project. To avoid any influence whatsoever, briefing and communication with the judges
were handled individually.

The overall annotation process was organized into three phases: training, agreement as-
sessment, and independent annotation. The aim of the first phase was to familiarize the
judges with the tool, task, and annotation labels. They were given a written description
of the task, annotated examples, and a small sample of files to practice with. In the second
phase, we performed an assessment of agreement between the judges, using a common
dataset of 128 files (one random file per Enron employee). The aim was to ensure a good
and consistent understanding of the annotation labels, before the third phase. Note, this
is crucial for a dataset created by multiple independent participants, with different initial
knowledge. Therefore, we elaborate more on this in the following section of this chap-
ter. In the third and final phase, the judges were provided with individual datasets and
worked under minimum supervision. We excluded files that were used in the earlier
phases. Specifically, each judge got a stratified sample from the remaining Enron dataset,
covering files from 120 to 122 Enron employees. Additionally, we provided samples from
the Fuse dataset. However, these were smaller in size compared to the ones from Enron.

Agreement Assessment

As mentioned previously, the agreement between the judges was assessed on a common
dataset of 128 files, extracted from Enron corpus. Subsequently, we instructed them to
review files in which we identified substantial differences. These disagreements were
described at the cell, sheet, and file level. Note that some disagreements were due to
negligence. Thus, another purpose of this phase was to fix trivial mistakes. Regardless,
the judges could still choose to keep their annotations, if they considered them to be
correct. In other terms, it was up to them to decide if to change their initial annotations.

Following these revisions, the second assessment of the agreement was performed. The
results of this assessment are presented in Table 3.1. We use two metrics: Fleiss’ Kappa
[53] and Agreement Ratio. The former is a statistical measurement for the reliability
of agreement between multiple judges. The latter captures the percentage of annotated
items for which all judges agree (i.e., they are in unison). For cells, judges voted with
one of the seven available annotation labels. For files and sheets, we considered a binary
vote: Not-Applicable or Completed. We did not assess agreement individually for the
six N/A labels (refer to Section 3.2.2)

Table 3.1: Annotation Agreement Assessment

Files Sheets Cells
Fleiss Kappa 0.77 0.72 0.86

Agreement Ratio 0.90 0.97 0.98

Data Header Derived Title Other GHead Notes
Agreement Ratio 0.98 0.89 0.70 0.53 0.41 0.40 0.20

3.2 Creating a Gold Standard Dataset 41

As shown in Table 3.1, the agreement and its reliability are substantial (i.e., definitely not
random) [90], when studied at the file, sheet, and cell level. Moreover, we measured the
agreement individually for each cell label6. We observe that labels closely associated with
tables are more natural to the judges. Specifically, for Data and Header, the agreement
ratio is notably high. Additionally, there is a significant agreement for Derived. For
the remaining labels, the agreement is much lower. However, we are not the first to
encounter such results. With their empirical study, Hu et al. [75] prove that table ground-
truthing is hard. They find that there are significant disagreements even between human
experts. Besides the human factor, another aspect to consider is the frequency of labels
in the annotated sheets (refer to Section 3.3). The impact of disagreements is naturally
much more pronounced for labels that have low occurrences, such as Titles, Notes, and
GHead.

Nonetheless, before proceeding to the last annotation phase (i.e., independent annota-
tion), we inspected the files once more. However, this time we checked them manually,
in order to understand the real reasons behind the remaining disagreements. For each
judge, we determined cases where they truly had used the labels incorrectly. We dis-
cussed these cases individually with them, clarifying any remaining misunderstandings.
Moreover, we instructed them to correct these faulty annotations. Subsequently, we ex-
amined again the files, to make sure that the required changes were indeed performed.

3.3 DATASET ANALYSIS

Here, we discuss the analysis of two annotated samples, one from Enron corpus and the
other from Fuse corpus. In Section 3.3.1, we focus entirely on the analysis of the Enron
sample. We choose to do so since business spreadsheets have been so far overlooked
by related work. This is in contradiction to the fact that spreadsheets are extensively
used in business settings. Therefore, it is worthwhile focusing on the Enron sample, as it
provides a unique and invaluable view on the use of spreadsheets in a real-life company.
Nevertheless, in Section 3.3.2, we return our attention to the Fuse sample. We summarize
the results of our analysis and make a direct comparison with the Enron sample. We
discuss similarities and differences in these two samples, in an attempt to highlight their
unique characteristics and challenges.

3.3.1 Takeaways from Business Spreadsheets

The judges annotated a total of 1, 160 files from Enron, where 306 were marked as Not-
Applicable (i.e., do not contain table/s) and 854 were annotated at the cell level. Below we
begin our analysis with N/A labels.

Not-Applicable Sheets

Here, we discuss sheets annotated with N/A labels. As mentioned in Section 3.2.2, these
sheets can be found both in Not-Applicable and Completed files. We report on the occur-
rences of these sheets, separately in Figures 3.5.a-b. We observe that Form-Template and
Report-Balance sheets are the most frequent. Such use is indeed expected in business set-
tings. Additionally, we notice a high number of NoHeader sheets. This suggests that

6We omit Fleiss’ Kappa for individual cell labels. For most cases, vote distribution is strongly biased
towards one label (i.e., the label that is currently being studied). Thus, Fleiss’ Kappa is not appropriate [102].

42 Chapter 3 An empirical study of spreadsheet documents

for
ms

rep
ort

s
no

he
ad

oth
er lis
ts

ch
art

s

129
106 88

68
29

7

(a) Counts in Not-Applicable Files

for
ms

rep
ort

s
no

he
ad

oth
er lis
ts

ch
art

s

9 18 7

56

6 3

(b) Counts in Completed Files

Figure 3.5: Number of Sheets per N/A Label

occasionally users might omit headers, and rely on implicit information. We choose to
see these Header-less regions, of just “Data” values, as non-valid tables. This complies
with existing approaches for table detection and recognition in spreadsheets, such as
[6, 11, 29, 46], which largely depend on the context provided by headers.

Takeaway 1: Business users rely on implicit information. This might lead to omitted headers.

Annotated Tables

Hereinafter, we discuss sheets containing table annotations. Overall, the judges anno-
tated 1, 487 tables, in 854 sheets. Figure 3.6.a shows the distribution of these tables. The
vast majority, 683 sheets, contain only one table. The rest, 171 sheets, have two or more
tables. Moreover, we find a few extreme outliers, i.e., sheets with 34, 49, or even 125
tables.

Takeaway 2: In 20% of the sheets we find two or more tables. Thus, the simplistic view of one
table per sheet, does not hold for a significant portion of sheets.

In addition, we examine the number of sheets (containing table annotations) per Enron
employee. Figure 3.6.b summarizes our analysis. We observe that the vast majority of
Enron employees contribute from 5 to 10 sheets in the annotated sample.

1 2 3 4 5 6+
#Tables

100

300

500

700

#S
he

et
s

max #tables = 125
avg #tables = 1.74

(a) Table Distribution

1 3 5 7 9 11 13
#Sheets with Tables

5

10

15

20

#E
m

pl
oy

ee
s

(b) Employee Sheet Counts

Figure 3.6: Table Annotations in Numbers

3.3 Dataset Analysis 43

Annotated Cells

Figure 3.7.a summarizes the occurrences of cell labels in applicable sheets (i.e., having
table annotations). Data and Header are present in all these sheets, as it was intended.
Moreover, we observe a high occurrence of Titles, which seem to be preferred over Notes.
We find Derived in ca. 43% of the sheets. This confirms our expectations since related
work reports that 58% of the original Enron files contain formulas [72].

Takeaway 3: We note that >40% of business spreadsheets contain (Derived) aggregations.

We have also identified hierarchies in the applicable sheets. GroupHeaders (shortly de-
noted as ghead) represent the parents in the left hierarchies of tables. As shown in Fig-
ure 3.7.a, they occur in 144 sheets (17%). Additionally, we analyzed the sheets for nested
Headers (i.e., top hierarchies). They occur in 32% of the sheets. Overall, 43% of applicable
sheets have tables with either top or left hierarchy. These findings call for specialized
approaches to handle hierarchical data in spreadsheets, as proposed in [29, 30].

Takeaway 4: A considerable number of business spreadsheets have top and/or left hierarchies.

da
ta

he
ad

er titl
e

oth
er

de
riv

ed no
te

gh
ea

d

854854

468430365
199144

(a) Sheet Counts per Cell Label

da
ta

he
ad

er titl
e

oth
er

de
riv

ed no
te

gh
ea

d

0.2
0.4
0.6
0.8
1.0

R
at

io
 o

f C
el

ls

Formula
String
Numeric

(b) Content Type Ratios per Cell Label

Figure 3.7: Cell Annotations

Furthermore, Figure 3.7.a shows that more than half of the sheets have cells labeled as
Other. This implies that spreadsheet contents are highly diverse. Thus, even more labels
than the ones considered by this work could be used to describe spreadsheet contents.

Takeaway 5: We observe substantial variety of contents in business spreadsheets.

In addition, in this section, we discuss the distribution of content types per cell label. The
results are shown in Figure 3.7.b. As anticipated, for cells annotated as Header, Title, Note,
and GroupHeader we observe mostly string values. With regard to Data cells, we find
a considerable amount of strings (ca. 30%), as well. In Derived cells, we notice a small
portion of numeric values, which suggests that occasionally users set the aggregation
values manually (i.e, without using formulas). Finally, most of the cells labeled as Other
are non-strings. This implies that the label Other might be closer to Data and Derived,
rather than to the remaining labels.

Sheet Layout

In this section, we discuss the layout of the annotated sheets. We examine the annotated
tables, to determine what portion of the sheet they usually occupy. Moreover, we report
our findings with regard to the spatial arrangement of layout regions, including tables.

44 Chapter 3 An empirical study of spreadsheet documents

One of the common assumptions is that tables are the main source of information in a
sheet. In other words, we expect most of the sheet to be covered by tables. We put this
assumption into a test, using the coverage metric, proposed by [20]. Intuitively, coverage
captures the ratio of filled-in cells (i.e., non-empty cells, with a value) located inside the
annotated tables of a sheet. The formula for the calculation of coverage and the results
of this analysis are provided in Figure 3.8.a. To show the distributions of this metric,
we use a histogram consisting of 10 bins (intervals), each having a width of 0.1. The
results indicate that tables occupy > 80% of the used space for the vast majority (88%) of
the sheets. Thus, indeed most of the filled-in cells belong to the annotated tables. In this
regard, spreadsheets differ from other document formats, like scanned documents, PDFs,
and HTML pages. There, tables use only a small part of the page, the rest is typically text.

Takeaway 6: Tables typically dominate the sheets, by taking up most of the used space.

0.2 0.4 0.6 0.8 1.0
Coverage

0
150
300
450
600
750

#S
he

et
s

coverage=|table filled cells|
|all filled cells|

(a) Table Coverage

Vert. Horiz. Mixed

#S
he

et
s

96

297

48 31 27

293

Tables All Regions

(b) Arrangements

Figure 3.8: Coverage and Arrangements in Enron Spreadsheets

Figure 3.8.b reports on the arrangement of components (i.e., layout regions) in the an-
notated sheets. We performed this study twice. First, we analyzed the arrangement of
tables. For this, we considered only sheets that contain multiple tables. We find that verti-
cal (top-bottom) arrangements are the most prevalent in multi-table sheets. Nevertheless,
we notice a significant number of cases with horizontal (left-right) or mixed (both verti-
cal and horizontal) arrangements. For the second part of this study, we considered sheets
having annotated cells outside of tables, such as Titles, Notes, and Other. We examine
how such cells are arranged in relation to the tables in the sheet. In this case, our analysis
shows that mixed arrangements are almost as common as vertical ones. This means one
can potentially find arbitrary content next to the spreadsheet tables, in all four directions.

Takeaway 7: We frequently observe mixed arrangements in business spreadsheets. Especially,
when we consider other layout regions, besides tables.

These results bring forward the limitations of approaches doing layout analysis at the
row level, such as Chen et al. [29], Adelfio and Samet [11]. Clearly, these works would
perform poorly when cells of the same row exhibit different layout functions. Our anal-
ysis shows that this is often the case, as we find a considerable number of horizontal and
mixed arrangements. In Section 3.4, we consider such insights for the proposed solution.

Content Density

In this section, we study the density of spreadsheet contents. For this analysis, we re-use
yet another metric proposed by [18]. It captures the concentration of filled-in (i.e., non-
empty) cells in a sheet. We can measure this concentration (density) for the whole sheet,

3.3 Dataset Analysis 45

or for specific regions, such as the annotated tables. The formula for the density metric
is displayed in Figure 3.9.a. We initially determine the minimum bounding rectangle
(MBR) that encloses the region of interest. Subsequently, we find the ratio of filled-in
cells inside this MBR.

0.2 0.4 0.6 0.8 1.0
Density

0
50

100
150
200
250

#S
he

et
s

density= |filled cells|
|empty| + |filled|

(a) Sheet Densities

0.2 0.4 0.6 0.8 1.0
Density

0
150
300
450
600
750

#T
ab

le
s

(b) Table Densities

Figure 3.9: Content Density in Enron Spreadsheets

Figure 3.9 shows the density distribution for annotated sheets and tables. We observe
that densities in sheets vary extensively (see Figure 3.9.a). Partially, this is due to cells
located outside of tables, such as Titles, Notes, and Other. Typically, users leave some
space between these cells and tables. However, as can be seen in Figure 3.9.b, there is a
considerable number of sparse tables, as well. Specifically, more than half, (53%) of the
tables, have a density of ≤ 0.9. These might be due to missing/implicit values or empty
rows and columns. As reported by related work [46], the empty rows/columns are often
used for visual padding inside the tables.

Takeaway 8: Content density varies extensively in spreadsheets. Sparse tables are common.

In fact, our analysis shows that empty rows/columns are used both inside and outside
tables. This is very relevant for the table detection task. To improve accuracy, a system
has to distinguish between these two uses. One naïve approach is to study the size7

(height or width) of such empty rows/columns (shortly referred to as gaps). Intuitively,
gaps inside the tables should be smaller in size than those outside. We have tested this
assumption and visualized the results in Figure 3.10.a (outliers >120 are omitted). Note,
we treat consecutive empty rows/columns as one gap (i.e., cumulative width/height).
Furthermore, in sheets having gaps, we consider only the biggest one inside tables and
the smallest one outside tables.

0 20 40 60 80 100120

C
ol

um
ns

R
ow

s

Between
Inside

(a) Gaps Between/Inside

Intra Inter Out Other

#T
ab

le
s

679

110 105 48

 percent of tables
intra=46%, inter=7%
out=7%, other=3%

(b) Formula References

Figure 3.10: Gaps and Dependencies in Enron Spreadsheets

7In Excel, height of rows is measured in points, while width of columns is measured in units of 1/256th
of a standard font character width.

46 Chapter 3 An empirical study of spreadsheet documents

Our analysis, shown in Figure 3.10.a, revealed that a significant number of tables contain
gaps: 546 with empty rows, and 240 with empty columns. Furthermore, for column gaps,
we notice considerable overlap in the size (width) distributions, inside and between tables.
Thus, it is not enough to consider just the size of a gap. More context is needed to predict
its true purpose: table separator or visual padding.

Takeaway 9: We find empty row/column inside tables. To distinguish them from those found
between tables, an analysis that goes beyond their width/height is needed.

Content Dependencies

We conclude with a study of formulas found in the annotated sheets. Here, we focus
on the references of these formulas, which ultimately introduce dependencies between
the cells (i.e., contents) of a spreadsheet. The results of this analysis are presented in
Figure 3.10.b. Intra-table dependencies, i.e., formulas referencing cells within the same
table, occur in 679 (46%) annotated tables. We notice external references, i.e., outside of
the table, less often. These can be from one table to another (Inter), referring to cells found
outside the table (Out), or references to other sheets of the same file (Other).

Takeaway 10: Table contents might depend on values found outside its borders; infrequently, these
reside in other sheets.

3.3.2 Comparison Between Domains

As discussed in Section 3.1, related works in layout analysis and table recognition have
overwhelmingly used web-crawled spreadsheets. However, they have not made their
annotations publicly available. Therefore, we annotated a sample of spreadsheets from
the Fuse corpus, which originates from the Web. We perform a thorough study on this
sample, in an attempt to infer the unique characteristics of Web spreadsheets. Subse-
quently, we compare with the Enron sample, highlighting similarities and differences.

Many files in the original Fuse sample were filtered during the annotation process, As
mentioned in Section 3.2.1, this is because we could not perform some of the preprocess-
ing steps used for Enron. Overall, the judges manually found 278 near-duplicates. Such
files most likely originate from the same website, since they have (almost) the same struc-
ture and formatting, but differ in values. We choose to eliminate these files, in order to
avoid any risk of overfitting on specific examples. Additionally, the judges found 49 non-
English files and 71 files that caused run-time exceptions. These files were eliminated
from the sample, as well.

The final annotated sample consists of 406 files from Fuse: 122 Not-Applicable and 284
Completed (i..e, having tables). The latter contain 458 annotated tables, in total. Subse-
quently, we performed the same analyses, as in Section 3.3.1. The results for the Fuse
sample are summarized by charts, shown in Figure 3.11.

3.3 Dataset Analysis 47

for
ms

oth
er

rep
ort

s
no

he
ad lis
ts

ch
art

s

#S
he

et
s

133
67

21 12 9 3

(a) N/A Sheet Counts8

da
ta

he
ad

er titl
e

oth
er

no
te

de
riv

ed
gh

ea
d

#S
he

et
s

284 284

162
91 88 78 43

(b) Occurrences Cell Labels

da
ta

he
ad

er titl
e

oth
er

no
te

de
riv

ed
gh

ea
d

0.2
0.4
0.6
0.8
1.0

R
at

io
 o

f C
el

ls

Formula
String
Numeric

(c) Content Type Ratios

1 2 3 4 5 6+
#Tables

100

200

300

#S
he

et
s

max #tables = 38
avg #tables = 1.61

(d) Table Distribution

0.2 0.4 0.6 0.8 1.0
Coverage

100

200

300
#S

he
et

s

(e) Table Sheet Coverage

0.2 0.4 0.6 0.8 1.0
Density

100

200

300

#S
he

et
s

(f) Sheet Densities

0.2 0.4 0.6 0.8 1.0
Density

100

200

300

#T
ab

le
s

(g) Table Densities

Vert. Horiz. Mixed

#S
he

et
s

40

146

10 6 2
44

Tables All Regions

(h) Arrangements

0 20 40 60 80 100120

C
ol

um
ns

R
ow

s

Between
Inside

(i) Gaps Inside/Between

Intra Inter Out Other
#T

ab
le

s 133

14 10 9

 percent of tables
intra=29%, inter=3%
out=2%, other=2%

(j) Formula References

Figure 3.11: Characteristics of Annotated Fuse Sample

Similarities

We observe similarities between the two annotated samples. As shown in Figure 3.11.a,
likewise in Fuse most of N/A sheets are Form-Templates. With regard to applicable sheets,
we note that many of the takeaways discussed in Section 3.3.1 apply to the Fuse sample,
as well. For instance, there are hierarchies in Fuse, i.e., GroupHeaders (ghead) and nested
Headers. They occur respectively in 15% and 28% of the sheets, which is comparable to
the Enron sample (see Section 3.3.1). Other similarities relate to the annotated tables.
In Figure 3.11.d, we note multiple tables in 52 (18%) of the applicable sheets from Fuse
(compared to 20% in Enron). Moreover, in the vast majority of applicable sheets, tables
cover the largest part of the used area (refer to Figure 3.11.e.). Furthermore, similar to
Enron, the content densities (Figures 3.11.f-g) vary extensively for both sheets and tables.
In addition, we note the presence of horizontal and mixed arrangements (Figure 3.11.h),
together with empty rows/columns in tables (Figure 3.11.i), and external formula refer-
ences (Figure 3.11.j). However, as mentioned below, such cases are less common in Fuse.

Differences

Here, we highlight the most important differences between the two annotated samples.
In Table 3.2, we observe that, with the exception of Form-Templates and Other, the re-
maining N/A labels occur with much lower frequency in Fuse. Moreover, as shown in
Table 3.3, cells labeled as Other and Derived are not as common as in Enron. With regard

8Cumulative count for each N/A label, considering both Not-Applicable and Completed files.

48 Chapter 3 An empirical study of spreadsheet documents

Table 3.2: Percentage per N/A Label

Forms Other Reports NoHeader Lists Charts
Enron 26% 24% 24% 18% 7% 2%
Fuse 54% 27% 9% 5% 4% 1%

Table 3.3: Percentage of Applicable Sheets containing each Cell Label

Data Header Title Other Derived Note GHead
Enron 100% 100% 54% 50% 43% 23% 17%
Fuse 100% 100% 57% 32% 27% 30% 15%

to Derived, it has been already reported by related work that the Fuse corpus contains
fewer formulas than the Enron corpus [16]. This can be seen in Figure 3.11.c, where the
occurrence of formulas is low for all cell labels, including Derived9. Additionally, in Fig-
ure 3.11.j, formula references (i.e., dependencies) are found in a smaller percentage of
annotated tables, compared to Enron. Overall, these results indicate that there are fewer
dependencies (related to formulas and Derived cells) and lower diversity of contents (re-
lated to Other cells) in the applicable sheets from Fuse.

As mentioned before, there are many cases of sparse sheets and tables in both samples.
However, we observe that in Fuse the densities tend to be higher than in Enron. In Ta-
ble 3.4, we see that 59% of applicable sheets in Fuse have a density of> 0.8, i.e., two times
more than Enron. For tables, the difference is much smaller. Nevertheless, it is notice-
able that high densities are more common for Fuse tables. Furthermore, we find in Fuse
considerably fewer cases of empty columns/rows inside the annotated tables (refer to
Table 3.5). Considering these results, we conclude that contents in Fuse sheets are much
more compact.

Table 3.4: Occurrences of Densities

Density > 0.8 Density > 0.9
Sheets Tables Sheets Tables

Enron 30% 60% 19% 47%
Fuse 59% 74% 42% 62%

Table 3.5: % of Tables with Gaps

Empty
Columns

Empty
Rows

Enron 16% 37%
Fuse 5% 19%

As can be seen in Table 3.6, there are evident differences when it comes to the arrange-
ment of layout regions. For Fuse, the vertical arrangement clearly dominates over hor-
izontal and mixed arrangements. This is especially true when we consider the arrange-
ment of all layout regions. While, in the same settings, for Enron, the vertical and mixed
arrangements are equally likely.

Last, we perform a focused comparison of the two samples. Specifically, we measure the
occurrence of simple sheets, which we define as follows. They can have multiple layout re-
gions and one or more tables. However, we require that the arrangement in these sheets
is vertical. Furthermore, the contained tables must be simple as well. Therefore, we omit

9In Fuse spreadsheet users tend to set the aggregation values manually, without the help of formulas.

3.3 Dataset Analysis 49

Table 3.6: Percentage of Applicable Sheets with the Following Arrangements

Vertical Horizontal Mixed

Multi Tables
Enron 11% 6% 3%
Fuse 14% 4% 1%

All Regions
Enron 35% 4% 34%
Fuse 51% 2% 15%

sheets having tables with hierarchies, gaps, and (Derived) aggregations. Additionally, we
exclude sheets having Other cells, which means arbitrary contents (i.e., not simple). All
in all, simple sheets can be described as being closer to the commonly held assumptions
about spreadsheet contents. The results, in Table 3.7, show that in Fuse 38% of applica-
ble sheets are simple, compared to 16% in Enron. Arguably, one can attribute Derived
cells and nested Headers (i.e., top hierarchies) to the typical spreadsheets. Therefore, we
provide the results of our analysis including these cases, as well.

Table 3.7: Percentage of Simple Sheets

Simple +Derived +Top Hierarchies
Enron 16% 17% 21%
Fuse 38% 40% 46%

Overall, we observe that sheets in the Fuse sample tend to be more regular. To this might
contribute the fact that a considerable number of files in the original Fuse corpus come
from .org (29.5%), and .gov (27.7%) domains [16]. Thus, it is very likely that these files
were crawled from open data platforms or other official sources. This can explain why
overall the Fuse sample exhibits more structure, lower diversity in layouts, and higher
density of contents.

Contrary, in the Enron sample we find more instances of “irregular” sheets. We take
this insight into consideration while comparing with related works. We aim to achieve
comparable or even better performance on the Fuse sample, which is closer to the related
works. At the same time, we attempt to improve the current state-of-the-art, mainly
based on the Enron sample. Ultimately, our goal is to achieve high performance even
in complex sheets, exhibiting many of the aforementioned challenges: hierarchical struc-
tures, multiple tables, various layout roles, mixed arrangements, sparse contents, in-table
gaps, etc.

3.4 SUMMARY AND DISCUSSION

The results of our empirical study show that there are many challenges when it comes
to automatic analysis and recognition in spreadsheets. Here, we begin with a brief sum-
mary of challenges that have been already identified by related work. Subsequently, we
highlight those that are so far overlooked by them. Lastly, we define the scope of this
thesis, describe the datasets used for experimental evaluation, and provide a high-level
overview of the proposed solution.

50 Chapter 3 An empirical study of spreadsheet documents

As reported by other works, spreadsheets contain tables, but also other structures (forms,
reports, etc.). When table/s are present in the sheet, they tend to occupy most of the used
area. Nonetheless, next to the tables we can find meta-information, such as Titles and
Notes. Moreover, the structure of the tables can vary, even inside the same sheet. In
complex cases, we encounter tables with nested Headers (i.e., top hierarchies) and/or
nested data in columns (i.e., left hierarchies). Additionally, we find tables containing
various aggregations.

Already, the aforementioned challenges, highlight the complexity of analysis and recog-
nition in spreadsheets documents. Nevertheless, we have identified aspects that have
not been considered by related work, yet. In particular, we discuss the following ad-
ditional challenges for spreadsheet documents: diversity of contents, arbitrary arrange-
ments, low density, and in-table gaps (i.e., empty row/columns). Our analysis, in Section
3.3.2, shows that spreadsheets are much more diverse than what is commonly assumed.
Specifically, we find that cells annotated as Other are fairly frequent. This means, next
to the tables, one can find lists, key-value pairs, and other arbitrary contents. Clearly,
such instances, need to be distinguished from true tables. Another overlooked challenge
is the horizontal and mixed arrangements in spreadsheets (refer to Table 3.6). In such
cases, approaches performing layout analysis at the row level, such as [11, 29], will have
low accuracy. Thus, in order to cover all arrangements, a candidate solution needs to
reason at the level of individual cells or ranges of cells. Another important finding is
that spreadsheet tables are often sparse (see Figures 3.9 and 3.11). Again, this can have a
negative impact for the approaches proposed at [11, 29]. Specifically, due to empty (miss-
ing) cells, the composition and therefore features of rows can vary greatly, even within
the same table. As a result, inference (i.e., training and classification) at row level can be
difficult, even when we do not account for arbitrary arrangements. Furthermore, gaps
in tables introduce considerable overhead for any candidate solution. They can be mis-
interpreted for separators of contents (tables), when in fact they are just used for visual
padding. Finally, the greatest challenge comes from sheets that exhibit simultaneously
several “irregularities” (including those mentioned in related work). As shown in Table
3.7, this is the case for more than half of the sheets, for both annotated samples.

Thus, to automatically process arbitrary spreadsheets, one needs to tackle all the above-
mentioned challenges. Specifically, before extracting information from spreadsheets, one
needs to achieve high accuracy for layout analysis, table detection, and table recognition
tasks. Therefore, in this thesis, we focus particularly on these three tasks. Our findings,
from this chapter, show that these tasks are not fully solved, yet. In addition, we believe
that related works have not taken full advantage of the rich spreadsheet ecosystem. There
are aspects (features) that could improve the accuracy but have not been explored in the
existing approaches. Thus, in this work, we attempt to fill this gap as well.

Nevertheless, there are a few scenarios that will not be covered by this thesis. Specifically,
we do not address transposed tables, i.e., the Header cells are on the left columns instead
of the top rows. Additionally, we omit cases where tables are horizontally attached, i.e.,
they are not separated by empty column/s. For a human is easy to see that these are sep-
arate tables, due to their formatting and values. However, this is much more challenging
for a machine.

Essentially, excluding the aforementioned scenarios, means omitting a small portion of
the annotated sheets. Therefore, in the next section, we discuss how this affects the En-
ron and Fuse sample. We use these slightly reduced samples, to evaluate the proposed
approach. In Section 3.4.2 we provide a high-level overview of this approach and outline
the remaining structure of this thesis.

3.4 Summary and Discussion 51

3.4.1 Datasets for Experimental Evaluation

We use the two annotated samples, discussed in this chapter, to train and test the pro-
posed solution. However, we need to omit a small portion of annotated sheets that are
outside the scope of this thesis. Moreover, we omit few “outlier” sheets, that contain
an exceptionally large number (> 17) of annotated tables. We believe that these sheets
can bias our approach, by dominating over the other rest. Below, we discuss how these
changes have affected the Enron and Fuse sample.

The reduced Enron sample contains 814 annotated sheets, i.e., 40 were omitted. Specif-
ically, we omit 20 sheets that have transposed tables and 18 that have horizontally at-
tached tables. Moreover, we excluded three sheets that contain 34, 49, and 125 tables,
each. The latter sheet exhibits horizontally attached tables, as well. Therefore, in total,
the number of omitted sheets is 40.

For the Fuse sample, we omit only 10 sheets. Therefore the reduced sample still contains
274 sheets. From the excluded, 5 have transposed tables, and 4 horizontally attached
tables. Lastly, a sheet containing 38 tables was excluded, too.

For completeness, in Appendix A, we have recreated the charts provided previously, in
Section 3.3, for the reduced samples. With this, we show that indeed the aforementioned
omissions have not altered the composition of the samples. The challenges identified and
discussed in Section 3.3, are still applicable.

3.4.2 A Processing Pipeline

We propose a spreadsheet processing pipeline, illustrated in Figure 3.12. Our approach is
bottom-up, as it starts from the individual cells and ultimately arrives at larger structures
(i.e., tables). Note, we have marked the table recognition and information extraction tasks
with dotted lines, as our contribution is less significant in them compared to other parts.
For these two tasks, we mostly re-use techniques proposed by related work.

Feature
Extraction

Cell
Classification

Post-
Processing

Graph
Representation

Information
Extraction

Table
Recognition

Layout Analysis

Layout Regions
Creation

Table
Detection

Table Analysis

Figure 3.12: A Spreadsheet Processing Pipeline

Overall, the proposed solution follows best practices from the DAR (Document Analysis
and Recognition) research field. We chose a bottom-up approach since they are suit-
able when document layouts are arbitrary (unknown), as suggested in the survey [95].

52 Chapter 3 An empirical study of spreadsheet documents

Furthermore, in this thesis, we make use of machine learning techniques. In the latest
years, such techniques have improved the state-of-the-art for many different DAR tasks
[94, 97, 95]. Another reason for such techniques is that we envision a solution that works
for spreadsheet coming from various domains. Ultimately, our goal is to have a flexible
and transferable system, which requires minimum tuning.

In the remaining chapters of this thesis, we describe in detail each one of the steps in our
processing pipeline. We begin, with Chapter 4, where we outline how to perform layout
analysis, i.e., the first four tasks in our processing pipeline.

3.4 Summary and Discussion 53

54 Chapter 3 An empirical study of spreadsheet documents

4
LAYOUT ANALYSIS

4.1 A Method for Layout Anal-
ysis in Spreadsheets

4.2 Feature Extraction

4.3 Cell Classification

4.4 Layout Regions

4.5 Summary and Discussions

Considering that tables in spreadsheets vary extensively, it is rather challenging to di-
rectly recognize them as a whole. Thus, we opt to recognize their building blocks, in-
stead. This process is commonly known as layout analysis (refer to Section 2.2.1). In
simple terms, the aim of layout analysis is to segment the contents of a document into re-
gions of interest. Typically, the segmentation is done on the basis of both geometrical and
logical analysis. In this thesis, we follow the same logic. Specifically, we propose an ap-
proach that operates in a bottom-up fashion. We start from the individual cells and infer
their logical (layout) function. Then, we group cells into rectangular regions of interest,
on the basis of their inferred function and spatial arrangement. The resulting regions are
subsequently used for table detection, which is discussed in Chapter 6.

The subsequent parts of this chapter are organized as follows. In Section 4.1 we outline
the overall approach for layout analysis. Subsequently, from Section 4.2 to 4.4, we discuss
the individual, steps in more detail. Finally, in Section 4.5, we reexamine the approach,
this time considering the results from the experimental evaluations.

4.1 A METHOD FOR LAYOUT ANALYSIS IN SPREADSHEETS

In this section, we outline our solution for layout analysis in spreadsheets. We begin with
a summary of existing works. Subsequently, we motivate the need for a new approach
and describe the individual steps that comprise it.

There are several approaches for layout analysis in literature, which are discussed in
more detail in Section 2.3.1 and Section 2.3.3. Here, we provide a brief summary. In [6],
the authors infer the headers of tables and subsequently detect unit errors. They make
use of several rule-based algorithms to predict the function of individual cells. The DeEx-
celerator framework [46] implements a wide collection of rules and heuristics for layout
analysis. Among other things, the framework addresses header, data, aggregations, and
metadata (i.e., notes and titles). Some of the defined rules take into account the charac-
teristics of entire rows/columns. Other rules focus on individual cells. An alternative
approach for layout inference is proposed in [118]. The authors define a domain-specific
language, refereed to as CRL (Cell Rule Language). Using this language, the authors
manually define rules that tag the individual cells as Category, Label, or Entry. Then, they
extract information from tables using additional rules, again written in CRL. Other works
make use of supervised machine learning techniques. Chen et al. [29] use a CRF (Con-
ditional Random Field) classifier to sequentially predict the layout function of rows in
the sheet. They propose four such functions: Title, Header, Data, or Footnote. Adelfio and
Samet [11] make use of CRF as well to classify rows. However, they define seven layout
functions: Title, Header, Data, Notes, Aggregates, GroupHeaders, and Blank. These functions
are illustrated in Figure 3.1, of Chapter 3. Adelfio and Samet additionally combine CRF
with an innovative way to encode the individual cell features at the row level. They refer
to this encoding as logarithmic binning.

These works have significantly improved the state of the art, with regard to layout anal-
ysis in spreadsheets. Nevertheless, as discussed in Section 3.4, there are open challenges
not yet covered by related work. In particular, we emphasize that there is a high diversity
of contents in spreadsheets. Here, we refer not only to the diversity of values but also to
the arbitrary arrangements and formatting (styling). Moreover, we consider the logical
interpretation of contents, i.e., their layout function. In Chapter 3, we show that even
seven labels might not be enough to describe spreadsheet layouts in detail. Specifically,
we find cells annotated as Other in a considerable number of annotated files.

56 Chapter 4 Layout Analysis

Based on these findings, we aim to address layout analysis using supervised machine
learning techniques. We believe that such techniques can generalize better than rules
when considering the high diversity in spreadsheets. Specifically, machine learning is
not limited to human input (i.e., domain expertise). It can handle large volumes of data
(i.e., training examples) and make associations that are hidden and complex for humans.
In this way, given a dataset of diverse examples, we can train models that are applicable
for spreadsheets coming from different sources (e.g., both business and Web). Ultimately,
this enables a flexible and transferable approach.

There are already works that have applied successfully machine learning in spreadsheets.
As mentioned previously, Adelfio and Samet [11] and Chen et al. [29] achieve good
results using CRF classifiers to predict the layout function of individual rows. Instead,
we propose an approach that operates at the smallest unit of spreadsheets, i.e., the cell.
Specifically, we predict the layout function for each cell, separately. In this way, we can
tackle arbitrary arrangements and table structures. We foresee that cells of the same
column and row can have different layout functions. Moreover, we recognize that meta-
data, such as titles, notes, and lists, can be placed anywhere in relation to the table/s.

- E11, string, bold, grey fill…
- E14, numeric, align center…
- F14, numeric, same style E14…
- H14, formula, reference F14…
- B18:F18, merged…

M

H H H H
D D D D
D D D D
D D D D
D D D D

H
H

HH H H
H H

H! O
D D D D D O
D D D D D D O
G O
D D D D D D O
D D D D D D O
B B B B B B

N

Feature
Extraction

Cell
Classification

Post-
Processing

Region
Creation

M

H

D

H H

G

O

D D DD
G

D D

B B
N

Figure 4.1: The Layout Analysis Process

Figure 4.1 illustrates the four high-level steps that compose our layout analysis approach.
We consider the layout functions (i.e., cell labels) defined in Section 3.2.2. In Figure 4.1 we
denote each one of these functions with a distinct letter: Header (H), Data (D), Derived
(B), Note (N), Title (M), GroupHeader (G), and Other (O).

The proposed approach operates in a bottom-up fashion. Initially, it collects features,
which are then used to predict the layout function of individual cells. This is followed
by an optional post-processing step, which reviews the classification results. The last
step groups the classified cells into larger layout regions. As suggested in literature [95],
bottom-up methods are favorable when the layout is not known beforehand. Indeed,
as we are going to see in this and the subsequent chapters, our approach shows high
flexibility and is capable of capturing a great variety of spreadsheet layouts.

The individual steps of our approach are thoroughly discussed in the following sections
of this chapter. Specifically, in Section 4.2, we define the features extracted for each non-
empty (i.e., filled with a value) and non-hidden cell in the sheet. Here, we have per-
formed a comprehensive analysis of the spreadsheet ecosystem, considering a large and
rich set of features. Many of these features are not covered by related work. Subsequently,
we perform feature selection and train models for cell classification (refer to Section 4.3).
Furthermore, we propose an optional post-processing step, which is discussed separately,
in Chapter 5. This step reviews the classification results and attempts to get rid of obvious
errors (denoted with an exclamation mark in Figure 4.1). Finally, in this chapter, Section
4.4, we discuss our methods for grouping cells into layout regions.

4.1 A Method for Layout Analysis in Spreadsheets 57

4.2 FEATURE EXTRACTION

As mentioned in Chapter 3, in this thesis we consider Microsoft Excel files. Nevertheless,
most of the features listed below are applicable for other spreadsheet applications as
well. We use the Python library openpyxl1 [64], to process Excel files and extract features
from non-empty and non-hidden cells. Some of these features (e.g. styling and font)
are directly accessible via the Class attributes of this library. Others require additional
custom implementation. This includes all formula, reference, and spatial features. As
well, as it includes a large portion of content features.

In this thesis, we incorporate and extend the features proposed by related work [6, 11,
29, 45]. Nevertheless, we have introduced new features for all the considered categories
(refer to Sections 4.2.1 to 4.2.6). This is especially true for formula, reference, spatial, and
geometrical features.

Lastly, we introduce a naming convention for the features listed in the following section.
We mark Boolean features with ‘?’, at the end of their name. Similarly, we use ‘#’ for
numeric features. The rest, not explicitly denoted with a special character, are nominal
(categorical) features.

4.2.1 Content Features

These features describe the cell value but not its styling. We consider the content type
of the cell: numeric, string, boolean, date, and error. Note, for cells having formulas we
use their output (result) to determine the actual content type of the cell. Furthermore,
we define features that apply only to certain content types2. For instance, with regard
to numeric cells, we check if the value is within the year range [1970, 2020]. In this way,
we distinguish values that could be interpreted as dates. For string cells, we record the
length of the value and the number of tokens (separated by white spaces) that compose
it. The value of these features is always one for non-string cells. Below, we provide the
complete list of content features3.

• CONTENT_TYPE: The cell value can be numeric, string, boolean, date, or error.

• IS_FLOAT?: True, if value is a float. This feature is a specialization for numeric cells.

• IS_YEAR_RANGE?: True, if cell value is an integer in the range [1970, 2020].

• VALUE_LENGTH#: The number of characters in the value. Set to 1, for non-string cells.

• VALUE_TOKENS#: The number of tokens in the value, separated by white spaces. Set
to 1, for non-string cells.

• IS_LOWER?: True, if string value is in lower case.

• IS_UPPER?: True, if string value is in upper case.

• IS_CAPITALIZED?: True, if string value is in title case.

1The openpyxl library specializes in the .xlsx format. Therefore, we manually converted all .xls files in our
datasets into .xlsx.

2We set the value by default to False, for all the other (non-applicable) content types
3We omit white spaces when calculating the value for the content features, with the exception of the

following: VALUE_LENGTH, VALUE_TOKENS, and IS_INDENTED

58 Chapter 4 Layout Analysis

• IS_ALPHA?: True, if value contains only alphabetic characters.

• IS_ALPHANUMERIC?: True, if value contains both alphabetic and numeric characters.

• CONTAINS_SPECIAL?: True, if value contains special symbols.

• FIRST_IS_SPECIAL?: True, if the first character is a special symbol.

• IS_NUMBERED_LIST?: True, if first characters are numbers followed by ‘.’ or ‘)’.

• MULTIPLE_PUNCTUATIONS?: True, if the string contains > 1 punctuation characters.
Here, we omit the colon character, which is covered by separate features, below.

• CONTAINS_COLON?: True, if string value contains a colon character.

• LAST_IS_COLON?: True, if the last character of the value is a colon.

• IS_INDENTED?: True, if indentations or tab spaces come before the cell value.

• CONTAINS_TOTAL?: True, if value contains word “total", regardless of case.

• CONTAINS_NOTES?: True, if value contains word “note"/“notes", regardless of case.

• IS_NA?: True, if cell value is equal to the string “n/a” or “na”, regardless of case.

• IS_EMAIL?: True, if cell value matches regular expression for emails.

4.2.2 Style Features

In addition to content features, the style of the cell can provide valuable information for
the classification process. For instance, certain build-in styles (e.g., currency and percent-
age) are often associated with Data and Derived cells. Moreover, for cells that are merged
the most common layout functions are Note, Title, and Header. Below, we list the con-
sidered style features.

• HRZ_ALIGNMENT: Type of horizontal alignment; typically left, right, or center.

• VRT_ALIGNMENT: Type of vertical alignment; typically top, bottom, or center.

• HAS_FILL_COLOR?: True, if the cell is filled with a (back- or foreground) color.

• FILL_PATTERN: Excel supports several patterns, e.g., dots, and stripes.

• NUMBER_FORMAT: Cell value can be formatted as general, fraction, scientific, etc.

• BUILD_IN_STYLE: We consider four styles: normal, percentage, currency, and comma.

• BORDER_{TOP,BOTTOM,LEFT,RIGHT}: We create four separate features to encode the
type of the top, bottom, left, and right border of the cell. Excel supports in total 14
border types, e.g. dashed, dotted, and double.

• IS_MERGED?: True, if cell is merged, i.e., multiple cells together form a larger one.

4.2 Feature Extraction 59

4.2.3 Font Features

The features in this group describe the font of the cell value. We have considered various
aspects of the font, such as its size, effects, style, and color. In particular, the features
font_size and is_bold are the most informative. For instance, it is common to find Headers
and Titles that are bold. Moreover, the font size might differ depending on the layout
function of the cell. For instance, we notice larger font sizes for Titles.

• HAS_FONT_COLOR?: True, if the font has color other than the default one, i.e., black.

• FONT_SIZE#: The size of the font can vary from 1 to 409.

• IS_BOLD?: True, if bold font is used.

• IS_ITALIC?: True, if italic font is used.

• IS_UNDERLINE?: True, if cell value is underlined.

• OFFSET_TYPE: Can be superscript, subscript or none.

4.2.4 Formula and Reference Features

These features explore the Excel formulas and their references in the same worksheet
(i.e, intra-sheet references). The observation is that formulas are mostly found in Data or
Derived cells. Moreover, cells referenced by formulas are predominantly Data. Never-
theless, below we have grouped formulas and references into several categories. In this
way, we attempt to record their use in a much more detailed and accurate manner.

Note in the list below the special case of shared formulas. This occurs when multiple
cells use the same exact formula (composed of one or more functions), but with different
arguments. Excel encodes these cases in the newer OOXML format (see Section 2.1.2).
We capture this feature here and use it as well for spatial features.

Last, with regard to referenced cells, we parse the formulas and identify the specific func-
tion that made the reference (i.e., used this reference as argument). This means we deter-
mine the type of the reference based on the individual function, not the overall formula.
Therefore, the type can not be mixed (refer to the list below).

• IS_SHARED_FRML?: True, if this cell uses the same formula as other cells, but with
different input (i.e., arguments)

• IS_AGGR_FRML?: True, if all the functions in the formula perform aggregations, e.g.,
SUM, AVERAGE, and PRODUCT.

• HAS_AGGR_FUNC?: True, if at least one of the functions performs aggregation.

• IS_SIMPLE_NUM_AGGR?: True, if instead of functions the formula uses simple opera-
tors, such as +, -, /, and *. Moreover, all arguments are numbers.

• IS_SIMPLE_RNG_AGGR?: True, if the formula makes use of only simple operators, but
in this case, the arguments are references to other cells.

• IS_DATE_FRML?: True, if all the functions in the formula perform date operations,
e.g., TODAY, HOUR, and DATE.

60 Chapter 4 Layout Analysis

• IS_LOGIC_FRML?: True, if all the functions in the formula perform logic operations,
e.g., IF, AND, NOT, etc.

• IS_TEXT_FRML?: True, if all the functions in the formula perform text operations,
e.g., CONCATENATE, LEFT, and RIGHT.

• IS_LOOKUP_FRML?: True, if all the functions in the formula perform lookup opera-
tions, e.g., MATCH, VLOOKUP, and HLOOKUP.

• IS_MATH_FRML?: True, if all the functions in the formula perform math operations,
e.g., ABS, SQRT, and ROUND.

• IS_OTHER_FRML?: True, if the functions in the formula do not correspond to the
above categories.

• IS_MIXED_FRML?: True, if the functions in the formula are of a different type.

• REFENCE_TYPE: When a cell is referenced, we record the type of the function that
made the reference. There are nine options: aggr, simple, date, logic, text, lookup, math,
other, and none.

4.2.5 Spatial Features

In this section, we consider features that describe the location and neighborhood of a cell.
The former refers to the relative location in the used area (i.e., the minimum bounding
box that encloses all non-empty cells) of the sheet. Specifically, we record if the cell is in
the first or last rows/columns of the used area. Moreover, we collect features from the
neighbors of the cell. Here, we consider the eight immediate neighbors: top (t), top-left
(tl), top-right (tr), left (l), right (r), bottom (b), bottom-left (bl), and bottom-right (br). They
are illustrated in Figure 4.2.

n1 n2 n3

n4 n5

n6 n7 n8

n1 n2 n3

n4 n5

n6 n7 n8

n1 n2 n3

n4 n5

n6 n7 n8

tl t tr

l r

bl b br

Figure 4.2: The Immediate Neighborhood of a Cell

Having this definition for the neighborhood4, we introduce features that record how sim-
ilar (or dissimilar) the cell is to its neighbors. For instance, we compare the style5, content
type, and formulas. Note, when the neighbors are empty or outside of the sheet used
area, we introduce special values for the considered features. For Boolean (spatial) fea-
tures, we set the value to False. While for categorical features we introduce two special
values: empty and out.

Another spatial feature is the distance from the nearest non-empty neighbor. Therefore,
these neighbors are not necessarily adjacent. Here, we focus only on four directions:
top, left, right, and bottom. The horizontal distances, for top and bottom neighbors, are

4For merged cells, the t, b, l, and r neighbors come from the (smallest) middle column/row.
5To compare the styles of different cells we use the attribute style_id, as provided by openpyxl library [64].

4.2 Feature Extraction 61

measured in number of rows (i.e., |cell_row_number − neighbor_row_number|)6. While,
for left and right neighbors, the distance is measured in number of columns. In cases
where there does not exist a non-empty neighbor in a direction, the distance is set to zero.

Note we omit all hidden7 rows and columns of a sheet for the calculation of spatial fea-
tures. In this way, we capture exactly what the user sees. In other words, the classifier
learns to interpret only what the Excel user decided to make visible.

Last, for brevity, in the list below we use a naming convention. Values in the curly brack-
ets denote variations of a feature. In other words, we create a separate feature for each
value in the curly brackets.

• IS_FIRST_{ROW,COL}?: True, if cell is in first row/column of the used area.

• IS_LAST_{ROW,COL}?: True, if cell is in last row/column of the used area.

• IS_SECOND_{ROW,COL}?: True, if cell is in second row/column of the used area.

• IS_PENULT_{ROW,COL}?: True, if cell is in penultimate row/column of the used area.

• MATCHES_{T,TL,TR,L,R,B,BL,BR}_STYLE?: True, if the neighbor has the same style
as the cell.

• MATCHES_{T,TL,TR,L,R,B,BL,BR}_TYPE?: True, if the neighbor has the same con-
tent type as the cell.

• {T,TL,TR,L,R,B,BL,BR}_CONT_TYPE: The content type of the neighbor. It can take
one of the following values: numeric, string, boolean, date, error, empty, and out.

• DIST_{T,L,R,B}_NEIGHBOR#: Distance from the nearest non-empty neighbor.

• {T,TL,TR,L,R,B,BL,BR}_IS_FRML?: True, if neighbor contains any formula.

• {T,TL,TR,L,R,B,BL,BR}_IS_AGGR?: True, if neighbor is an aggregation formula.

• {T,TL,TR,L,R,B,BL,BR}_IS_SHARED?: True, if neighbor uses the same formula as
the cell. For more details on shared formulas, refer to Section 4.2.4.

• {T,TL,TR,L,R,B,BL,BR}_IS_MERGED?: True, if neighbor is merged cell.

• {T,TL,TR,L,R,B,BL,BR}_IS_TOTAL?: True, if neighbor contains the words “total”,
regardless of case.

• {T,TL,TR,L,R,B,BL,BR}_IS_NOTES?: True, if neighbor contains the words “notes”
or “note”, regardless of case.

• {T,TL,TR,L,R,B,BL,BR}_IS_SPACES?: True, if the value of the neighbor is indented.

We cover the whole neighborhood, even though we do not expect it to be informative for
all features above. Later, we use automatic feature selection techniques, in Section 4.3.4,
to filter out “weak” features. In this way, we avoid human bias in the selection process.

6To calculate the distance for merged cells, we use the minimum row for top neighbors and the maximum
row for the bottom neighbors.

7Excel considers rows/columns hidden when their height/width is zero.

62 Chapter 4 Layout Analysis

4.2.6 Geometrical Features

The final set of features deals with geometrical aspects of cells. In the list below, the first
five features are relevant for merged cells. However, the last two apply to all cells. To
calculate them, we sum the width/height8 for the columns/rows of the cell.

• CELL_AREA#: The number of individual cells. For merged cells, this number is > 1.

• CELL_N_ROWS#: The number of rows that the cell covers. For merged cells, this num-
ber is > 1.

• CELL_N_COLS#: The number of columns that the cell covers. For merged cells, this
number is > 1.

• CELL_IS_VRT?: True, if the n_rows > n_cols.

• CELL_IS_HRZ?: True, if the n_rows < n_cols.

• CELL_HEIGHT#: Sum the widths of all columns the cell covers.

• CELL_WIDTH#: Sum the heights of all rows the cell covers.

4.3 CELL CLASSIFICATION

We use supervised learning techniques to train classification models that predict the lay-
out function of individual cells in a sheet. Therefore, we extract all the aforementioned
features for each annotated cell. Subsequently, given the features and the assigned labels,
we consider three different algorithms for classification, discussed in Section 4.3.2. We
attempt to find the optimum configuration for each algorithm. Therefore, we perform
under-sampling (Section 4.3.3), feature selection (Section 4.3.4), and parameter tuning
(Section 4.3.5).

For these experiments, we consider both annotated datasets9, from Chapter 3 with the
adjustments discussed in Section 3.4.1. Initially, we train classification models individ-
ually for each one of them. Later, we combine these two datasets, to test whether this
contributes to better classification performance. The results from the experimental eval-
uation of the trained models are presented in Section 4.3.6.

In the next sub-section, we begin by discussing the considered datasets. Specifically,
we provide the distribution of the annotation labels, this time in number of cells. Subse-
quently, we proceed by discussing the tuning and training procedure for the classification
models. The overall structure of our discussion is illustrated in Figure 4.3.

8In Excel, column widths are measured in units of 1/256th of a standard font character width. While row
heights are measured in points.

9Hereinafter, we refer to the annotated samples from Enron and Fuse as datasets, in order to avoid confu-
sion with the sub-samples discussed in Section 4.3.3

4.3 Cell Classification 63

Training
Datasets

Section 4.3.1

Classification
Algorithms

Section 4.3.2

Optimum
Sampling

Section 4.3.3

Feature
Selection

Section 4.3.4

Tuning &
Evaluation

Section 4.3.5

Classification
Datasets

Section 4.3.1

Classification
Algorithms

Section 4.3.2

Optimum
Sampling

Section 4.3.3

Feature
Selection

Section 4.3.4

Parameter
Tuning

Section 4.3.5

Classification
Evaluation

Section 4.3.6

Figure 4.3: Training Cell Classifiers

4.3.1 Classification Datasets

In Chapter 3, we analyze two datasets, one extracted from the Enron corpus and the other
from the Fuse corpus. We consider both of them for supervised learning. However, as
discussed in Section 3.4.1, we exclude a small number of annotated sheets. Specifically,
both datasets contain sheets that are outside of this thesis’ scope. In addition to this, we
omit four outlier sheets, one from Fuse and three from Enron. They contain an exception-
ally high number (≥ 34) of tables. Thus, there is a risk that these sheets bias the overall
approach.

Note, as shown in Appendix A, these omissions do not alter the findings from Chapter 3.
After all, we exclude only 40 files from the annotated Enron dataset, bringing the number
of considered sheets to 814. For the annotated Fuse dataset, we omit only 10 files, leaving
274 for experimental evaluation.

In Tables 4.1 and Tables 4.2 we provide the distribution of annotation labels in number
of cells, respectively for Enron and Fuse dataset. It is clear that Data cells dominate in
both datasets. This creates a strong imbalance, which can affect the supervised learning
process [122]. One of the typical ways to tackle imbalance is to randomly under-sample
the majority class [122]. In Section 4.3.3 we have experimented with different sample
sizes, in order to determine the optimal one for each classification algorithm.

Table 4.1: Cell Counts per Annotation Label in Enron Dataset

Data Other Header Derived GHead Title Note
1.3M 69.2K 15.1K 13.0K 1.7K 0.9K 0.8K

92.60% 5.08% 1.10% 0.96% 0.13% 0.07% 0.06%

Table 4.2: Cell Counts per Annotation Label in Fuse Dataset

Data Other Header Derived GHead Note Title
1.0M 32.5K 5.4K 4.4K 1.4K 0.5K 0.3K

95.75% 3.11% 0.51% 0.42% 0.13% 0.04% 0.03%

Note, in the subsequent sections, we discuss these two datasets separately. Specifically,
we tune, train, and evaluate classification models for each one of them. Nevertheless, at
the end of this procedure (in Section 4.3.6), we provide the best classification results for
the combined dataset, as well.

Furthermore, cells annotated as Other require special treatment. First, we notice that there
is no label equivalent to Other from related work. While, for the remaining six labels, we

64 Chapter 4 Layout Analysis

can find similar notions. Second, we observe that this label is very versatile. Ultimately,
this variety affects the classification accuracy. Thus, we have trained classifiers with and
without Other cells. This allows a more direct comparison with related work. As well as,
it provides the classification accuracy for the remaining labels, independently of Other.
The experiments with six labels are discussed in all the subsequent sections. However,
those with seven labels are only discussed in Section 4.3.6. Regardless, the training pro-
cedure remains the same, for both cases.

4.3.2 Classifiers and Assessment Methods

Here, we discuss the classification algorithms used throughout the Sections 4.3.3 - 4.3.6.
Additionally, we define the methods and measures used for assessing the performance
of the classification models.

Classifiers To train models for layout inference, we consider three well-known clas-
sification algorithms. We utilize the implementations from the Python library scikit-
learn [101]. Concretely, we experiment with Random Forest, which is an ensemble learning
method [24]. In simple terms, Random Forest constructs multiple decision trees and sub-
sequently combines their output to make the final decision (prediction). In addition, we
use Logistic Regression, which models the probabilities for the classes based on the given
instances and features [21]. Finally, we consider support-vector machines (SVMs), which
outputs maximum-margin hyperplanes that optimally separate the given instances in
high-dimensional space [21]. However, traditional SVMs can not handle large datasets,
i.e., such as the ones considered by this thesis. Instead, we use the SGDClassifier from
scikit-learn, which “implements regularized linear models with stochastic gradient de-
scent (SGD)” [101]. We use hinge as loss function, which is the same loss function as for
LinearSVM. In this way, we get an efficient approximation of traditional SVMs, on our
large datasets of annotated cells.

Cross-Validation To evaluate the performance of the trained models, we use k-fold
cross-validation [132]. Each iteration we test on one of the folds, while the rest (k − 1)
are used for training. We use either k = 5 or k = 10 folds, depending on the experiment.
This is explicitly stated in the following sections.

Note, cells from an annotated sheet can either be used for training or for testing, but not
simultaneously for both. This means, for cross-validation we partition by sheet, i.e., all
cells of a sheet go to only one of the folds. As pointed out by [11], this method allows
testing on unseen examples. However, we go one step further, by additionally balancing
the number of multi- and single-table sheets per fold. In this way, we ensure that folds
have a similar composition. These two steps, partitioning by sheet and balancing by
tables (single/multi), lead to stronger models that are able to generalize better.

Feature Scaling The Logistic Regression and SGDClassifier are sensitive to the scale dif-
ferences in the training features. Therefore, it is common practice to bring these features
under the same scale [63]. Here, we perform standardization, which results in features
having zero mean (µ = 0) and unit variance (σ = 1).

Moreover, to avoid information leakage [80], we scale independently for each iteration
(fold) of the cross-validation. Concretely, we use StandardScaler from scikit-learn. We fit a
scaler on the (k−1) folds reserved for training. Then we use this scaler (i.e., the discovered
parameters) to transform both training and testing folds.

4.3 Cell Classification 65

Under-Sampling As noted in Section 4.3.1, one reason to under-sample is the con-
siderable imbalance in annotated datasets. Another reason is to reduce computational
overhead. Although the considered algorithms can handle a large number of training
instances, it is always more efficient to work with smaller datasets. Ultimately, under-
sampling allows us to run more experiments and potentially finding better models.

For the under-sampling step, we follow the same logic as for feature scaling. Every itera-
tion of the cross-validation, we under-sample from the (k− 1) folds reserved for training.
However, we use all instances from the test fold to evaluate the model. Therefore, even
though we train in the under-sampled dataset, we always test on the whole dataset.

Notice that we first perform under-sampling and then we proceed with feature scaling.
Intuitively, we need to fit the scaler on the dataset (i.e., the under-sample) used for train-
ing. Therefore, under-sampling should precede feature scaling.

Performance Metrics To measure the performance of the classification models, we con-
sider several standard metrics. For the most part, in the subsequent sections, we report
the results using the F1-score (also known as F-measure) [132]. This score is defined as
the harmonic mean of Precision and Recall [132]. We report the F1-score for the individual
classes and overall. For the latter, we consider two variations: the Weighted-F1 and the
Macro-F1. In both cases, the overall F1-score is calculated by averaging the scores from
the individual classes. However, in the first case, the average is weighted by the number
of instances per class. While in the second case the average is not weighted. Finally, in
Section 4.3.6, we provide detailed results for the best models. This includes the F1-score
for the individual classes.

4.3.3 Optimum Under-Sampling

As pointed out in Section 4.3.1, both datasets are severely imbalanced. Therefore, in
this section, we attempt to under-sample the datasets, in order to find a more favorable
ratio between the annotation labels. Additionally, under-sampling removes some of the
computational overhead, since the algorithms process a smaller number of instances. The
experiments discussed below apply only to six labels. Cells labeled as Other, are omitted
from the datasets. Nevertheless, we report results for seven labels in Section 4.3.6.

In this section, we use the RandomUnderSampler from scikit-learn [101]. This implemen-
tation draws random samples with replacement. As the name suggests, these samples
are always smaller than the original dataset. Concretely, we perform focused under-
sampling for Data, i.e., the majority class. Therefore, for the other five classes, we keep
all the instances. While, for Data we experiment with sampling sizes in the range [15K −
240K], gradually increasing at each step by 15K.

We run the experiments with the classification algorithms, discussed in Section 4.3.2.
We keep the default values for the parameters of these algorithms, as specified in scikit-
learn v0.22.1. However, for Random Forest we additionally run experiments setting the
bootstrap parameter to false. We consider this alternative configuration since the Ran-
domUnderSampler already performs bootstrapping (i.e., random sampling with replace-
ment). Therefore, in the end, we test four classifiers: Random Forest with bootstrap =
true (RF_BT), Random Forest with bootstrap = false (RF_BF), Logistic Regression (LOG),
and SGDClassifier with hinge as loss function (SGD).

At each step (i.e., sampling size) we perform 5-fold cross-validation, to assess the perfor-
mance of the classifiers. This process is sketched with pseudocode in Algorithm 4.1, lines

66 Chapter 4 Layout Analysis

Algorithm 4.1: Finding the Optimum Under-Sample Size
Input: k : number of folds, r : number of sampling rounds, start : minimum size for sampling , end :

maximum size for sampling, step : amount to increase sampling size, annotations : feature vectors for
annotated cells, classifier : RF_BT, RF_BF, LOG, or SGD

Output: hof : the hall of fame, i.e., the optimum sampling size with its averaged Macro-F1 and Weighted-F1
1 begin
2 k ← 5; r ← 3;
3 start← 15000; end 240000; step← 15000;
4 size← start;
5 hof ← null ;
6 while size ≤ end do
7 macros← initializeArray(r) ; // array of size r to store Macro-F1 per sampling round
8 weighted← initializeArray(r) ; // same as above for Weighted-F1
9 for i ∈ {1, ..., r} do

10 folds← createCrossValidationFolds(k, annotations) ; // partition by sheet
11 results← ∅ ; // collect cross-validation predictions
12 for j ∈ {1, ..., k} do
13 testCells← folds[j];
14 trainCells← getTraningCells(folds, j) ; // merge the other k-1 folds for testing
15 trainSample← getRandomUnderSample(trainCells, size);
16 results← results ∪ trainAndPredict(classifier, trainSample, testCells)

17 macros[i]← calculateMacroF1(results, annotations);
18 weighted[i]← calculateWeightedF1(results, annotations);

19 avg_m← calculateMean(macros);
20 avg_w ← calculateMean(weighted);
21 hof ← updateHallOfFame(size, avg_m, avg_w) ; // update if current results are better
22 size← size+ step

23 return hof

10 − 18. Note, at line 15, sampling occurs for each iteration of the cross-validation. We
sample from the training folds while testing on the complete (i.e., not re-sampled) left-
out fold. At the end of a cross-validation run, we calculate Macro-F1 and Weighted-F1 to
measure the classification performance.

Furthermore, to ensure statistical significance we perform the aforementioned process
three times, per sampling size. This can be seen in lines 9 − 22, of Algorithm 4.1. Essen-
tially, we run three distinct 5-fold cross-validations, with unique seed for randomization.
We average Macro-F1 and Weighted-F1 from the three runs, as illustrated in lines 19−20.

15k 60k 105k 150k 195k 240k
Sample Size

0.4

0.47

0.54

0.61

0.68

M
ea

n

RF_BT RF_BF LOG SGD

(a) Average Macro-F1 per Sampling Size

15k 60k 105k 150k 195k 240k
Sample Size

0.954

0.962

0.97

0.978

0.986

M
ea

n

RF_BT RF_BF LOG SGD

(b) Average Weighted-F1 per Sampling Size

Figure 4.4: Analysis of Sampling Sizes for Enron

In Figure 4.4 and Figure 4.5, we respectively show the results for Enron and Fuse dataset.
We plot the average Macro-F1 and Weighted-F1 per sampling size (step), for each algo-
rithm. In both datasets, we observe that the general trend is positive, as the sampling
size increases. Arguably, for small sizes, there is a loss of information. In other terms, it
is useful to have some degree of imbalance in the datasets.

4.3 Cell Classification 67

15k 60k 105k 150k 195k 240k
Sample Size

0.45

0.52

0.59

0.66

0.73
M

ea
n

RF_BT RF_BF LOG SGD

(a) Average Macro-F1 per Sampling Size

15k 60k 105k 150k 195k 240k
Sample Size

0.977

0.981

0.985

0.989

0.993

M
ea

n

RF_BT RF_BF LOG SGD

(b) Average Weighted-F1 per Sampling Size

Figure 4.5: Analysis of Sampling Sizes for Fuse

We select the optimum sampling size based on both Macro-F1 and Weighted-F1 (see Al-
gorithm 4.1, line 21). For this, we rank the resulting scores, for each metric. Then, we
select the sampling size that provides the best combination of ranks. In cases where there
is no clear winner, we favor Macro-F1 over Weighted-F1. Essentially, we prioritize sam-
pling sizes that yield good scores across all classes. Table 4.3 and Table 4.4 display the
selected sampling sizes per dataset and algorithm. These are accompanied by the respec-
tive values for the performance metrics.

Table 4.3: Enron Optimal Sampling

Classifier Sample Size Macro-F1 Weighted-F1
RF_BT 240K 0.669 0.985
RF_BF 210K 0.677 0.985
LOG 225K 0.590 0.983
SGD 240K 0.598 0.983

Table 4.4: Fuse Optimal Sampling

Classifier Sample Size Macro-F1 Weighted-F1
RF_BT 180K 0.721 0.994
RF_BF 240K 0.706 0.992
LOG 225K 0.607 0.990
SGD 225K 0.635 0.992

4.3.4 Feature Selection

As outlined in Section 4.3.3, we have experimentally determined the optimum under-
sampling size per algorithm and dataset. In this section, we proceed with feature selec-
tion. The goal of this step is to remove features that are not informative or even noisy [42].
This has the potential to improve the performance of the trained models. Moreover, with
a smaller number of features, training and testing become faster.

68 Chapter 4 Layout Analysis

In total, we have considered 159 distinct features for cell classification, which are thor-
oughly discussed in Section 4.2. Below, we outline the steps we took to select the most
relevant. We begin with binarization, a pre-processing step, and then we apply feature
selection methods.

Binarization The binarization process (also known as one-hot-encoding) replaces the cat-
egorical features with multiple Boolean features. Specifically, it creates a new Boolean
feature for every distinct categorical value. It achieves this by identifying all instances
in the dataset that have the selected (categorical) value. For these instances, the corre-
sponding Boolean feature is set to true. For the remaining instances, which do not have
the selected value, the Boolean feature is set to false. This process is repeated until all
categorical values are encoded into distinct Boolean features.

Binarization is required for Logistic Regression and SGDClassifier. These linear mod-
els do not interpret correctly categorical and ordinal features. For this reason, we con-
vert them to Boolean features, which are more appropriate. Additionally, binarization
makes feature selection more accurate. It is easier to detect the relevant categorical val-
ues, once they are treated separately. We find that this is useful for cell style features
(see Section 4.2.2). Excel provides many styling options, but the majority of them are not
frequently used. We can easily test this, after binarization.

Concretely, we have binarized all the categorical features describing the cell style (see
Section 4.2.2). We apply binarization on the feature REFERENCE_TYPE, from Section 4.2.4.
Lastly, we binarize categorical features relating to the content type of the cell and its
neighbors (refer to Section 4.2.1 and Section 4.2.5).

After binarization, we get 256 and 237 features, respectively for Enron and Fuse dataset.
Note, the numbers differ because the values for the styling features differ. We record only
those styling options that occur in the annotated sheets. We observe that Enron sheets are
more diverse when it comes to style. Therefore, the respective (categorical) style features
have a larger number of distinct values.

Eliminating Features by Frequency of Occurrence We initially eliminate Boolean fea-
tures based on how often they occur, i.e., we count the instances for which they are true.
We perform this analysis on the sheet and cell granularity, separately for Enron and Fuse
dataset. Specifically, we remove Boolean features that occur in ≤ 10 sheets. This is mo-
tivated by the fact that in Section 4.3.6 we use 10-fold cross-validation to do the final
evaluation of the classification models. Therefore, assuming uniform distribution, we re-
quire that at least 1 sheet per fold exhibits a specific characteristic (feature). Additionally,
we eliminate Boolean features that occur for ≤ 0.01% of the cells. We set a low threshold
considering that some classes have a small number of instances, e.g., Title and Note. All
in all, the above-mentioned operations reduced the number of features to 204 and 179,
respectively for Enron and Fuse dataset.

Eliminating with RFECV Subsequently, we select the most relevant features using the
RFECV option from the scikit-learn library [101]. The RFECV (Recursive Feature Elimi-
nation and Cross-Validation) determines the optimum set of features for a given classi-
fication algorithm. Every iteration, RFECV eliminates the specified number of features,
among those having the lowest importance10. Then, it uses cross-validation to train/test

10The feature importance is calculated by the classification algorithms, rather than RFECV. Each algorithm
has a different scoring mechanism

4.3 Cell Classification 69

a classifier on the remaining features. Following multiple iterations, RFECV outputs the
feature set giving the highest classification performance.

We run RFECV once per classification algorithm and annotated dataset. We set to 10
the number of features to be eliminated every iteration. Moreover, the same as in Sec-
tion 4.3.3, we perform 5-fold cross-validation to test the classification performance. How-
ever, in this case, we use only Macro-F1 to measure the performance. RFECV does not
allow multiple classification metrics.

Note, in Section 4.3.3 we determined the optimum under-sample size for each algorithm
and dataset. Here, we make use of these sizes. Specifically, we prepare in advance the
under-samples used during the RFECV cross-validations. For this, we had to create a
custom iterable, which we pass to the cv parameter of the RFECV object.

Table 4.5: Number of Selected Features per Algorithm for Classification with 6 Labels

Dataset Nr. Features
Before

Nr. Selected Features
RF_BT RF_BF LOG SGD

Enron 204 154 64 184 164
Fuse 179 99 129 79 89

Feature Selection Results Table 4.5 provides the results from the RFECV runs, for each
algorithm. In general, we notice that the number of selected features tends to be lower
for the Fuse dataset, compared to the Enron dataset.

In addition, we have determined the most relevant features, overall for the two datasets.
These are shown in Table 4.6 and Table 4.7, respectively for Enron and Fuse. Note, the
features are not listed in order of importance. Instead, we grouped them thematically.
Moreover, many of these features are binarized. For those relating to the content type,
we use the following abbreviations: string (S), number (N), out (*), empty (∅).

Table 4.6: Top 20 Features for Enron

Enron Dataset
CONTENT_TYPE=N?
CONTENT_TYPE=S? IS_FLOAT_VAL?

TL_CONT_TYPE=*?
T_CONT_TYPE=*?
T_CONT_TYPE=N?
TR_CONT_TYPE=*?
L_CONT_TYPE=*?
R_CONT_TYPE=*?
R_CONT_TYPE=N?
BL_CONT_TYPE=*?
B_CONT_TYPE=*?
B_CONT_TYPE=∅?

TR_MATCH_TYPE?
R_MATCH_TYPE?
B_MATCH_TYPE?

T_MATCH_STYLE?
BL_MATCH_STYLE?
B_MATCH_STYLE?

Table 4.7: Top 20 Features for Fuse

Fuse Dataset
CONTENT_TYPE=N?
CONTENT_TYPE=S? IS_FLOAT_VAL?

TL_CONT_TYPE=*?
TL_CONT_TYPE=S?
T_CONT_TYPE=S?
L_CONT_TYPE=S?
L_CONT_TYPE=N?
R_CONT_TYPE=S?
R_CONT_TYPE=N?
BL_CONT_TYPE=*?
B_CONT_TYPE=∅?

TL_MATCH_TYPE?
T_MATCH_TYPE?
R_MATCH_TYPE?

TR_MATCH_STYLE?
BL_MATCH_STYLE?
B_MATCH_STYLE?

HRZ_ALIGN=CENTER?
IS_BOLD?

In Table 4.6 and Table 4.7, we observe that most of the features describe the cell neighbor-
hood (see Section 4.2.5). In addition, the majority of the top 20 relate to the content type,
of the cell itself or that of the neighbors. There are fewer features describing the style.

70 Chapter 4 Layout Analysis

The procedure to determine the aforementioned top 20 features goes as follows. We con-
sider the results from RFECV. Namely, we take into account the individual set of features
selected for RF_BT , LOG, and SGD. We omit RF_BF since the classification model
is very similar to RF_BT . Subsequently, for each dataset, we find the features in com-
mon, which were selected for all three considered algorithms. Then, we study the feature
rankings (importances). The lower is the rank number, the higher is the importance of
a feature. Thus, we can sum the ranks from the individual algorithms, to determine the
overall importance of a feature. The lower the sum, the better is the overall importance.

4.3.5 Parameter Tuning

In the previous section, we determined the optimum sampling size and number of fea-
tures, per algorithm and dataset. Here, we proceed to tune the parameters of the in-
dividual algorithms. This step has the potential to improve further the classification
performance. Notice that in this section, the same as in the previous ones, we discuss
experiments for 6 annotation labels.

We make use of GridSearchCV, as provided by the Python library scikit-learn [101]. This
implementation performs parameter tuning, via exhaustive search. First, for each one of
the considered algorithms, we select the parameters to tune. Subsequently, we specify
the list (range) of values to be tested for the selected parameters. Then, GridSearchCV will
try all the combinations. Specifically, it runs cross-validation to evaluate the performance
of each unique combination of parameter values. Here, we use two scores to measure the
performance: Macro_F1 and Weighted_F1. As in Section 4.3.3, we rank the results from
GridSearchCV, to determine the best combination of parameter values.

We run the aforementioned experiments per algorithm and dataset. Note, we fix the
sampling size and feature set, to what was experimentally determined in the previous
sections. Additionally, we set the number of folds to k = 5, for cross-validation during the
GridSearchCV run. Then, for each algorithm, we tune the specific parameters discussed
below. For the Random Forest classifiers, namelyRF_BT andRF_BF , we explore various
combinations for the parameters n_estimators, criterion, and max_features. For the other
two algorithms, Logistic Regression and SGDClassifier, we tune only the regularization
parameter. Table 4.8 summarizes the results from these experiments.

Table 4.8: Optimal Parameters per Algorithm for Classification with 6 Labels

Classifier Enron Fuse

RF_BT
n_estimators=100,
criterion=‘entropy’,
max_features=‘sqrt’

n_estimators=200,
criterion=‘entropy’,
max_features=‘sqrt’

RF_BF
n_estimators=400,
criterion=‘entropy’,
max_features=‘log2’

n_estimators=50,
criterion=‘gini’,

max_features=‘sqrt’

LOG C=0.01 C=0.01
SGD alpha=0.0001 alpha=0.0005

4.3 Cell Classification 71

4.3.6 Classification Evaluation

In this section, we report the results from the experimental evaluation of the optimized
classifiers. As described in previous sections, we already determined the optimum under-
sampling size (Section 4.3.3), set of features (Section 4.3.4), and parameter values (Section
4.3.5). Here, we train/test using these optimizations. Specifically, for the final assess-
ment, we run three distinct 10-fold cross-validations per algorithm and dataset. These
multiple cross-validations, with unique seed, ensure statistical significance. In the fol-
lowing sections, for each algorithm, we report the averaged results from the three runs.

The subsequent parts are organized as follows. We begin our discussion with the classifi-
cation results from the experimental evaluation with 6 labels. Then, we discuss the results
for 7 labels. We show that when including the label Other the classification performance
decreases overall and individually for the remaining 6 labels. Subsequently, we combine
the two annotated datasets, from Enron and Fuse. Indeed, we observe that training and
testing in the combined dataset has a positive effect on classification performance. We
conclude by comparing the best classification results from our experimental evaluation
with those from related work.

Results for Six Labels

Using the pre-determined sampling sizes (Tables 4.3 and 4.4), feature sets (Table 4.5), and
parameter values (Table 4.8) we evaluate the classification algorithms on 6 labels. As
mentioned previously, for this final assessment we execute three distinct 10-fold cross-
validation runs. The results discussed below are the averages of the three runs.

Moreover, we perform a few additional experiments exclusively with Random Forest (RF)
classifiers: RF_BT (bootstrap = true) and RF_BF (bootstrap = false). The parameter
values and selected features remain the same, i.e., the ones that were determined in the
previous sections. The difference is in the way we run the cross-validations for the final
assessment. Concretely, for the additional experiments, we use the complete training
folds (i.e., all training instances), instead of the under-samples.

The results are shown in Table 4.9 and 4.10, separately for Enron and Fuse dataset. We
measure the performance of the classifiers using the F1-score, per class and overall (i.e.,
Macro-F1). The best scores from each column are highlighted with bold font.

Overall, we get better classification performance in the Fuse dataset compared to the
Enron dataset. This can be seen when we compare the Marco_F1 values from Tables 4.9
and 4.10. As discussed in Section 3.3.2, in the Fuse dataset we find more regular sheet
layout compared to the Enron dataset. This seems to play a role when it comes to cell
classification. In other terms, it is easier for the classifiers to identify frequent patterns.

We also compare the performance for the individual classes. For the Fuse dataset, the
trained models achieve higher F1-score for Data, Derived, Title, and Note. In particular,
for the latter class, the difference is very evident. Nevertheless, for Header and GHead the
F1-Scores are higher in the Enron dataset.

Moreover, we observe that the Random Forest classifiers, RF_BT and RF_BF , outper-
form the rest by a significant margin. They achieve higher F1-Score for all classes, in both
datasets. The only exception is in Table 4.10. There, the SGDClassifier has the highest
score for Derived class, when down-sampling (Sample) is used for training.

72 Chapter 4 Layout Analysis

Table 4.9: F1-Score per Class for Enron with 6 Labels

Classifier Data Header Derived Title Note GHead Macro_F1

Sa
m

pl
e

RF_BT 0.993 0.862 0.544 0.689 0.497 0.484 0.678
RF_BF 0.993 0.848 0.581 0.683 0.504 0.482 0.682
LOG 0.992 0.746 0.559 0.606 0.413 0.336 0.606
SGD 0.992 0.751 0.549 0.550 0.310 0.332 0.581

A
ll RF_BT 0.993 0.895 0.494 0.698 0.476 0.430 0.664

RF_BF* 0.995 0.892 0.588 0.690 0.484 0.443 0.682

Diff BT +0.000 +0.033 -0.050 +0.009 -0.021 -0.054 -0.014
Diff BF +0.002 +0.044 +0.007 +0.007 -0.020 -0.039 +0.000

Table 4.10: F1-Score per Class for Fuse with 6 Labels

Classifier Data Header Derived Title Note GHead Macro_F1

Sa
m

pl
e

RF_BT 0.997 0.812 0.610 0.785 0.753 0.282 0.707
RF_BF 0.997 0.820 0.636 0.767 0.760 0.273 0.709
LOG 0.996 0.720 0.562 0.718 0.522 0.158 0.613
SGD 0.997 0.710 0.645 0.529 0.591 0.155 0.605

A
ll RF_BT* 0.997 0.840 0.675 0.760 0.756 0.322 0.725

RF_BF 0.997 0.823 0.613 0.764 0.749 0.182 0.688

Diff BT +0.000 +0.028 +0.065 -0.025 -0.003 +0.040 +0.018
Diff BF +0.000 +0.003 -0.023 -0.003 -0.011 -0.091 -0.021

Furthermore, we capture changes in F1-scores, during the final assessment, when dif-
ferent strategies are employed for training. Specifically, we compare training on All in-
stances versus training on Samples (short for down-sampling). As shown in Table 4.9 and
4.10, we calculate the difference (All − Sample) in F1-scores for the respective Random
Forest classifiers (namely for the RF_BTs and RF_BFs). In Table 4.9, for the Enron
dataset, we notice that the best scores for Notes and GHeads (GroupHeaders) occur when
down-sampling is used. Nevertheless, the other classes get better scores when training
is performed on the complete cross-validation folds. In particular, we notice significant
improvement for the Header class. In Table 4.10, for the Fuse dataset, we observe that the
performance ofRF_BF decreases when All instances are used for training. However, the
opposite is true for the RF_BT classifier. In fact, with this classifier, we see substantial
improvements for the Header, Derived, and GHead class. At the same time, the losses for
the other classes are small or insignificant.

Based on the above discussion, we find that is more beneficial to perform training on All
instances. Note that here we refer only to training during the final assessment. We still
determine the optimum configuration (i.e., feature selection and parameter tuning) using
under-samples. This is still useful since it reduces the computational overhead.

4.3 Cell Classification 73

We emphasize that F1-scores for Header and Data are better when using all instances for
training. This is favorable since these two classes are crucial for tasks that follow lay-
out analysis, such as table identification (Chapter 6) and information extraction (Chapter
7). Therefore, for Enron, we choose All RF_BF as the best model since it additionally
achieves a good Macro_F1 score. While, for Fuse, we select All RF_BT . In Table 4.9 and
4.10, we have marked these classifiers with the star character ‘*’.

Finally, we observe that the selected classifiers yield F1-scores that emulate the Agree-
ment Ratios from Table 3.1. In fact, the classifiers are able to perform similar or better
than human annotators. Moreover, their classification performance is comparable to re-
lated work, as discussed in Section 4.3.6

Results for Seven Labels

In this section, we discuss the experimental evaluation with 7 labels, i.e., we addition-
ally include the label Other. We consider only Random Forest (RF) classifiers, since they
outperformed the rest by a significant margin, as was shown in the previous section.

To determine the best configuration for the considered classifiers, RF_BT (bootstrap =
true) and RF_BF (bootstrap = false), once more we use the procedure discussed in
the previous sections. Initially, we identify an optimum sampling size, then we select
the best features, and finally, we tune the parameters. The resulting configurations are
provided in Table 4.11. With regard to the optimum sampling size, we search in the range
[150K− 300K]. We increased the lower bound since experiments in Section 4.3.3 showed
that lower sizes are not beneficial. Moreover, we increased the upper bound, to account
for the additional cells labeled as Other.

Table 4.11: Optimal Configuration for 7 Labels

Classifier Parameters Nr. Selected
Features

Sampling
Size

En
ro

n RF_BT
n_estimators=400, criterion=‘entropy’,

max_features=‘sqrt’ 104 285K

RF_BF
n_estimators=50, criterion=‘gini’,

max_features=‘sqrt’ 204 255K

Fu
se

RF_BT
n_estimators=100, criterion=‘gini’,

max_features=‘log2’ 79 240K

RF_BF
n_estimators=100, criterion=‘entropy’,

max_features=‘sqrt’ 139 255K

For the final assessment, we again use three distinct 10-fold cross-validations and average
the results. Moreover, we skip under-sampling and instead use all instances for training.
As discussed in the previous section, the later is favorable since it yields better scores for
most cases. In particular, it improves the scores for Header and Data classes, which play a
crucial role during the table detection task.

In the first two rows of Table 4.12 and 4.13, we list the classification results for 7 labels,
respectively for Enron and Fuse dataset. Again, we highlight the highest scores using

74 Chapter 4 Layout Analysis

bold font. We observe that there is an evident difference in F1-scores when it comes to the
class Other. In the Enron dataset, the classifiers are able to distinguish this class from the
rest. In fact, the F1-score for Other is higher than that of Title, Note, and GHead. However,
in the Fuse dataset, the classifiers perform poorly for the class Other. A closer look at the
confusion matrices, from the distinct cross-validation runs, revealed that cells labeled as
Other are almost always misclassified as Data. Furthermore, 96% of the misclassifications
occur in 4 files, which contain a large number of Other cells. Therefore, the main reasons
for these results seem to be errors and inconsistencies during the annotation phase.

Table 4.12: F1-Score per Class for Enron with 7 Labels

Classifier Data Header Deriv Title Note GHead Other M_F1

Se
ve

n RF_BT* 0.977 0.848 0.547 0.608 0.339 0.385 0.624 0.618
RF_BF 0.975 0.849 0.461 0.610 0.333 0.371 0.591 0.599

Si
x RF_BT 0.993 0.895 0.494 0.698 0.476 0.430 − 0.664

RF_BF 0.995 0.892 0.588 0.690 0.484 0.443 − 0.682

Diff BT -0.016 -0.047 +0.053 -0.090 -0.137 -0.045 − -0.046
Diff BF -0.029 -0.043 -0.127 -0.080 -0.151 -0.072 − -0.083

Table 4.13: F1-Score per for Fuse with 7 Labels

Classifier Data Header Deriv Title Note GHead Other M_F1

Se
ve

n RF_BT 0.982 0.827 0.634 0.705 0.671 0.321 0.005 0.592
RF_BF* 0.982 0.843 0.603 0.699 0.685 0.112 0.006 0.561

Si
x RF_BT 0.997 0.840 0.675 0.760 0.756 0.322 − 0.725

RF_BF 0.997 0.823 0.613 0.764 0.749 0.182 − 0.688

Diff BT -0.015 -0.013 -0.041 -0.055 -0.085 -0.001 − -0.133
Diff BF -0.015 +0.020 -0.010 -0.065 -0.064 -0.070 − -0.127

Moreover, in this section, we study how including the label Other impacts the classifi-
cation performance for the rest of the labels. Thus, we consider the models from the
previous section, where we assessed the performance for 6 labels while training on all
instances. We calculate the difference in F1-score between the respective classifiers (Seven
- Six), for the corresponding classes (i.e., skipping Other). The results are listed in the
bottom rows of Table 4.12 and 4.13.

With few exceptions, the performance of the remaining 6 classes is negatively impacted
by the Other class. For both datasets, Note and Title classes are affected the most. How-
ever, the negative impact is smaller in the Fuse dataset compared to the Enron dataset.

Finally, the same as in the previous section, we choose the best model for each dataset.
Clearly, based on the Macro_F1 (shortly denoted as M_F1), the RF_BT classifiers perform
the best for 7 labels. However, for the Fuse dataset, RF_BT achieves as lower score than
RF_BF, when it comes to Header class. For Deriv (short for Derived), Title, and Note the

4.3 Cell Classification 75

difference is not significant. The main concern is with GHead, but this class is not as
crucial as the Header class, with regard to table detection (refer to Chapter 6). Therefore,
in the end, we favor the RF_BF for the Fuse dataset. In Table 4.12 and 4.13, we use the star
character ‘*’ to denote the selected classifiers. All in all, we consider their classification
results in the subsequent sections.

Results for Combined Dataset

In an attempt to improve the classification performance, we combine the two datasets
into one. We consider Random Forest (RF) classifiers, which proved to be the most per-
formant in the previous experiments. We examine once more two separate scenarios: 6
and 7 labels. For each scenario, we optimize and train the classifiers. First, we determine
the optimum configuration, and then we use three distinct 10-fold cross-validations to
perform the final assessment. The averaged scores from these runs are discussed below.

Note, we ensure that the cross-validation folds are balanced. Specifically, the Enron and
Fuse sheets are evenly distributed into the folds. This is in addition to balancing the
single- and multi-table sheets, which was mentioned in Section 4.3.2.

The following tables provide the results from our experimental evaluation. Although op-
timization and training are done on the combined dataset, the classification performance
is assessed separately for Enron and Fuse dataset. This allows us to compare with the best
models from the previous sections. We distinguish these models by marking them with
star character ‘*’. The other models, which are not marked, originate from the combined
dataset. Furthermore, we use Deriv as a short form for Derived. Similarly, we denote
Macro_F1 shortly as M_F1.

Table 4.14: Results for 6 Labels when Training on the Combined Dataset

Classifier Data Header Derived Title Note GHead M_F1

En
ro

n RF_BF 0.995 0.892 0.580 0.700 0.475 0.430 0.679
RF_BF* 0.995 0.892 0.588 0.690 0.484 0.443 0.682

Difference +0.000 +0.000 -0.008 +0.010 -0.009 -0.013 -0.003

Fu
se RF_BF 0.998 0.883 0.710 0.815 0.777 0.242 0.737

RF_BT* 0.997 0.840 0.675 0.760 0.756 0.322 0.725
Difference +0.001 +0.043 +0.035 +0.055 +0.021 -0.080 +0.012

In Table 4.14, we compare the classifiers for 6 labels. When we tested on the combined
dataset, RF_BF proved to be the most performant. Thus, in Table 4.14, we consider only
the results from this classifier to measure the difference to F1-scores from the previous
sections. For Enron, we observe that scores decrease for some classes, but not by a sig-
nificant margin. For Fuse, the results are much more positive. In fact, for the majority
of classes, we see gains of up to 5.5%. However, we also lose 8% for the GHead class.
Nevertheless, the gains for the rest of the classes outweigh the losses for the GHead class.

In Table 4.15, we present the results for 7 labels. In this case, the RF_BT classifier was
the most performant, for the combined dataset. When comparing with the results from
previous sections, we mostly observe gains. In the Enron dataset, the F1-scores increase

76 Chapter 4 Layout Analysis

Table 4.15: Results for 7 Labels when Training on the Combined Dataset

Classifier Data Header Deriv Title Note GHead Other M_F1

En
ro

n RF_BT 0.978 0.852 0.554 0.609 0.349 0.403 0.624 0.624
RF_BT* 0.977 0.848 0.547 0.608 0.339 0.385 0.624 0.618

Difference +0.001 +0.004 +0.007 +0.001 +0.010 +0.018 +0.000 +0.006

Fu
se RF_BT 0.982 0.863 0.730 0.718 0.692 0.161 0.019 0.595

RF_BF* 0.982 0.843 0.603 0.699 0.685 0.112 0.006 0.561
Difference +0.000 +0.020 +0.127 +0.019 +0.007 +0.049 +0.013 +0.034

for all the classes, with the exception of Other which, remains the same. In the Fuse
dataset, the gains are even more substantial. However, once more they come at the cost
of a low score for the GHead class.

Regardless, both for 6 and 7 labels, the general assessment is positive. Especially for the
Fuse dataset, the classifiers trained on the combined dataset, improve significantly the
overall performance. Therefore, we use these classification results to compare to related
work, in the following section. For completeness, below in Table 4.16, we additionally
report the configurations used to train the aforementioned classifiers (i.e., the most per-
formant ones for the combined dataset).

Table 4.16: Optimal Configurations for the Combined Dataset

Classifier Parameters Nr. Selected
Features

Sampling
Size

6
labels RF_BF

n_estimators=100, criterion=‘entropy’,
max_features=‘sqrt’ 189 435K

7
labels RF_BT

n_estimators=400, criterion=‘entropy’,
max_features=‘sqrt’ 149 405K

Comparison with Related Work

As discussed in Section 2.3.1 and Section 3.1, a one to one comparison with related work
is not possible. Specifically, there are substantial differences with regard to the annota-
tion and classification methodology. Nevertheless, for reference, in Table 4.17 we list the
results from Adelfio and Samet [11], and Chen et al [29]. In Table 4.18, we additionally
provide the best classification results from our experimental evaluation, both for 6 and 7
labels. Note, the results for Fuse 6, Fuse 7, and Enron 7 originate from models trained on
the combined dataset. However, the results for Enron 6 come from a model trained on
the distinct Enron dataset. As shown in Table 4.14, this model is slightly better than the
one trained on the combined dataset.

The work of Adelfio and Samet [11] and Chen et al [29] are the closest to this thesis since
they use machine learning for layout analysis. However, we define in total 7 labels, while

4.3 Cell Classification 77

the aforementioned works use respectively 6 and 4 labels. In Table 4.17, when possible,
we have mapped our labels to those from related work. Nevertheless, the definitions for
the mapped labels do not match exactly.

Yet, the most important difference from related work, is that they operate at the row level.
Concretely, they both use variations of the CRF (Conditional Random Field) algorithm to
predict the layout role of the individual rows in the sheet. Thus, in Table 4.17, the F1-
scores from related work, show their performance on the classified rows. In Table 4.18,
for our approach, we report the results for classified cells. For this reason, any direct
comparison between the results would not be sound.

Bringing our results to the row level comes with its own challenges. Most importantly,
the approach proposed in this thesis foresees heterogeneous rows, i.e., different cell labels
in a row. While the approaches proposed by related work assume that rows are always
homogeneous. Thus, any conversion of the results will not be complete or fair to one
side or the other. Instead, we compare with Adelfio and Samet in terms of classification
accuracy in tables, as discussed below and shown in Table 4.19.

Table 4.17: Best Classification Results (F1-scores) from Related Work

Data Header Derived Title Note GHead Other Macro_F1

Adelfio [11] 0.998 0.930 0.938 0.793 0.525 0.511 − 0.805
Chen [29] 0.994 0.774 − 0.774 0.834 − − 0.844

Table 4.18: Best Classification Results (F1-scores) from this Thesis

Data Header Derived Title Note GHead Other Macro_F1

Fuse 6 0.998 0.883 0.710 0.815 0.777 0.242 − 0.737
Fuse 7 0.982 0.863 0.730 0.718 0.692 0.161 0.019 0.595

Enron 6 0.995 0.892 0.588 0.690 0.484 0.443 − 0.682
Enron 7 0.978 0.852 0.554 0.609 0.349 0.403 0.624 0.624

Among other things, Adelfio and Samet [11] discuss in their paper the accuracy of their
approach at the table granularity. Specifically, they report the percentage of tables where
all rows were correctly classified (Table err = 0). Moreover, they discuss the percentage
of tables where at least Header and Data rows are predicted correctly (H&D err = 0).
In Table 4.19, we provide as well the values for these metrics, considering both Fuse and
Enron dataset. Nevertheless, we point out that Fuse is closer to the datasets used by [11]
since the annotated sheets were extracted from the Web. While Enron contains business
spreadsheets, which tend to be more complex than Web spreadsheets (see Section 3.3.2).

At first glance, the approach of Adelfio and Samet seems to outperform the one proposed
by this thesis. In other terms, for err = 0 our accuracy is always lower. Yet, when we
allow one incorrect prediction (i.e., misclassification), the results favor our approach. In
fact, Adelfio and Samet do not report results for err <= 1. In their case, a misclassified
row can alter the meaning of the table. However, in our case, an error means a single
misclassified cell. It is unlikely that one cell will prevent the correct detection and inter-
pretation of an entire table. Besides, it is even possible to correct some of these errors
with heuristics (refer to Chapter 5). Based on these arguments and the results below, we
can say that our approach is viable. We achieve considerably good performance on Fuse,
for both 6 and 7 labels. Moreover, the results for Enron 6 are satisfactory.

78 Chapter 4 Layout Analysis

Table 4.19: Comparing Classification Accuracy in Tables

Table err = 0 Table err <= 1 H&D err = 0 H&D err <= 1

Adelfio [11] 56.30% − 76.00% −

Fuse 6 52.40% 65.10% 66.70% 80.70%
Fuse 7 44.10% 62.10% 64.00% 78.00%

Enron 6 39.70% 54.50% 58.10% 70.80%
Enron 7 36.50% 51.80% 53.40% 66.60%

4.4 LAYOUT REGIONS

In this section, we outline another fundamental operation of the proposed approach. We
describe how classified cells of the same label are grouped into larger rectangular regions.
We refer to these larger structures as Layout Regions. As discussed in Chapter 6, these re-
gions help us to streamline the table identification process. It is much more intuitive to
work with collections of cells rather than with individual cells. In addition, the computa-
tional overhead decreases, since ultimately the approach handles a much smaller number
of elements.

In the following paragraphs, we define concepts that are later used to formulate a defini-
tion for the Layout Region itself. Moreover, we illustrate the process of creating Layout
Regions in Figures 4.6 and 4.7. For this, we partially reuse the example from Figure 4.1.

Below, we start with a definition for the sheet (in Microsoft Excel is known as worksheet).
The cells in a sheet are organized into rows and columns, ultimately forming a grid-like
structure. Therefore, the sheet can be encoded using a two-dimensional matrix.

Worksheet can be defined as an m-by-n matrix of cells, denoted asW . We can access a
cell in row i and column j asWi,j , such that 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Classified Cell is a cell that was assigned a label ` by a classifier, where ` ∈ {Data,
Header, Derived, T itle, Note, GHead, Other}. We use the function label(Wi,j), to re-
trieve the classification result (i.e., predicted label) for a given cell. Note, this function is
not defined for empty or hidden cells.

As stated at the beginning of this section, our goal is to group classified cells into larger
coherent structures. We start at the row level by bringing together consecutive cells of
the same label. In this way, we create coherent row groups, which we refer to as Label
Intervals. Note, we operate at the row level (from left to right), since we expect the table
headers to be on the top rows, i.e., they expand horizontally. As mentioned in Section 3.4,
transposed tables with vertical headers are not within the scope of this thesis.

Label Interval is a submatrixW[i; j, j′] of the worksheetW that holds classified cells of
the same label. LetWi,j′′ be any cell in the interval, s.t. j ≤ j′′ ≤ j′. Then, we always get
label(Wi,j′′) = `, i.e., the same label for all cells in this interval. Furthermore, we opt for
maximal intervals. Therefore, the following condition must hold: label(Wi,j−1) 6= ` and
label(Wi,j′+1) 6= `.

In Figure 4.6 we illustrate the creation of Layout Intervals. Figure 4.6.a provides an ex-
ample annotated sheet. While Figure 4.6.b shows the corresponding classified sheet. We

4.4 Layout Regions 79

I1
I2

I3I4 I5
I6
I7

I8

I9 I10 I11 I12
I13 I14

I15
I16 I17
I18 I19
I20 I21
I22

R1 R2

R3 R4

R5

R6 R7

R8 R9
R10

R1 R2

R3 R4 R5 R6R7
R8

R9 R10

R11 R12
R13

H
H

HH H H
H H

H!
H! D D D D
D D D D D D
G
D D D D D D
D D D D D D
B B B B B B

N

H
H

HH H H
H H

G
D D D D D
D D D D D D
G
D D D D D D
D D D D D D
B B B B B B

N

(a) Annotated Cells

I1
I2

I3I4 I5
I6
I7

I8

I9 I10 I11 I12
I13 I14

I15
I16 I17
I18 I19
I20 I21
I22

R1 R2

R3 R4

R5

R6 R7

R8 R9
R10

R1 R2

R3 R4 R5 R6R7
R8

R9 R10

R11 R12
R13

H
H

HH H H
H H

H!
H! D D D D
D D D D D D
G
D D D D D D
D D D D D D
B B B B B B

N

H
H

HH H H
H H

G
D D D D D
D D D D D D
G
D D D D D D
D D D D D D
B B B B B B

N

(b) Classified Cells

I1
I2

I3I4 I5
I6
I7

I8

I9 I10 I11 I12
I13 I14

I15
I16 I17
I18 I19
I20 I21
I22

R1 R2

R3 R4

R5

R6 R7

R8 R9
R10

R1 R2

R3 R4 R5 R6R7
R8

R9 R10

R11 R12
R13

H
H

HH H H
H H

H!
H! D D D D
D D D D D D
G
D D D D D D
D D D D D D
B B B B B B

N

H
H

HH H H
H H

G
D D D D D
D D D D D D
G
D D D D D D
D D D D D D
B B B B B B

N

(c) Layout Intervals

Figure 4.6: Building Layout Intervals

denote the cell labels with distinct letters: Header (H), Data (D), Derived (B), Note (N),
GroupHeader (G). In Figure 4.6.b, the misclassified cells are denoted with an exclama-
tion mark next to the label. Figure 4.6.c displays the resulting intervals. Note, we use I
to denote the collection of all intervals in the worksheetW . Therefore, in Figure 4.6.c the
intervals are indexed, from left to right and top to bottom.

We observe several emerging scenarios. For instance, in the trivial case, an interval is
made out of a single cell, e.g., I15. In addition, we observe the presence of empty cells in
between the intervals, e.g., I10, I11, and I12. This complies with the definition discussed
above. An interval carries only classified cells of the same label. Furthermore, in Fig-
ure 4.6.c, we notice that in some cases the intervals traverse multiple rows: I1, I3, I4, and
I5. These are cells that were already merged (i.e., using the Merge & Center option from
the Microsoft Excel menu) in the original sheet. At this stage, we do not group these cells
with the rest. Nevertheless, we handle them in the subsequent stages.

As stated previously, our goal is to identify large and coherent regions of the sheet, such
that they carry cells of the same label. Therefore, we proceed by grouping Label Intervals
from consecutive rows. Nevertheless, we impose several constraints. Among others,
we take into consideration how the intervals are arranged. Specifically, we require that
intervals from consecutive rows share at least one column, i.e., they are vertically stacked.
In Figure 4.6.c, the intervals I9, I10, and I11 are stacked on top of I13. While the latter is
itself stacked on top of I15.

Stacked Intervals, let I be the set of all intervals in W . Then Ik and Ik′ are stacked iff
there exists at least one pair of cells (Wi,j ,Wi+1,j) such thatWi,j in Ik andWi+1,j in Ik′ .

In addition to arrangement, we consider the label of the cells, when attempting to group
intervals from consecutive rows. Specifically, the cells from the individual intervals of the
group must share the same label. We refer to these coherent groups of stacked intervals
as Label Regions or Layout Regions.

Layout Region is a collection intervals, i.e., a subset of I . In the trivial case, a region
contains only one interval. When it contains multiple ones, the following must hold. Let
(Ik, Ik′) be a pair stacked intervals in a given region. Then for any two cellsWi,j in Ik and
Wi+1,j′ in Ik′ the classification results is the same, i.e., label(Wi,j) = label(Wi+1,j′) = `.

Again, we opt for maximal regions, i.e., encompassing as many as possible intervals.
Therefore, we satisfy the conditions discussed below. Let R denote the set of all Layout
Regions in W . Moreover, let (Ik, Ik′) be any pair of intervals from two different Layout
Regions, s.t. Ik in Rt and Ik′ in Rt′ . Then, one of the following two statements must hold:

80 Chapter 4 Layout Analysis

Ik it is not stacked with Ik′ or the cell labels differ (i.e., label(Wi,j) 6= label(Wi′,j′), such
thatWi,j in Ik andWi′,j′ in Ik′).

Last, we need to address the special case of merged cells. When these cells span multiple
columns, but only one row, we simply treat them as Label Intervals. However, when they
span multiple rows, we need to treat them separately from the rest. We still attempt to
group them with existing intervals, in order to form larger Layout Regions. Neverthe-
less, in this case, we operate column-wise instead of row-wise. Concretely, we identify
intervals that are horizontally stacked with a given merged cell. Clearly, these intervals
must also have the same label as the merged cell.

I1
I2

I3I4 I5
I6
I7

I8

I9 I10 I11 I12
I13 I14

I15
I16 I17
I18 I19
I20 I21
I22

R1 R2

R3 R4

R5

R6 R7

R8 R9
R10

R1 R2

R3 R4 R5 R6R7
R8

R9 R10

R11 R12
R13

H
H

HH H H
H H

H!
H! D D D D
D D D D D D
G
D D D D D D
D D D D D D
B B B B B B

N

H
H

HH H H
H H

G
D D D D D
D D D D D D
G
D D D D D D
D D D D D D
B B B B B B

N

(a) Layout Intervals

I1
I2

I3I4 I5
I6
I7

I8

I9 I10 I11 I12
I13 I14

I15
I16 I17
I18 I19
I20 I21
I22

R1 R2

R3 R4

R5

R6 R7

R8 R9
R10

R1 R2

R3 R4 R5 R6R7
R8

R9 R10

R11 R12
R13

H
H

HH H H
H H

H!
H! D D D D
D D D D D D
G
D D D D D D
D D D D D D
B B B B B B

N

H
H

HH H H
H H

G
D D D D D
D D D D D D
G
D D D D D D
D D D D D D
B B B B B B

N

(b) Strict Layout Regions

I1
I2

I3I4 I5
I6
I7

I8

I9 I10 I11 I12
I13 I14

I15
I16 I17
I18 I19
I20 I21
I22

R1 R2

R3 R4

R5

R6 R7

R8 R9
R10

R1 R2

R3 R4 R5 R6R7
R8

R9 R10

R11 R12
R13

H
H

HH H H
H H

H!
H! D D D D
D D D D D D
G
D D D D D D
D D D D D D
B B B B B B

N

H
H

HH H H
H H

G
D D D D D
D D D D D D
G
D D D D D D
D D D D D D
B B B B B B

N

(c) Non-Strict Layout Regions

Figure 4.7: Building Layout Regions

In Figure 4.7, we present the resulting regions from the example sheet in Figure 4.6. There
are two variations for Layout Regions: strict (Figure 4.7.b) and non-strict (Figure 4.7.c).
For the latter variation, the definition is the same as the one discussed above. However,
for the former, we add one more constraint. Concretely, for every Layout Region, we
require that its intervals collectively cover a strictly rectangular area (range) of the sheet.

This becomes more intuitive once we represent the Layout Regions with the minimum
bounding rectangle (MBR) that encloses the contained intervals. For strict regions, the
resulting MBRs are never overlapping. However, overlaps occur when the non-strict def-
inition applies. This is illustrated in Figure 4.7.c. We observe that the region R1 contains
all the intervals I1 to I9, with exception of I3. While the region R3 encompasses the inter-
vals: I10, I11, and I13. The MBRs for these two regions overlap, because the intervals I9,
I10, and I11 come from the same row. In general, the MBRs from non-strict regions might
include empty cells or cells of another label.

We make use of both variations in the subsequent chapters. Each one of them has its own
advantages and disadvantages. For instance, in Chapter 5, we use strict Layout Regions
to isolate potential misclassifications. Indeed, in Figure 4.7.b, the region R3 contains two
misclassified cells. One of the clues is thatR1 andR3 do not fit together, even though they
are adjacent. On top of that R3 is much smaller than R1. Furthermore, in Appendix B,
the proposed table detection method uses non-strict Layout Regions. The advantage
is that we get a smaller number of regions, compared to when the strict definition is
used. Moreover, we show that it is possible to make use of overlaps (i.e. the region
MBRs overlap). Using this and other available information (e.g., the cell labels), we can
determine if two regions belong to the same table or not.

4.4 Layout Regions 81

4.5 SUMMARY AND DISCUSSIONS

In conclusion, this chapter introduced three steps of the proposed processing pipeline:
feature extraction, cell classification, and layout region creation. These steps are fundamental
parts of our approach for layout analysis in spreadsheets. We operate on a bottom-up
fashion, starting from the individual cells to later build Layout Regions. This approach
allows us to describe a multitude of spreadsheet layouts, with diverse table structures
and mixed arrangements.

We make use of machine learning techniques to predict the layout function of individual
cells. In Section 4.2, among other things, we propose cell features that were not consid-
ered before by related work. A substantial number of them require custom implementa-
tion or pre-processing, e.g., the spatial (Section 4.2.5) and formula (Section 4.2.4) features.
In Section 4.3.4, we show that the proposed features are the majority of the top 20, with
regards to importance.

In Section 4.3, we perform extensive experimentation, to identify the best classification
models for each one of the considered datasets (Fuse and Enron). We train models on the
individual datasets and the combined one. Furthermore, we study two separate scenar-
ios: 6 and 7 labels. The results from the experimental evaluation show that our approach
is viable. We get good classification performance for most of the annotation labels. In
particular, we perform well in the Fuse dataset, which contains Web spreadsheets. More-
over, we achieve better classification accuracy inside the tables, when comparing with
related work, with regard to Web spreadsheets.

Last, we propose a procedure that consolidates the classified cells into Layout Regions.
We formally define the concepts used in this procedure. Additionally, we illustrate the
creation of regions with figures. In the subsequent chapters, we make use of these regions
to repair misclassification and detect tables.

82 Chapter 4 Layout Analysis

5
CLASSIFICATION POST-PROCESSING

5.1 Dataset for Post-
Processing

5.2 Pattern-Based Revisions

5.3 Region-Based Revisions

5.4 Summary and Discussion

In this chapter, we discuss techniques for handling incorrect predictions (i.e., misclas-
sifications) that occur during the cell classification process (see Chapter 4). Intuitively,
the revision of misclassifications can make the subsequent tasks, such as table detection
(Chapter 6) and information extraction (Chapter 7), much easier and accurate.

We propose two approaches. In Section 5.2 we discuss the first one, which is based on
rules. These rules apply to individual cells and their neighborhood. Note, this approach
precedes the creation of layout regions (see Section 4.4). The second approach is based on
strict layout region, as is detailed in Section 5.3. Therefore, in this case, revision and region
creation can be performed together. Moreover, the second approach utilizes machine
learning techniques, in addition to heuristics.

Nevertheless, the experimental evaluation from our original paper [85] and the extended
book chapter [87] showed that these approaches have limitations. They extensively de-
pend on the context provided by the immediate and/or extended neighborhood of the
cells. Thus, when there are many misclassifications in the sheet, revision might lead to
further distortion, rather than improvement. For this reason, we regard these approaches
as optional, rather than a core part of our processing pipeline (refer to Figure 3.12). They
should be considered when the cell classification accuracy is already high for most of the
files in the dataset.

Note, in the following sub-sections we outline the two proposed approaches, based on
the original publications [85, 87]. The dataset used for these publications differs from the
ones described in Chapter 3 and used in Chapter 4. Therefore, the next section provides
a brief summary of the original dataset, as was first introduced in [85].

5.1 DATASET FOR POST-PROCESSING

In our earlier publications [85, 87], we have used a collection of 216 annotated files. Here-
inafter, we refer to this dataset as the KDIR dataset, based on the name of the conference
where the original paper was presented [85]. The files for this dataset were randomly
drawn from three different corpora: Fuse [16], Euses [52], and Enron [72]. As detailed in
Section 3.1, the first two corpora are crawled from the Web, while the latter one contains
business spreadsheets.

Specifically, we selected 133, 56, and 30 files respectively from Fuse, Enron, and Euses.
Figure 5.1 highlights the contribution of each corpus, in numbers of annotated sheets and
tables. For KDIR we annotated all the sheets having tables, not just the first one (refer to
the annotation logic in Section 3.2.2). Therefore, the average number of annotated sheets
per file is slightly more than 2.

288

119
58

465

FUSE ENRON EUSES TOTAL

(a) Sheets per Corpora

562

236
100

898

FUSE ENRON EUSES TOTAL

(b) Tables per Corpora

Figure 5.1: Annotation Statistics for the KDIR Dataset [85]

84 Chapter 5 Classification Post-processing

Furthermore, for the KDIR dataset, we used five annotation labels, instead of seven (see
Section 3.2.2). The KDIR labels are illustrated in Figure 5.2. The definition of Header
and Data labels remains the same as in Chapter 3. The label Metadata can be seen as a
superclass of Title, Note, and Other. The label Attribute is closely related to GroupHeader,
as they both describe hierarchies on the left of the table. However, Attributes capture
the whole left hierarchy: both parents and children. Instead, GroupHeaders capture only
the parents in this hierarchy (refer to Figure 3.2). Moreover, for KDIR we annotate all
aggregations as Derived. Contrary, for the datasets in Chapter 3 we annotate as Derived
only aggregations interrupting Data rows.

Title: Group Stage Comparison of UEFA European Championship Finalists
(2008 and 2012)

Group Stage
Total

Match 1 Match 2 Match 3

GF GA GF GA GF GA GF1 GA2

2008

Germany 2 0 1 2 1 0 4 2

Spain 4 1 2 1 2 1 8 3

2012

Italy 1 1 1 1 2 0 4 2

Spain 1 1 4 0 1 0 6 1

1Goal For 2Goal Against

Header

Data

Derived

Metadata

Attri-
butes

Metadata

Figure 5.2: The Building Blocks [85]

For the KDIR dataset, we trained classifiers to predict the layout function of non-empty
cells. Again, the most accurate model was a Random Forest. Nevertheless, we still got
in total 1, 237 misclassified cells, spread among the considered sheets. The approaches
discussed in the subsequent sections attempt to repair some of these incorrect predictions.

5.2 PATTERN-BASED REVISIONS

Our initial analysis of the KDIR classification results hinted that neighboring cells can
be used to recover some of the misclassifications. Intuitively, the label assigned to a cell
should match, in most cases, the label of the neighboring cells in the same row and/or
column. Here, we define the neighborhood as a 3-by-3 window around a cell, as was
previously illustrated in Figure 4.2. The cell in the center represents a potential misclas-
sification, surrounded by eight neighboring (adjacent) cells.

Not all neighbors have a label. For instance, empty and hidden cells do not get a la-
bel, since they are omitted from the classification process. Moreover, cells located at the
boundaries of a worksheet (i.e., the minimum and maximum row/column allowed by
the spreadsheet application), the neighborhood is smaller than eight. In order to stan-
dardize the number of neighbors for any arbitrary cell, we introduce two artificial labels:
“Empty” and “Out”. The latter is used for (non-existing) neighbors outside the bound-
aries of the sheet, while the first for all the other cases of un-labeled neighboring cells.

With these two labels and the ones from Figure 5.2, we attempt to infer misclassification
patterns. Specifically, we studied the neighborhood of incorrectly classified cells (1, 237
in total) from the KDIR dataset. We detected 672 unique combinations of labels in these

5.2 Pattern-Based Revisions 85

neighborhoods. Subsequently, based on the 40 most repeated combinations, we inferred
manually generic rules (i.e., not bound to specific labels).

These rules are divided into two sets: identification and relabeling. Intuitively, we use the
first rule-set to identify incorrect predictions, and then we relabel them using the second
rule-set. Below we discuss the considered rules, in detail.

5.2.1 Misclassification Patterns

Figure 5.3 provides a visual representation of the considered rules (patterns). The cell in
the center1 (marked with red dots) is a potential misclassification. Neighbors filled with
green diagonal lines (referred to as Influencers) share the same label among them, but a
different one from the center. Neighbors filled with black dots have the same label as the
central cell. Those marked with an ‘X’ (i.e., diagonal borders) have a label different from
the center. However, unlike the Influencers, these cells do not necessarily share the same
label among them. Furthermore, we treat neighbors labeled as Attributes (see Figure 5.2)
in a special way. Therefore, we mark these neighbors explicitly, with the letter ‘A’. Finally,
for arbitrary neighbors (i.e., can have any label), we leave the cell as blank.

(a) Tunel (b) T-blocks (c) AIN (d) RIN (e) Corner

Figure 5.3: Misclassification Patterns

One of the most common patterns is the “Tunel", shown in Figure 5.3.a. Intuitively, it
attempts to identify misclassified cells that are completely or partially surrounded by
neighbors of a different label. We consider two instances of this pattern. The left and
right neighbors are always Influencers. However, the remaining three Influencers can be
either on the top or on the bottom row.

The “T-block" pattern is shown in 5.3.b. It differs from the “Tunel" pattern, mainly due
to the bottom row. Here, we require that cells at the bottom have the same label as the
central one. In addition, the T-block pattern can occur upside-down, i.e., when the “head"
of the T-shape is on the top row.

The “Attribute Interrupter" (AIN) pattern relates to Attribute cells (see Figure 5.3.c). For
this reason, AIN has a vertical nature. Intuitively, this pattern specializes in identifying
misclassified cells in Attribute columns.

The “Row Interrupter" (RIN) pattern (see Figure 5.3.d) applies when the predicted label
of a cell does not match the predicted label of the majority of cells in the row. Note the RIN

1This with exception of the Corner pattern, where the potential misclassification is at the bottom-left
corner, rather than in the center.

86 Chapter 5 Classification Post-processing

covers a 3-by-5 window. We have expanded the original definition of the neighborhood,
in order to make this pattern more accurate.

Finally, the “Corner" pattern typically identifies misclassifications that occur in the cor-
ners of the tables. Note, there are four possible variations of this pattern, i.e., the misclas-
sified cell can be in any of the four corners. Figure 5.3.e displays the bottom-left variation.

Table 5.1 provides the number of times each pattern occurs in the classification results. In
the majority of times, these patterns match misclassifications (i.e., true positives). How-
ever, there are also some false positives, i.e., the label of the cell was predicted correctly
by the classifier.

Table 5.1: Pattern Occurrences in KDIR Dataset

Pattern True
Positives

False
Positives

Total

Tunel 45 12 57
AIN 41 1 42
RIN 29 4 33
T-blocks 28 1 29
Corner 13 2 15

5.2.2 Relabeling Cells

Here, we describe our strategy for relabeling the cells matched by the misclassification
patterns. Essentially, in most cases, we use the Influencers to determine the new label (see
Figure 5.3). For the Tunel pattern, we update the label of the central cell to match the
majority of its neighbors. When the T-block pattern is identified, the label of the right
and left neighbors is used. We set the label for the central cell to Attribute, when the AIN
pattern occurs. For the RIN pattern, we flip the label to match the rest of the row. Finally,
when the Corner pattern occurs, the label of the cell is updated to that of the Influencers.

5.2.3 Evaluating the Patterns

Here we evaluate the whole pattern-based procedure, including both steps: identification
and relabeling.

Table 5.2: Label Flips

Attributes Data Header Metadata Derived
Gained 41 57 26 18 10
Lost 0 1 8 3 2

Note, we first established an execution order for the patterns, since they are not mutually
exclusive. We experimentally determined that the most accurate results come from a
sequential run in the following order: AIN, T-Blocks, Corner, RIN, and Tunel. Essentially,
in such a run, updated labels from the previous pattern become an input to the next one.
The results show that we managed to repair 152 misclassified cells and lose 14 correctly
classified ones. Table 5.2 provides the results per label.

5.2 Pattern-Based Revisions 87

5.3 REGION-BASED REVISIONS

Although the aforementioned pattern-based method is able to recover a number of incor-
rect classifications, it has limitations. Most notably it assumes that cells in the immediate
neighborhood are, in most cases, correctly classified. We analyzed again the neighbor-
hood of 1, 237 misclassified cells from KDIR dataset. In almost half of the cases, we find
incorrectly classified neighbors. Specifically, in 42% of the studied neighborhoods, we
find 1 or 2 misclassifications. While in 6% of them we find 3 or more misclassifications.

Therefore, in this section, we propose a method that goes beyond the immediate neigh-
borhood. We additionally collect information from distant neighbors, which can provide
valuable insights. For instance, in sparse tables (i.e., having many missing values) the
immediate neighbors are often empty cells. Thus, one should look in the next row or
column for non-empty (classified) neighbors. Moreover, the distance from other cells of
the same label can be informative, as well. For example, a Header cell that is far from all
the other Headers is most probably a misclassification.

Figure 5.4 illustrates the proposed approach. Initially, we load the classification results.
In the second step, we create strictly rectangular regions, using the definition from Sec-
tion 4.4. These regions enclose adjacent cells of the same label (see Figure 5.4.b). We base
this step on the intuition that tables are typically well-formed. Specifically, the distinct
sections (i.e., layout regions) that comprise the tables tend to be of rectangular shape. In
other words, we do not expect them to come in arbitrary shapes (i.e., rectilinear polygons
> 4 edges).

! ?

!

(a) Load

! ?

!

(b) Standardize

! ?

!

(c) Identify

Label Score

Data 0.30

Header 0.60

Metadata 0.05

Attribute 0.05

Derived 0.00

Label Score

Data 0.30

Header 0.60

Metadata 0.05

Attribute 0.05

Derived 0.00

✓ ✓

Label Score
Data 0.30

Header 0.60

Metadata 0.05

Attribute 0.05

Derived 0.00

✓
?

(d) Relabel

Figure 5.4: Region-Based Approach

Our hypothesis is that irregular regions point towards misclassifications. Essentially, the
aim of our approach becomes to isolate the cell/s that break the expected regularity
(Figure 5.4.b). Subsequently, we determine if these cells were correctly classified (Fig-
ure 5.4.c). If they were not, we attempt to predict the correct label (Figure 5.4.d).

For the last two steps, we use supervised machine learning. Therefore, we collect a good
mixture of features, from the immediate and the distant regions. All in all, we get a
much more extended view in the neighborhood of potentially misclassified cells. In the
following section, we revisit the aforementioned steps, discussing them in more detail.

5.3.1 Standardization Procedure

The standardization procedure is formally described in Section 4.4. Here, we illustrate it
again, this time in the context of post-processing revisions. The process starts with the
creation of Label Intervals. We define these intervals as a sequence of cells of the same
label in a row. Figure 5.5.a displays the intervals from the example shown in Figure 5.4.a.

88 Chapter 5 Classification Post-processing

A B C

1

2

3

4

A B C

1

2

3

4

1 2 3 4

A

B

C

1 2 3 4

A

B

C

(a) Row Intervals

A B C

1

2

3

4

A B C

1

2

3

4

1 2 3 4

A

B

C

1 2 3 4

A

B

C

(b) Regions

Figure 5.5: Original Worksheet

The first, third, and fourth row contain one interval each. While the second row contains
two intervals of a different label.

As we emphasized previously, we are interested in strictly rectangular regions. We try to
achieve this by grouping intervals of the same label, from consecutive rows. However,
in order to preserve the rectangular shape, these intervals must have the same start and
end column. Based on this reasoning, for our running example, we group the intervals
in the third and fourth row, as illustrated in Figure 5.5.b. This creates the region A3:C4.
Moreover, we managed to isolate the cell A2 that prevented the rest of the green cells to
form a well-shaped region.

However, we were not able to group the blue intervals from 1st and 2nd row, since they
have a different start column. Clearly, there is potential to build a larger blue region,
which is B1:C2. This would have also isolated the cell A1. The latter is desirable, since at
this phase our aim is to pinpointing all irregularities, regardless if they are misclassifica-
tions or not.

A B C

1

2

3

4

5

A B C

1

2

3

4

5

1 2 3 4

A

B

C

1 2 3 4

A

B

C

(a) Column Intervals

A B C

1

2

3

4

5

A B C

1

2

3

4

5

1 2 3 4

A

B

C

1 2 3 4

A

B

C

(b) Regions

Figure 5.6: Pivoted Worksheet

One way to tackle this challenge is by creating regions column-wise, in addition to row-
wise. We achieve this by transposing the original worksheet, such that the columns be-
come rows, and vice-versa. Now, we can construct column intervals, following the same
procedure as described in the above paragraphs. The results are shown in Figure 5.6.a.
Once we group the label intervals, we get the output shown in Figure 5.6.b. As intended
we create a large blue region B1:C2, and simultaneously isolate the blue cell A1 that does
not fit well with the rest.

Intuitively, our standardization procedure produces two alternative partitionings for the
classified cells. Typically, the optimum partitioning results either from row intervals or
from column intervals. However, in some cases, we need both directions to ensure that
all misclassified cells are isolated. Therefore, in the end, we keep both outputs. Neverthe-
less, we attempt to reduce the number of considered regions by filtering out duplicates
(i.e., when the alternative partitionings produce the same region). Figure 5.7 summarizes
the overall standardization procedure, which includes a filtering step for duplicates.

5.3 Region-Based Revisions 89

Figure 5.7: Standardization Procedure

Standardization Assessment

We assess the validity of the standardization procedure by testing it on the classification
results from the KDIR dataset. We group the resulting regions into three categories, based
on the ratio of misclassified cells that they contain. We call “Misclassified” regions that
contain only misclassified cells. For those that contain only correct predictions, we use
the term “Correct”. The remaining cases, regions that contain both correct and incorrect
classifications, we refer to as “Mixed”. Figure 5.8.a provides the number of regions per
category.

25952

839
241

Correct
Misclassified
Mixed

(a) Overall Assessment

166

69

6

More Correct
0.5
More Misclass

(b) Mixed Regions

Figure 5.8: Region Analysis

We notice that 839 and 241 regions are respectively Misclassified and Mixed. The latter
might raise concerns at first glance. However, Mixed regions are a natural by-product of
the procedure. Consider again Figure 5.6.b. Region A2:A4 contains a misclassified cell,
i.e., A2. This can be seen clearly in Figure 5.4. Thus, for the running example, building
regions column-wise introduces a Mixed region. In general, both partitioning strategies
(row-wise and column-wise) can produce such regions.

In Figure 5.8.b, we provide a more detailed view of Mixed regions. We notice that in the
majority of Mixed regions the number of correctly classified cells is greater than that of
misclassified cells. Moreover, there are 69 cases where the numbers are equal, and an
insignificant number of cases with more misclassified cells.

To simplify our subsequent operations, we decided to maintain only two categories.
Therefore, we redistribute the Mixed regions. Those that contain mostly incorrect clas-
sifications (> 0.5) are marked as Misclassified, the rest are marked as Correct. This brings
the number of regions per category to 845 and 26, 187 respectively.

90 Chapter 5 Classification Post-processing

Filtering by Size

As mentioned before, one of the drawbacks of our standardization procedure is the con-
siderable number of outputted regions. Ideally, we would like to keep only those that
have the most potential of being Misclassified. Therefore, we analyzed the Misclassified
regions, in order to identify their typical characteristics. Our analysis revealed that these
regions exhibit small sizes (i.e., number of cells in the region) As shown in Figure 5.9, the
larger is the size of a Mislcassified region the least are its occurrences.

1 2 3 4 5 6

652

127
27 10 9 20

Figure 5.9: Size Occurrences in Misclassified Regions

Based on these results, we decided to keep regions containing up to 3 cells. We omit the
larger regions since they occur infrequently. Intuitively, with this action, we also reduce
the chances of having false positives (i.e., Correct regions flagged as Misclassified). After
filtering by size, we get in total 12, 724 regions. Out of these, 806 are Misclassified, and
11, 918 are Correct regions. We use this reduced dataset for the steps described in the
following sections.

5.3.2 Extracting Features from Regions

We use supervised machine learning techniques for the identification and relabeling of
Misclassified regions. Therefore, we have created a set of features, which are formally de-
fined in the following paragraphs. Most of these features are used both for identification
and relabeling.

Table 5.3 summarizes the features that are extracted for each rectangular region. Note,
features ending with ‘#’ are numeric, while those ending with ‘?’ are Boolean. Moreover,
the table contains a nominal feature, which is the predicted_label. We group these 12 fea-
tures into two categories: “Simple” and “Compound”. Features in the latter group derive
from multiple simple ones. Some of them are not explicitly listed in Table 5.3.

To extract the proposed features, we represent each region with its minimum bounding
rectangle. The worksheet itself can be seen as a Cartesian Coordinate system, where the
point (1, 1) is at the top left corner. The values of the x-axis increase column-wise, while
for the y-axis they increase row-wise. Having such a coordinate system, it is relatively
easy to convert the regions into abstract rectangles. The top-left coordinates of the rectan-
gle correspond to the column and row number of the top-left cell in the region. The width
and height can be calculated by counting respectively the number columns and rows in
the region. For example, the region A3:C4 (shown in Figure 5.5.b) will be represented by
a rectangle having top-left coordinates (1, 3), width = 3, and height = 2.

The simple features, in Table 5.3, characterize various aspects of the rectangle (region).
A region is horizontal when width > height, is vertical when width < height, and is

5.3 Region-Based Revisions 91

Table 5.3: Region Features

Nr. Simple Nr. Compound
1 IS_HORIZONTAL? 9 SIMILARITY_{TOP,BOTTOM,LEFT,RIGHT}#
2 IS_VERTICAL? 10 DISSIMILARITY_{TOP,BOTTOM,LEFT,RIGHT}#
3 IS_SQUARE? 11 EMPTINESS_{TOP,BOTTOM,LEFT,RIGHT}#
4 COUNT_CELLS# 12 INFLUENCE_{TOP,BOTTOM,LEFT,RIGHT}#
5 COUNT_ITS_KIND#
6 DISTANCE_FROM_ITS_KIND#
7 DISTANCE_FROM_ANY_KIND#
8 PREDICTED_LABEL

square when width = height. The feature count_cell describes how many cells are in
the region (i.e., the area of the rectangle). Additionally, we count the number of regions
in the worksheet having the same label (i.e., its own kind) as the current region. The
distance_from_its_kind captures the smallest Euclidean distance of this region to a region
of the same label. While distance_from_any_kind captures the smallest Euclidean distance
of this region from regions of any label. Finally, the predicted_label stores the label assigned
by the classifier (see Section 5.1).

With the compound features, we analyze the neighborhood of a region. However, unlike
in the pattern-based approach (see Section 5.2), the neighborhood comprises of other re-
gions, instead of cells. Note, this time we study the neighborhood only in four directions:
top, bottom, left, and right. Additionally, we consider distant regions (neighbors), be-
sides the nearest ones. We examine the label of these regions, to determine if they are
similar or dissimilar to the current region. Furthermore, we are interested in regions hav-
ing a specific label. We measure the influence of these regions on the current one. Finally,
we use emptiness for cases where there is no region (neighbor) in a direction.

Below we formally define the individual compound features. For these definitions we
utilize the following concepts:

• Current Region: The region whose neighborhood we are studying.

• Directions: Can be Top, Bottom, Left, or Right.

• Neighbors: Any region other than the current one.

• Nearest neighbors (NNs): The neighboring regions with the smallest Euclidean
distance from the current region in the specified direction.

• Similar neighbors (SNs): Neighbors that have the same label as the current region.

• Dissimilar neighbors (DNs): Neighbors that have a different label from the current
region.

Quantifying the Neighborhood

It is important to emphasize that the number of neighboring regions can vary extensively.
Moreover, the neighboring regions might come in different sizes (considering both their

92 Chapter 5 Classification Post-processing

width and height). Therefore, we need a method to weight the importance of each neigh-
bor. For this, we utilize two measures: overlap-ratio and distance. The former quantifies
how much of the specified direction is dominated by a neighboring region. The latter
quantifies how far or close a neighbor is.

Equation 5.1, illustrates how the overlap ratio is calculated. In this equation, r stands for
the current region, ni for the selected neighbor, and d for the current direction. We use
the horizontal edge for top/bottom neighbors. We project this edge to the x-axis. We do
the same for the horizontal edge of the current region. Subsequently, we measure the
length of the overlap for these projections. For left and right neighbors, we follow the
same logic, using the vertical edges. However, we project them to the y-axis, instead.
We transform the measurement into a ratio by dividing with the width or height (i.e.,
respectively, the length of the vertical or horizontal edge) of the current region.

OverlapRatio(r, ni, d) = Overlap(r, ni, d)
EdgeLength(r, d)

where ni ∈ Neighbors(r, d) and d ∈ Directions
(5.1)

Once we have the overlap ratio and the distance to the neighbor, we can calculate its
weight as shown in Equation 5.2. In the denominator, we add one to the distance to ac-
count for cases where the latter is zero (regions are adjacent, in consecutive rows/columns).
Clearly, this equation captures the intuition that the weight (i.e., importance) for a neigh-
bor should increase for smaller distances and bigger overlap ratios.

weighti = OverlapRatio(r, ni, d) · 1
1 +Distance(r, ni)

(5.2)

We can now define the similarity for a region and a neighbor, as shown in Equation 5.3.
Similarity takes a value greater than zero when the neighbor is one of the SNs and si-
multaneously an NN. When these two conditions are satisfied, the value of the similarity
equals the weight of the neighbor.

similarityi =
{

0 Label(r) 6= Label(ni) ∨ ni 6∈ Nearest(r, d)
weighti otherwise

(5.3)

dissimilarityi =
{

0 Label(r) = Label(ni) ∨ ni 6∈ Nearest(r, d)
weighti otherwise

(5.4)

Likewise, we calculate the dissimilarity for a neighbor, as shown in Equation 5.4. The only
difference from the definition of similarity is that here the neighbor must be one of the
DNs, in addition to being a NN.

Influence goes beyond the immediate neighborhood (i.e., the nearest neighbors). It ad-
ditionally quantifies how much distant neighbors of a certain label influence the current
region. Influence can prevent false positives. Consider the scenario where some of the
nearest neighbors of the current region are dissimilar, due to misclassifications. By look-
ing at more distant neighbors, we make more informed decisions. For example, distant
neighbors could show that the extended neighborhood is, in fact, more similar (or fitting)
to the current region, compared to the immediate neighborhood. Additionally, influence
can increase the accuracy of relabeling. For instance, strong influence from multiple bot-
tom neighbors of a Data label can reinforce the belief that Header is the most plausible
label for the current region.

5.3 Region-Based Revisions 93

Clearly, Influence is tightly coupled with the selected label, as shown in Equation 5.5.
Here, we have updated the function Nearest by adding the optional parameter label, de-
noted as l. When this parameter is set, the function returns only the closest neighbors of
a specific label in the given direction. Influence gets a value greater than zero only when
there exists at least one neighbor with the requested label. When there are multiple such
neighbors in a direction, we prefer the influence from the nearest ones.

influencei =
{

0 Label(ni) 6= l ∨ ni 6∈ Nearest(r, d, l)
weighti otherwise

(5.5)

Aggregating by Direction

All the previous equations hint that there can be more than one nearest neighbor for a
given direction. In order to get the total value of a feature, we need to aggregate the
values from the individual NNs. Equation 5.6 and 5.7 respectively show how to perform
this for similarity and influence. We can calculate the total dissimilarity for a direction in
the same way.

total_similarityd =
|Nearest(r,d,Label(r))|∑

i=1
Similarity(r, ni, d) (5.6)

total_influenced,l =
|Nearest(r,d,l)|∑

i=1
Influence(r, ni, d, l) (5.7)

Emptiness, the last compound feature, captures the (partial or complete) non-existence
of nearest neighbors in a direction. Emptiness takes the maximum value when there are
no neighbors in a direction. When neighbors partially overlap with the current region,
emptiness takes a value between zero and one. Equation 5.8 illustrates how to calculate
the value of this feature in a specific direction. Note, in this equation that we do not set
the optional label parameter for the Nearest function. Thus, it returns all NNs.

total_emptinessd = 1−
|Nearest(r,d)|∑

i=1
OverlapRatio(r, ni, d) (5.8)

We can add additional flavors to the compound features by aggregating them to the level
of row (left and right), column (top and bottom), and that of the overall neighborhood
(i.e., all four directions). Equation 5.9 illustrates how to calculate the value for the overall
neighborhood, using the similarity feature as an example. As shown below, we normalize
the value from a direction using the ratio between the edge length (in that direction) and
the perimeter of the current region.

overall_similarity =
|Directions|∑

j=1

(
EdgeLength(r, dj)
Perimeter(r) · similaritydj

)
(5.9)

5.3.3 Identifying Misclassified Regions

We define misclassification identification as a machine learning task, whose goal is to
distinguish real Misclassified regions (i.e. true positives) from the Correct regions (i.e.,

94 Chapter 5 Classification Post-processing

true negatives). For this binary classification problem, we have considered all the sim-
ple features mentioned in the previous section (see Table 5.3). Additionally, we use the
compound features in all four directions, together with their three flavors (i.e., aggre-
gating by row, column, and the overall neighborhood). For this task, we only consider
the influence from neighbors having the same2 label as the current region. In total, the
number of features considered for misclassification identification is 36 (i.e., 8 simple + 28
compound).

Table 5.4: Comparing Classifiers for Misclassification Identification
Random Forest SMO RBF Logistic Regression JRIP

-I 100 -C 19.0, -G 0.1 -R 1.0E-14 -N 10.0
F1 Measure 0.97 0.96 0.95 0.96

True Positive Rate 0.64 0.58 0.47 0.60
False Positive Rate 0.03 0.03 0.04 0.04

For our evaluation, we experimented with several classification algorithms (shown in Ta-
ble 5.4). The Random Forest and Logistic Regression classifiers were already introduced
in Section 4.3.2. The SMO RBF classifier is an implementation of SVM classifiers with
RBF kernel, optimized for fast training [135]. JRIP is a propositional rule learner [33].

We have used the implementations provided by the Weka tool [132], a workbench for ma-
chine learning. We first tuned the parameters of the individual classifiers. Subsequently,
we used Weka Experimenter to run 10-fold cross-validation 10 times. The results dis-
played in Table 5.4, are the averages of all runs. Random Forest achieves the highest
F1-measure and simultaneously has the highest true positive rate. With regard to the
false positive rate, there is no substantial difference between the classifiers. Considering
these results, we selected the Random Forest classifier for our subsequent analysis.

PieStory

Correct Vs
Misclassified

Total Cells

491

73

True Positives
False Positives

Story 1

In Regions In Cells

496

77

Error
False Positive

False Negative

(a) In Regions

Story 1

In Regions In Cells

100

568

Error
False Positive

False Negative

(b) In Cells

Figure 5.10: Misclassification Identification Results

In Figure 5.10 we display the results from one of the cross-validation runs (seed = 1), with
the Random Forest classifier. We provide the numbers in terms of regions and in terms of
individual cells. We get more false positive cells (i.e., wrongly flagged as Misclassified) in
comparison to the pattern-based approach (see Table 5.2). Nevertheless, the number of
true positive cells (i.e., correctly predicted as Misclassified) is several times higher for this
approach.

2In the next step, i.e., relabeling, we collect the influences from all labels (refer to Section 5.3.4)

5.3 Region-Based Revisions 95

5.3.4 Relabeling Misclassified Regions

We define the relabeling task as that of predicting the most plausible label for a region
that was previously flagged as Misclassified. For this task, we use all the simple features,
with the exception of predicted_label. From the compound features, we use only influence.
We capture this feature for each label and direction. In addition, for this feature, we
consider the three aggregations (flavors): row, column, and overall. With this, the total
number of features used for relabeling becomes 42 (i.e., 7 simple + 35 influences).

Note, for this task, we train our model (relabeler) on the original annotated sheets (i.e.,
the ground truth), instead of the predicted labels. In this way, we avoid tight coupling
between the original cell classifier and the relabeler. In other words, the relabeler learns
from real examples, not the noisy ones that are just a product of cell classification.

All in all, we have constructed rectangular regions from the annotated sheets. In the end,
we keep only those regions of size three or smaller for training, the same as in Section
5.3.1. This results in 11, 934 regions.

Table 5.5: Relabeling: Trained on Annotated Regions
Random Forest SMO RBF Logistic Regression JRIP

-I 350 -C 16.0 -G 1.0 -R 1.0E-8 -N 2.0
F1 Measure 0.64 0.59 0.67 0.49

True Negative Rate 0.65 0.59 0.67 0.49
False Negative Rate 0.11 0.13 0.10 0.16

For our evaluation, we used the same classification algorithms as for misclassification
identification. In a similar fashion, we first tuned the parameters of the classifiers on
the training datasets. Subsequently, we evaluated their performance on the 573 regions
identified as Misclassified (refer to Figure 5.10). The results are provided in Table 5.5.

130

443

Pie: InRegions
Correct Relabeling

Incorrect Relabeling

197

376

Sheet 1
Number of Records

573

Error
False Negatives

False Positive

(a) In Regions

242

426

Sheet 2
Error
False Negatives

False Positive

(b) In Cells

Figure 5.11: Relabeling Results

Figure 5.11 displays the relabeling results for Logistic Regression (LR) classifier. We pick
this classifier since as shown in Table 5.5 it achieves the best results. Again, we provide
the numbers in regions and cells. Although we managed to find the true label for most
of the regions flagged Misclassified, there is a considerable number of re-labeling errors.

One possible solution to decrease the number of incorrect predictions is to use class prob-
abilities, instead of fixed membership. By default, the LR classifier assigns to an instance

96 Chapter 5 Classification Post-processing

0.30.40.50.60.70.80.91.0
Probability Score

0
40

80

120

160

200

Di
ffe

re
nc

e

192 187

Sheet 4

Figure 5.12: Confidence Score Analysis

the class (label) with the highest probability. We can intervene in this process, forcing
the LR classifier to relabel only those regions for which the predicted probability is high.
Effectively, this means setting a threshold for the class probabilities.

We assessed the validity of this approach, as shown in Figure 5.12. We have analyzed the
probabilities assigned by the LR classifier during the relabeling task. For each region, we
have recorded the highest class probability. We use the values in this list as thresholds.
For each value, we identify the regions that got a probability score greater than or equal
to this value. Among them, we count those that were correctly relabeled and those that
were not. Subsequently, we record the difference. The largest difference is 192 and is
achieved for threshold=0.59. For this threshold, we get 363 correct versus 171 incorrect
predictions. However, we decided to be more conservative and set the threshold=0.83.
We get a better trade-off since there are 113 wrong predictions and a considerable number
of 300 correct predictions.

5.4 SUMMARY AND DISCUSSION

In the above sections, we outlined our strategies for repairing some of the incorrect clas-
sifications. The first one, discussed in Section 5.2, is based on immediate neighborhood
patterns (rules). These intuitive and easy to implement patterns managed to correct 12%
of the misclassified cells while introducing 1% new error. The second approach, from
Section 5.3, is a refined three-step process. Initially, we standardize our cells into rectan-
gular regions. Subsequently, we use a classifier to identify regions that contain misclas-
sified cells. Afterward, we attempt to predict their true label, using another specialized
classifier. Our evaluation shows that we achieve good results for the misclassification
identification task. Specifically, on average we get a 64% true positive rate. Neverthe-
less, the results are not as encouraging for the subsequent task, i.e., relabeling. Therefore,
we proposed to use a threshold for the probabilities predicted by the Logistic Regression
classifier (the highest scoring model for relabeling). In this way, we showed that it is
possible to reduce the number of re-labeling errors.

All in all, we can say that the proposed approaches are partially successful. They could be
used to get rid of random noise, i.e., few misclassifications sparsely distributed within the
sheet. However, these approaches are not appropriate for sheets having many misclassi-
fied cells. We encounter such sheets, in the dataset considered by this thesis. Therefore,
we do not make use of these post-processing approaches in the remaining chapters.

5.4 Summary and Discussion 97

98 Chapter 5 Classification Post-processing

6
TABLE DETECTION

6.1 A Method for Table De-
tection in Spreadsheets

6.2 Preliminaries

6.3 Rule-Based Detection

6.4 Genetic-Based Detection

6.5 Experimental Evaluation

6.6 Summary and Discussions

In the previous chapters, we discussed the layout analysis and post-processing steps.
Here, we address table detection in spreadsheets. As mentioned before, our overall ap-
proach is bottom-up. For table detection, we build on top of the layout regions (see
Section 4.4), which were created in the previous steps.

This chapter is based on three of our publications: In [86] we introduced our first table de-
tection approach, which is based on rules. We search for specific arrangements of layout
regions, typically found in spreadsheet tables. We have discovered these arrangements
via a thorough empirical analysis. Subsequently, in [83], we proposed another approach,
this time making use of a graph model. With this model, we encode the spatial arrange-
ment of layout regions in the sheet. Then, we detect tables by means of rule-based graph
partitioning. For this, we adapt, simplify, and extend the original rules from [86]. In
our last publication [88], we make use of the same graph model (from [83]) but instead
apply genetic algorithms and optimization techniques. Essentially, we propose a flexi-
ble approach that is not bound to fixed rules. Given a sample of annotated sheets, this
approach can learn and adjust to the characteristics of the current dataset.

In the subsequent parts of this chapter, we summarize our published work. We begin
with Section 6.1, where we first discuss approaches from related work. Then, we provide
a visual overview of our table detection approach. Next, in Section 6.2 we formally in-
troduce the proposed graph model. In Section 6.3, we discuss the approaches from our
first two publications, [86] and [83]. We make sure to emphasize how the later approach
incorporates elements from the former. In Section 6.4, we introduced our genetic-based
approach. While the experimental evaluation for the above-mentioned approaches is dis-
cussed in Section 6.5 We conclude this chapter with Section 6.6, where we highlight our
specific contributions on the task of table detection in spreadsheets.

6.1 A METHOD FOR TABLE DETECTION IN SPREADSHEETS

Most of the related works consider table detection as a trivial task [11, 29, 46]. This is
because they foresee only vertical arrangements (top-down) of tables. Therefore, in such
settings, one can simply rely on the identified header rows to spot the beginning of a new
table and the end of the previous one from above. Moreover, one can choose to include
or omit from these tables rows that contain notes, titles, aggregations, etc.

However, in this thesis, we address arbitrary arrangements for tables and layout regions
in general. Therefore, the strategy used by related work is not applicable, as it would not
be able to cope with horizontal and mixed arrangements. With such arrangements, one
has to detect the first and last column, in addition to the first and last row of the tables.
A potential solution is to use left-side hierarchies (i.e., Attributes1 or GroupHeaders) in a
similar fashion to how related work has used header rows. However, left-side hierarchies
are present only in 15−17% of the annotated sheets (refer to Table 3.3). Alternatively, one
could consider empty columns as table separators. Yet, as emphasized by Takeaway 7, in
Section 3.3, we often find empty columns inside the annotated tables, not just in-between
them. Thus, a potential solution needs to go beyond the aforementioned heuristics and
assumptions.

A recent publication from Microsoft Research Asia, Dong et al. [43], addresses table
detection in spreadsheets, in the presence of arbitrary arrangements. As discussed in
Section 2.3.1, this publication proposes a framework, called TableSense, that among other

1The label Attributes are defined and illustrated in Section 5.1

100 Chapter 6 Table Detection

makes use of Convolutional Neural Networks (CNNs). The TableSense framework op-
erates on a h × w matrix of cells (i.e. the input sheet), and 20 channels, one for each
considered (cell) feature. From this input, the CNNs create a high level (abstract) repre-
sentation of the sheet. This representation is subsequently fed to other modules of the
framework, which are specialized for table detection. In particular, we highlight the use
of a novel module, referred to as Precise Bounding box Regression (PBR). According to
the authors, this module is CNN-based and capable of detecting the bounds of tables
with high precision. The final output of TableSense is a list of predicted table regions, i.e.,
their bounding boxes. The overall approach is illustrated in Figure 6.1.

Table classification

RoI 2

Region proposal

RoI 1
RoIAlign

Table classification

Detected tablesBbox regression(BBR&PBR)

Bbox regression(BBR&PBR)

Featurization and CNN-based

representation learning

Input spreadsheet

NMS

Table segmentation

Table segmentation

Figure 2: Framework of TableSense for spreadsheet table detection.

Table 1: 20 features employed for cell featurization.
Description Feature value
Value string
If the string is non-empty. {0, 1}
Length of the string. Integer
Proportion of digits in the string. [0.0, 1.0]
Proportion of letters in the string [0.0, 1.0]
If percent symbol (“%”) exists in the string. 0, 1
If decimal point (“.”) exists in the value 0, 1
Data format
If data format matches a numerical template 0, 1
If data format matches a date template 0, 1
If data format matches a time template 0, 1
Length of the matched template string, if any. Integer
Cell format
Background fill color Categorical
Font color Categorical
If bold font is applied. 0, 1
If the cell has left border. 0, 1
If the cell has top border. 0, 1
If the cell has right border. 0, 1
If the cell has bottom border. 0, 1
If the cell is merged with horizontal neighbor. 0, 1
If the cell is merged with vertical neighbor. 0, 1
Formula
If formula exists in the cell. 0, 1

In this paper, we enhance the Bounding Box Regression
(BBR) with a novel Precise Bounding box Regression (PBR)
to achieve precise table boundaries.

Cell Featurization
Cells in a spreadsheet correspond to pixels in an image,
but they encode much richer information than pixels do.
Whether such information is well extracted and leveraged
can lead to remarkable differences in the accuracy of table
detection, as reported in Section . Therefore, cell featuriza-
tion is an additional but important initial step in TableSense.
In general, there are four major information sources of a
cell, i.e., value string, data format, cell format, and formula.
While value string and cell format are visually perceivable to
users, data format and formula are latent unless users explic-
itly explore them. We have identified 20 features as shown
in Table 1 from the above information sources. Each fea-
ture acts as a separate channel in the input layer. If the input
spreadsheet is a matrix of h×w cells, then the input will be
a h×w×20 tensor, to which the convolution operations are
directly applied.

Our insights behind the feature set are briefly summarized

RoI’ predicted

by the BBR module

Aligned feature map

for the top boundary

(2k×2k)

RoIAlign

RoIAlign

RoI’ top boundary (2k×w)

RoI’ left boundary ((h×2k)

RoIAlign

RoI’ right boundary (h×2k)

RoIAlign

RoI’ bottom boundary (2k×w)

Aligned feature map

for the right boundary

(2k×2k)

Aligned feature map

for the left boundary

(2k×2k)

Aligned feature map

for the bottom boundary

(2k×2k)

Table region

PBR module

Boundary

prediction

Figure 3: Framework of PBR module in TableSense.

as follows. Unlike free-form textures in an image object, a
spreadsheet table has its unique characteristic of being es-
sentially a composition of vertically/horizontally expanded
components, which are headers, data fields and data records.
Identifying cell-level cohesion along the expanding direc-
tion of such components and detecting cell-level contrast
across components would intrinsically help identify those
components and further scope the table range. Consistency
in data formats, formulas, and other statistics are all effec-
tive information for the detection of such cell-level cohesion
and contrast.

Precise Bounding Box Regression for TableSense
The Bounding Box Regression (BBR) module in Faster R-
CNN (Girshick 2015) is optimized for object detection. In
object detection, we do not care much about the precise
bounding box locations, but rather the overlapping ratio be-
tween the detected bounding box and ground truth. This is
modeled by the BBR cost function below:

Lreg(t, t
∗) =

∑

i∈{x,y,w,h}
smoothL1

(ti − t∗i) (3)

smoothL1
(x) =

{
0.5x2, if|x| < 1,
|x| − 0.5, otherwise, (4)

where smoothL1
() is the smooth L1 loss function defined

in (Girshick 2015), tx, tw , tx∗ and tw∗ are relative coordi-

Figure 6.1: Framework of TableSense for Spreadsheet Table Detection [43]

The TableSense framework differs substantially from the approach proposed by this thesis.
Instead of creating an abstract representation for the sheet, we use cell features to predict
their layout function (one of the seven labels, as defined in Section 3.2.2). Then, we group
adjacent cells of the same label to form strictly rectangular layout regions (defined in
Section 4.4). We encode the spatial arrangement and relations between the regions using
a graph model. Then we detect tables via graph partitioning. Specifically, we attempt
to identify subgraphs (i.e., connected components of the input graph) that correspond to
tables in the original sheet. The proposed approach is illustrated in Figure 6.2.

16

Table Detection in Spreadsheets

Graph
Representation

Graph
Partitioning

Table
Detection

H2

D3

D4
D6

D7

H1

D1

H4

D8

D2

H3

D5

Table2

Table1

Table3H2

D3

D4
D6

D7

H1

D1

H4

D8

D2

H3

D5

H2

D3

D4
D6

D7

H1

D1

H4

D8

D2

H3

D5

Figure 6.2: Overview of the Proposed Approach for Table Detection

On the top left corner of Figure 6.2, we illustrate a sheet with three tables. This sheet
exhibits both horizontal and vertical arrangements. The layout regions are marked with
the label of the cells that they enclose. Moreover, for better comprehension, we have
numbered (indexed) the regions of the same label. Here, we consider only two layout
functions Data (D) and Header (H). As detailed and motivated in Section 6.2.3, we reduce
the number of labels and layout regions, prior to table detection.

Subsequently, we construct a graph representation (model) for the given sheet. In Section
6.2.1, we formally define this model. Nevertheless, here we provide an intuition. As
can be seen in Figure 6.2, the vertices of the graph correspond to the layout regions in
the sheet. Edges are introduced between vertices when the corresponding regions are
neighboring and aligned (i.e., they share row/s or column/s).

6.1 A Method for Table Detection in Spreadsheets 101

Having this model, the task becomes to identify subgraphs that correspond to real tables
in the sheet. In Section 6.2.2, we formulate this task as a graph partitioning problem. In
simple terms, the goal is to maintain edges that connect vertices (regions) of the same
table, while omitting the rest (denoted with dashed lines, in Figure 6.2). The resulting
connected components, having at least one Header and one Data vertex, constitute the
predicted tables.

As mentioned previously, we proposed two approaches for partitioning the graphs, a
rule-based (in Section 6.3) and a genetic-based (in Section 6.4). To the best of our knowl-
edge, these approaches are novel, even within the field of Document Analysis and Recog-
nition (DAR). Indeed, as stated in [97], graphs have been employed by the DAR commu-
nity for various tasks, including table detection [108] and analysis [13]. Nevertheless,
these works make use of graph re-writing techniques [110], instead of graph partitioning
ones. In the most recent years, there is an emergence of graph neural networks [133, 136].
They have also been used for table detection or other similar tasks [106, 109]. There are
parallels between these approaches and the ones proposed by this thesis. Yet, we clearly
employ very different techniques. In particular, we highlight the use of genetic algo-
rithms, in one of our proposed approaches.

In Section 6.5 we evaluate table detection via graph partitioning. As well as, we compare
with the aforementioned related works. We observe that the approaches proposed by
this thesis achieve substantial performance, even in the presence of misclassifications.

6.2 PRELIMINARIES

Here, we discuss concepts and processes that are relevant for the table detection ap-
proaches, outlined in Section 6.3 and 6.4. In Section 6.2.1, We begin with a formal def-
inition of the proposed graph model. Subsequently, in Section 6.2.2, we formulate the
detection of tables as a graph partitioning problem. Finally, in Section 6.2.3, we discuss
two pre-processing actions that help us streamline the detection task.

6.2.1 Introducing a Graph Model

As discussed in the survey [97], graphs have been used to represent the structure and
layout of documents. With such models, one can easily encode the spatial and logi-
cal relations between regions of the document. Specifically, the regions correspond to
the vertices of the graph. Additionally, these vertices can be decorated with attributes
that describe the properties of the corresponding regions, such as their size and location.
Edges connect pairs of vertices (i.e., regions), which are physically or logically related.
Again, one or more attributes can be attached to the edges, in order to describe these
relationships.

In this thesis, we make use of such attributed graphs. In Figure 6.2, we illustrated this
use with a simple example. Below, we formalize the proposed graph model. This model
describes in a systematic manner the sheet layout. Moreover, as shown in the following
sections, the proposed model allows the adoption of well-known algorithms and meth-
ods related to graphs.

Definition 1: Let G(V,E) be a directed graph that captures the spatial interrelations of
layout regions (R) from a worksheet W. There is a one-to-one correspondence between
the set of vertices, V , and the set of layout regions, R.

102 Chapter 6 Table Detection

Furthermore, we carry the attributes of the layout regions into the graph. As mentioned
in Section 4.4, the layout regions are homogeneous, when it comes to the label (i.e., layout
function) of the enclosed cells. Therefore, we can assign this label also to the vertex that
represents the region. Moreover, we encode the location of the region on the sheet. For
this, we define the following functions.

Definition 2: The function lbl : V 7→ Labels maps the vertices of the graph to layout
functions. Moreover, rmin : V 7→ N>0 and rmax : V 7→ N>0 return respectively the
minimum and maximum row number (of the corresponding layout region). Equivalently,
cmin and cmax do the same for the column numbers.

The next step is to create edges between the vertices of the graph. Here, our aim is to
identify spatial relations such as top of, bottom of, left of, and right of. In other terms,
we capture the relative location of other regions with respect to the current region in
the following four directions: Top, Bottom, Left, and Right. Therefore, we define the
following function.

Definition 3: The function dir : E 7→ {Top,Bottom,Left,Right} maps edges to direc-
tions. For an edge (v, u) ∈ E the result of this function communicates the direction that
u is the neighbor of v.

Nevertheless, we are not interested in all spatial relations. Instead, we focus only on
the nearest neighboring regions for each direction. To better illustrate the creation of
edges, below we outline the steps for the identification of the nearest neighbors on the
Top direction for a vertex v ∈ V .

Tv = {u ∈ V | rmin(v) > rmax(u) and not(cmin(v) > cmax(u) or cmax(v) < cmin(u))}

As shown in the equation above, we identify all vertices whose maximum row is less than
the minimum row of v. On the same time, we enforce that the selected vertices span, at
least partially, the same columns as v. To get the nearest vertices we use the distance
functions discussed below.

Definition 4: For each direction we define a distance function. Let tdist := (rmin(v) −
rmax(u)) − 1 and bdist := (rmin(w) − rmax(v)) − 1 calculate respectively the distance
from Top (u ∈ Tv) and Bottom (w ∈ Bv) neighbors of v. Likewise, we define the function
ldist for Left and rdist for Right direction.

As can be seen above, depending on the direction, the distance is measured either in
number of rows or in number of columns. We subtract 1 in order to record the distance
as 0 for adjacent vertices (i.e, regions from consecutive rows/columns). Moreover, note
that hidden rows and columns are not considered in the calculation of the distance.

For the rule-based table detection method, discussed in Section 6.3, we measure distance
using the above functions. Instead, in Section 6.4, for the genetic-based method, we con-
sider the height/width of rows/columns to calculate the distance. Specifically, in Excel,
the row height is measured in points, while column width is measured in units of 1/256th
of the standard font character width.

Definition 5: Let the function rheight := N>0 7→ R≥0 return the height for a given row
number. Then we can calculate the distance of vertex v from its Top neighbor, vertex

6.2 Preliminaries 103

u, as
∑rmin(v)−1
i=rmax(u)+1 rheight(i). In similar fashion, we can calculate the distance to any

Bottom neighbor of vertex v. Instead, for Left and Right neighbors, we use the function
cwidth := N>0 7→ R≥0, which returns the width for a given column number.

Regardless of the distance functions, the aim is to find the nearest neighbors for the cur-
rent vertex (region). Previously, we defined Tv as the set of Top neighbors for a vertex v.
Below, we continue by defining the set of its nearest Top neighbors:

T
′
v = {n ∈ Tv| tdist(v, n) = min

u∈Tv

tdist(v, u)}

We can now create a directed edge (v, n), for every n ∈ T ′v. The same can be performed
for the nearest neighbors of v, in the remaining directions. Furthermore, following the
above definitions, we can analyze all pairs of vertices and populate the set of edges E.

27

Attributes
Edges

D1→H4 D1←H4

direction bottom top

is nearest false true

dist rows 4 4

dist units 53.6pt 53.6pt

Attributes Vertex
address C3:J6
label Data
min row 3
min col 3
max row 6
max col 10 H2

D3

D4
D6

D7

H1

D1

H4

D8

D2

H3

D5

A B C D E F G H I J K
1
2 H1
3

D14
5
6
7
8

H2 H39
10
11 H4
12 D2 D3 D6

D8
13 D4
14
15 D5 D716

Figure 6.3: The Proposed Graph Representation

Figure 6.3 shows the graph representation for an example sheet. Note that the edges are
depicted using bidirectional arrows. We use such arrows since for an edge (v, u) ∈ E
there always exists an equivalent edge (u, v) ∈ E.

Typically, the property of being the nearest neighbor of a vertex holds the other way
around, from the viewpoint of the neighbor. However, there are a few exceptions. In
Figure 6.3, the nearest Top neighbor for H4 is D1, but the nearest Bottom neighbors for
D1 are H2 and H3. For such cases, we enforce symmetry. This means we keep the edge
D1 7→ H4, even though H4 is not the nearest neighbor for D1.

Having acknowledged the aforementioned cases, we can now define the set of edges E
in a more concise manner.

Definition 6: For a pair of edges (v, u) ∈ E and (u, v) ∈ E, the following conditions must
hold: Let Nv be the set of nearest neighbors of v from all directions, i.e., T ′v∪B

′
v∪L

′
v∪R

′
v.

Similarly, we define Nu for the vertex u. Then at least one of the following is true: v ∈ Nu
or u ∈ Nv. In other terms, it is never the case that both v /∈ Nu and u /∈ Nv.

With this definition, we conclude the formalization of the proposed graph model. In the
subsequent sections, we discuss how to partition the constructed graph representations,
with respect to the table detection task in spreadsheets.

104 Chapter 6 Table Detection

6.2.2 Graph Partitioning for Table Detection

As outlined by the surveys [27], [81], and [113], graph partitioning and clustering are
well-studied problems with many applications. Using the representation described in
Section 6.2.1, we as well formulate the task of detecting tables in spreadsheets as a graph
partitioning problem (GPP).

The aforementioned surveys, [27] and [113], outline a broad range of methods for GPP.
While the survey [81] focuses entirely on the use of genetic algorithms for graph parti-
tioning. Based on these works, in this thesis, we propose two approaches. In Section 6.3,
we discuss a solution that makes use of rules, for partitioning the input graph. While, in
Section 6.4, we employ genetic algorithms and optimization techniques.

Concretely, the input for the two proposed approaches is a graph G = (V,E), that en-
codes the layout of a given sheet. Here, V is the set of vertices (layout regions), and
E is the set of edges (spatial relations). We partition V into disjointed subsets, where
V1 ∪ ... ∪ Vk = V s.t. Vi ∩ Vj = ∅ for all i 6= j. Typically, the number of partitions k for
GPP is fixed in advance [27]. This is not feasible in our case, since we are not aware of the
number of tables in the sheet, beforehand. Thus, in this work, the number of partitions
can be 1 ≤ k < |V |.

In basic terms, we partition by deactivating (omitting) edges from the set E. We illustrate
this method in Figure 6.2. When omitting edges we get partitions that are connected
components. This is favorable since it eliminates unlikely solutions. Concretely, we ex-
pect vertices (regions) of the same table to be close to each other and most importantly
connected via path/s. Thus, it is important to enforce a connectivity constraint. This
constraint is inherent for the selected partitioning method.

Having the above-mentioned formulation, the goal becomes to find the optimal parti-
tioning of the graph. Specifically, the resulting partitions (i.e., connected components)
must correspond to tables in the sheet. However, often due to misclassifications, the in-
put graph might contain vertices that do not necessarily belong to a table. For instance,
cells annotated as Note, Title, and Other can be misclassified as Data or Header. Such
cases are discussed in more detail in Section 6.2.3. Thus, in the end, the task becomes
that of correctly identifying not only true tables but also non-tables, in the given graph
representation. In other terms, we attempt to detect tables even in the presence of mis-
classifications.

The next section discusses some additional actions that we take prior to table detection.
Specifically, we attempt to simplify the problem by reducing the considered labels and
layout regions.

6.2.3 Pre-Processing for Table Detection

Before constructing the graph representation, we take several actions that help us to sim-
plify the table detection problem. These actions occur after classifying the cells, in the in-
put sheet. However, we do not consider any of the optional post-processing approaches
from Chapter 5. Thus, there is no alteration for the methods and the results discussed in
Section 4.3. Moreover, these actions do not affect the tasks coming after table detection,
which are discussed in Chapter 7. In other words, the proposed adjustments are relevant
only for the approaches discussed in this chapter.

6.2 Preliminaries 105

Label Reduction

The first action takes place after cell classification. Concretely, given the classification
output, we reduce the number of labels from 7 to 3. We achieve this by introducing
three meta-classes: DATA, HEADER, and METADATA. Cells that were classified as Data
(D), GroupHeader (GH) and Derived (B) are assigned to the class DATA. In addition, cells
classified as Title (M), Note (N), and Other (O) are collectively treated as METADATA.
Finally, the class HEADER carries only cells that were classified as Header (H).

After performing these reductions, we proceed to create the layout regions. The proce-
dure remains the same, as it was outlined in Section 4.4. Basically, we treat the meta-
classes the same as we treated the classification labels. This means we group adjacent
cells having the same meta-class, to form coherent and strictly rectangular layout regions
(refer to Section 4.4).

In Figure 6.4 we illustrate the aforementioned procedure. Figure 6.4.a shows the classi-
fication results, where each non-empty cell is assigned the predicted label. As discussed
above, we reduce these labels and subsequently construct the layout regions. These re-
gions are shown in Figure 6.4.b. For brevity, we use a single letter to denote the meta-
classes: DATA (D), HEADER (H), and METADATA (M). Moreover, for better compre-
hension, we have enumerated the individual regions of the same class.

Here, we highlight the effect that label reduction had on the given example. Notably, cells
classified as Derived (B) and Data (D), can now be grouped together, since they belong to
the same meta-class. Therefore, in Figure 6.4.b we get the DATA regions D8 and D9,
which span three rows each. In addition, we get two DATA regions, D2 and D7, from the
cells classified as GroupHeader (GH). While, the cells classified as Title (M), Note (N), and
Other (O) result in three METADATA regions.

8

A B C D E F G H I J K L M

1 M1
2
3 H1
4

D1
5

6

7
8
9

H2 H310

11

12 D2

M3

H4
13 D3 D4 D6

D10
14 D5
15 D7
16

D8 D917

18

19 M2

A B C D E F G H I J K L M
1 M
2
3 H H H H H
4 D D D D D
5 D D D D D
6 D D D D D
7 D D D D D
8
9

H
H

H10
H H H

11 H H
12 GH O H H
13 D D D D D O D D
14 D D D D D D O D D
15 GH O D D
16 D D D D D D O D D
17 D D D D D D O D D
18 B B B B B B
19 N

(a) Original Classified Cells

8

A B C D E F G H I J K L M

1 M1
2
3 H1
4

D1
5

6

7
8
9

H2 H310

11

12 D2

M3

H4
13 D3 D4 D6

D10
14 D5
15 D7
16

D8 D917

18

19 M2

A B C D E F G H I J K L M
1 M
2
3 H H H H H
4 D D D D D
5 D D D D D
6 D D D D D
7 D D D D D
8
9

H
H

H10
H H H

11 H H
12 GH O H H
13 D D D D D O D D
14 D D D D D D O D D
15 GH O D D
16 D D D D D D O D D
17 D D D D D D O D D
18 B B B B B B
19 N

(b) Layout Regions after Reducing Labels

Figure 6.4: Reducing Labels Prior to Table Detection

Overall, with the reduction, we get fewer labels, and also a smaller number of regions.
Most importantly, as can be seen from Figure 6.4, the reduction does not alter the interpre-
tation of the sheet, with regard to the table detection task. Specifically, the sheet contains
three tables, which are clearly distinguishable both in Figure 6.4.a and in Figure 6.4.b.

Intuitively, with this first pre-processing action, we have reduced the table detection
problem into three main components. The HEADER and DATA regions are the build-
ing blocks for tables. While the METADATA regions represent extra (non-essential) parts

106 Chapter 6 Table Detection

of the sheet. Based on this formulation, we can say the main goal of the table detection
task is to identify HEADER and DATA regions that belong together, i.e., to the same ta-
ble. Subsequently, one can attempt to discover the relationship between the METADATA
regions and the detected tables in the sheet. However, as discussed in the next section,
we do not address the latter challenge in this thesis. Note, this is an open question also
for related work [11, 29, 43]. Thus, it still remains a task for future research projects.

Omitting METADATA

Here, we discuss the second pre-processing action, which involves METADATA regions.
Clearly, the cells (classified as Title, Note, and Other) in METADATA regions hold infor-
mation that can potentially help us interpret the tables more accurately. Nevertheless,
this information might refer to the whole sheet or multiple parts of the sheet. Thus, it
is not necessarily associated with a single table. For this reason, we do not regard the
METADATA regions as a core part of the tables. Instead, we detect tables using only the
HEADER and DATA regions.

In fact, we completely omit the METADATA regions when constructing the graph repre-
sentation. This means we treat these regions as if they were not present in the sheet. We
illustrate this fact in Figure 6.5. As can be seen, there are no corresponding vertices for
the METADATA regions. Furthermore, the regions H4 and D10 can now be connected to
other regions on the left, since region M3 is omitted.

11

H2

D4

D5
D6

D9

H1

D1

D3

H3

D8

D2

D7

H4

D10

A B C D E F G H I J K L M

1 M1
2
3 H1
4

D1
5

6

7
8
9

H2 H310

11

12 D2

M3

H4
13 D3 D4 D6

D10
14 D5
15 D7
16

D8 D917

18

19 M2

(a) Omitting METADATA Regions

7

A B C D E F G H I J K L M

1 M1
2
3 H1
4

D15
6
7
8
9

H2 H310

11

12 D2

M3

H4
13 D3 D4 D6

D10
14 D5
15 D7
16

D8 D917

18

19 M2

H2

D4

D5
D6

D9

H1

D1

D3

H3

D8

D2

D7

H4

D10

(b) The Graph Representation

Figure 6.5: Building a Graph after Pre-Processing

The omission of METADATA regions is favorable when it comes to the proposed table
detection approach. First, it means a smaller number of vertices. This, typically translates
into a smaller number of edges, too. Thus, the computational overhead decreases, since
we ultimately process fewer edges when partitioning the graph (refer to Section 6.2.2).
Secondly, the omission of METADATA can introduce more space in-between the tables.
This can be seen in Figure 6.5, for the two tables in the bottom rows, which are arranged
horizontally. After omitting M3, the tables are separated by three columns. This fact will
be reflected in the edges of the graph, which encode the distance between the regions.
Essentially, the more distant the tables (i.e., their regions) are from each other, the better
are the chances of accurately detecting them as separate units.

6.2 Preliminaries 107

However, this pre-processing action does not come without challenges. As noted before,
we operate on the classification results. Thus, due to wrong predictions, the cells can be
assigned to the wrong meta-class. Which means, the constructed regions will not reflect
the true layout of the sheet. In other words, the output of the second pre-processing
action is not guaranteed to be optimal. After omission, the graph might contain false
DATA or HEADER vertices. At times, this involves cells from METADATA regions. For
instance, in Figure 6.5, if any of the cells in regionsM1−3 was misclassified as Header, Data,
Derived, or GroupHeader, we would get extra (false) vertices in the graph. The other way
around, we might also get “incomplete” graphs, when some of the cells are mistakenly
omitted (i.e., they were falsely allocated to METADATA regions).

Nevertheless, the classification results from Section 4.3.6 show that these cases are not
frequent. This is especially true, for the second case, i.e., incomplete graphs. We get
high classification accuracy for Data and Header label. Moreover, when Derived and
GroupHeader cells are misclassified, they usually get mistaken forData cells. Thus, any-
how they will be assigned to the same meta-class, i.e., DATA. For the remaining three
labels, the meta-class errors are more common. Indeed, we observe a considerable num-
ber of cases where Other and Note cells are misclassified as Data cells. Moreover, Title
cells are occasionally mistaken for Header cells. Therefore, sometimes graphs contain
extra or false vertices, i.e., DATA and HEADER regions that in reality are completely or
partially METADATA.

For the proposed table detection approaches, in Section 6.3 and 6.4, we take into consid-
eration the above-mentioned cases. In fact, each approach has a slightly different strategy
to address misclassifications.

Summary

In the previous section, we proposed two pre-processing actions that simplify the ta-
ble detection process. The first action results in fewer labels (i.e., meta-classes), making
it easier to conceptually formulate the detection problem and the candidate solutions.
Moreover, both actions, but especially the second one, can decrease the number of ver-
tices and edges in the graph representation. This can speed up the search for tables.

Nevertheless, even after pre-processing, there are still challenges for the table detection
task. In the previous section, we highlighted the presence of misclassifications. In the
subsequent sections, we attempt to tackle this and other challenges.

Note, for simplicity, hereinafter we treat the meta-classes the same as labels. Therefore,
we do not refer to them anymore using their all upper case form. Instead, we use the
following form: Data(D), Header(H), and Metadata(M).

6.3 RULE-BASED DETECTION

In [86], we outlined our first attempt to detect tables in spreadsheets. The TIRS (Table
Identification and Reconstruction in Spreadsheets) approach studies the spatial arrange-
ment of layout regions in the sheet. Specifically, we have empirically discovered typical
table layouts, shown in Figure 6.6. Then, using a series of rules and heuristics, TIRS
detects these layouts in the classified sheets.

108 Chapter 6 Table Detection

(a) Typical Horizontal (b) Misclassifications (c) Sparse Data

(d) Typical Vertical (e) Sparse All (f) Conjoined

Candidate Fence Data Region Misclassification Data Misclass

Figure 6.6: Table layouts, cases b, c, e, and f also occur for tables with vertical fences

An important concept in TIRS is the fence, a term borrowed from [6]. In Figure 6.6, they
are shown as dark grey rectangles. Fences are either Headers or left-hierarchies. Basically,
fences help us detect the start of a new table, horizontally or vertically.

The proposed rules attempt to detect tables even in the presence of irregularities. As
shown in Figure 6.6, TIRS takes into consideration the occurrence of sparse tables (i.e.,
multiple fences and Data regions in the same table). Furthermore, TIRS addresses mis-
classifications that occur in fences and elsewhere.

Nevertheless, TIRS performs worst than the other table detection approaches, discussed
in this chapter. One of the main reasons is that TIRS does not make use of a structured
representation, such as the graph model from Section 6.2.1. This results in complex rules,
which are difficult to debug and extend.

Therefore, in [83] we introduced an approach, referred to as RAC (Remove and Conquer).
This approach relies on the proposed graph model. Another novelty of RAC is that the
rules go beyond the immediate neighborhood of the region. In other terms, it absorbs
significantly more context than the TIRS approach. However, RAC does not make use of
left-hierarchies (i.e, vertical fences). It only uses Header regions (i.e., horizontal fences)
and Data regions. Nonetheless, RAC incorporates and simplifies many of the rules orig-
inally proposed for TIRS [83].

In the subsequent sections, we proceed by discussing in detail the RAC approach. How-
ever, in Appendix B, one can refer to the original TIRS approach.

6.3.1 Remove and Conquer

For each worksheet in our dataset, we classify the cells, and then we perform the pre-
processing actions, described in Section 6.2.3. Subsequently, we construct a directed
graph, as described in Section 6.2.1. Our rule-based algorithm, RAC, processes these
graphs individually and outputs for each one of them a set of proposed tables P . In
addition to this, in a separate set U , RAC returns vertices that could not form tables.

6.3 Rule-Based Detection 109

The pseudocode for the proposed approach can be found in Algorithm 6.1. We reuse
in this algorithm the functions defined in Section 6.2.1, for the graph model. We also
illustrate the steps of RAC, in Figure 6.7 and 6.9. Here, we revisit the example originally
introduced in Figure 6.5 and discussed in Section 6.2.3. Lastly, in the following section,
we use the term vertex and region interchangeably. They both refer to the layout regions
of the sheet (see Section 4.4).

Horizontal Groups

The RAC approach addresses sheets with one or many tables, diverse layouts, and ar-
bitrary arrangements. However, transposed tables (with vertical Headers, i.e., arranged
column-wise) are outside of the scope of this work. As stated in Section 3.3, these cases
are rare. Therefore, RAC always assumes that Headers cells are on the top rows of the
tables, and the Data cells in the lower rows.

This fundamental assumption defines the RAC approach. We remove edges in a way
that preserves this top-down arrangement within tables. In other terms, we prioritize
Top and Bottom edges, over Left and Right edges.

As seen in Figure 6.7, for sheets exhibiting horizontal arrangements of tables, we get Left
and Right edges in the graph representation. These edges typically connect regions from
different tables, but can also be found within the same table. Yet, for the latter case, we
expect Top and Bottom edges as well. Thus, removing the Left and Right edges (lines 2-4,
Algorithm 6.1) should mostly impact the inter-table connections. Nevertheless, we take
measures to protect some of the intra-table connections, by not removing edges when the
distance is zero (i.e., adjacent regions with no other column in-between them).

33

H2

D4

D5
D6

D9

H1

D1

D3

H3

D8

D2

D7

H4

D10

(a) Input Graph

32

H2

D4

D5
D6

D9

H1

D1

D3

H3

D8

D2

D7

H4

D10

H2

D4

D5
D6

D9

H1

D1

D3

H3

D8

D2

D7

H4

D10

(b) Horizontal Groups

34

H2

D4

D5
D6

D9

H1

D1

D3

H3

D8

D2

D7

H4

D10

H2

D4

D5
D6

D9

H1

D1

D3

H3

D8

D2

D7

H4

D10

(c) Vertical Groups

Figure 6.7: The RAC Approach

The above-mentioned action, i.e., the omission of Left and Right edges, constitutes the
first step of RAC. The resulting connected components are referred to as horizontal groups.
Note, it is not always the case that we get multiple such groups. For instance, in Fig-
ure 6.7.b there is still only one connected component after the edge omissions.

Regardless, in the next step, each one of the horizontal groups is subdivided vertically.
For this, we utilize the enclosed Header regions as separators. Ultimately, we get sub-
groups, which are simply referred to as vertical groups. These should already resemble
valid tables. Nevertheless, in the final steps, RAC attempts some further corrections,
which can improve the quality of the detected tables.

110 Chapter 6 Table Detection

Vertical Groups

Before outlining how RAC subdivides vertically, we need to address the implications
arising from misclassified cells. Consider the examples, in Figure 6.8. On the left (Fig-
ure 6.8.a), regions are formed using the true layout function of the cells. While, in Fig-
ure 6.8.b, we use the predicted functions. Here, the cells in the regions D1 and H4 were
incorrectly classified.

H1 H2H3 D1
D2 H4 D3

D4

H1 H2
H3

D1

(a) True Layout Roles

H1 H2H3 D1
D2 H4 D3

D4

H1 H2

H3

D1

(b) Misclassified Cells

Figure 6.8: The impact of misclassifications

RAC needs to infer that all regions in Figure 6.8.b belong to one table, instead of many.
The alignment between Header and Data regions provides some hints. The same is true
also for the size of these regions. In particular, we prioritize larger Header regions.

We use these insights in lines 5-21 of Algorithm 6.1, which outline the second step of RAC.
For each connected component (GS), i.e., a horizontal group, we seek to pair Header
regions with Data regions. As shown in line 7 of Algorithm 6.1, we perform our search
for tables from bottom to top. We sort vertices in descending order of their maximum
row, followed by the ascending order of their minimum row. Note, for Figure 6.8.b, this
means H2 will be ordered before D1, H3, and H1.

Algorithm 6.1: The RAC (Remove and Conquer) Approach
Input: G: graph representation of a worksheet
Output: P : proposed tables, U : other undetermined
1: P ← ∅; U ← ∅;
2: El ← {e ∈ E|dir(e) = Left and ldist(e) > 1}
3: Er ← {e ∈ E|dir(e) = Right and rdist(e) > 1}
4: E ← E \ (El ∪ Er)
5: for all GS ∈ getComponents(G) do // GS = (S,ES)
6: LQ← NIL // holds Q of last valid Header
7: S′ ← sortV ertices(S) // descending order max row, ascending order min row
8: S′H ← {v ∈ S

′|lbl(v) = Header}
9: if |S′H | > 0 then

10: for all h ∈ S′H do
11: if h ∈ LQ then continue
12: TQ← {s ∈ S′| rmin(s) ≥ rmin(h)} // the TQ denotes the temp Q set
13: Q← {s ∈ TQ| hasRestrictedPath(s, h, ES , TQ)}
14: if isV alid(h,Q, 0.5) then
15: P ← P ∪ {LQ}
16: S′ ← S′ \Q
17: LQ← Q
18: else if LQ 6= NIL then
19: if |Q| = 1 and isAligned(h, LQ) then
20: LQ← LQ ∪ {h}
21: P ← P ∪ {LQ} // when the for all loop ends
22: U ← U ∪ S′ // remaining unpaired
23: P, U ← handleOverlapping(P, U)
24: for all u ∈ U do // find nearest table left or right
25: N, dist← getNearestV ertices(u, (El ∪ Er))
26: P ′ ← {P ∈ P| 0 < |N ∩ P |}
27: if |P ′| = 1 and dist ≤ 2 then
28: P ← P ∪ {u}, where P ∈ P ′
29: return P , U

6.3 Rule-Based Detection 111

We process each Header vertex h individually, as shown in lines 10-20. If h is not already
paired (line 11), we proceed to identify vertices having a minimum row that is greater
than or equal to that of h (line 12). We denote this collection of vertices (including h) as
TQ. All together, these vertices have the potential to form a valid table. However, we
also need to handle scenarios like in Figure 6.7.b, where D10 satisfies the above condition
for H2 or H3, even though they are not part of the same table. Thus, we additionally
ensure that there is a direct path from h to the other vertices in TQ. Note, this path must
involve only vertices from the TQ set. With this additional constraint, as shown in line
13, we get the set Q. This set becomes the base for a candidate table.

Line 14 checks the validity of a Header (discussed in more detail later). Vertices paired
with a valid Header are subtracted from S′, the list of sorted vertices. However, we do not
appendQ to P , yet. Consider, the scenario in Figure 6.8.a. PairingH3 withD1 could form
a seemingly complete table, but it leaves H1 and H2 out. Thus, in lines 18-20 we identify
Headers having no other vertex to pair with (i.e., only h satisfies the conditions in lines
12-13). We typically append such Headers to the Q of the last valid Header, denoted as
LQ. However, before that, we make sure that these Headers have column/s in common
with one or more vertices in LQ. In other terms, we examine their alignment.

Valid Headers

In Figure 6.7.c, vertex H3 remains connected with D1. This is because H3 is not a valid
Header, and it could not act as a separator. We handle this case in the subsequent steps
of RAC. Here, with Algorithm 6.2, we outline the validity check for Headers.

First, we check that there are vertices below the specified Header h (line 1, Algorithm 6.2).
Then, in line 2 we identify Headers inQ that span one or more rows in the range [cmin(h),
cmax(h)]. The set QH acts as a composite candidate Header for the potential table. Note,
this set includes h itself. We calculate the alignment ratio of QH with the rest of the
vertices (lines 3-8). Intuitively, with this metric, we avoid false candidates, i.e., cases
where QH shares very few columns with Q \ QH. However, we have to also account
for the occurrence of misclassifications. They can reduce the original alignment of the
Header and Data regions. Thus, in the end, we set the alignment threshold as ≥ 0.5.

Finally, in line 8, we additionally check whether QH and the other regions span at least
two columns. This is because we consider true tables only those having at least two rows
and two columns. Clearly, this condition is in addition to having at least a Header and a
Data region. Coming back to Figure 6.7.c, regions H3, D6, and D9 collectively span only
one column. Therefore, H3 is not valid.

Algorithm 6.2: Check if Header is Valid
Input: h: a Header vertex, Q: vertices associated with h, and th: threshold for alignment ratio
Output: True if h is valid, False otherwise
1: if |{q ∈ Q|rmin(q) > rmax(h)}| > 0 then
2: QH ← {q ∈ Q| lbl(q) = Header and rmin(q) ≤ rmax(h) and rmin(q) ≥ rmin(h)}
3: X ← ∅; X′ ← ∅
4: for all u ∈ QH do
5: X ← X ∪ {x ∈ N|cmin(u) ≤ x ≤ cmax(u)}
6: for all v ∈ Q \QH do
7: X′ ← X′ ∪ {x ∈ N|cmin(v) ≤ x ≤ cmax(v)}

8: return
|X ∩X′|
|X′|

≥ th and |X| > 1 and |X′| > 1

9: else
10: return False

112 Chapter 6 Table Detection

Unpaired Vertices

Starting from line 9 of Algorithm 6.1, we identify horizontal groups that do not contain
a Header vertex and store them in U (see line 22). Nevertheless, we can get unpaired
vertices, even from horizontal groups that have Headers. For instance, there are cases
where none of the enclosed Headers is valid. Therefore, we can not create any candidate
table. Which means all vertices from this group are moved to U .

Post-Corrections

In line 23, of Algorithm 6.1, we deal with a special scenario. Occasionally, there are
overlaps between the resulting vertical groups. In fact, to detect these overlaps, we use
the minimum bounding rectangles (MBRs) of these groups. For example, overlaps occurs
for the vertical groups in Figure 6.7, since the vertex H3 remains connected to D1. In
Figure 6.9.a, we illustrate the situation using the original regions.

The function in line 23, handles such cases. If the overlap is between two tables arranged
horizontally, it will attempt to merge them. Otherwise, it identifies the vertices causing
the overlap. These vertices are moved from the proposed tables to U , for further process-
ing. This is illustrated in Figure 6.9.b, where the vertices H3, D6, and D9 are unpaired.

The last step of RAC, from lines 24-28 of Algorithm 6.1, attempts to pair vertices in U

with the nearest table on their Left or Right. Nevertheless, in line 26 we set a threshold.
We pair vertices with tables only when the distance is ≤ 2 columns. Note, in rare cases,
there might be multiple nearest tables. We do not handle such scenarios, i.e., the vertex
remains in U .

For the running example, in Figure 6.9.c, we show the results of the last step. The pro-
posed table (i.e., vertical group) on the left is the nearest for H3, D6, and D9. Thus we
re-introduce the LEFT and RIGHT edges for these vertices. The three connected compo-
nents from Figure 6.9.c constitute the proposed tables. In this case, they correctly match
the true tables in the sheet.

37

H1

D1

H2 H3

D2 H4
D3 D4 D6

D10
D5

D7

D8 D9

H2

D4

D5
D6

D9

H1

D1

D3

H3

D8

D2

D7

H4

D10

(a) Vertical Group MBRs

36

H2

D4

D5
D6

D9

H1

D1

D3

H3

D8

D2

D7

H4

D10

H2

D4

D5
D6

D9

H1

D1

D3

H3

D8

D2

D7

H4

D10

(b) Handle Overlaps

36

H2

D4

D5
D6

D9

H1

D1

D3

H3

D8

D2

D7

H4

D10

H2

D4

D5
D6

D9

H1

D1

D3

H3

D8

D2

D7

H4

D10

(c) Pair Left and Right

Figure 6.9: The RAC Approach

6.3 Rule-Based Detection 113

6.4 GENETIC-BASED DETECTION

In this section, we go beyond the fixed rules, from Section 6.3. We opt for a transferable
and flexible approach, which can be adjusted to meet the specific characteristics of a
new (unseen) spreadsheet datasets. Clearly, such adjustments should require minimum
effort. Therefore, we propose a mostly automatic approach, which can be tuned based on
examples (i.e., a sample of annotated sheets).

Again, we use a graph model to encode the layout of the input sheet. However, we search
for the optimal partitioning of the graph, based on an objective function. With this func-
tion, we quantify the merit of candidate partitionings. Then, using a genetic algorithm,
we efficiently traverse the search space to identify the partitioning giving the best score
(i.e., the global optimum). Intuitively, this partitioning should have the partitions (i.e.,
connected components) that correspond precisely to the tables in the sheet.

The objective function, defined in Section 6.4.4, brings together several metrics, which
measure different aspects. We study a candidate partitioning as a whole, as wells as the
individual partitions that compose it. Nevertheless, some aspects are more important
than others. Therefore, the proposed metrics are weighted, based on their relevance.
In fact, we determine the weights automatically. For this, we use a training sample of
annotated sheets. In this way, we can adjust the objective function (i.e., the weights) to
match the current dataset.

In Section 6.4.3, we define the metrics used in the objective function. However, before
that, in Section 6.4.1, we briefly discuss the graph model adapted for this approach. We
highlight a few differences with the model used in the rule-based approach (Section 6.3).
Moreover, in Section 6.4.2 we introduce the concept of Header clusters. This concept is
relevant since it used in many of the considered metrics.

6.4.1 Undirected Graph

As with the rule-based approach, we perform the pre-processing actions from Section 6.2.3.
Then we represent the layout of the sheet with the graph model from Section 6.2.1. How-
ever, for the genetic-based approach, we additionally convert the graph model into undi-
rected. In Figure 6.10, we illustrate the updated model. Essentially, a single undirected
edge describes the relationship between two vertices. This relationship is, in fact, the
orientation of alignment for the corresponding layout regions. Therefore, we replace the
left of and right of edges with an undirected horizontal edge. While the top of and bot-
tom of edges we replace with an undirected vertical edge. In addition, these undirected
edges encode the distance (denoted as dist) between the regions. For this, we sum the
width/height of columns/rows that separate the given regions.

6.4.2 Header Cluster

Let P = {V1, ..., Vk} be a candidate partitioning of the input graph G = (V,E). As men-
tioned before, the objective function studies, among others, the individual partitions that
compose P . Therefore, in Section 6.4.3, we define metrics that capture various aspects for
each partition.

Many of the proposed metrics use the concept of Header cluster. Concretely, with this
concept, we address partitions that contain multiple Header regions. This might occurs

114 Chapter 6 Table Detection

30

H2

D4

D5
D6

D9

H1

D1

D3

H3

D8

D2

D7

H4

D10

A B C D E F G H I J K L M

1 M1
2
3 H1
4

D1
5

6

7
8
9

H2 H310

11

12 D2

M3

H4
13 D3 D4 D6

D10
14 D5
15 D7
16

D8 D917

18

19 M2

Edge Attributes
orientation vertical

dist (height) 53.6 pt

Vertex Attributes
address L13:M17
label Data
min row 13
min col 12
max row 17
max col 13Edge Attributes

orientation horizontal

dist (width) 4.0 units

Figure 6.10: Graph Model for the Genetic-Based Approach

when a partition is of bad quality. That means, it brings together Header regions that
otherwise belong to different tables. Misclassifications are another factor, to be consid-
ered. The given partition might be correct (i.e., corresponding to a table), but some of
the enclosed regions were falsely labeled as Header. Finally, there are also cases with no
misclassifications, but we still find multiple Header regions in a correct partition. For
example, in Figure 6.10, the regions H2 and H3 belong to the same table.

We handle the above-mentioned cases, with the help of Header clusters. We create these
clusters using the information encoded in the vertices of the graph model, shown in Fig-
ure 6.10. Specifically, for each partition, we examine the rows covered by the enclosed
regions. We denote as Rd the set of row indices, where we find Data regions. Similarly,
Rh records the row indices for Header regions. Then the set difference Rd

∗
= Rd - Rh

gives us the rows covered only by Data regions. We use these rows, to cluster the Header
regions, in the partition. Specifically, two Header regions are part of the same cluster,
unless a row r ∈ Rd∗ stands in between them.

Below, we illustrate Header clusters, with a concrete example. Suppose that the graph
from Figure 6.10, is divided into two arbitrary partitions: V1 = {H1, D1, H2, H3, H4}
and V2 = {D2, D3, ... , D10}. The second partition does not contain any Header cluster.
However, the first one contains two: {H1} and {H2, H3, H4}. These two clusters are
separated by the region D1 that stands in between them. While H4 can be clustered with
H2 and H3 since row 12 has both Data and Header regions.

In the following sections, we denote a Header cluster as H. Typically, we are interested
in the cluster having the smallest row index, among all the clusters in a given partition.
We denote this special cluster asHtop. Returning to the example, from the previous para-
graph, we note that Htop = {H1}. Intuitively, the top cluster is seen as the “true” Header
of the partition. The remaining clusters are either misclassifications or Header regions
from other tables.

6.4.3 Quality Metrics

The quality of a candidate partitioning P is directly related to the partitions that compose
it. Therefore, we define metrics that capture how close these partitions are at being tables.

6.4 Genetic-Based Detection 115

However, we formulate these metrics such that they measure negative properties since
we later use minimization to identify the optimal solution. This means, the lower are the
metrics’ values, the more table-like are the partitions.

We introduce the following functions, that are used in the definitions of the proposed
metrics. To get the Data and Header vertices from a partition Vi ∈ P , we use respectively
the function data and heads. While the function hgps returns the Header clusters in Vi.
Moreover, we introduce functions that apply to the vertices of the graph. We use area to
get the number of cells for a vertex (region). The function rows and cols return respec-
tively the set of row indices and column indices that the region covers. Finally, we use
cwidth to get the width of a column given its index, and rheight to get the height of a row
given its index.

In total, we define ten metrics. The first nine apply to the individual partitions that com-
pose P . While the tenth metric considers the whole candidate partitioning.

M1 Negative Header Alignment Ratio (nhar): For a partition Vi, we identify the top Header
cluster (Htop), i.e., the one having the smallest row index among all clusters H in Vi.
Subsequently, we calculate the ratio of columns thatHtop shares with the Data regions in
Vi. We invert this measurement, to capture the negative cases. Thus, the closer the value
of this metric is to 1, the lower is the alignment ratio.

Cht =
⋃

v∈Htop

cols(v), Cd =
⋃

u∈data(Vi)
cols(u),

nhar =

1− |C
ht ∩ Cd|
|Cht| , if |Cd| ≥ 1 and |Cht| ≥ 1

0, otherwise

M2. Negative Data Alignment Ratio (ndar): This metric measures the negative alignment
from the perspective of the Data regions. Thus, in the fraction below, we divide by Cd.

ndar =

1− |C
ht ∩ Cd|
|Cd| , if |Cd| ≥ 1 and |Cht| ≥ 1

0, otherwise

M3-4 Is Data/Header Partition (dp/hp): Notice that, for the previous two metrics, we omit
the cases where the partitions contain either Data or Header regions, but not both. For
these cases, we introduce two separate Boolean metrics. Here, we illustrate the calcula-
tion of dp. We handle hp, similarly.

dp =
{

1 if heads(Vi) = ∅ and |data(Vi)| ≥ 1
0, otherwise

M5. Is All In One Column (ioc): This is another Boolean metric. If the Htop and the Data
regions cover altogether only one column, ioc returns 1, otherwise 0. Intuitively, this
metric pushes towards tables that span at least two columns.

ioc =
{

1, if |Cd| = 1 and |Cht| = 1 and |Cd ∩ Cht| = 1
0, otherwise

116 Chapter 6 Table Detection

M6. Count Other Valid Headers (#ovh): Besides Htop, there might be other valid Header
clusters, in a partition. We consider valid those clusters that (cumulatively) span more
than one column. The presence of other valid H suggests multiple tables in the same
partition.

#ovh =
∣∣{H ∈ hgps(Vi) \ Htop :

∣∣ ⋃
v∈H

cols(v)
∣∣ ≥ 2}

∣∣
M7. Data Above Header Ratio (dahr): Measures the portion of Data cells found above the
Htop, in a given partition. In other terms, we identify Data cells with a row index less than
min

⋃
v∈Htop rows(v). Intuitively, for typical tables, it is expected that all Data cells are

below the top Header cluster. However, for arbitrary partitions, especially in multi-table
sheets, Data cells could be found above it. This can also occur due to misclassifications.

dahr = #dcells_above∑
u∈data(Vi) area(u)

M8. Average Width for Adjacent Empty Columns (avgw_aec): For each partition, we group
adjacent empty columns2, and measure the commutative width3 per group. Subsequently,
we calculate the average of these widths. In the equation below, we denote as Cemt the list
containing these aec groups. Intuitively, this metric identifies empty columns that might
act as separators of content. This would imply that some vertices of the partition do not
belong with others.

avgw_aec =
∑|Cemt|
i=1

∑|Cemt
i |

j=1 cwidth(Cemtij)
|Cemt|

M9. Average Height for Adjacent Empty Rows (avgw_aer): The presence of empty rows,
similar to empty columns, could imply separation of contents.

avgw_aer =
∑|Remt|
i=1

∑|Remt
i |

j=1 rheight(Remtij)
|Remt|

M10. Overlap Ratio (ovr): Unlike the other metrics, this one is calculated at partitioning
level, P . We identify overlaps between the individual partitions composing P and mea-
sure their area. We divide the sum of overlaps with the used area of the sheet (i.e. the
minimum bounding box enclosing all regions). Below, Ci and Cj represent the sets of
column indices for partition Vi and Vj , respectively. Equivalently, for row indices, we use
Ri and Rj .

ovr =
∑|P |−1
i=1

∑|P |
j=i+1 |Ci ∩ Cj | ∗ |Ri ∩Rj |∣∣ ⋃

v∈V cols(v)
∣∣ ∗ ∣∣ ⋃v∈V rows(v)

∣∣
6.4.4 Objective Function

In Equation 6.1, we define the function measuring the fitness of the individual partitions
that comprise a candidate partitioning P = {V1, ..., Vk}.

fit(Vi,M,w) :=
9∑
j=1

Mj(Vi) ∗wj (6.1)

2Columns can be empty within the partition (i.e., an area of the sheet), not necessarily for the whole sheet.
3In Excel, the column width is measured in units of 1/256th of a standard font character width, while the

row height is measured in points.

6.4 Genetic-Based Detection 117

As shown, the fitness for a partition Vi is calculated as a weighted sum of metrics’ values.
With M we denote the list of implemented metrics’ functions. In Equation 6.1, we use
only the first nine metrics, since these apply at the partition level (as mentioned in Section
6.4.3). While w is a vector that holds the corresponding weights for the metrics.

obj(P,M,w) := w10 ∗M10(P) +
∑
Vi∈P

fit(Vi,M,w) (6.2)

Equation 6.2 provides the definition for the objective function. We sum up the fitness
of the individual partitions. Moreover, we make use of the Overlap Ratio metric (M10),
which is calculated at the level of the partitioning.

6.4.5 Weight Tuning

One of the challenges of the proposed approach is determining the optimal weights for
the objective function (see Equation 6.2). Intuitively, some metrics are more crucial than
others. However, it is rather difficult to manually ascertain the exact importance of each
metric in relation to the rest. Therefore, optimization algorithms are needed to tune
the weights automatically. Here, we make use of Sequential Quadratic Programming
(SQP) [23], for constrained minimization.

Tuning Sample. We tune the weights based on a sample drawn from a dataset of an-
notated sheets. Note, the size this sample are discussed in more detail in Section 6.5.3.
We construct the graph representation for each sheet in the sample. Subsequently, the
intention is to guide the optimization algorithm in finding weights that favor valid parti-
tions, while penalizing false ones. Therefore, for each one of the graphs, we consider the
target partitioning, i.e., the one that corresponds to the true tables in the sample sheet.
Note, this partitioning is given since we operate on annotated sheets. Furthermore, we
randomly generate multiple alternative partitionings (i.e., false instances).

Tuning Function. We denote the sample used for optimization as S = (U , T), where
U holds all the generated alternative partitionings, and T holds the corresponding tar-
get partitionings. As stated previously, for each graph we generate multiple alternative
partitionings. Thus in order to ensure a one-to-one mapping, we replicate the target par-
titionings in T .

arg min
w

|U|∑
j=1

1 + obj(Tj ,M,w)
1 + obj(Uj ,M,w) , such that: 0 ≤ w ≤ 103 (6.3)

The equation above defines the function used for weight tuning. As can be seen, it is a
summation of fractions, designed for minimization. In most of the fractions, the numer-
ators will get smaller values than the denominators (as mentioned in Section 6.4.3, we
measure negative properties). Regardless, we still need to increase the gap between tar-
gets and alternatives. The challenge is to find weights that penalize alternatives, without
affecting many targets.

Note that we add +1 to denominators and numerators, in order to avoid exceptions of
division by zero, during the automatic search for optimal weights. Furthermore, we con-
strain the possible values for the weights in the interval [0, 103]. This is to avoid extremely
large or extremely low weights, which might not be realistic, but rather reflecting the pe-
culiarities of the current sample.

118 Chapter 6 Table Detection

6.4.6 Genetic Search

After tuning, we attempt to identify the fittest partitioning for the remaining sheets in
the dataset. For small graphs (currently set to ≤ 10 vertices), we perform exhaustive
search. However, for larger graphs, a more efficient mechanism is required. For these
cases, we use genetic algorithms [14, 66], which can yield near-optimum solutions in a
reasonable time. In this work, we make use of the edge encoding as described in [81]. We
represent the edges of an input graph with a Boolean valued list of size |E|. When the
corresponding value is set to true, the edge is activated, otherwise not. Dis-activating and
re-activating edges lead to various graph partitionings. Intuitively, edge encoding ensures
that we always get connected components of the input graph. This is favorable since it
translates to partitions that enclose neighboring regions, rather than arbitrary ones.

Nevertheless, there are challenges to this formulation. The search space increases expo-
nentially with the number of edges 2|E|. Thus, identifying the right combination of edges
becomes more demanding for larger graphs. We find such graphs (up to 7, 484 edges)
in our dataset. They occur due to many implicit/missing values (empty cells) in tables,
which inflate the number of vertices (i.e., layout regions), and with that the number of
edges.

The pseudocode in Algorithm 6.3 describes the implemented genetic search. We have
adopted the eaMuPlusLambda algorithm, as provided by the DEAP library [1, 54]. An
initial population, composed of Boolean-valued lists, is generated randomly. The size
of this population is not fixed but rather calculated with a function, which takes into
account the number of edges in the input graph. In subsequent iterations, new individ-
uals (Children) are created from the population of the previous generation (Parents). This
step is performed using one of the following genetic operations: random mutation (inverts
Boolean values of a Parent, with an independent probability indpb = 0.1), and uniform
crossover (combines values from two Parents, with indpb = 0.5). We pick individuals for
the next generation with tournament selection of size = 3, considering both Children and
Parents. The hallOfFame (hof) carries the individual having the smallest score (i.e., the
fittest) among all examined candidates.

Algorithm 6.3: Identifying the Optimum Partitioning using Genetic Search
Input: sheet-graph: G = (V,E), metrics: M , weights: w, population size: npop = ceil(log10(|E|) ∗ 100),

#generations: ngen = 200, crossover probability: cxpb = 0.5, mutation probability: mutpb = 0.5,
#offsprings to generate: λ = npop, #individuals to select: µ = npop, and seed individual (optional)

Output: The partitioning with the lowest objective function score
1 begin
2 Pop← createInitialPopulation(G, npop, seed);
3 hof ← updateHallOfFame(Pop, G, M , w);
4 for i ∈ {1, ..., ngen} do
5 Children← createOffsprings(Pop, λ, cxpb, mtpb);
6 hof ← updateHallOfFame(Children, G, M , w);
7 Pop← selectFittest(Pop ∪ Children, µ, G, M , w)

8 return hof

We select genetic operators and parameter values following recommended practices [48].
After extensive experimentation, we favored those that push towards more diverse gen-
erations (Children). In this way, we cover a larger search space and decrease the chances
of premature convergence.

Furthermore, note that there is an option for a seed individual, in Algorithm 6.3. We adopt
the rule-based approach, from Section 6.3, to create this seed. It represents a good candi-
date solution, which is fed to the initial population. Such hybrid approaches are common
in practice, as suggested by [68]. They often yield better results than pure genetic ones.
We make npop

2 − 1 copies of the seed, and apply random mutations on them, with in-
dpb=0.1. These copies, together with the seed, compose half of the initial population. The
rest is randomly generated.

6.4 Genetic-Based Detection 119

6.5 EXPERIMENTAL EVALUATION

For the rule-based approach, from Section 6.3, the evaluation is straightforward. We
run the algorithm once for each classified sheet in the considered dataset. However,
the genetic-based approach, from Section 6.4 is not deterministic. The weights for the
objective function will differ, depending on the selected training sample. Moreover, the
genetic search itself is a meta-heuristic method that does not guarantee the same output,
given the same input.

Therefore, for the second approach, we perform 10-fold cross-validation. Note, we en-
sure that single- and multi-table graphs are balanced among the folds. Each iteration, 9
folds are reserved for training (i.e., weight tuning), and 1 for testing (i.e., table detection).
Moreover, the tuning process undergoes several rounds of its own, which are discussed
in more detail in Section 6.5.3. Furthermore, after tuning, we execute the genetic search
10 times for test graphs having |E| > 10. For the rest, |E| ≤ 10, we perform exhaustive
search. Finally, to ensure statistical significance, we repeat the whole process three times.
Each time, before cross-validation, we shuffle the dataset using a different numeric seed.

6.5.1 Testing Datasets

Here, we consider the datasets extracted from Enron and Fuse corpus (refer to Chapter 3).
After omitting few files as being out of scope (see Section 3.4.1), the considered datasets
contain respectively 814 and 274 sheets. In the Enron dataset, there are 674 single-table
sheets and 140 multi-table sheets. For the Fuse dataset, the respective numbers are 222
and 52. Overall, the total number of annotated tables is 1, 158 (Enron) and 458 (Fuse).

Before the experimental evaluation, as described in Section 6.2, we construct the graph
representation for each considered sheet. We use as input the classification results from
Chapter 4. However, we also consider the original annotations from Chapter 3. Essen-
tially, we perform experiments with the ground-truth graphs and with those carrying
misclassifications. In this way, we can compare the evaluation results and infer the im-
pact that misclassifications have on the proposed approaches.

Note, with regard to the cell classifications, we consider from Chapter 4 both scenarios: 6
and 7 labels4. In Section 4.3, we mentioned that three distinct cross-validation runs were
used to evaluate the classification methods. For the experiments in this chapter, we use
the results from one of these runs. We omit the worst and best run, with respect to the
Macro_F1 score. Thus we keep the middle case, the one being closer to the average score.

6.5.2 Training Datasets

The datasets from the previous section are used only for testing. In fact, we generate
special datasets for training (i.e., weight tuning). These datasets contain random induced
errors. We explain in the following paragraphs how cross-validation works with two
separate datasets.

Inducing Random Error: We consider the original cell annotations, i.e., the ground truth.
Subsequently, we reduce the cell labels to three meta-classes, as outlined in Section 6.2.3.

4In both cases, the pre-processing actions (Section 6.2.3) will reduce the labels to 3 meta-classes.

120 Chapter 6 Table Detection

Thus, cells are now re-organized into Data (D), Header (H), and Metadata (M). Before
creating the layout regions, we induce random errors. Basically, we re-assign a small
percentage of randomly selected cells to another (false) class.

Specifically, to generate the training datasets, we consider three parameters per class.
The first one is the probability of randomly selecting the cells of this class for induced
error. Secondly, once a cell is selected, we re-assign it to one of the remaining two classes.
Therefore, we need the probability of picking each one of these two classes.

We experimentally determine these 9 parameters (i.e., 3 parameters for each meta-class).
Concretely, we generate a training dataset for each one of the considered test datasets.
Therefore, in total, there are six training datasets, with induced error as reported in Ta-
ble 6.1. We report the probabilities as percentages in the following format: % error for
this class; (% re-assign to other class1, % re-assign to other class2). The order for the
re-assignment probabilities is as follows: D; (M,H), H; (D,M), M; (D,H).

Intuitively the amount of induced error depends on the current testing dataset. In other
terms, the corresponding training dataset follows a roughly similar error (misclassifica-
tion) distribution to that of the testing dataset. We introduce more error when testing on
the classification results, compared to the ground-truth dataset. Moreover, our experi-
ments show that the Enron dataset requires more induced-error than the Fuse dataset.

Table 6.1: Induced Noise per Training Dataset

FUSE ENRON
Classification Ground

Truth
Classification Ground

Truth6 labels 7 labels 6 labels 7 labels
D 0.1; (80, 20) 0.5; (80, 20) 0.1; (80, 20) 0.1; (91, 9) 0.5; (91, 9) 0.1; (91, 9)
H 2.5; (87, 13) 2.5; (90, 10) 1.0; (90, 10) 3.5; (86, 14) 3.5; (86, 14) 1.0; (86, 14)
M 5.0; (98, 2) 5.0; (98, 2) 2.0; (98, 2) 7.0; (96, 4) 7.0; (96, 4) 2.0; (96, 4)

Cross-validation with Two Datasets: The training and testing datasets contain the same
sheets, but differ when it comes to the meta-classes assigned to the cells. For cross-
validation, these two datasets are divided into 10 folds. However, for both of them, we
use the same random seed to allocate the sheets into folds. Thus, there is a one to one
correspondence. From then on, we follow the standard cross-validation procedure. Each
iteration of the cross-validation, the 9 training folds come from the induced-error dataset.
The left-out fold comes from the current test dataset.

Our experimental evaluation showed that training with this method improves the de-
tection accuracy. Intuitively, the induced errors expose the tuning mechanism to small
irregularities, which help avoid overfitting. This is true not only when testing on the
classification results, but also for the original annotations.

6.5 Experimental Evaluation 121

6.5.3 Tuning Rounds

Every iteration of the cross-validation, 9 folds (with induced error) are used to tune the
weights for the objective function. The target partitioning is determined from the anno-
tations (refer to Chapter 3). In addition to this, we generate multiple alternative (false)
partitionings. Then, we use the function from Section 6.4.5 to find optimal weights.

In fact, we limit the number of alternative partitionings to 10 ∗#tables, per graph. This
balances the contribution of multi-table and single-table graphs in the tuning sample.
Nevertheless, a limit is anyway necessary, since we cannot exhaustively generate all al-
ternative partitioning for each training graph. This would be computationally very ex-
pensive since we find large graphs in the dataset, with > 1000 edges and/or vertices.

Instead, we ensure reliable weights by performing 10 rounds of tuning, each time ran-
domly generating new alternative partitionings. The weights, resulting from the differ-
ent rounds, are averaged. For this, we consider the error rate of each round. This is
measured as the portion of alternative partitionings having an obj function value that is
lower than that of the targets. Altogether, rounds with higher error rates contribute less
to the averaged weights.

6.5.4 Search and Assessment

The rule-based approach and the exhaustive search for tables are deterministic. However,
the genetic-search can return different candidate solutions, on multiple runs, for the same
input graph. Therefore, we perform the genetic search 10 times and then average the
accuracy of the results.

The accuracy itself is assessed by comparing the target partitioning (i.e., ground truth)
to the output. Note that we consider from the output only partitions having both Data
and Header vertices. The rest we regard as non-valid candidates. Let T = {V1, ..., Vn} be
the target partitioning, and P = {V1, ..., Vk} be the predicted partitioning. As shown in
Equation 6.4, for a table partition (V t

i) and a (valid) predicted partition (V p
j), we calculate

the agreement as #cells in common over #cells in union. Basically, we formulate the
agreement the same as the Jaccard index [91, 123].

|cells(V t
i) ∩ cells(V p

j)|
|cells(V t

i) ∪ cells(V p
j)| (6.4)

Note, for this metric, we consider only non-empty and non-hidden cells. This means, we
use the cells from the layout regions, in the table and predicted partition. All in all, a
table is marked as detected, when we find an agreement of ≥ 0.9.

In addition to the above metric, we use EoB (Error of Boundary), a metric proposed by
Dong et al. [43] for the TableSense framework. EoB is defined below, in Equation 6.5. The
bounds for the predicted table are denoted as B. While, B′ denotes the ground truth, i.e.,
the true table bounds. Intuitively, when EoB == 0 the predicted and true bounds match
exactly. Nevertheless, in [43], the authors consider the table as detected when EoB ≤ 2.
As stated in the paper, the tolerance of 2 is chosen by accounting for the existence of title,
footnotes, and side-notes.

EoB = max(abs(rowBtop − rowB
′

top), abs(rowBbottom − rowB
′

bottom),

abs(colBtop − colB
′

top), abs(colBbottom − colB
′

bottom))
(6.5)

122 Chapter 6 Table Detection

6.5.5 Evaluation Results

Tables 6.3, 6.2, and 6.4 summarize the evaluation results. Specifically, we report the per-
centage of detected tables, in the testing datasets. The first two tables list results for
experiments with classified cells, respectively for 6 labels and 7 labels. While Table 6.4
provides the results for experiments on the ground truth dataset (i.e. the annotated cells).

Clearly, the above-mentioned scenarios, 6 labels, 7 labels, and ground truth, are ad-
dressed separately for the Fuse and Enron dataset. Thus, in the end, we tested six
datasets. For each scenario, we provide the results cumulatively for all the sheets. In
addition, we report results separately for single- and multi-table sheets.

We evaluate the proposed rule-based (RULES) and genetic-based (GE) approach on these
six datasets. We run the experiments only once for the first approach. While, for the
second one, we perform three cross-validation runs and then average the results. Note
for the genetic approach (GE) we use noise (N) for training, as outlined in Section 6.5.2.
In addition, in all experiments, we seed (S) the initial population with the output from
the rule-based approach. This option was discussed in Section 6.4.6.

We measure the table detection performance using the metrics defined in Section 6.5.4.
For brevity, we denote Jaccard index ≥ 0.9 simply as Jc-0.9. For the EoB metric we
consider two cases: EoB ≤ 2 and EoB == 0. The first one is denoted as EoB-2 and the
second one as EoB-0.

Analysis of Evaluation Results

In this section, we discuss the evaluation results. We make several observations, outlined
below. First, we notice that Misclassifications have a notable impact on both proposed ap-
proaches. The performance increases as we move from classification with 7 labels (hav-
ing the most misclassifications), to 6 labels, and finally to the ground truth (having no
misclassifications).

Moreover, the results are consistently better for the Fuse dataset, compared to the En-
ron dataset. We noticed the same pattern also while studying the classification results,
in Section 4.3. As emphasized in Section 3.3.2, sheets in the Fuse dataset are far more
regular than those in the Enron dataset. This plays a significant role when it comes to
classification and detection.

Another observation is that overall we get better accuracy for single-table rather than for
multi-table sheets. Clearly, the latter cases are more demanding. The algorithm needs to
detect two or more tables in the (sheet) graph, which potentially have different layouts,
and are arranged in arbitrary ways.

Finally, with the exception of very few cases, the genetic approach outperforms the rule-
based one. Nevertheless, we find a notable exception in Table 6.4. For the Fuse ground
truth dataset, the rule-based approach performs slightly better. Note that using a rule-
based seed for the genetic approach does not guarantee the same or better results. One
has to consider also the weights from the objective function, which have more influence
on the genetic search. Overall, we can say that the strengths of the genetic approach show
better when we deal with irregular (atypical) sheets and misclassifications.

6.5 Experimental Evaluation 123

Table 6.2: Percentage of Detected Tables for Classification with 7 Labels

FUSE ENRON
All Single Multi All Single Multi

R
U

LE
S Jc-0.9 80.2 90.4 66.9 68.7 78.2 55.6

EoB-2 80.9 86.9 73.1 65.5 72.9 55.2
EoB-0 65.6 79.5 47.4 50.0 60.5 35.3

G
E+

N
+S Jc-0.9 82.4± 0.2 90.1± 0.2 72.4± 0.3 70.6± 0.2 80.3± 0.1 57.2± 0.6

EoB-2 84.7± 0.0 88.4± 0.2 79.8± 0.3 68.7± 0.2 76.4± 0.1 58.0± 0.5
EoB-0 70.8± 0.0 82.7± 0.2 55.2± 0.3 52.1± 0.2 62.1± 0.2 38.2± 0.2

Table 6.3: Percentage of Detected Tables for Classification with 6 Labels

FUSE ENRON
All Single Multi All Single Multi

R
U

LE
S Jc-0.9 86.9 93.9 77.7 75.5 82.9 65.1

EoB-2 85.9 90.8 79.4 69.8 79.2 56.6
EoB-0 75.3 86.5 60.6 56.5 69.9 37.8

G
E+

N
+S Jc-0.9 87.5± 0.3 91.4± 0.2 82.5± 0.5 80.1± 0.1 87.4± 0.0 69.4± 0.3

EoB-2 87.5± 0.3 89.8± 0.2 84.4± 0.7 73.3± 0.2 83.4± 0.1 59.2± 0.5
EoB-0 78.2± 0.2 87.2± 0.2 66.5± 0.3 60.7± 0.3 74.1± 0.1 41.9± 0.7

Table 6.4: Percentage of Detected Tables for Ground Truth Cells

FUSE ENRON
All Single Multi All Single Multi

R
U

LE
S Jc-0.9 96.0 95.6 96.6 84.6 86.7 81.8

EoB-2 95.8 95.2 96.6 83.2 84.6 81.2
EoB-0 94.6 94.3 94.9 79.7 80.7 78.3

G
E+

N
+S Jc-0.9 95.3± 0.2 94.8± 0.4 96.0± 0.0 88.2± 0.2 90.7± 0.1 84.8± 0.5

EoB-2 95.1± 0.2 94.2± 0.2 96.2± 0.3 87.2± 0.1 89.0± 0.1 84.8± 0.2
EoB-0 93.7± 0.2 93.2± 0.4 94.3± 0.0 82.9± 0.3 84.4± 0.2 80.9± 0.8

Comparison with Related Work

Here, we compare with the TableSense approach, proposed by Dong et al.[43]. The au-
thors report an overall EOB-2 score of 91.3%, and 80.8% for EOB-0. Unlike us, they do

124 Chapter 6 Table Detection

not discuss single- and multi-table sheets separately.

The authors tested TableSense on a dataset of 400 sheets, with a total of 795 tables. While
training was done on a separate dataset of 10k sheets. To the best of our knowledge, these
datasets and the TableSense framework are not publicly available. Thus, we cannot test
our approaches on their datasets or vice versa. However, the authors report that they
extracted the spreadsheet files from the Web. Therefore, from this thesis, the Fuse dataset
is the closest to [43].

Clearly, Dong et al. report better accuracy than the one we achieve on the Fuse dataset,
for classification with 6 and 7 labels (see Tables 6.3 and 6.2). However, we achieve better
accuracy to [43], when considering the results from the ground truth dataset (see Table
6.4). Thus, there is potential for the approaches proposed in this thesis. The results sug-
gest, in the presence of few or no misclassifications, these approaches can be competitive
with or even perform better than the TableSense framework.

Additionally, the processing pipeline discussed in this thesis has some advantages over
the TableSense framework. Firstly, we provide the table layouts, in addition to detecting
the tables. We can use these layouts to analyze and extract the data from tables (Chap-
ter 7). However, in [43], the table analysis and data extraction tasks are left for future
work. Secondly, our approach is more traceable. In [43], the authors make use of Neural
Networks, which are known for their “black box” nature. It is hard to trace back their de-
cisions, in order to debug the model. However, this is not the case with our approach. It
is much easier to trace back the steps of our processing pipeline, in order to detect where
the decision was made or where the potential issue had occurred.

6.6 SUMMARY AND DISCUSSIONS

In conclusion, this chapter introduced steps in our processing pipeline that relate to the
table detection task. First, we encode the sheet layout with an intuitive graph model
(Section 6.2.1). This step also includes few pre-processing actions (Section 6.2.3), that
consolidate the graph representation and additionally simplify the detection task. The
latter is handled by the next step. We have formulated the table detection as a graph
partitioning problem (Section 6.2.2). Here, we propose two novel approaches: a rule-
based (Section 6.3) and a genetic-based (Section 6.4). The output of these approaches is
subgraphs (i.e., connected components) of the input graph that correspond to true tables
in the sheet.

In Section 6.5, of this chapter, we evaluated the two proposed approaches using a dataset
of Web spreadsheets (Fuse) and a dataset of business spreadsheets (Enron). The results
show that both approaches achieve fairly good performance, even in the presence of mis-
classifications. Nevertheless, the accuracy is typically higher for the genetic-based ap-
proach. Furthermore, when we experiment with the original annotations (i.e., the ground
truth datasets), we observe significantly high performance. In fact, we achieve 96.0% ac-
curacy for Web spreadsheets. While, for business spreadsheets, which exhibit much more
irregularities (see Section 3.3.2), we achieve ca. 88% accuracy.

Thus, we can say that these approaches are viable, and can be extended even further by
future research projects. Clearly, there is a need to address the cell classification accuracy,
since this can lead to better detection results. Moreover, we foresee the addition of more
rules and metrics for our table detection approaches. For instance, one can consider the
formula references in the sheet. Basically, intra-table references are far more common that
inter-table references (see Section 3.3). Thus, when there is a reference from one layout
region to another, it most probably means that they are part of the same table.

6.6 Summary and Discussions 125

126 Chapter 6 Table Detection

7
XLINDY: A RESEARCH PROTOTYPE

7.1 Interface and Functionali-
ties

7.2 Implementation Details

7.3 Information Extraction

7.4 Summary and Discussions

This chapter is based on our DocEng’19 publication [82]. We present XLIndy (Excel Indy),
a Microsoft Excel add-in with a machine learning back-end, written in Python. XLIndy
is not an end-user product, but rather a framework for testing and interacting with our
novel layout analysis and table detection approaches. For a selected task and method,
users can visually inspect the results, change configurations, and compare different runs.
Additionally, users can manually revise the predicted layout and tables. Moreover, they
can save these revisions as annotations. Finally, data in the detected tables can be ex-
tracted for further processing. Currently, XLIndy supports exports in CSV format.

We discuss the above-mentioned features in the following sections of this chapter. We
introduce the user interface, in Section 7.1. Then, in Section 7.2, we provide implemen-
tation details. In Section 7.3, we outline our procedure for information extraction. We
conclude this chapter, in Section 7.4.

7.1 INTERFACE AND FUNCTIONALITIES

Figure 7.1 provides a brief look at the user interface. It captures the state of the tool after
the layout analysis, and right before table detection/recognition1. Using build-in shape
objects provided by Excel, XLIndy displays layout regions as colored-coded rectangles,
overlaying non-empty cells of the sheet. In the illustrated example, there is a misclassifi-
cation, which the user repairs via the context menu.

Figure 7.1: UI of the XLIndy tool

7.1.1 Front-end Walkthrough

In the upper part of Figure 7.1, we can see a custom ribbon, which acts as the primary
menu for XLIndy. From here, the user carries the majority of the supported functionali-
ties. Starting from the left, “Cell Classification” and “Table Recognition” sections allow

1In this chapter, the term recognition is used more often than detection. Nevertheless, the former incor-
porates the latter. We first detect the table and then analyze its layout.

128 Chapter 7 XLIndy: A Research Prototype

users to respectively initiate layout analysis and recognition tasks. The user selects one
of the several supported methods from the dropdown list, and depending on the desired
task he/she clicks “Classify” or “Recognize”. Once the results are displayed, the user can
click the “Statistics” button, which opens a custom pane providing an overview of the
task performance (see Figure 7.1). Next, the “Feedback” section helps the user navigate
the results and revise them if needed. Moreover, from the ribbon, the user can compare
different runs, via the “Compare” button. This will point to the differences, and empha-
size the strengths and weaknesses of each run. Finally, the “Export” button dumps data
from the selected table areas, in one of the supported formats (currently CSV).

Note, from the “Feedback” section the user can additionally save as annotations the clas-
sification and recognition results, together with his/her revisions. These annotations are
stored in a special hidden sheet of the Excel document, allowing future reuse. For in-
stance, the annotations can be used to (re-)train classifiers, which ultimately can lead to
improved performance for the proposed approaches. Nevertheless, XLIndy does not re-
place the original annotation tool (written in Java), from Chapter 3. However, it does
incorporate several of this tool’s functionalities.

Other panes allow the user to change configurations, before executing a task. In this way,
users can fine-tune the selected approach, ultimately achieving the desired accuracy. Fig-
ure 7.1 displays the configuration pane for the genetic-based table detection (discussed
in Section 6.4). This pane opened automatically when the user selected the “Genetic”
method from the drop-down list in the ribbon.

Furthermore, XLIndy supports a series of actions via a custom context menu. This makes
certain operations straight forward. For example, in Figure 7.1 the user changes the role
of a layout region from Data to Header. Moreover, from this context menu, the user can
manually create a table box (i.e., a rectangle shape with no fill), to indicate a tabular area.
In this way, he/she can correct the table detection results. Subsequently, the user can
export data from tables, using the available options from this menu.

7.2 IMPLEMENTATION DETAILS

As shown in Figure 7.2, XLIndy has front-end and back-end components. It carries out
the whole processing pipeline, described in the previous chapters.

XL
In

dy

Microsoft Excel Application

Client Add-In

Front-end

Back-end

Layout
Analysis

Table
Recognition

Information
Extraction

r/w

r

Python Libraries

temp

Train/Test
Dataset

configurations

revised_layout

…

r/w

r

Figure 7.2: Architecture of XLIndy

The users interact with the tool via a familiar interface, i.e., the Excel desktop application.
On top of that, we deploy a custom add-in, which was developed in C#. This add-in

7.2 Implementation Details 129

triggers the execution of tasks from the pipeline, and subsequently handles the results.
Nevertheless, the tasks themselves are performed by Python scripts, which stay at the
back-end of the system. In Section 7.2.1, we outline how the add-in communicates with
these scripts.

The back-end does not only hold the implementation of the proposed approaches but
also some utilities. We use the many available and highly efficient Python libraries. In
particular, we take advantage of the rich machine learning ecosystem [3, 101].

Another aspect of the XLIndy system is the physical layer, which holds the spreadsheet,
configuration, and temporary run-time files. In Section 7.2.2 we discuss how to efficiently
process the spreadsheets files. While in Section 7.2.1 we motivate the need for temporary
run-time files.

In the physical layer, resides also the gold standard dataset (see Chapter 3), which is not
a direct part of the system, but still tightly related to it. After all, on this dataset, we
train/test the proposed layout inference and table recognition methods. Furthermore,
with the help of XLIndy, we can expand the gold standard with new annotated sheets.
The users can provide feedback and save annotation through the UI (Section 7.1.1).

7.2.1 Interoperability

At the moment, the .NET Framework has some support [2] for Python code. However,
it lacks many features and libraries that come with other more popular Python imple-
mentations. Therefore, a workaround is to run Python scripts within processes initiated
from C# code. Subsequently, the standard output of these processes is parsed and then
displayed to the user.

On the other side, the front-end has to send data to the Python scripts, as well. However,
operating systems usually impose limitations on the number and memory-size of the
arguments passed to processes. To overcome these limitations, for some operations, we
use temporary files to store data coming from the front-end. Then, we instruct the Python
scripts to read these files.

7.2.2 Efficient Reads

The active Excel document is processed by both ends of the system. The front-end han-
dles various operations which require read and/or write permissions. However, read
permissions are sufficient for the back-end, since it only needs to collect features from the
active sheet. To ensure consistency, if there are updates, the front-end will save the Excel
file before making a call to the local service.

Occasionally, we get large documents. Therefore, the back-end employs an efficient read-
ing mechanism. The .xlsx format is in reality a zipped directory [77] of XML files, which
carry information regarding the cell values, formatting, references, and many others (as
detailed in the OOXML standard). Therefore, using the openpyxl library [64], we read
only XML files needed for the current task.

130 Chapter 7 XLIndy: A Research Prototype

7.3 INFORMATION EXTRACTION

XLIndy supports information extraction from the recognized (detected) tables. Before
outlining the extraction procedure, we explain what kind of input this procedure expects.
In Chapter 6, we discuss two pre-processing actions that reduce the layout labels prior to
the table detection step. Note, these actions do not affect the final layout of the table, i.e.,
the one used for information extraction. In concrete terms, once the detection is complete,
we return back to the original cell classifications. This is illustrated in Figure 7.3.

Figure 7.3: Exporting Data from Detected Tables

From now on, the procedure is straightforward. As already suggested by related work
[11, 29, 119], we can use the inferred layout functions to derive the structure of the data in
the table. In this work, we proceed in a similar fashion. Initially, we check for hierarchies
on the top rows and then on the left columns of the table. For instance, in Figure 7.3,
the Header cells for the bottom table are stacked, spanning multiple rows. Clearly, the
Headers in the lower rows depend on those above. Furthermore, in the left column,
months are grouped by quarter (i.e., GroupHeaders). Thus, we traverse the top hierarchies,
then move to the left hierarchies, and finally to the actual value of the Data cell. An
example tuple would be: [‘Monitor’, ‘1st Quarter’, ‘April’, 421].

However, as noted in the previous chapters, cell classification is not without errors. This
means the inferred layout for the detected tables might not be precise. Therefore, to
improve the quality of the extracted information, we need a mechanism that disregards
obvious misclassifications. Below, we outline one such mechanism, based on simple and
intuitive rules. Note, we re-use concepts introduced in previous chapters.

Intuitively, when it comes to the layout labels, we expect the rows inside the detected
tables to be homogeneous. However, this might not be the case due to misclassifications.
Thus, we proceed to analyze each row and detect the majority label, i.e., the one assigned

7.3 Information Extraction 131

to most of the cells in this row. Then, we simply apply this label to the remaining (minor-
ity) cells. Effectively, we enforce homogeneity for the table rows.

However, we need to consider two special cases. The GroupHeaders (i.e., left side hierar-
chies) typically occupy only one cell in a row. Although not shown in Figure 7.3, there
are cases where we find Data cells on the right of GroupHeaders. In such cases, we might
lose actual GroupHeaders, by naïvely applying the majority rule (discussed in the previ-
ous paragraph). Therefore we exclude GroupHeaders from this rule. Instead, we do not
modify the cells having this label, as long as they are in the first two columns of the table.
Last, we need to address cells classified as Headers. Especially, those that are misclassi-
fied. Here we make use of Header clusters, a concept introduced in Section 6.4.2. We
isolate the top Header cluster in the table. Cells in this cluster are considered true Head-
ers, and the rest is treated as misclassified. Concretely, this means, when determining the
majority label per row, we exclude Headers marked as misclassified. If the row does not
carry any other label, besides (misclassified) Headers, we simply mark the enclosed cells
as Data.

7.4 SUMMARY AND DISCUSSIONS

In conclusion, in this chapter, we discuss our research prototype. XLIndy implements the
proposed processing pipeline for the automatic understanding of spreadsheet data. The
front-end of this tool is an Excel add-in. Thus, the user interacts with a familiar interface.
From there, the user can execute the steps of our pipeline. These are handled by back-end
Python scripts.

One of the main objectives of XLIndy is to visualize the results of the proposed ap-
proaches. In this way, the user can inspect the results and provide his/her feedback.
Based on this feedback, we can derive challenges and open issues. Ultimately, this means,
we can make the proposed approaches even more effective.

132 Chapter 7 XLIndy: A Research Prototype

8
CONCLUSION

8.1 Summary of Contributions

8.2 Directions of Future Work

8.1 SUMMARY OF CONTRIBUTIONS

In this thesis, we focus entirely on a ubiquitous document type, i.e., spreadsheets. Be-
cause of their user-friendly interface and manifold functionalities, they have been exten-
sively used in business settings and even found on the Web. Altogether, these documents
represent a large collection of valuable data. However, spreadsheets are not optimized
for automatic machine processing, which limits integration with other sources and sys-
tems. Specifically, the structure of the data is not explicitly given by the spreadsheet doc-
ument or application. The enclosed tables are not trivial, often exhibiting irregularities
(e.g., empty rows/columns and missing values) and accompanied by implicit informa-
tion (e.g., formatting and textual metadata). Therefore, complex algorithmic steps are
required to unlock the structure and wealth of spreadsheet data.

In order to better understand this research problem, In Chapter 2 we review the technical
characteristics of spreadsheet documents, as well as related work in literature. We begin
with the evolution of spreadsheet documents. Besides the user interface and functional-
ities, we focus on the file format, i.e., the way spreadsheets encode (store) information.
In addition, we review existing research work on these documents. Our survey revealed
that despite the relevance, the task of automatic understanding in spreadsheets has been
scarcely investigated. Therefore, we turned our attention to the historic field of Doc-
ument Analysis and Recognition (DAR). From there we borrow well-defined concepts
and approaches, with the aim to adapt them for layout analysis and table detection in
spreadsheets.

We continue the study of spreadsheet documents, in Chapter 3. Despite the existing
works, there is no publicly available dataset of annotated spreadsheets. For this reason,
in this thesis, we developed our own annotation tool, as described in Section 3.2.2. Three
judges were instructed to annotate the layout function of cells, as well as mark the borders
of tables. This work resulted in two annotated datasets, which we are the first (among
related work) to make publicly available. Differently, from related work, we consider
business spreadsheets (extracted from Enron corpus [72]). Nevertheless, we also target
Web spreadsheets (extracted from the Fuse corpus [16]), which were to some extent cov-
ered by related work. As outlined in Section 3.3, from a thorough analysis of these two
datasets, we identify open challenges and derive the requirements for this thesis. Based
on these findings, in Section 3.4.2, we propose a spreadsheet processing pipeline for lay-
out analysis and table detection. The proposed solution operates in a bottom-up fashion,
following best practices and recommendations from the DAR field.

In Chapter 4, we discuss steps from our processing pipeline that relate to the task of
layout analysis. We propose an approach that infers the sheet layout at the cell level.
Therefore, unlike related work, at this initial phase, we do not adhere to any predefined
orientation or arrangement of contents. Moreover, we consider seven descriptive layout
labels (defined in Section 3.2.2), which are assigned to the cells via classification (super-
vised machine learning). We propose and implement highly relevant cell features that
were not considered before by related work. Our thorough experimentation with cell
classification shows that our approaches are viable. We achieve higher accuracy inside
the tables, compared to related work. The chapter concludes with a formalized proce-
dure that groups cells into uniform regions of interest (i.e., referred to as layout regions).
Subsequently, in Chapter 6, we use these regions for table detection.

The cell classification accuracy affects the performance of the subsequent steps in our
processing pipeline. Therefore, in Chapter 5, we propose two corrective approaches. The
first one is based on rules (i.e., neighborhood patterns), while the second one makes use of
refined features and machine learning techniques. Essentially, we study the immediate

134 Chapter 8 Conclusion

and/or distant neighborhood of the classified cells, in order to identify those that are
misclassified and afterward predict their true label.

Next, in Chapter 6, we address table detection in spreadsheets. At the beginning of
this chapter, we propose a graph model that encodes the sheet layout. Concretely, the
graph carries the attributes of layout regions (from Chapter 4) and describes their spa-
tial arrangement in the sheet. Afterward, we partition the graph such that the resulting
sub-graphs correspond to true tables in the sheet. To this end, we propose two novel
approaches. The first one consists of a series of intuitive rules that partition the graph
by omitting edges. The second one attempts to not only achieve high accuracy but also
flexibility. Therefore, it incorporates an objective function that can be tuned to match the
characteristics of the current dataset. Then, it employs genetic (evolutionary) algorithms
to efficiently search for the optimal partitioning. The results of our experimental evalua-
tion show that although both approaches are highly effective, the second one is typically
more accurate. With these approaches, we manage to identify tables even in sheets with
arbitrary arrangements, irregular tables, and cell misclassifications.

The last contribution of this thesis is a research prototype, discussed in Chapter 7. This
tool implements the proposed processing pipeline. The user interface is an Excel add-in,
while on the back-end specialized Python scripts execute the steps of the pipeline. Users
can visually inspect the results from these scripts. In this way, they can provide their
feedback about potential issues or improvements for the proposed approach. Neverthe-
less, to complete the picture, the tool allows the users to extract information from the
detected tables.

All in all, the proposed pipeline is an intuitive and effective approach to deal with the
automatic understanding of spreadsheet documents. Moreover, this approach is transfer-
able and flexible. With regard to cell classification, we showed that our models can gener-
alize better by training on spreadsheets from two different datasets (domains). Concern-
ing table detection, we introduced an objective function that can be semi-automatically
tuned to match the characteristics of new (unseen) spreadsheet datasets. Nevertheless,
even our rule-based (table detection) approach can be adjusted, since it carries very few
thresholds (parameters), which can be manually adjusted. Furthermore, the proposed
pipeline is traceable. One can easily follow the individual steps to trace where the de-
cision was made or where the potential error has occurred. Therefore debugging is
straightforward, and this makes it easier to detect where there is a need for improve-
ments. Last, the proposed pipeline is extendable. When necessary, additional steps can
be added to the pipeline, or existing steps can be further specialized.

8.2 DIRECTIONS OF FUTURE WORK

Although this thesis has improved the state of the art (with regards to layout inference
at table detection), there are still challenges and open issues that need to be addressed
by future work. The user-centric and free-for-all nature of spreadsheets makes automatic
understanding particularly hard. The high degree of diversity in contents and format-
ting leaves no room for naïve solutions. Instead, it calls for sophisticated processes that
are composed of multiple specialized tasks. In this regard, we propose future research
directions for existing or supplementary steps of our proposed pipeline.

8.2 Directions of Future Work 135

Pre-Selection

In this thesis, we experiment with sheets that contain tables. However, as shown in Chap-
ter 3, we find also sheets that contain forms, reports, lists, and other contents. Thus, to
increase the automation of the process, future works can research mechanisms to distin-
guish sheets that potentially carry tables from those that do not.

Layout Analysis

Understanding the layout is essential for the subsequent tasks of the pipeline. If not
for table detection, it is required for table analysis and information extraction. There-
fore, future works need to improve even further the state of the art in layout analysis for
spreadsheet documents.

One possible direction is to employ more sophisticated machine learning methods and
features. In fact, two very recent publications have already proposed enhancements to
our classification method [65, 67]. In addition to the features from this thesis, the authors
of [65] use pre-trained cell embeddings. In some cases, this already gives a 6% improve-
ment in the Macro-F1 score. Instead, the paper [67] makes use of Active Learning [116]
to reduce the training time for cell classification in spreadsheets.

Future works should also revisit the proposed layout functions (labels). Our evaluation
in Section 4.3 and the agreement assessment in Section 3.2.2 showed that some labels
are more intuitive than others. Future works can eliminate or postpone some labels for
later steps of the pipeline. For instance, GroupHeaders can be addressed after the table is
detected. A similar approach is proposed by Chen et al.[29]. Moreover, there are labels
that need further specialization. Most notably, the label Other is not as specific as the
remaining labels. It is used to describe a very diverse collection of cells.

Table Detection

There are a few cases that were left outside the scope of this thesis and remain open
for future work. Specifically, in Section 3.4.1, we excluded sheets with transposed tables
and horizontally attached tables (i.e., no empty column in between them). These cases
are rare, as per our empirical analysis (see Section 3.4.1). Yet, they occur in both of our
annotated datasets.

There are several candidate improvements for our table detection approaches. One pos-
sible direction is to review the objective function (Section 6.4.4) and tuning function
(Section 6.4.5), used for the genetic-based approach. The current formulations are lin-
ear functions, which allow computationally efficient evaluation and optimization. Fu-
ture works might explore alternative (more descriptive) formulations, which might have
higher computational demands but are able to capture more of the underlying character-
istics and dependencies. Another direction is to apply entirely new approaches on top
of the proposed graph model (see 6.2.1). An obvious candidate is the Graph Neural Net-
works, which have emerged in the last years [136, 133]. Very recently, GNNs have been
considered for table detection in scanned documents [106, 109].

136 Chapter 8 Conclusion

Analysis and Information Extraction

In Section 7.3, we proposed a simple algorithm to analyze the detected tables and ex-
port their data. However, there are additional possibilities in literature. For instance, to
extract left-side hierarchies from tables, future research can add on top of our work the
highly specialized method proposed by Chen et al. [30]. In addition, future research can
incorporate the work of Cunha et al. [40], to construct a normalized database schema
from the detected tables. Subsequently, using the refinement rules, proposed in the same
paper [40], data can be moved from the spreadsheet document to an actual database.
Both papers, [30] and [40], were discussed in more detail in Section 2.3.

Last, the analysis of textual metadata in spreadsheets is not addressed by this thesis and
other existing works in literature. As mentioned in Section 6.2.3, metadata cells hold
information that can potentially help us analyze the tables more accurately. However,
one has to discover the relationship between these metadata and the detected tables. For
instance, despite being closer to one of the tables, a Note cell might hold information that
is relevant to multiple tables in the sheet. Therefore, the analysis of metadata has to go
beyond spatial arrangement.

8.2 Directions of Future Work 137

138 Chapter 8 Conclusion

BIBLIOGRAPHY

[1] DEAP documentation. (Visited on 29 November, 2019). URL: https://deap.
readthedocs.io/en/master/index.html.

[2] IronPython the Python programming language for the .NET Framework. (Visited
on 29 November, 2019). URL: https://ironpython.net/.

[3] SciPy, a Python-based ecosystem of open-source software for mathematics, science,
and engineering. (Visited on 29 November, 2019). URL: https://www.scipy.org/.

[4] The world’s most valuable resource. The Economist, page 7, May
6th, 2017. URL: https://www.economist.com/leaders/2017/05/06/
the-worlds-most-valuable-resource-is-no-longer-oil-but-data.

[5] Robin Abraham, Margaret Burnett, and Martin Erwig. Spreadsheet programming.
Wiley Encyclopedia of Computer Science and Engineering, pages 2804–2810, 2007.

[6] Robin Abraham and Martin Erwig. Header and unit inference for spreadsheets
through spatial analyses. In VL/HCC, pages 165–172. IEEE, 2004.

[7] Robin Abraham and Martin Erwig. Inferring templates from spreadsheets. In Pro-
ceedings of the 28th international conference on Software engineering, pages 182–191.
ACM, 2006.

[8] Robin Abraham and Martin Erwig. Ucheck: A spreadsheet type checker for end
users. Journal of Visual Languages & Computing, 18(1):71–95, 2007.

[9] Robin Abraham, Martin Erwig, Steve Kollmansberger, and Ethan Seifert. Visual
specifications of correct spreadsheets. In 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC’05), pages 189–196. IEEE, 2005.

[10] Marco D Adelfio and Hanan Samet. Presentation slides: "Schema extraction for
tabular data on the web". 2013.

[11] Marco D Adelfio and Hanan Samet. Schema extraction for tabular data on the web.
Proceedings of the VLDB Endowment, 6(6):421–432, 2013.

[12] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anastasia
Ailamaki. Nodb: efficient query execution on raw data files. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data, pages 241–252,
2012.

[13] Akira Amano and Naoki Asada. Complex table form analysis using graph gram-
mar. Lecture notes in computer science, pages 283–286, 2002.

[14] Christine M Anderson-Cook. Practical genetic algorithms, 2005.

139

https://deap.readthedocs.io/en/master/index.html
https://deap.readthedocs.io/en/master/index.html
https://ironpython.net/
https://www.scipy.org/
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

[15] Sandro Badame and Danny Dig. Refactoring meets spreadsheet formulas. In 2012
28th IEEE International Conference on Software Maintenance (ICSM), pages 399–409.
IEEE, 2012.

[16] Titus Barik, Kevin Lubick, Justin Smith, John Slankas, and Emerson Murphy-Hill.
Fuse: a reproducible, extendable, internet-scale corpus of spreadsheets. In the 12th
Working Conference on Mining Software Repositories, pages 486–489. IEEE, 2015.

[17] Mangesh Bendre. Dataspread. (Visited on 06 December, 2019). URL: http://
dataspread.github.io/.

[18] Mangesh Bendre, Bofan Sun, Ding Zhang, Xinyan Zhou, Kevin Chen-Chuan
Chang, and Aditya Parameswaran. Dataspread: Unifying databases and spread-
sheets. Proceedings of the VLDB Endowment, 8(12):2000–2003, 2015.

[19] Mangesh Bendre, Vipul Venkataraman, Xinyan Zhou, Kevin Chang, and Aditya
Parameswaran. Towards a holistic integration of spreadsheets with databases: A
scalable storage engine for presentational data management. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE), pages 113–124. IEEE, 2018.

[20] Mangesh Bendre, Vipul Venkataraman, Xinyan Zhou, Kevin Chen-Chuan Chang,
and Aditya Parameswaran. Scaling up to billions of cells with dataspread: Sup-
porting large spreadsheets with databases. Technical report.

[21] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[22] Alexander Asp Bock. A literature review of spreadsheet technology. Technical
report, IT University of Copenhagen, 2016.

[23] Paul T Boggs and Jon W Tolle. Sequential quadratic programming. Acta numerica,
4:1–51, 1995.

[24] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[25] Daniel Bricklin. Bricklin on technology. John Wiley & Sons, 2009.

[26] Daniel Bricklin and Bob Frankston. VisiCalc: Information from its creators. (Visited
on 06 November, 2019). URL: http://www.bricklin.com/visicalc.htm.

[27] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian
Schulz. Recent advances in graph partitioning. In Algorithm Engineering, pages
117–158. Springer, 2016.

[28] Bill Casselman. The Babylonian tablet Plimpton 322. (Visited on 07 November,
2019). URL: https://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.
html.

[29] Zhe Chen and Michael Cafarella. Automatic web spreadsheet data extraction. In
International Workshop on Semantic Search over the Web, page 1. ACM, 2013.

[30] Zhe Chen and Michael Cafarella. Integrating spreadsheet data via accurate and
low-effort extraction. In the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1126–1135. ACM, 2014.

[31] Zhe Chen, Michael Cafarella, Jun Chen, Daniel Prevo, and Junfeng Zhuang. Sen-
bazuru: A prototype spreadsheet database management system. Proceedings of the
VLDB Endowment, 6(12):1202–1205, 2013.

140 BIBLIOGRAPHY

http://dataspread.github.io/
http://dataspread.github.io/
http://www.bricklin.com/visicalc.htm
https://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html
https://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html

[32] Zhe Chen, Sasha Dadiomov, Richard Wesley, Gang Xiao, Daniel Cory, Michael Ca-
farella, and Jock Mackinlay. Spreadsheet property detection with rule-assisted ac-
tive learning. In the International Conference on Information and Knowledge Manage-
ment (CIKM), pages 999–1008. ACM, 2017.

[33] William W. Cohen. Fast effective rule induction. In Twelfth International Conference
on Machine Learning, pages 115–123. Morgan Kaufmann, 1995.

[34] Microsoft Corporation. Collaborate with office 365. (Visited on 07
November, 2019). URL: https://support.office.com/en-us/article/
collaborate-with-office-365-ac05a41e-0b49-4420-9ebc-190ee4e744f4.

[35] Microsoft Corporation. Excel help center. (Visited on 11 November, 2019). URL:
https://support.office.com/en-us/excel.

[36] Microsoft Corporation. Office 365. (Visited on 07 November, 2019). URL: https:
//www.office.com/.

[37] Bertrand Coüasnon and Aurélie Lemaitre. Recognition of tables and forms. Hand-
book of Document Image Processing and Recognition, pages 647–677, 2014.

[38] Jácome Cunha, Martin Erwig, and João Alexandre Saraiva. Automatically infer-
ring classsheet models from spreadsheets. In Proceedings of the Symposium on Visual
Languages and Human-Centric Computing-VL/HCC, pages 93–100. IEEE, 2010.

[39] Jácome Cunha, João Paulo Fernandes, Jorge Mendes, and João Saraiva. Mdsheet:
A framework for model-driven spreadsheet engineering. In International Conference
on Software Engineering, pages 1395–1398. IEEE Press, 2012.

[40] Jácome Cunha, João Saraiva, and Joost Visser. From spreadsheets to relational
databases and back. In SIGPLAN workshop on Partial evaluation and program ma-
nipulation, pages 179–188. ACM, 2009.

[41] Jácome Cunha, Joost Visser, Tiago Alves, and João Saraiva. Type-safe evolution
of spreadsheets. In International Conference on Fundamental Approaches to Software
Engineering, pages 186–201. Springer, 2011.

[42] Manoranjan Dash and Huan Liu. Feature selection for classification. Intelligent data
analysis, 1(3):131–156, 1997.

[43] Haoyu Dong, Shijie Liu, Shi Han, Zhouyu Fu, and Dongmei Zhang. Tablesense:
Spreadsheet table detection with convolutional neural networks. In Association for
the Advancement of Artificial Intelligence (AAAI), 2019.

[44] Wensheng Dou, Liang Xu, Shing-Chi Cheung, Chushu Gao, Jun Wei, and Tao
Huang. Venron: a versioned spreadsheet corpus and related evolution analysis.
In 2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C), pages 162–171. IEEE, 2016.

[45] Julian Eberius, Katrin Braunschweig, Markus Hentsch, Maik Thiele, Ahmad Ah-
madov, and Wolfgang Lehner. Building the dresden web table corpus: A classifica-
tion approach. In In 2nd IEEE/ACM International Symposium on Big Data Computing
(BDC). IEEE/ACM, 2015.

[46] Julian Eberius, Christoper Werner, Maik Thiele, Katrin Braunschweig, Lars Dan-
necker, and Wolfgang Lehner. Deexcelerator: a framework for extracting relational
data from partially structured documents. In the International Conference on Informa-
tion and Knowledge Management (CIKM), pages 2477–2480. ACM, 2013.

BIBLIOGRAPHY 141

https://support.office.com/en-us/article/collaborate-with-office-365-ac05a41e-0b49-4420-9ebc-190ee4e744f4
https://support.office.com/en-us/article/collaborate-with-office-365-ac05a41e-0b49-4420-9ebc-190ee4e744f4
https://support.office.com/en-us/excel
https://www.office.com/
https://www.office.com/

[47] Wayne W Eckerson and Richard P Sherman. Q&a: Strategies for managing spread-
marts. Business Intelligence Journal, 13(1):23, 2008.

[48] Agoston Endre Eiben and Selmar K Smit. Evolutionary algorithm parameters and
methods to tune them. In Autonomous search, pages 15–36. Springer, 2011.

[49] David W Embley, Matthew Hurst, Daniel Lopresti, and George Nagy. Table-
processing paradigms: a research survey. International Journal of Document Analysis
and Recognition (IJDAR), 8(2-3):66–86, 2006.

[50] Gregor Engels and Martin Erwig. Classsheets: automatic generation of spread-
sheet applications from object-oriented specifications. In Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineering, pages 124–133.
ACM, 2005.

[51] European Spreadsheet Risks Interest Group (EuSpRIG). Horror stories. (Visited on
06 December, 2019). URL: http://www.eusprig.org/horror-stories.htm.

[52] Marc Fisher and Gregg Rothermel. The euses spreadsheet corpus: a shared re-
source for supporting experimentation with spreadsheet dependability mecha-
nisms. In ACM SIGSOFT Software Engineering Notes, volume 30, pages 1–5. ACM,
2005.

[53] Joseph L Fleiss. Measuring nominal scale agreement among many raters. Psycho-
logical bulletin, 76(5):378, 1971.

[54] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy. Journal
of Machine Learning Research, 13:2171–2175, Jul 2012.

[55] Common Crawl Foundation. Common Crawl. (Visited on 27 December, 2019).
URL: http://commoncrawl.org/.

[56] Eclipse Foundation. SWT: The Standard Widget Toolkit. (Visited on 10 December,
2019). URL: https://www.eclipse.org/swt/.

[57] The Apache Software Foundation. Apache POI - the Java API for Microsoft Docu-
ments. (Visited on 14 November, 2019). URL: https://poi.apache.org/.

[58] The Apache Software Foundation. Open office: The free and open productivity
suite. (Visited on 29 November, 2019). URL: https://www.openoffice.org/.

[59] The Document Foundation. LibreOffice 6.3 Help: Welcome to the LibreOffice Calc
Help. (Visited on 11 November, 2019). URL: https://help.libreoffice.org/6.
3/.

[60] The Document Foundation. Libreoffice calc. (Visited on 06 November, 2019). URL:
https://www.libreoffice.org/discover/calc.

[61] Raffaella Franci and Laura Toti Rigatelli. Towards a history of algebra from
leonardo of pisa to luca pacioli. Janus, 72(1-3):17–82, 1985.

[62] Jöran Friberg. Methods and traditions of babylonian mathematics: Plimpton 322,
pythagorean triples, and the babylonian triangle parameter equations. Historia
Mathematica, 8(3):277–318, 1981.

[63] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics New York, 2001.

142 BIBLIOGRAPHY

http://www.eusprig.org/horror-stories.htm
http://commoncrawl.org/
https://www.eclipse.org/swt/
https://poi.apache.org/
https://www.openoffice.org/
https://help.libreoffice.org/6.3/
https://help.libreoffice.org/6.3/
https://www.libreoffice.org/discover/calc

[64] Eric Gazoni and Charlie Clack. openpyxl - A Python library to read/write Excel
2010 xlsx/xlsm files. (Visited on 14 November, 2019). URL: https://openpyxl.
readthedocs.io/en/stable/.

[65] Majid Ghasemi Gol, Jay Pujara, and Pedro Szekely. Tabular cell classification using
pre-trained cell embeddings. In 2019 IEEE International Conference on Data Mining
(ICDM), pages 230–239. IEEE, 2019.

[66] David E Goldberg. Genetic algorithms. Pearson Education India, 2006.

[67] Julius Gonsior, Josephine Rehak, Maik Thiele, Elvis Koci, Michael Günther, and
Wolfgang Lehner. Active learning for spreadsheet cell classification. In 1st Workshop
on Search, Exploration, and Analysis in Heterogeneous Datastores (SEAdata), 2020. (In
press).

[68] Crina Grosan and Ajith Abraham. Hybrid evolutionary algorithms: methodolo-
gies, architectures, and reviews. In Hybrid evolutionary algorithms, pages 1–17.
Springer, 2007.

[69] Felienne Hermans. Analyzing and visualizing spreadsheets, January 2013. Doc-
toral Thesis.

[70] Felienne Hermans and Danny Dig. Bumblebee: a refactoring environment for
spreadsheet formulas. In Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages 747–750. ACM, 2014.

[71] Felienne Hermans, Bas Jansen, Sohon Roy, Efthimia Aivaloglou, Alaaeddin
Swidan, and David Hoepelman. Spreadsheets are code: An overview of software
engineering approaches applied to spreadsheets. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), volume 5,
pages 56–65. IEEE, 2016.

[72] Felienne Hermans and Emerson Murphy-Hill. Enron’s spreadsheets and related
emails: A dataset and analysis. In the 37th IEEE/ACM International Conference on
Software Engineering, volume 2, pages 7–16. IEEE, 2015.

[73] Felienne Hermans, Martin Pinzger, and Arie Van Deursen. Automatically extract-
ing class diagrams from spreadsheets. In European Conference on Object-Oriented
Programming, pages 52–75. Springer, 2010.

[74] Felienne Hermans, Martin Pinzger, and Arie van Deursen. Detecting code smells in
spreadsheet formulas. In 2012 28th IEEE International Conference on Software Main-
tenance (ICSM), pages 409–418. IEEE, 2012.

[75] Jianying Hu, Ramanujan Kashi, Daniel Lopresti, George Nagy, and Gordon Wil-
fong. Why table ground-truthing is hard. In Proceedings of Sixth International Con-
ference on Document Analysis and Recognition, pages 129–133. IEEE, 2001.

[76] Google Inc. Google sheets. (Visited on 06 November, 2019). URL: https://www.
google.com/sheets/about/.

[77] Ecma International. Standard ECMA-376. (Visited on 11 November,
2019). URL: https://www.ecma-international.org/publications/standards/
Ecma-376.htm.

[78] Bas Jansen and Felienne Hermans. The use of charts, pivot tables, and array formu-
las in two popular spreadsheet corpora. Proceedings of the 5th International Workshop
on Software Engineering Methods in Spreadsheets, 2018.

BIBLIOGRAPHY 143

https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://www.google.com/sheets/about/
https://www.google.com/sheets/about/
https://www.ecma-international.org/publications/standards/Ecma-376.htm
https://www.ecma-international.org/publications/standards/Ecma-376.htm

[79] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler:
interactive visual specification of data transformation scripts. In CHI’11., pages
3363–3372, New York, NY, USA, 2011. ACM. doi:10.1145/1978942.1979444.

[80] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. Leakage in
data mining: Formulation, detection, and avoidance. ACM Transactions on Knowl-
edge Discovery from Data (TKDD), 6(4):1–21, 2012.

[81] Jin Kim, Inwook Hwang, Yong-Hyuk Kim, and Byung-Ro Moon. Genetic ap-
proaches for graph partitioning: a survey. In GECCO’11, pages 473–480.

[82] Elvis Koci, Dana Kuban, Nico Luettig, Dominik Olwig, Maik Thiele, Julius Gonsior,
Wolfgang Lehner, and Oscar Romero. Xlindy: Interactive recognition and informa-
tion extraction in spreadsheets. In Sonja Schimmler and Uwe M. Borghoff, editors,
Proceedings of the ACM Symposium on Document Engineering 2019, Berlin, Germany,
September 23-26, 2019, pages 25:1–25:4. ACM, 2019.

[83] Elvis Koci, Maik Thiele, Wolfgang Lehner, and Oscar Romero. Table recognition in
spreadsheets via a graph representation. In the 13th IAPR International Workshop on
Document Analysis Systems (DAS), pages 139–144. IEEE, 2018.

[84] Elvis Koci, Maik Thiele, Josephine Rehak, Oscar Romero, and Wolfgang Lehner.
DECO: A dataset of annotated spreadsheets for layout and table recognition. In
2019 International Conference on Document Analysis and Recognition, ICDAR 2019,
Sydney, Australia, September 20-25, 2019, pages 1280–1285. IEEE, 2019.

[85] Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. A machine learning
approach for layout inference in spreadsheets. In IC3K 2016: The 8th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Man-
agement: volume 1: KDIR, pages 77–88. SciTePress, 2016.

[86] Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. Table identifica-
tion and reconstruction in spreadsheets. In the International Conference on Advanced
Information Systems Engineering (CAiSE), pages 527–541. Springer, 2017.

[87] Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. Cell classification for
layout recognition in spreadsheets. In Ana Fred, Jan Dietz, David Aveiro, Kecheng
Liu, Jorge Bernardino, and Joaquim Filipe, editors, Knowledge Discovery, Knowledge
Engineering and Knowledge Management (IC3K ‘16: Revised Selected Papers), volume
914 of Communications in Computer and Information Science, pages 78–100. Springer,
Cham, 2019.

[88] Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. A genetic-based
search for adaptive table recognition in spreadsheets. In 2019 International Confer-
ence on Document Analysis and Recognition, ICDAR 2019, Sydney, Australia, September
20-25, 2019, pages 1274–1279. IEEE, 2019.

[89] Jirka Kosek. From the office document format battlefield. IT Professional, 10(3):51–
55, 2008.

[90] J Richard Landis and Gary G Koch. The measurement of observer agreement for
categorical data. biometrics, pages 159–174, 1977.

[91] Michael Levandowsky and David Winter. Distance between sets. Nature,
234(5323):34–35, 1971.

[92] Bin Liu and HV Jagadish. A spreadsheet algebra for a direct data manipulation
query interface. In 2009 IEEE 25th International Conference on Data Engineering, pages
417–428. IEEE, 2009.

144 BIBLIOGRAPHY

https://doi.org/10.1145/1978942.1979444

[93] David Maier. The theory of relational databases, volume 11. Computer science press
Rockville, 1983.

[94] Song Mao, Azriel Rosenfeld, and Tapas Kanungo. Document structure analysis
algorithms: a literature survey. In Document Recognition and Retrieval X, volume
5010, pages 197–207. International Society for Optics and Photonics, 2003.

[95] Simone Marinai. Introduction to document analysis and recognition. In Machine
learning in document analysis and recognition, pages 1–20. Springer, 2008.

[96] Hrushikesha Mohanty, Prachet Bhuyan, and Deepak Chenthati. Big Data: A Primer.
Springer India, 2015.

[97] Anoop M Namboodiri and Anil K Jain. Document structure and layout analysis.
In Digital Document Processing, pages 29–48. Springer, 2007.

[98] Nuix and EDRM. The Enron PST Data Set Cleansed of PII by Nuix and EDRM.
(Visited on 27 December, 2019). URL: http://info.nuix.com/Enron.html.

[99] OASIS. OASIS Open Document Format for Office Applications (OpenDocu-
ment) TC. (Visited on 11 November, 2019). URL: https://www.oasis-open.org/
committees/office/charter.php.

[100] Daniel E. O’Leary. Embedding ai and crowdsourcing in the big data lake. IEEE
Intelligent Systems, 29(5):70–73, 2014.

[101] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[102] David MW Powers. The problem with kappa. In Proceedings of the 13th Conference
of the European Chapter of the Association for Computational Linguistics, pages 345–355.
Association for Computational Linguistics, 2012.

[103] The GNOME Project. Gnumeric. (Visited on 06 November, 2019). URL: http:
//www.gnumeric.org/.

[104] The GNOME Project. The gnumeric manual, version 1.12. (Visited on 11 November,
2019). URL: https://help.gnome.org/users/gnumeric/.

[105] The Lemur Project. The ClueWeb09 Dataset. (Visited on 27 December, 2019). URL:
http://lemurproject.org/clueweb09.php/.

[106] Shah Rukh Qasim, Hassan Mahmood, and Faisal Shafait. Rethinking table recog-
nition using graph neural networks. In 2019 International Conference on Document
Analysis and Recognition (ICDAR), pages 142–147. IEEE, 2019.

[107] Cliff T Ragsdale. Spreadsheet modeling and decision analysis. Thomson south-western,
2004.

[108] M Armon Rahgozar and Robert Cooperman. A graph-based table recognition sys-
tem. Document Recognition, 111:192–203, 1996.

[109] Pau Riba, Anjan Dutta, Lutz Goldmann, Alicia Fornés, Oriol Ramos, and Josep
Lladós. Table detection in invoice documents by graph neural networks. In 2019
International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2019.

[110] Grzegorz Rozenberg. Handbook of graph grammars and computing by graph transfor-
mation, volume 1. World scientific, 1997.

BIBLIOGRAPHY 145

http://info.nuix.com/Enron.html
https://www.oasis-open.org/committees/office/charter.php
https://www.oasis-open.org/committees/office/charter.php
http://www.gnumeric.org/
http://www.gnumeric.org/
https://help.gnome.org/users/gnumeric/
http://lemurproject.org/clueweb09.php/

[111] JM Sachs. Recollections: Developing lotus 1-2-3. IEEE Annals of the History of Com-
puting, 3(29):41–48, 2007.

[112] Alan Sangster and Giovanna Scataglinibelghitar. Luca pacioli: the father of ac-
counting education. Accounting Education: an international journal, 19(4):423–438,
2010.

[113] Satu Elisa Schaeffer. Graph clustering. Computer science review, 1(1):27–64, 2007.

[114] Thomas Schmitz, Dietmar Jannach, Birgit Hofer, Patrick W. Koch, Konstantin
Schekotihin, and Franz Wotawa. A decomposition-based approach to spreadsheet
testing and debugging. In VL/HCC, pages 117–121. IEEE Computer Society, 2017.

[115] Peter Sestoft. Spreadsheet implementation technology, 2014.

[116] Burr Settles. Active learning literature survey. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 2009.

[117] Alexey Shigarov, Vasiliy Khristyuk, Andrey Mikhailov, and Viacheslav Paramonov.
Tabbyxl: Rule-based spreadsheet data extraction and transformation. In Inter-
national Conference on Information and Software Technologies, pages 59–75. Springer,
2019.

[118] Alexey O Shigarov and Andrey A Mikhailov. Rule-based spreadsheet data trans-
formation from arbitrary to relational tables. Information Systems, 71:123–136, 2017.

[119] Alexey O Shigarov, Viacheslav V Paramonov, Polina V Belykh, and Alexander I
Bondarev. Rule-based canonicalization of arbitrary tables in spreadsheets. In Inter-
national Conference on Information and Software Technologies, pages 78–91. Springer,
2016.

[120] Robert Slater. Portraits in silicon. Mit Press, 1989.

[121] OpenDoc Society. ODF tools. (Visited on 14 November, 2019). URL: http://www.
opendocsociety.org/tools/odf-tools/.

[122] Yanmin Sun, Andrew KC Wong, and Mohamed S Kamel. Classification of imbal-
anced data: A review. International journal of pattern recognition and artificial intelli-
gence, 23(04):687–719, 2009.

[123] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining.
Pearson Education India, 2016.

[124] Jerzy Tyszkiewicz. Spreadsheet as a relational database engine. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of data, pages 195–206.
ACM, 2010.

[125] Ruben Verborgh and Max De Wilde. Using OpenRefine. Packt Publishing Ltd, 2013.

[126] Xinxin Wang. Tabular abstraction, editing, and formatting. Technical report, Uni-
versity of Waretloo, Waterloo, Ontaria, Canada, 1996.

[127] WinWorld. Multiplan 1.x. (Visited on 07 November, 2019). URL: https://
winworldpc.com/product/multiplan/106.

[128] WinWorld. SuperCalc 5.1. (Visited on 07 November, 2019). URL: https://
winworldpc.com/product/supercalc/51.

[129] Andrew Witkowski, Srikanth Bellamkonda, Tolga Bozkaya, Gregory Dorman,
Nathan Folkert, Abhinav Gupta, Lei Shen, and Sankar Subramanian. Spreadsheets
in rdbms for olap. In Proceedings of the 2003 ACM SIGMOD international conference
on Management of data, pages 52–63. ACM, 2003.

146 BIBLIOGRAPHY

http://www.opendocsociety.org/tools/odf-tools/
http://www.opendocsociety.org/tools/odf-tools/
https://winworldpc.com/product/multiplan/106
https://winworldpc.com/product/multiplan/106
https://winworldpc.com/product/supercalc/51
https://winworldpc.com/product/supercalc/51

[130] Andrew Witkowski, Srikanth Bellamkonda, Tolga Bozkaya, Nathan Folkert, Ab-
hinav Gupta, Lei Sheng, and Sankar Subramanian. Business modeling using sql
spreadsheets. In Proceedings 2003 VLDB Conference, pages 1117–1120. Elsevier, 2003.

[131] Andrew Witkowski, Srikanth Bellamkonda, Tolga Bozkaya, Aman Naimat, Lei
Sheng, Sankar Subramanian, and Allison Waingold. Query by excel. In Proceedings
of the 31st international conference on Very large data bases, pages 1204–1215. VLDB
Endowment, 2005.

[132] Ian H Witten and Eibe Frank. Data mining: practical machine learning tools and
techniques with java implementations. Acm Sigmod Record, 31(1):76–77, 2002.

[133] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S Yu. A comprehensive survey on graph neural networks. arXiv preprint
arXiv:1901.00596, 2019.

[134] Richard Zanibbi, Dorothea Blostein, and James R Cordy. A survey of table recogni-
tion. Document Analysis and Recognition, 7(1):1–16, 2004.

[135] Zhi-Qiang Zeng, Hong-Bin Yu, Hua-Rong Xu, Yan-Qi Xie, and Ji Gao. Fast training
support vector machines using parallel sequential minimal optimization. In 2008
3rd international conference on intelligent system and knowledge engineering, volume 1,
pages 997–1001. IEEE, 2008.

[136] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods
and applications. arXiv preprint arXiv:1812.08434, 2018.

[137] Melissa Rodriguez Zynda. The first killer app: a history of spreadsheets. ACM
Interactions, 20(5):68–72, 2013.

BIBLIOGRAPHY 147

148 BIBLIOGRAPHY

LIST OF FIGURES

1.1 Organization of the chapters in this thesis. 16

2.1 User Interfaces for Different Spreadsheet Vendors 21
(a) Microsoft Excel 2016 . 21
(b) Google Sheets . 21
(c) LibreOffice v6.3 . 21
(d) Gnumeric v1.12 . 21

2.2 The Document Analysis and Recognition Process 24
2.3 The Wang Model [134] . 25
2.4 Chen et al.: Automatic Web Spreadsheet Data Extraction [29] 27

3.1 Row Labels as Defined by Adelfio and Samet [10] 35
3.2 Cell Annotation Labels . 37
3.3 Screenshots from the Annotation Tool . 39

(a) User Interface and Menus . 39
(b) Saved Annotation Data . 39

3.4 Annotation Steps . 40
3.5 Number of Sheets per N/A Label . 43

(a) Counts in Not-Applicable Files . 43
(b) Counts in Completed Files . 43

3.6 Table Annotations in Numbers . 43
(a) Table Distribution . 43
(b) Employee Sheet Counts . 43

3.7 Cell Annotations . 44
(a) Sheet Counts per Cell Label . 44
(b) Content Type Ratios per Cell Label . 44

3.8 Coverage and Arrangements in Enron Spreadsheets 45
(a) Table Coverage . 45
(b) Arrangements . 45

3.9 Content Density in Enron Spreadsheets . 46
(a) Sheet Densities . 46
(b) Table Densities . 46

3.10 Gaps and Dependencies in Enron Spreadsheets 46
(a) Gaps Between/Inside . 46
(b) Formula References . 46

3.11 Characteristics of Annotated Fuse Sample 48
(a) N/A Sheet Counts1 . 48
(b) Occurrences Cell Labels . 48
(c) Content Type Ratios . 48
(d) Table Distribution . 48
(e) Table Sheet Coverage . 48
(f) Sheet Densities . 48
(g) Table Densities . 48
(h) Arrangements . 48
(i) Gaps Inside/Between . 48
(j) Formula References . 48

149

3.12 A Spreadsheet Processing Pipeline . 52

4.1 The Layout Analysis Process . 57
4.2 The Immediate Neighborhood of a Cell . 61
4.3 Training Cell Classifiers . 64
4.4 Analysis of Sampling Sizes for Enron . 67

(a) Average Macro-F1 per Sampling Size 67
(b) Average Weighted-F1 per Sampling Size 67

4.5 Analysis of Sampling Sizes for Fuse . 68
(a) Average Macro-F1 per Sampling Size 68
(b) Average Weighted-F1 per Sampling Size 68

4.6 Building Layout Intervals . 80
(a) Annotated Cells . 80
(b) Classified Cells . 80
(c) Layout Intervals . 80

4.7 Building Layout Regions . 81
(a) Layout Intervals . 81
(b) Strict Layout Regions . 81
(c) Non-Strict Layout Regions . 81

5.1 Annotation Statistics for the KDIR Dataset [85] 84
(a) Sheets per Corpora . 84
(b) Tables per Corpora . 84

5.2 The Building Blocks [85] . 85
5.3 Misclassification Patterns . 86

(a) Tunel . 86
(b) T-blocks . 86
(c) AIN . 86
(d) RIN . 86
(e) Corner . 86

5.4 Region-Based Approach . 88
(a) Load . 88
(b) Standardize . 88
(c) Identify . 88
(d) Relabel . 88

5.5 Original Worksheet . 89
(a) Row Intervals . 89
(b) Regions . 89

5.6 Pivoted Worksheet . 89
(a) Column Intervals . 89
(b) Regions . 89

5.7 Standardization Procedure . 90
5.8 Region Analysis . 90

(a) Overall Assessment . 90
(b) Mixed Regions . 90

5.9 Size Occurrences in Misclassified Regions 91
5.10 Misclassification Identification Results . 95

(a) In Regions . 95
(b) In Cells . 95

5.11 Relabeling Results . 96
(a) In Regions . 96
(b) In Cells . 96

5.12 Confidence Score Analysis . 97

6.1 Framework of TableSense for Spreadsheet Table Detection [43] 101
6.2 Overview of the Proposed Approach for Table Detection 101

150 LIST OF FIGURES

6.3 The Proposed Graph Representation . 104
6.4 Reducing Labels Prior to Table Detection . 106

(a) Original Classified Cells . 106
(b) Layout Regions after Reducing Labels 106

6.5 Building a Graph after Pre-Processing . 107
(a) Omitting METADATA Regions . 107
(b) The Graph Representation . 107

6.6 Table layouts, cases b, c, e, and f also occur for tables with vertical fences . 109
(a) Typical Horizontal . 109
(b) Misclassifications . 109
(c) Sparse Data . 109
(d) Typical Vertical . 109
(e) Sparse All . 109
(f) Conjoined . 109

6.7 The RAC Approach . 110
(a) Input Graph . 110
(b) Horizontal Groups . 110
(c) Vertical Groups . 110

6.8 The impact of misclassifications . 111
(a) True Layout Roles . 111
(b) Misclassified Cells . 111

6.9 The RAC Approach . 113
(a) Vertical Group MBRs . 113
(b) Handle Overlaps . 113
(c) Pair Left and Right . 113

6.10 Graph Model for the Genetic-Based Approach 115

7.1 UI of the XLIndy tool . 128
7.2 Architecture of XLIndy . 129
7.3 Exporting Data from Detected Tables . 131

A.1 Characteristics of Reduced Enron Sample 155
(a) Occurrences Cell Labels . 155
(b) Content Type Ratios . 155
(c) Table Distribution . 155
(d) Table Sheet Coverage . 155
(e) Sheet Densities . 155
(f) Table Densities . 155
(g) Arrangements . 155
(h) Gaps Inside/Between . 155
(i) Formula References . 155

A.2 Characteristics of Reduced Fuse Sample . 156
(a) Occurrences Cell Labels . 156
(b) Content Type Ratios . 156
(c) Table Distribution . 156
(d) Table Sheet Coverage . 156
(e) Sheet Densities . 156
(f) Table Densities . 156
(g) Arrangements . 156
(h) Gaps Inside/Between . 156
(i) Formula References . 156

B.1 Table types handled by the TIRS framework. The cases b, c, e, and f can
also occur for tables with vertical fences. 159
(a) Typical Horizontal . 159
(b) Misclassifications . 159
(c) Sparse Data . 159
(d) Typical Vertical . 159
(e) Sparse All . 159
(f) Conjoined . 159

LIST OF FIGURES 151

152 LIST OF FIGURES

LIST OF TABLES

3.1 Annotation Agreement Assessment . 41
3.2 Percentage per N/A Label . 49
3.3 Percentage of Applicable Sheets containing each Cell Label 49
3.4 Occurrences of Densities . 49
3.5 % of Tables with Gaps . 49
3.6 Percentage of Applicable Sheets with the Following Arrangements 50
3.7 Percentage of Simple Sheets . 50

4.1 Cell Counts per Annotation Label in Enron Dataset 64
4.2 Cell Counts per Annotation Label in Fuse Dataset 64
4.3 Enron Optimal Sampling . 68
4.4 Fuse Optimal Sampling . 68
4.5 Number of Selected Features per Algorithm for Classification with 6 Labels 70
4.6 Top 20 Features for Enron . 70
4.7 Top 20 Features for Fuse . 70
4.8 Optimal Parameters per Algorithm for Classification with 6 Labels 71
4.9 F1-Score per Class for Enron with 6 Labels 73
4.10 F1-Score per Class for Fuse with 6 Labels . 73
4.11 Optimal Configuration for 7 Labels . 74
4.12 F1-Score per Class for Enron with 7 Labels 75
4.13 F1-Score per for Fuse with 7 Labels . 75
4.14 Results for 6 Labels when Training on the Combined Dataset 76
4.15 Results for 7 Labels when Training on the Combined Dataset 77
4.16 Optimal Configurations for the Combined Dataset 77
4.17 Best Classification Results (F1-scores) from Related Work 78
4.18 Best Classification Results (F1-scores) from this Thesis 78
4.19 Comparing Classification Accuracy in Tables 79

5.1 Pattern Occurrences . 87
5.2 Label Flips . 87
5.3 Region Features . 92
5.4 Comparing Classifiers for Misclassification Identification 95
5.5 Relabeling: Trained on Annotated Regions 96

6.1 Induced Noise per Training Dataset . 121
6.2 Percentage of Detected Tables for Classification with 7 Labels 124
6.3 Percentage of Detected Tables for Classification with 6 Labels 124
6.4 Percentage of Detected Tables for Ground Truth Cells 124

153

154 LIST OF TABLES

A
ANALYSIS OF REDUCED SAMPLES

Here, we have performed once more the analyses from Section 3.3, for the reduced sam-
ples. The results are summarized with charts, shown separately in Figure A.2 and in
Figure A.2. As mentioned in Section 3.4.1, we omit 40 sheets from the Enron sample and
10 sheets from the Fuse sample. The excluded sheets exhibit characteristics that are out-
side of the scope of this thesis. Moreover, 3 sheets from the Enron sample and 1 from the
Fuse sample were omitted due to an exceptionally high number of tables.

da
ta

he
ad

er titl
e

oth
er

no
te

de
riv

ed
gh

ea
d

#S
he

et
s

814 814

439 402
181

340
141

(a) Occurrences Cell Labels

da
ta

he
ad

er titl
e

oth
er

no
te

de
riv

ed
gh

ea
d

0.2
0.4
0.6
0.8
1.0

R
at

io
 o

f C
el

ls Formula
String
Numeric

(b) Content Type Ratios

1 2 3 4 5 6+
#Tables

100

300

500

700

#S
he

et
s

max #tables = 17
avg #tables = 1.42

(c) Table Distribution

0.2 0.4 0.6 0.8 1.0
Coverage

100

300

500

700

#S
he

et
s

(d) Table Sheet Coverage

0.2 0.4 0.6 0.8 1.0
Density

100

300

500

700

#S
he

et
s

(e) Sheet Densities

0.2 0.4 0.6 0.8 1.0
Density

100

300

500

700

#T
ab

le
s

(f) Table Densities

Vert. Horiz. Mixed

#S
he

et
s

89

286

34 26 17

269

Tables All Regions

(g) Arrangements

0 20 40 60 80 100120

C
ol

um
ns

R
ow

s

Between
Inside

(h) Gaps Inside/Between

Intra Inter Out Other

#T
ab

le
s

545

60 62 41

 percent of tables
intra=47%, inter=5%
out=5%, other=4%

(i) Formula References

Figure A.1: Characteristics of Reduced Enron Sample

155

da
ta

he
ad

er titl
e

oth
er

no
te

de
riv

ed
gh

ea
d

#S
he

et
s

274 274

156
88 84 74 41

(a) Occurrences Cell Labels

da
ta

he
ad

er titl
e

oth
er

no
te

de
riv

ed
gh

ea
d

0.2
0.4
0.6
0.8
1.0

R
at

io
 o

f C
el

ls

Formula
String
Numeric

(b) Content Type Ratios

1 2 3 4 5 6+
#Tables

100

200

300

#S
he

et
s

max #tables = 17
avg #tables = 1.47

(c) Table Distribution

0.2 0.4 0.6 0.8 1.0
Coverage

100

200

300

#S
he

et
s

(d) Table Sheet Coverage

0.2 0.4 0.6 0.8 1.0
Density

100

200

300

#S
he

et
s

(e) Sheet Densities

0.2 0.4 0.6 0.8 1.0
Density

100

200

300

#T
ab

le
s

(f) Table Densities

Vert. Horiz. Mixed

#S
he

et
s

37

143

6 6 2
37

Tables All Regions

(g) Arrangements

0 20 40 60 80 100120

C
ol

um
ns

R
ow

s

Between
Inside

(h) Gaps Inside/Between

Intra Inter Out Other

#T
ab

le
s

91

12 10 9

 percent of tables
intra=20%, inter=3%
out=2%, other=2%

(i) Formula References

Figure A.2: Characteristics of Reduced Fuse Sample

156 Appendix A Analysis of Reduced Samples

B
TABLE DETECTION WITH TIRS

TIRS (Table Identification and Reconstruction in Spreadsheets) consists of a series of rules
and heuristics that are based on the concepts presented in Chapter 4 and Chapter 6. In ad-
dition to covering various table layouts, with TIRS we attempt to minimize the effects of
incorrect classifications and empty cells (i.e., missing values). Furthermore, we opted for
rules that work on sheets having multiple tables, stacked horizontally and/or vertically.

For the TIRS framework, we used the KDIR dataset, discussed in Section 5.1. This means
TIRS utilizes 5 labels, instead of the 7 introduced in Chapter 3. Concretely, the label
Attribute is used to describe hierarchies on the left columns of tables. Moreover, the label
Metadata is used to collectively describe the instances of Title, Note, and Other cells.
Another difference is that Derived can occur both horizontally (row-wise) and vertically
(column-wise), within the table.

Here, similarly to the other two table detection approaches from Chapter 6, we group the
classified cells into layout regions (LRs). However, for the TIRS approach, we use the
non-strict variation (refer to Section 4.4). Below, we discuss how such regions are used to
detect tables.

B.1 TABLES IN TIRS

Data, Header, and Attribute regions play the most important role in our analysis. Intu-
itively, a Data region (LRD) acts like the core that brings everything together. A Header
(LRH) and Attribute region (LRA) can help us distinguish the boundaries of tables.
Therefore, we refer to them as “fences”, a term borrowed from [6]. Fences can be hori-
zontal (i.e., Headers) or vertical (i.e., both Headers and Attributes)

A valid table should have at least a fence (LRF) paired with a LRD. In terms of dimen-
sion, tables must be at least a 2×2 ranges of cells. This means that LRD and LRF regions
are at least 1× 2 or 2× 1 ranges of cells.

table := {Data,HHeaders, V Headers,Attributes,Derived,Metadata,Other}
Tables extracted by TIRS can be stored as collections of layout regions (LRs). Specifi-
cally, as shown above, a table has seven distinct sets of LRs. In most of the cases, we
organize the regions forming the table by their label. We specialize Headers to vertical
and horizontal. While the set “Other” contains regions for which the layout function
is uncertain or possible misclassification. We provide more details on the latter in the
following sections.

Finally, we utilize the MBR concept for tables, in addition to label regions. A table MBR
is the minimum bounding rectangle for the LRs that compose it.

157

B.2 PAIRING FENCES WITH DATA REGIONS

As mentioned in the previous section, TIRS needs to pair LRDs with LRFs to form
tables. Valid pairs comply with the following three conditions.

C1. The LRF is on the top or on the left of the LRD although not necessarily adjacent
to it.

C2. For a LRF , the selected LRD is the closest. Specifically, for a horizontal fence, we
measure the Euclidean distance from the top edge of the Data region. Respectively,
we work with the left edge for vertical fences.

C3. The pair of MBRs representing correspondingly the LRD and the LRF are pro-
jected in one of the axes, depending on the fence orientation. The length of the seg-
ment shared by both projections represents the overlap. We transform the overlap
into a ratio by dividing it with the largest projection.

Overlap(xProjection(LRD), xProjection(LRF))
Max(xProjection(LRD), xProjection(LRF)) > θ (B.1)

Equation B.1 shows how to calculate this for the x-axis (relevant to horizontal fences).
The threshold θ was determined empirically and set to 0.5.

B.3 HEURISTICS FRAMEWORK

The TIRS framework is composed of eight heuristic steps. The initial Data-Fence pairs
are created in the first five steps. While the subsequent activities aim at completing the
table construction by incorporating the remaining unpaired regions. In the following
paragraphs, we discuss the individual steps and illustrate them with examples from Fig-
ure B.1. Moreover, Algorithm B.1 provides pseudo-code that demonstrates the overall
process.

We note that the examples in Figure B.1 hide the complexity of tables in our real-world
dataset. For instance, fences might contain hierarchical structures, spanning multiple
rows or columns. Furthermore, misclassifications and empty cells can occur in arbitrary
locations and implicate various label regions (not only fences).

S1. In the first step, we attempt to create one-to-one pairs of Fence-Data, based on the
three conditions listed in Section B.2. Figure B.1.a and Figure B.1.d provide exam-
ples of such tables.

S2. Mainly due to misclassifications multiple fence regions can be found that satisfy
C1 and C2, but fail to comply with C3. An example is shown in Figure B.1.b. In
such cases, we treat the individual regions as one composite fence, omitting the in-
between “barriers”. Equation 2 and 3 respectively show how to calculate the overlap
ratio and projection-length to the x-axis for a composite fence (CF), containing N
sub-regions. We handle these calculations similarly for y-axis projections. Having
the results from the equations, we proceed to check if C3 is satisfied.

cmp_overlp =
N∑
i=1

Overlap(xProjection(LRD), xProjection(CF i)) (B.2)

cmp_length =
N∑
i=1

xProjection(CF i) (B.3)

158 Appendix B Table Detection with TIRS

(a) Typical Horizontal (b) Misclassifications (c) Sparse Data

(d) Typical Vertical (e) Sparse All (f) Conjoined

Candidate Fence Data Region Misclassification Data Misclass

Figure B.1: Table types handled by the TIRS framework. The cases b, c, e, and f can also
occur for tables with vertical fences.

S3. There can be a fence (simple or composite) that satisfies C3, but it is located inside
the Data region far from the top edge or left edge. This might happen due to in-
correct classification in worksheets that contain conjoined tables (i.e., not separated
by empty columns or rows). We provide an example in Figure B.1.f. When such a
fence is identified, we separate the Data region into two parts. When the fence is
horizontal, we pair it with the lower part, otherwise with the right part.

S4. There are cases where “small” Data regions are under or on the right of a “bigger”
fence (e.g. the table in Figure B.1.c). For these cases, the fence is treated as a first-
class citizen. Data regions that comply to condition C1 and are closer to this fence,
than other ones, are grouped together. Again, we use similar formulas to Equation
2 and 3 to calculate the overlap and the projection-length of composite Data regions.

S5. At this step, we take a much more aggressive approach, in order to form tables
with the remaining unpaired regions. We start by grouping fences. When working
horizontally, we merge fences whose y-axis projections overlap. Likewise, we look
for overlaps on the x-axis for vertical fences. Afterward, we proceed in the same
way as in step S4. Figure B.1.e illustrates a table that can be the output of this step.

S6. Here, we attempt to incorporate unpaired regions located in-between existing tables
(i.e., constructed during S1-S5). In addition to the Data and fences, we also consider
Metadata and Derived regions. For a pair of tables stacked horizontally, we assign
the unpaired regions to the top table. When working with vertically stacked tables,
we favor the left one. Obviously, this and the following step, make sense when there
are more than one extracted tables.

S7. We proceed by merging tables whose MBRs overlap. This will correct inconsis-
tencies that might have happened during the previous steps. For example, a Data
region is partially under a fence from another table.

S8. Finally, we assign the remaining unpaired regions, regardless of label, to the nearest
existing table.

B.3 Heuristics Framework 159

Algorithm B.1: Table creation in TIRS
Input: Set of LRDs (D), set of LRHs (H), set of LRAs (A)
Output: Set of extracted tables from the sheet (T)

1 begin
2 T ← ∅;
3 UF ← ∅, UD ← D ; // UF: unpaired LRFs,UD: unpaired LRDs
4 O ← {Horizontal, V ertical};
5 foreach o in O do
6 if o == Horizontal then UF ← H else UF ← UF ∪A;
7 foreach d in UD do
8 f ← GetNext(UF), newtbl← false;
9 while f 6= null and newtbl == false do

10 if IsValidPair({d},{f},o) then // S1: line 10-12
11 (T, UF,UF)← Construct({d},{f},UD,UF,T,o);
12 newtbl = true;
13 else if IsDataBreaker(d,f) then // S3: line 13-16
14 (d1, d2)← BreakInTwoParts(d,f);
15 (T, UF,UF)← Construct({d2},{f},UD,UF,T,o);
16 d← d1;

17 f ← GetNext(UF);

18 if newtbl == false then // S2: line 18-20
19 CF ← GetCompositeFence(d,UF,o);
20 if IsValidPair({d},CF,o) then
21 (T, UF,UF)← Construct({d},CF,UD,UF,T,o)

22 UH ← UF ∩H , UA← UF ∩A; // Extract unpaired Headers & Attributes
23 foreach o in O do
24 if o == Horizontal then UF ← UH else UF ← UF ∪ UA;
25 foreach f in UF do // S4: line 23-25
26 CD ← GetCompositeData({f},o,UD);
27 if IsValidPair(CD,{f},o) then
28 (T, UD,UF)← Construct(CD,{f},UD,UF,T,o);

29 foreach MF in MergeByOrientation(UF,o) do // S5: line 26-28
30 CD ← GetCompositeData(MF,o,UD);
31 if IsValidPair(CD,MF,o) then
32 (T, UF,UF)← Construct(CD,MF,UD,UF,T,o)

33 return T;

34 Function Construct(SD,SF,UD,UF,T,o): // SD: Selected LRDs, SF: Selected LRFs
35 table← CreateTable(SD,SF,o);
36 TT ← T , TUD ← UD, TUF ← UF ; // Temporary variables in this function
37 (TUD, TUF)← FilterOutPaired(table,TUD,TUF);
38 ConT ← HandleTableBreakers(table,TUF,o); // Trivial case ConT = {table}
39 foreach t in ConT do
40 foreach u in {TUD ∪ TUF} do
41 if IsInside(table,u) or IsOverlap(table,u) then AddOtherRegion(table,u) ;

42 (TUD, TUF)← FilterOutPaired(table,TUD,TUF);
43 TT ← TT ∪ {t};

44 return (TT, TUD, TUF);

Algorithm B.1 provides a high-level view from the execution of table creation steps (S1-
S5). For each individual step S1 to S5, we first process horizontal and then vertical fences.
Our empirical analysis showed the former are by far more common, thus we prioritize
them. Additionally, we give priority to Headers over Attributes. It is fair to claim that
Headers represent more “secure” fences since fewer misclassifications involve this label
compared to Attributes [85]. Another detail is that the steps S4 and S5 are executed only
after all the types of fences are processed by steps S1-S3.

Furthermore, to avoid any inconsistencies, after the table creation we execute a series of
operations. We incorporate regions that partially overlap or fall inside (complete overlap)

160 Appendix B Table Detection with TIRS

the table (lines 34 − 35). We exclude the paired regions from the next iterations (lines 31
and 36). Also, we call function HandleTableBreakers, which basically is a batch execution
of step S3.

Finally, at line 35 we use function AddOtherRegion. At this point in the algorithm, we can
not tell what the role of the fully or partially overlapping region is, since we already have
paired the main components of the table. Therefore, we keep such regions at a special set
called “Other”.

B.3 Heuristics Framework 161

162 Appendix B Table Detection with TIRS

CONFIRMATION

I confirm that I independently prepared the thesis and that I used only the references and
auxiliary means indicated in the thesis.

Dresden, April 27, 2020

163

	Introduction
	Motivation
	Contributions
	Outline

	Foundations and Related Work
	The Evolution of Spreadsheet Documents
	Spreadsheet User Interface and Functionalities
	Spreadsheet File Formats
	Spreadsheets Are Partially-Structured

	Analysis and Recognition in Electronic Documents
	A General Overview of DAR
	DAR in Spreadsheets

	Spreadsheet Research Areas
	Layout Inference and Table Recognition
	Unifying Databases and Spreadsheets
	Spreadsheet Software Engineering
	Data Wrangling Approaches

	An empirical study of spreadsheet documents
	Available Corpora
	Creating a Gold Standard Dataset
	Initial Selection
	Annotation Methodology

	Dataset Analysis
	Takeaways from Business Spreadsheets
	Comparison Between Domains

	Summary and Discussion
	Datasets for Experimental Evaluation
	A Processing Pipeline

	Layout Analysis
	A Method for Layout Analysis in Spreadsheets
	Feature Extraction
	Content Features
	Style Features
	Font Features
	Formula and Reference Features
	Spatial Features
	Geometrical Features

	Cell Classification
	Classification Datasets
	Classifiers and Assessment Methods
	Optimum Under-Sampling
	Feature Selection
	Parameter Tuning
	Classification Evaluation

	Layout Regions
	Summary and Discussions

	Classification Post-processing
	Dataset for Post-Processing
	Pattern-Based Revisions
	Misclassification Patterns
	Relabeling Cells
	Evaluating the Patterns

	Region-Based Revisions
	Standardization Procedure
	Extracting Features from Regions
	Identifying Misclassified Regions
	Relabeling Misclassified Regions

	Summary and Discussion

	Table Detection
	A Method for Table Detection in Spreadsheets
	Preliminaries
	Introducing a Graph Model
	Graph Partitioning for Table Detection
	Pre-Processing for Table Detection

	Rule-Based Detection
	Remove and Conquer

	Genetic-Based Detection
	Undirected Graph
	Header Cluster
	Quality Metrics
	Objective Function
	Weight Tuning
	Genetic Search

	Experimental Evaluation
	Testing Datasets
	Training Datasets
	Tuning Rounds
	Search and Assessment
	Evaluation Results

	Summary and Discussions

	XLIndy: A Research Prototype
	Interface and Functionalities
	Front-end Walkthrough

	Implementation Details
	Interoperability
	Efficient Reads

	Information Extraction
	Summary and Discussions

	Conclusion
	Summary of Contributions
	Directions of Future Work

	Bibliography
	List of Figures
	List of Tables
	Analysis of Reduced Samples
	Table Detection with TIRS
	Tables in TIRS
	Pairing Fences with Data Regions
	Heuristics Framework

