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Abstract

The control of autonomous flying vehicles with navigation purposes is a challenging task. Com-

plexity arises mainly due to the non-linearity and uncertainty inherently present in the flight

mechanics and aircraft-air interactions. The potential of many existing flight applications and

those that are to come motivates researchers to continuously contribute to this field. Recently,

interest has grown for equipping unmanned vehicles with the capacity to interact with their

environment, other vehicles or humans. This will enable interesting applications such as au-

tonomous load carrying, aerial refueling or parcel delivering. Having measured the interaction

wrenches ease the control problem which can be configured to reject disturbances or to take

profit of them to fulfill mission objectives. Approaches present in literature in that direction use

dedicated onboard force sensors or use expensive and non-versatile external positioning systems.

However, ideal solutions may consider weight, versatility and even budget restrictions in the

aircraft equipment.

This thesis will contribute to this area by providing perception solutions which use limited and

low cost sensors that enable state and disturbance estimation for possible, but not restricted to,

interaction scenarios.

This thesis contain three parts. The first part, introduces basic concepts related to the navigation

state, aircraft dynamics, and sensor models. In addition, the platform under study is presented

and mathematical models associated to it are calibrated.

The second part is devoted to the observability analysis and the design of state observers. Linear

and non-linear observability analysis techniques are used along with models presented in previous

chapters to unveil that the state of quadrotors equipped with GPS, magnetometers an IMU

sensors cannot be uniquely identified in some specific flight configurations. Results of this section

are relevant because the conflicting flight configurations contain hover, a flight maneuverer central

in many unmanned aerial missions of Vertical Take-off and Landing vehicles (VToL). For many

possible singular configurations, insightful descriptions and interpretations of the solution space

known as indistinguishable region are provided. Findings are verified in simulation scenarios

where it can be seen how a filter fails to recover the true state of an aircraft when imposing

the hover flight condition. We discuss then the design of Extended Kalman Filters for state

estimation that considers the available sensors. Issues that are typically not reported in the

literature, such as when to update or propagate in the estimator algorithm or which coordinate

frame (body or world) should be used to represent each state variable are discussed. This leads to
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the formulation of four potentially equivalent but different discrete event-based filters for which

precise algorithmic expressions are given. We provide initialization routines and compare the

results of the four filters in simulation under known favourable conditions for observability. In

order to diminish the effect of flying in the conflicting observability configurations, we provide

an alternative filter based on the Schmidt Kalman Filter (SKF). The proposed filter shares the

structure of the EKF, behaves better in the instants that the EKF fails and provides similar

results in the remaining conditions.

The last part of the thesis deals with the estimation of external disturbances. Disturbance

estimation results are based on the derivation of a linear model for the aircraft dynamics. This

model is not an approximation but an exact form achieved after a proper choice of coordinates

and reference frame. The preceding model is then augmented with a high order disturbance

model to enable the estimation of fast varying disturbances. Two estimators following the line

of already published external disturbance methods are reviewed and adapted to the new model.

Also, two Kalman observers that exploit the linearity of the derived model are presented. A

simulation comparison that considers ideal and realistic scenarios is provided demonstrating

that the KF disturbance estimators outperform the other. In addition, this part presents a

design methodology of generic quadratic bounded observers for linear systems with ellipsoidal

bounded uncertainty. The derived observers maximize a user tunable compromise between the

estimation convergence speed and the final volume containing the estimation error. This design

procedure is then applied to the disturbance estimation problem in aerial vehicles. An observer

for disturbances acting on a flying platform is derived considering the high order disturbance

model above mentioned. Finally, an analysis of the estimation performance with respect to the

design parameters is presented.



Resumen

Controlar la navegación de veh́ıculos autónomos aéreos es un reto. La complejidad de la tarea

proviene de las no linealidades y la incertidumbre inherente en la mecánica del vuelo y las

interacciones aire-veh́ıculo. El potencial que tienen muchas de las aplicaciones actuales, aśı

como aquellas que están por venir motiva a los investigadores que continuamente contribuyen

en este área. Recientemente, ha crecido el interés por dotar a las aeronaves autónomas con la

capacidad de interaccionar con su entorno, otros veh́ıculos o humanos. Esto respalda el uso

de aeronaves autónomas para aplicaciones como el transporte de carga, el repostaje en vuelo e

incluso el reparto de paqueteŕıa. En estos casos, conocer las fuerzas y momentos que provienen

de la interacción es esencial para facilitar el control que puede ser configurado para rechazar

perturbaciones o bien para aprovecharse de ellas si benefician a los objetivos de navegación. Los

trabajos presentes en la literatura que lidian con este tipo de problemas suelen usar sensores

de fuerza en posiciones muy concretas o bien usan sistemas de posicionamiento externos que

son caros y poco versátiles. En cambio, una solución ideal del problema debeŕıa considerar,

el peso, la versatilidad e incluso restricciones económicas en la elección del equipamiento de la

aeronave. Esta tesis, contribuye en este área formulando soluciones de percepción que permiten

la estimación del estado y perturbaciones externas en condiciones normales de vuelos aśı como

casos de interacción para UAVs equipados con sensores limitados y de bajo coste.

La tesis se estructura en tres partes. La primera de ellas introduce los conceptos básicos relaciona-

dos con el estado de navegación, la dinámica de la aeronave y modelos de sensores. Además,

se presenta la plataforma de estudio aśı como los modelos matemáticos asociados a ella y su

calibración.

La segunda parte está destinada al análisis de observabilidad y el diseño de observadores de

estado. Se utilizan técnicas de observabilidad lineal y no-lineal junto a los modelos presenta-

dos anteriormente para desvelar que el estado de aeronaves equipadas con sensores GPS, mag-

netómetros y unidades inerciales (IMU) no puede ser únicamente identificado en condiciones

espećıficas de vuelo. Los resultados de esta sección son importantes porque dentro de las condi-

ciones de vuelo conflictivas se encuentra el vuelo a punto fijo, una maniobra de vuelo central

en muchas misiones de veh́ıculos con capacidad de despegue y aterrizaje vertical (VToL). Se

analizan muchas de estas condiciones cŕıticas de vuelo y para ellas se derivan y describe el es-

pacio de soluciones posible conocido como región indistinguible. Los resultados son verificados

en simulación dónde se puede apreciar como un estimador de estado falla al intentar realizar su

tarea cuando la aeronave está en vuelo a punto fijo. Seguidamente se presenta el diseño de filtros
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extendidos de Kalman (EKF) que proveen estimaciones del estado con la información limitada

que proveen los sensores disponibles. Se discuten conceptos que habitualmente no se presentan

en la literatura como cuando actualizar o propagar en el algoritmo de estimación o que sistema

de referencia (asociados al sistema cuerpo o al sistema mundo) se debe utilizar para representar

adecuadamente las variables de estado. Esto lleva a la formulación algoŕıtmica de cuatro filtros

discretos basados en eventos, diferentes, pero en esencia equivalentes. Se derivan rutinas de ini-

cialización para los filtros y se comparan los resultados en simulación bajo condiciones favorables

de estimación. Con la idea de disminuir el efecto de volar en configuraciones de observabilidad

conflictivas, se deriva un filtro alternativo basado en el filtro de Schmidt Kalman (SKF). El filtro

propuesto comparte estructura con el EKF, tiene un mejor comportamiento alĺı dónde le EKF

falla y una respuesta similar en el resto de condiciones de vuelo.

La última parte de la tesis trata con la estimación de perturbaciones externas. Los resultados

de estimación que se presentan se producen en base a la derivación de un modelo lineal para la

dinámica de la aeronave. Este modelo no supone una aproximación de la dinámica, sino un forma

exacta obtenida a partir de una elección acertada del estado y el sistema de referencia en el que

éste se expresa. Éste modelo se extiende con un modelo de alto orden para la perturbación que

habilita la estimación de perturbaciones con rápidas dinámicas. Se estudia su aplicación a dos

modelos para la estimación de perturbaciones ya presentes en la literatura. Además, se proponen

dos nuevos filtros de Kalman que se aprovechan de la linealidad del modelo. Se presenta una

comparativa basada en la simulación de escenarios ideales aśı como realistas que demuestra que

los filtros KF superan al resto. Esta misma parte de la tesis presenta el diseño genérico de

estimadores ”quadratic bounded” (QB) para sistemas dinámicos lineales cuya incertidumbre se

encuentra acotada dentro de elipsoides. Estos estimadores maximizan un compromiso, ajustable

por el usuario que contempla la velocidad de convergencia aśı como el volumen de la solución

final que contiene el error de estimación. Este proceso de diseño se aplica a la estimación de

perturbaciones en veh́ıculos aéreos. Se deriva un observador de perturbaciones para plataformas

aéreas basado en el modelo de alto orden arriba mencionado. Finalmente, se presenta un análisis

del desempeño de estimación en función de los parámetros de diseño del filtro.



Resum

Controlar la navegació de vehicles autònoms aeris és un repte. La complexitat de la tasca

prové de les no linealitats i la incertesa inherent en la mecànica del vol i les interaccionis aire-

vehicle. El potencial que tenen moltes de les aplicacions actuals, aix́ı com aquelles que estan per

vindre motiva als investigadors que cont́ınuament contribueixen en aquest àrea. Recentment,

ha crescut l’interès per dotar a les aeronaus autònomes amb la capacitat d’interaccionar amb el

seu entorn, altres vehicles o humans. Això recolza l’ús d’aeronaus autònomes per a aplicacions

com el transport de càrrega, el provëıment de carburant en vol i fins i tot el repartiment de

paqueteria. En aquests casos, conèixer les forces i moments que provenen de la interacció és

essencial per a facilitar el control que pot ser configurat per a rebutjar pertorbacions o bé per a

aprofitar-se d’elles si beneficien als objectius de navegació. Els treballs presents en la literatura

que estudien aquest tipus de problemes solen usar sensors de força en posicions molt concretes o

bé sistemes de posicionament externs que són cars i poc versàtils. En canvi, una solució ideal del

problema deuria considerar, el pes, la versatilitat i fins i tot restriccions econòmiques en l’elecció

de l’equipament de l’aeronau. Aquesta tesi, contribueix en aquest àrea formulant solucions de

percepció que permeten l’estimació de l’estat i pertorbacions externes en condicions normals de

vols aix́ı com a casos d’interacció per a UAVs equipats amb sensors limitats i de baix cost.

La tesi s’estructura en tres parts. La primera d’elles introdueix els conceptes bàsics relacionats

amb l’estat de navegació, la dinàmica de l’aeronau i els models dels sensors. A més, es presenta la

plataforma d’estudi aix́ı com el calibratge dels models matemàtics associats a ella. La segona part

està destinada a l’anàlisi d’observabilitat i el disseny d’observadors d’estat. S’utilitzen tècniques

de observabilitat lineal i no-lineal al costat dels models presentats anteriorment. D’aquest estudi

es desprèn que l’estat d’aeronaus equipades amb sensors GPS, magnetòmetres i unitats iner-

cials (IMU) no pot ser ineqúıvocament identificat en condicions concretes de vol. Els resultats

d’aquesta secció són importants perquè dins de les condicions de vol conflictives es troba el vol a

punt fix, una maniobra de vol central en moltes missions de vehicles amb capacitat d’enlairament

i aterratge vertical (VToL). S’analitzen moltes d’aquestes condicions critiques de vol i per a elles

es deriva i descriu l’espai de solucions possible conegut com a regió indistingible. Els resultats

són verificats en simulació on es pot apreciar com un estimador d’estat falla en intentar fer la

seva tasca quan l’aeronau està en vol a punt fix. Seguidament es presenta el disseny de filtres

estesos de Kalman (EKF) que proveeixen estimacions de l’estat amb la informació limitada que

proveeixen els sensors disponibles. Es discuteixen conceptes que habitualment no es presen-

ten en la literatura com quan actualitzar o propagar en l’algorisme d’estimació o que sistema de
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referència (associats al sistema cos o al sistema món) s’ha d’utilitzar per a representar adequada-

ment les variables d’estat. Això porta a la formulació algoŕıtmica de quatre filtres discrets basats

en esdeveniments, diferents, però en essència equivalents. Es deriven rutines de inicialització per

als filtres i es comparen els resultats en simulació sota condicions favorables d’estimació. Amb

la idea de disminuir l’efecte de volar en configuracions d’observabilitat conflictives, es deriva

un filtre alternatiu basat en el filtre de Schmidt Kalman (SKF). El filtre proposat comparteix

estructura amb el EKF, té un millor comportament allà on l’EKF falla i una resposta similar en

la resta de condicions de vol.

L’última part de la tesi tracta amb l’estimació de pertorbacions externes. Els resultats d’estimació

que es presenten es produeixen sobre la base de la derivació d’un model lineal per a la dinàmica

de l’aeronau. Aquest model no suposa una aproximació de la dinàmica, sinó un forma exacta

obtinguda a partir d’una elecció encertada de l’estat i el sistema de referència en el qual aquest

s’expressa. Aquest model s’estén amb un model d’alt ordre per a la pertorbació que habilita

l’estimació de pertorbacions amb ràpides dinàmiques. S’estudia la seva aplicació a dos models

per a l’estimació de pertorbacions ja presents en la literatura. A més, es proposen dos nous

filtres de Kalman que s’aprofiten de la linealitat del model. Es presenta una comparativa basada

en la simulació d’escenaris ideals i realistes que demostra que els filtres KF superen a la resta.

Aquesta mateixa part de la tesi presenta el disseny genèric d’estimadors ”quadratic bounded”

(QB) per a sistemes dinàmics lineals la incertesa dels quals es troba fitada dins d’el·lipsoides.

Aquests estimadors maximitzen un compromı́s, ajustable per l’usuari que contempla la velocitat

de convergència aix́ı com el volum de la solució final que conté l’error d’estimació. Aquest procés

de disseny s’aplica a l’estimació de pertorbacions en vehicles aeris. Es deriva un observador de

pertorbacions per a plataformes aèries basat en el model d’alt ordre a dalt esmentat. Finalment,

es presenta una anàlisi dels resultats d’estimació en funció dels paràmetres de disseny del filtre.
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Chapter 1

Introduction

1.1 Motivation

In the era of 70’s, Unmanned Aerial Vehicles (UAVs) were initially developed to perform mil-

itary inspection tasks and to help in tactical attacks. They present the priceless advantage of

eliminating completely the possibility to hurt the crew, allowing more aggressive and effective

manoeuvres and saving costs in construction and maintenance.

Recently, UAVs have evolved to cover successfully some civilian tasks as exploration, fire in-

spection in natural areas, agricultural inspection, aerial photography, aerial video recording,

terrain mapping and many other tasks related with the environment sensing [39]. USA UAVs,

for instance, provided real time imagery and video after the earthquake in Haiti in 2010 and the

earthquake that led to a tsunami in Japan in 20111.

The high degree of effectiveness in UAV applications [55, 54] and the potential that UAVs have

to solve civilian and military missions that are to come, are the main reason for the growing of

research related with control of flying vehicles.

Many studies have focused on enhancing the autonomy of unmanned vehicles and, as a conse-

quence, tasks like autonomous guidance and trajectory tracking have been achieved successfully

[43, 64]. Even more, some grasping tasks [71, 62], that evolve to autonomous construction tasks

[48], art inspired demonstrations [10], and cooperative work between UAVs [74] have been proven

successful on well structured environments.

Nowadays, the UAVs are not only able to observe but also to interact with the environment.

Recently finished and ongoing European projects exist focused on control techniques that allow

safe interaction between UAVs or between UAVs and the external world2. Both of them have

been motivated by the UAVs potential as tools for damage assessment in critical areas after

natural disasters or in hazardous environments, where walls and other physical barriers may

exist.
1http://www.goo.gl/pd4853
2AIRobots: Collaborative project ICT-248669 ARCAS: Collaborative project ICT-287617

1

http://www.goo.gl/pd4853
http://airobots.ing.unibo.it/Home.php
http://www.arcas-project.eu/
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Even though many technology demonstrators are seen nowadays running impressive UAV control

achievements, one aspect remains central for autonomous navigation in non-structured environ-

ments, the perception. Any UAV flight application that considers navigation or interaction in

an autonomous way is subject to a proper knowledge of the actual UAV status and its surround-

ings. UAV perception relies primarily on sensors. System measurements allow to infer at least

partially the UAV flight state. The requirement of autonomy is a must that forces sensors to be

lightweight enough to bring them onboard, which is usually in conflict with required budget and

accuracy constraints. To solve this problem, model based estimation techniques are usually used

over measurement data to provide better estimates of measured variables and provide estimation

of the remaining ones.

1.2 Problem description

Any rigid body can be seen as a dynamical system that transforms input forces into motion.

The relation between force and velocity or position is well known and can be derived by basic

physical principles.

The same rules apply over a flying vehicle, but in this case the forces are never perfectly known.

Without any loss of generality these forces can be divided in three different categories: actuator

forces, aerodynamic interaction forces and exogenous forces. The former represent the forces

created by the on-board actuators in order to command the aircraft. They are produced by

thrusters, propellers or aerodynamic surfaces and show nonlinear, time varying and state de-

pendent behaviour. The second category refers to the external forces that appear due to the

interaction of the aircraft with the air. Again this effect is usually nonlinear, time varying and

highly dependent on the aircraft velocity state.

The definition of those forces along with the equations of motion represent the dynamics of

motion for almost any aircraft in free flight, as depicted in Fig. 1.1

Rigid

body

Aerodynamic

effects

Actuators
Position

and

Velocity

ForcesControl 

inputs

Flying vehicle

dynamics

Figure 1.1: Aircraft dynamics scheme

State estimation of aerial vehicles in free flight is a challenging task, not only because of the

non-linearities and uncertainty present in the system model due to uncertain aerodynamics and

uncertain mass parameters but also because of sensors. The unavailability of on-board sensors
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to measure specific system states, their accuracy vs. weight or cost ratio and their reliability

difficult and even prevent the estimation task.

In the control framework, pose regulation and trajectory tracking for aircraft in free flight has

been successfully achieved by many authors [43, 58, 61, 64, 63, 48, 81] either in simulation or by

sensor setups dependent on external facilities such as external positioning systems.

The free flight condition is too restrictive in real applications because several sources of exogenous

forces often appear. For example, when flying in unstructured environments, contacts can not

be predicted or when physical interconnections with the environment or maybe other aircraft

exist. In this case, the rigid body equations are fed by an extra term that represents the

interaction forces. Note that under the name of exogenous forces, the forces that do not come

from actuators nor aerodynamic modelled effects are collected. Taking into account the relation

between external forces and the motion of the aircraft is clearly the way to cope with interaction

but, at the same time, it provides the advantage to accommodate any other force disturbances.

Since the exogenous forces need not be small, their effects must not be ignored, as they could give

raise to important deviations in the aircraft behaviour that may lead to catastrophic accidents.

Bearing this in mind, identifying magnitude and direction of the external forces and taking them

into account in the controller design could be useful to produce proper control laws that reduce

undesired effects.

With the aim to ensure safe flights in presence of physical contacts, this thesis is developed in

the framework of UAV perception and it deals with the problem of UAV state and disturbance

estimation under interaction. The diagram in Fig. 1.2 shows the interaction and estimation

scheme considered here.

Rigid

body

Aerodynamic

effects

Actuators
Forces

Control 

inputs

Sensed

Flying vehicle

with interaction

dynamics

Interaction

forces

Sensors

State and Disturbance

Estimation

State 

measurements

State 

and

Disturbances

State 

Figure 1.2: Aircraft interaction dynamics scheme
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1.3 Thesis objectives

Making UAVs interact with their surroundings and provide them with the capacity of dynami-

cally modifying the environment and interact with living entities, expands the current number

of applications that can be successfully executed broadly. This topic, appears recently in the

literature and represents the edge of today’s research.

Most of the provided solutions that deal with interaction are formulated to solve particular

tasks in particular scenarios. In addition, in most cases the fulfilment of the task is left to

planners that assume a known environment and/or external positioning systems that provide a

very accurate feedback to a controller. These facts clearly question the real autonomy achieved

by these aircrafts and limits the application of the proposed solutions when applied over any

other mission.

It is surprising that, given the high number of UAV related control applications in the literature,

only few works deal with the state estimation using low-cost sensor suites and none, to the best

of the author knowledge, deals with the most basic and standard sensor suite which incorporates

accelerometers, gyroscopes, magnetometers and a GPS.

For those reasons, this thesis is focused on:

The study of estimation techniques that allow the estimation of the

UAV state and disturbances appearing in possible interaction

scenarios by using a limited and basic set of sensors comprised of a

GPS, a three axial magnetometer, a three axial gyroscope and a three

axis accelerometer.

The fulfilment of this global objective is achieved by the fulfilment of partial ones. They are:

● Reviewing system dynamics and ways to express the state of UAVs. Finding the most

appropriate state description and understand the associated dynamics will be crucial to

derive model based estimators.

● Obtaining and calibrating models for the sensors under consideration with the aim to

produce reliable simulations and have consistent dynamics when deriving model based

estimators.

● Studying the system’s state observability for the considered set of sensors and understand-

ing how the number of sensors and its quality or stability may impact, degrade or even

prevent the determination of the UAV state.

● Deriving state estimators to infer the system flight configuration, having in mind the imple-

mentation efficiency and its practical use. This step may also consider different dynamics

representations and study their effect in the final estimation.

● Deriving and implementing disturbance estimators that allow the prediction of external

forces and torques acting over the aircraft and comparing the proposals with existing

solutions.
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1.4 Thesis Outline

This thesis is organised as follows:

● Chapter 2: Describing the pose and the state of a solid object in the 3D space

This chapter analyses the potential parametrizations of the UAV navigation state. Parti-

cular emphasis is placed over the parametrization choice for the aircraft attitude. Rotation

matrices, Euler angles and quaternions are explored, explained and relations between them

are presented. Contents of this chapter will be used throughout the dissertation and their

generality will be necessary to link existing and new results.

● Chapter 3: Mathematical models of the quadrotor dynamics

In this chapter many possible ways of deriving the dynamics of the aircrafts are discussed.

Even being a priori equivalent, everyone of them presents its benefits and drawbacks. The

presented dynamics will serve as a basis for simulation, and will be used to derive state

and disturbance estimators in the following chapters.

● Chapter 4: Platform description

This chapter is devoted to the sensor models description and calibration. Particularities

of GPS, magnetometer, accelerometer and gyroscope models are analyzed. Calibration of

the models is also presented here from two different points of view. First, a conditioning

phase is presented which allows to identify and correct three axial sensor misalignments

and different per axis gains. Secondly, calibration phase consists in measuring the level

of stochasticity present in the sensors measurements. In this chapter geometry and mass

properties, hardware, software and principles of UAV actuation are also presented.

● Chapter 5: Observability of quadrotor’s states

Analysing the observability of the system is a key point that must be accomplished before

the implementation of any state estimator. In this chapter we present the basics for observ-

ability and introduce related concepts as indistinguishability, symmetries, indistinguishable

regions and singular inputs. Observability analysis is carried out over the non-linear sys-

tem representing the system and measurement dynamics. A singular input analysis is

also provided over a Linear Time Varying (LTV) system and over the Non-Linear (NL)

dynamics.

● Chapter 6: State Estimation

Few state estimation designs can be found in the literature considering the full navigation

state and none of them have been found that deal with the specific sensor setup under

analysis. To this end, this chapter considers model based state estimation through the use

of the Extended Kalman Filter (EKF), whose basics are presented at the very beginning

of the chapter. Attitude dynamics inherent in the UAV dynamics make the estimation

procedure not straightforward given the singularities that minimal parametrizations suffer

and the associated constraints that non-minimal representations have associated. The

adaptation of the system dynamics and evaluation of filtering strategies to implement our
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particular EKF are provided. Issues that are typically not reported in the literature, such

as when to update or propagate in the estimator algorithm or which coordinate frame

(body or world) should be used to represent each state variable are discussed. This leads

to the formulation of four potentially different but equivalent discrete event-based filters

for which precise algorithmic expressions are given. We provide initialisation routines and

compare the results of the four filters in simulation under known favourable conditions for

observability.

The second part of the chapter deals with the use of the presented estimators under low

observability conditions. We present the SKF estimator as an alternative to the EKF used

when some uncertain parameters want to be neglected in the estimation process. This

formulation along with the observability results in Chap. (5) is used to derive an state

estimator to fix the estimation results in conflicting observability conditions.

● Chapter 7: External Disturbances Estimation in UAVs

State estimation provided in the previous chapter allows to having accelerometer and gy-

roscope bias estimations. This quantities, along with the state provided, enables the es-

timation of external disturbances comprising external wrenches, gravity offsets, actuator

and any other unmodelled dynamics whose effect can be interpreted as an external force

or torque. In this chapter we make use of the momentum dynamic equations (linear and

spin) expressed in the world reference frame as a model of the system dynamics. This

model is exploited to derive disturbance estimators based on available implementations

but, adapted to our set of measurements. In addition, the linearity of the model is ex-

ploited by the consideration of two additional optimal Kalman Filter based disturbance

estimators.The three derived observers are compared and their performance is evaluated

under simple, challenging, ideal and noisy scenarios.

● Chapter 8: Quadratic Bounded Observers. Application to UAVs External

Disturbances Estimation

This chapter is dedicated to the design of Quadratic Bounded (QB) observers and its

application to the estimation of external disturbances in UAVs. Firstly, we present a novel

design methodology for state observers which guarantees quadratic boundedness of the

estimation error. This is achieved by using Lyapunov analysis and convex optimization

techniques. The solution of the design problem is optimal in the sense that a gain for the

observer is produced that maximizes an user tunable compromise between the estimation

convergence speed and the final volume containing the error of the estimation. The filter

design contemplates the possibility of selecting the part of the state variables (instead of

all the state) whose associated error is to be minimised. This fact is used in the second

part of the chapter to derive a QB disturbance observer using the high order model derived

in Chap. (7). A performance analysis with respect to the design parameters is presented

and finally the effectiveness and main characteristics of the proposed approach are shown

using simulation results.

● Chapter 9: Concluding remarks

In this chapter we provide a summary of the thesis’ contributions and outline future lines

of research.
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Chapter 2

Describing the pose and the state

of a solid object in the 3D space

The word pose is typically used in robotics and computer vision areas to refer to the concatenation

of position and attitude. The position of an object in a 3-dimensional space is not hard to

understand and we are used to deal with the problem of describing the position of objects daily.

However, it is not the case when we want to describe the attitude of an object in the same

3-dimensional space. In the case that we are interested in the motion of the object further

quantities like velocities, accelerations, angular velocities and angular accelerations appear.

This chapter is devoted, firstly, to the basic definition and presentation of the reference frames

which enable a proper interpretation of the concepts of position and attitude. Secondly, the

most used attitude representations are reviewed. For each of those, benefits and drawbacks are

discussed. The relations between them as well as their dependence with the vehicle angular

velocity are derived. Finally, a discussion on the chosen navigation state is provided.

2.1 Reference frames

A proper square coordinate system {A} can be represented by a point, called the origin and three

orthogonal vectors xa ya za coming out from the origin for which xa × ya = za. Such square

coordinate system is also known as a frame. By using frames, physical quantities as positions,

orientations, velocities and accelerations of rigid bodies can be defined in a comprehensible way.

A division can be done to differentiate two kind of reference frames, inertial and non-inertial

frames. Inertial frames are those that are not accelerated. This frames are fixed or translat-

ing with constant velocity. Non-inertial frames are accelerated frames, i.e. they have a linear

acceleration, or are rotating.

This classification is important since the Euler equations of motion, that most of the people know,

are only valid on its standard form when applied over inertial frames. Being strict, since our

9
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planet is travelling through the space, the standard Newton laws are not applicable. However,

accelerations perceived in many Earth-fixed reference frames are small enough to apply standard

principles without making disproportionate errors.

In this work two basic reference frames are going to be used regularly and are detailed deeply in

the next two sections.

2.1.1 Earth-Fixed reference frame

This is a reference frame with its origin on the Earth surface. Its x axis, named xw, is tangent to

the Earth surface and points to the North Pole. The z axis, zw, is orthogonal to the Earth surface

and it points inwards (to the center of the Earth) and the y axis, yw, given by zw × xw = yw
points to the east, forming a right hand triad. It will be assumed, that this system is inertial

even moving with the Earth. In the bibliography, this system is sometimes named NED system

by the direction of its axes.

Figure 2.1: Representation of the Earth-fixed reference frame

A vector or a point expressed in the Earth frame will be denoted by w
(●).

2.1.2 Body fixed reference frame

The body fixed reference frame has its origin on the mass center of the quadrotor. Following

the general convention in aeronautics its x axis, xb, points forward, the y axis, yb, points to

the right and the z axis, zb points downwards. The body fixed frame need to be a non-inertial

reference frame since most of the time the quadrotor body will be rotating or accelerated.

A vector or a point expressed in the body frame will be denoted by b
(●).
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Figure 2.2: Representation of the body and Earth reference frames

2.2 Rigid transformation between reference frames

The definition of different reference frames is helpful to understand physical phenomena and

to simplify the formulation of the problem. Moreover, they allow to define the position of the

vehicle as the distance between the origin of the body frame and the origin of the Earth frame,

and the orientation of the vehicle as the orientation of the body frame with respect to the Earth

frame.

Since the use of several reference frames is justified, it is necessary to develop relations between

them to convert vector and point quantities from one frame to the other.

Rotation matrices

Rotations are linear transformations that allow the orientation of a vector to be modified and

thus the orientation of any given frame when applied to each one of its basis vectors. Rotations

have special properties:

● Preserve the length of vectors. If a vector v is transformed by a rotation, the resulting

vector v′ has the same norm as v.

∣v∣ = ∣v′∣

● Preserve angles. Given two vectors v1 and v2, and their respective images after applying

rotations v′1 and v′2, the angle between the pair of vectors in the every frame remains the

same.

v⊺1v2 = v′1
⊺

v′2

● Preserve volume. Given three vectors v1, v2 and v3 and their respective images after

applying rotations v′1, v′2 and v′3,

v⊺1 (v2 × v3) = v′1
⊺ (v′2 × v′3)
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Figure 2.3: Point transformation between reference frames

The group of matrices that perform those transformations conforms the special orthogonal group

SO(3). The special orthogonal group is a 3-dimensional manifold embedded in a 9-dimensional

space. An square 3×3 matrix L is said to describe a rotation in SO(3) if its columns, respectively,

rows, are orthonormal, i.e.,

L ∈ SO(3) ⇐⇒ detL = 1 and L−1 = L⊺ (2.1)

The purpose of rotation matrices is to transform some vector quantities from an initial frame to

a target frame. Regarding the world and the body frames, here we are going to fix the convention

that the matrix L is such that transforms coordinates in body frame to coordinates in Earth

frame

vw = L vb . (2.2)

In an analogue way the inverse transformation from Earth to body frame is carried out by

vb = L⊺ vw . (2.3)

The transformations in Eq. (2.2) and Eq. (2.3) allow to transform vector coordinates between

different frames. Vectors are quantities without a fixed origin. In the case of transforming points,

the origins of both reference frames come into play. If xw represents a point in the Earth frame

and, Ow and Ob represent the origin of world and body reference frames respectively, then

xw = ( Ow b − Ow w) +L xb , (2.4)

and vice-versa

xb = ( Ob w − Ob b) +L⊺ xw . (2.5)

2.3 Representing the attitude

It has been illustrated that the definition of reference frames allows a natural introduction of the

attitude definition by means of proper rotation matrices. The orthogonality and determinant

constraints imposed over 3×3 generic matrices to produce valid rotations reduces the number of

degrees of freedom from nine (one for each matrix entry) to three. This fact has motivated the

study of different attitude parametrizations.
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The so-called minimal attitude representations define rotations using only three parameters. The

Euler’s angles, the modified Rodrigues parameters (MRPs), the Gibb’s vector or the rotation

vector are examples of very common minimal representations. None of these 3D parametriza-

tions are free of singularities (see [82]), being specially unsuitable for tracking the attitude

dynamics of highly manoeuvrable flying vehicles. By adding an additional parameter, the unit-

quaternions are a singularity-free attitude parametrization that maintain a trade-off between

memory usage, usability and efficiency. The increase of efficiency by using unit-quaternions

against other lower dimensional parametrizations comes from the fact that in lower dimensional

attitude parametrizations, the transformation of vectors is only possible by mapping first the

attitude parametrization to a rotation matrix. This mapping is also required for concatenating

consecutive rotations (by multiplying the rotation matrices), and its inverse mapping is needed

to finally retrieve the three dimensional attitude from the composite rotation matrix. Quater-

nions, on the other hand, are self-contained. By using quaternion algebra vectors can be directly

transformed and composition can be effectively carried out. Although a one-to-one mapping is

demonstrated to only exist for 5D orientation parametrizations, the two-to-one mapping that

exists between unit-quaternions and the SO(3) does not present any practical disadvantage.

In this section the rotation matrices, Euler angles, quaternions and briefly the rotation vector are

introduced as different parametrizations of the attitude. For each of those we discuss benefits

and drawbacks and establish the relations between them. In addition, it is shown how every

parametrization relates with the angular velocity and how different attitudes can be concatenated

to express a composite attitude.

2.3.1 The direct cosine (DCM) rotation matrix

Rotation transformations can be formulated in different ways. The most intuitive one relates

the basis vectors of one reference frame with their respective images expressed as a function of

the basis vectors of a second reference frame.

To formulate the transformation that converts body frame coordinates to the world frame equiv-

alents, consider first the projection of the xb axis over the world reference frame

xw b = (x⊺bxw) xw w + (x⊺byw) yw w + (x⊺bzw) zw w,

where the pre-superscript defining the basis of the vectors involved in the scalar product has

been intentionally omitted to highlight that the inner product does not depend on the basis

chosen.

By repetition over the other body axes, it can be seen that a vector expressed in the body frame

vb = v1 x
b
b + v2 y

b
b + v3 z

b
b can be converted to the world frame by

vw = L vb (2.6)
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being

L =
⎛
⎜⎜⎜
⎝

x⊺bxw y⊺bxw z⊺bxw

x⊺byw y⊺byw z⊺byw

x⊺bzw y⊺bzw z⊺bzw

⎞
⎟⎟⎟
⎠

(2.7)

Since the dot products in Eq. (2.7) represent the cosine of the angle between a pair of vectors,

every entry of the matrix can be calculated from the angle between the unit vectors of the

references frames, which is why this matrix is usually called direct cosine matrix (DCM).

Note that if the inverse transformation was desired, that is, transform a vector from the Earth-

fixed frame to the body frame, the elements of every entry of the matrix would be exchanged

implying that

L−1 = L⊺. (2.8)

Kinematic effects over the DCM

When the body frame is rotating with respect to the world frame, the rotation matrix changes

in time. The time evolution of the rotation matrix is related kinematically with ω, the angular

velocity of the body frame. Note that ω can be expressed in the inertial frame ωw or in the

body frame ωb . The coordinates in the world and the body frames of a point P rigidly attached

to the rotating frame can be related by the transformation matrix L as in Eq. (2.2).

Figure 2.4: Rotation effects over a point that is rotating rigidly attached to the body frame

We are interested in determining changes in the transformation matrix due to the rotations of

the moving frame. Taking the derivative of Eq. (2.2) having substituted the generic vector v by

the point position P ,

Ṗ
w = L̇ Pb +L Ṗ

b
(2.9)
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Since P is rigidly attached to the rotating frame Ṗ
b = 0 and then

Ṗ
w = L̇ Pb (2.10)

Equivalently, we can find an expression for Ṗ
w

by using the kinematic relation

Ṗ
w = ωw × Pw = [ ωw ]

×
Pw (2.11)

being [ ωw ]
×

the skew symmetric matrix associated with the vector ωw (see Ap. A).

Equating Eq. (2.11) and Eq. (2.10) leads to

L̇ Pb = [ ωw ]
×
Pw (2.12)

and using Eq. (2.2)

L̇ = [ ωw ]
×

L (2.13)

Eq. (2.13) relates the time derivative of the rotation matrix with wω. However, when dealing

with the attitude of an autonomous aircraft, the angular velocity measures are always available

from an on-board set of gyroscopes that measure ωb . To achieve this relationship, we can

take advantage of the invariability of the cross product under rotation (La) × (Lb) = L (a × b).
Left-multiplying Eq. (2.12) by L⊺

L̇ = L [ ωb ]
×

(2.14)

Composition of rotations using DCMs

Theorem 2.3.1 (Euler’s Rotation). Any displacement of a rigid body such that a point on the

rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the

fixed point.

The Euler’s theorem on rotations simplifies the fact that any orientation of a 3-dimensional rigid

body can be seen as the result of a single rotation from a reference orientation (e.g. the inertial

frame orientation) instead of being the result of several consecutive rotations. As a consequence

the rotation composition can be expressed as a new rotation matrix belonging again to SO(3).

Let L1 represent a rotation from an initial reference frame to an intermediate one. Let L2

represent the rotation of the intermediate frame to achieve the orientation of a third one. The

matrix that allows to transform directly from the first frame to the third frame is

L3 = L2L1 (2.15)
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Pros and cons of using the DCM to express the attitude

The DCM represents the rotation between a pair of frames and in an equivalent way it encodes

the attitude of a second frame with respect to the first one. Therefore, the DCM can be used to

represent the attitude of an aircraft. However, it presents some drawbacks

● It is not straightforward to interpret the attitude of the aircraft inspecting the entries of

the rotation matrix.

● The differential equation proposed in Eq. (2.13) or Eq. (2.14), does not ensure that, after

numerical integration, L preserves the properties described in Section 2.2. In this way

some efforts can be made to renormalize the integrated matrix, but may involve intensive

computations.

● The dimension of the SO(3) manifold is three, implying that the minimal attitude repre-

sentation for a 3D body is given by three parameters, far away from the nine used by the

DCM.

There are alternative ways to represent the attitude of rigid bodies that try to cope with the

inconveniences presented. In the case of spacecraft, the most used representations are the Euler

angles and the quaternions, both based on the Euler’s rotation theorem.

2.3.2 Euler Angles

The Euler angles exploit the idea of the principal Euler axis to encode the attitude in three

parameters. The basic idea is to decompose the rotation in three consecutive simpler rotations

about known axes represented by the basis’ unit vectors.

Depending on the selected axis involved and its order, this process leads up to 12 different and

valid ways for parametrizing the rotation i.e.

x − y − z x − z − y x − y − x x − z − x
y − x − z y − z − x y − x − y y − z − y
z − y − x z − x − y z − x − z z − y − z

The standard parametrization in aeronautics known as Tait-Bryan angles z − y − x, is presented

here.

Consider the Earth reference frame described on Section 2.1.1 and a rotation about the zw axis

a ψ quantity to create an intermediate reference frame with axis x1, y1 and z1 = zw. After

this rotation consider a second rotation around the y1 axis of a quantity θ to create a second

intermediate frame with axis x2, y2 = y1 and z2. Finally, consider the rotation of φ around x2

that leads to the desired body reference frame, xb = x2, yb and zb. A scheme of the successive

rotations that transforms the Earth frame into the body frame is shown in Fig. 2.5.
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This convention is so accepted worldwide, that the three rotated angles φ, θ and ψ receive the

name of roll, pitch and yaw respectively. For the sake of simplicity they are collected in vector

form as η = (φ, θ, ψ)⊺.

Figure 2.5: Euler angles relating the Earth reference frame and the body frame.

A vector in the body frame relates then with its representation in the world frame by the

concatenation of consecutive simple rotations

vw = R(ψ)R(θ)R(φ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L(η)

vb

being

R(ψ) =
⎛
⎜⎜⎜
⎝

cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

⎞
⎟⎟⎟
⎠

R(θ) =
⎛
⎜⎜⎜
⎝

cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 1 cos(θ)

⎞
⎟⎟⎟
⎠

R(φ) =
⎛
⎜⎜⎜
⎝

1 0 0

0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎞
⎟⎟⎟
⎠

the individual rotation matrices that implement simple rotations about zw, y1 and xb respec-

tively. The DCM to perform the transformations can be formulated as a function of the Euler
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angles as

L(η) =
⎛
⎜⎜⎜
⎝

cos(θ) cos(ψ) sin(φ) sin(θ) cos(ψ) − cos(φ) sin(ψ) cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)
cos(θ) sin(ψ) sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ) cos(φ) sin(θ) sin(ψ) − sin(φ) cos(ψ)
− sin(θ) sin(φ) cos(θ) cos(φ) cos(θ)

⎞
⎟⎟⎟
⎠

(2.16)

Kinematic effects over the Euler angles

Now that it has been shown how to represent the attitude by using Euler angles, it is interesting

to find the relation that allows us to predict its derivative, as we did for the derivative of the

DCM L̇. In this case, taking into account the individual Euler angles derivative magnitudes

around their respective axis expressed on body frame, the next expression can be derived

ω = φ̇xb + θ̇y1 + ψ̇zh, (2.17)

that converted to matrix form becomes

ω =
⎛
⎜⎜⎜
⎝

1 0 − sin(θ)
0 cos(φ) sin(φ) cos(θ)
0 − sin(φ) cos(φ) cos(θ)

⎞
⎟⎟⎟
⎠
η̇. (2.18)

And the inverse transformation is given by inverting the system,

η̇ =
⎛
⎜⎜⎜
⎝

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ) / cos(θ) cos(φ) / cos(θ)

⎞
⎟⎟⎟
⎠
ω (2.19)

Two important details must be mentioned. First, the transformations between η̇ and ω do

not depend on the yaw angle. Secondly, a singularity, known as gimbal lock, is produced at

θ = (2n+1)π
2

with n = 0,1, ..., i.e. when the aircraft has its zb axis on the xw-yw plane.

Flying near this singularity is unusual for regular flights of fixed wing aircrafts, and many times it

is not taken into account. However, it must be especially considered when performing aerobatic

manoeuvres with VToL aircrafts and the Euler angles are used to express the attitude.

Euler angles relations

In 2.16, it has been shown how the euler angles are related with the rotation matrix.

The opposite mapping can be achieved easily by looking at some entries of the rotation matrix

L. Let lij represent the i − th row and j − th column entry of the rotation matrix, then from

Eq. (2.16),
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φ = atan2 (l32, l33)
θ = −asin (l31)

ψ = atan2 (l21, l11)
. (2.20)

In the equation above, the function atan2(●), represents the inverse tangent function that maps

the argument to [−π,π], while it is admitted that θ ∈ [−π
2
, π

2
].

Euler angles composition

Let {F0}, {F1} and {F2} represent three reference frames. Let η1 and η2 be the sets of Euler

angles that relate vectors defined in {F0} with {F1} and vectors defined in {F1} with {F2}
respectively. The way of extracting the Euler parameters that links directly {F0} and {F2}
is not straightforward, in the sense that both vectors of Euler angles need be converted into

rotation matrices by using Eq. (2.16) i.e.

vF1 = L(η1) vF0 and vF2 = L(η2) vF1

Then, both relations can be composed leading to

vF2 = L(η2)L(η1) vF0

which shows that a composite rotation matrix L(η3) = L(η2)L(η1) can be obtained from the

individual rotation matrices. As a consequence, the Euler angles η3 that represent the attitude

change between the initial anf final frame can be finally retrieved using Eq. (2.20) over L(η3).

Pros and cons of using Euler angles to express the attitude

Euler angles represent the most understandable attitude parametrization. The consecutive com-

position of the three different simple rotations make that when θ and φ angles are close to null

(aircraft body horizontal plane parallel to the world horizontal plane) any small attitude change

can be interpreted in an intuitive way. However, it is not easy to understand the resulting

attitude when pitch and roll angles are not small.

This representation has two other important drawbacks.

● The concatenation of rotations has to be done by passing through the construction of matrix

rotations where the Euler angles enter in a non-linear way. The trigonometric functions

that fill the matrix entries are not the class of functions desired when performing estimation

or control (the most used techniques are linear techniques that require a linearisation of

the system equations).

● The relation of the derivative introduces a singularity known as gimbal lock. Since every

triad of Euler angles is associated with one main axis of three different frames, it is possible
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for a pair of axes to coincide in a certain configuration. That is the case when in our

parametrization the aircraft performs a pitch manoeuvre with the nose up/down until

θ = ±π
2

rad. In this new configuration the zw and the xb axes are parallel and, therefore, a

change in φ or ψ angles represents a rotation about the same direction.

This singularity appears explicitly in the equation that transforms the body angular ve-

locity to the derivative of Euler angles. In the configuration θ = ±π
2

rad, the matrix that

allows the transformation becomes singular and the mapping is not possible. Moreover,

near the singularity, the matrix can be ill-conditioned leading to big round-off errors in the

conversion.

2.3.3 Quaternions

Quaternions were proposed by William Rowan Hamilton as an extension of the complex numbers.

The idea behind the quaternion formulation was to generalise the effect of rotation that in a

2-dimensional plane produces the multiplication of complex numbers. Under the quaternion

multiplication a 3-dimensional vector rotates and changes its magnitude.

A quaternion is defined as the concatenation of a scalar, q0, and a vector, q = (q1, q2, q3)⊺, and

it is denoted by q̊ = (q0, q
⊺)⊺. An alternative notation is q̊ = q0 + q1i + q2j + q3k. In this case

every component of the vector represents a new dimension. As in the complex number case, the

multiplication of the imaginary parts is resolved as

i2 = −1 j2 = −1 k2 = −1

ij = k jk = i ki = j
ji = −k kj = −i ik = −j

Therefore, the product of two quaternions is another quaternion

q̊p̊ =
⎛
⎝

q0p0 − q⊺p
q0p + p0q + q × p

⎞
⎠

(2.21)

Quaternion multiplication is not commutative, as can be interpreted by the cross product inside

the vector part in Eq. (2.21). However, reverse multiplication requires only the flip of the cross

product sign

p̊q̊ =
⎛
⎝

q0p0 − q⊺p
q0p + p0q − q × p

⎞
⎠

(2.22)

The multiplication operation can be expressed in terms of matrix vector multiplication as

q̊p̊ = Q(q̊)p̊ =

⎛
⎜⎜⎜⎜⎜
⎝

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎞
⎟⎟⎟⎟⎟
⎠

p̊ (2.23)
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or equivalently

q̊p̊ = Q(p̊)q̊ =

⎛
⎜⎜⎜⎜⎜
⎝

p0 −p1 −p2 −p3

p1 p0 p3 −p2

p2 −p3 p0 p1

p3 p2 −p1 p0

⎞
⎟⎟⎟⎟⎟
⎠

q̊ (2.24)

The quaternion algebra defines the addition as the element-wise sum

s̊ = q̊ + p̊→ si = qi + pi ∀ i = 0,1,2,3 (2.25)

which has the properties of being associative and commutative.

The conjugate of a quaternion is

q̊ = (q0,−q⊺)
⊺

(2.26)

and the conjugate of products is

q̊ p̊ = p̊q̊ (2.27)

The norm of a quaternion is defined as

∥q̊∥ =
√
q2
0 + q⊺q (2.28)

The norm of a quaternion multiplication is defined as

∥q̊p̊∥ = ∥q̊∥ ∥p̊∥ (2.29)

The definition of the quaternion norm allows to define the inverse quaternion. Given q̊, its inverse

accomplishes that q̊q̊−1 = (1, 0, 0, 0)⊺. Using Eq. (2.28), it can be seen that

q̊−1 = q̊

∥q̊∥2
(2.30)

Quaternions to express attitude

Inside the generality of quaternion algebra, we are interested in using them to represent rotations.

In this case, unitary quaternions (i.e. the subgroup of quaternions with unitary norm ∥q̊∥ =
q2
0 + ∥q∥2 = 1) embed attitude information and some special operations allow to use them to

rotate vectors. Note that the norm constraint implies that a unique angle ϑ ∈ [0, π] exists for

which q0 = cos(ϑ) and ∥q∥ = sin(ϑ). As a consequence any unit quaternion can be written as

q̊ =
⎛
⎝

cos(ϑ)
sin(ϑ)u

⎞
⎠

(2.31)

being u = q
∥q∥

, a unitary vector that will be related with the rotation direction.
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Let the vector v ∈ R3 represent a generic vector. Let the pure quaternion v̊ be defined as

v̊ = (0,v⊺)⊺

By using unitary quaternions, the product defined by

v̊′ = q̊v̊q̊, (2.32)

produces a pure quaternion v̊′ = (0,v′⊺)⊺ where v′ is a rotated version of v about the direction

of u.

Developing the product in Eq. (2.32) by using Eq. (2.23) and Eq. (2.24) leads to

v̊′ = Q(q̊)Q(q̊)̊v = Q(q̊)Q⊺(q̊)̊v =
⎡⎢⎢⎢⎢⎣

1 01×3

03×1 L(q̊)

⎤⎥⎥⎥⎥⎦
v̊ (2.33)

being

L(q̊) =
⎛
⎜⎜⎜
⎝

q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3

⎞
⎟⎟⎟
⎠

(2.34)

the rotation matrix responsible for the rotation of vector v.

In an equivalent way, by developing Eq. (2.32), the rotated vector v′ can be obtained as the

application of an operator over v

v′ =R (q̊,v) = (q2
0 − ∥q∥2)v + 2 (q⊺v)q + 2q0 (q × v) (2.35)

taking v as common factor by the right in the last equation leads to

v′ =R (q̊,v) = L(̊q)v (2.36)

being

L(q̊) = (q2
0 − q⊺q) I3 + 2qq⊺ + 2q0 [q]

×
(2.37)

or equivalently

L(q̊) = q2
0I3×3 + qq⊺ + 2q0 [q]

×
+ [q]2

×
(2.38)

R is a linear operator in terms of v since it can be written as L(q̊)v. Therefore, the superposition

principle holds

R (q̊, k1v1 + k2v2) = k1R (q̊,v1) + k2R (q̊,v2)

By analysing the effect of the operator R, or equivalently, the effect of L(q̊), over v it can be

observed that:



2.3. REPRESENTING THE ATTITUDE 23

Figure 2.6: Effect of the action of quaternion in Eq. (2.31) over an orthogonal vector v

● The norm is preserved. By applying Eq. (2.29) over the product in Eq. (2.32) it can be

demonstrated that as in any rotation ∥v′∥ = ∥v∥.

● A vector in the direction of u, equivalently, the direction of q, will not change. Taking

v = kq,

v′ =R (q̊, kq) = (q2
0 − ∥q∥2)kq + 2k (q⊺q)q + 2q0k (q × q) =

(q2
0 − ∥q∥2)kq + 2k (q⊺q)q = (q2

0 + ∥q∥2)kq = kq = v
(2.39)

● A vector perpendicular to u, equivalently, perpendicular to q, will rotate describing a

circle. Let v be orthogonal to q. Therefore the rotation operator becomes

R (q̊,v) = (q2
0 − ∥q∥2)v + 2 (q⊺v)q + 2q0 (q × v) = (q2

0 − ∥q∥2)v + 2q0 (q × v) (2.40)

Defining v� = (q×v)
∥q∥

as a perpendicular vector to both q and v with the same norm that v

R (q̊,v) = (q2
0 − ∥q∥2)v + 2q0 ∥q∥v� (2.41)

Now using the definition of the unitary quaternion in Eq. (2.31)

R (q̊,v) = (cos(ϑ)2 − sin(ϑ)2)v + 2 cos(ϑ) sin(ϑ)v� = cos(2ϑ)v + sin(2ϑ)v� (2.42)

From Eq. (2.42) it can be seen that the quaternion in Eq. (2.31) encodes a rotation of 2ϑ

about the vector u. It is depicted on Fig. 2.6

Given the linearity of the rotation operator over v above stated the superposition principle

applies. Then, any vector can be decomposed into its projection over u, e.g,

v∥ = (v⊺u)u

and the projection over the perpendicular direction of u that lies in the plane given by v and u

e.g

v� = v − (v⊺u)u

The effect of the rotation can be individually interpreted to affect v∥ and v�, and the final

rotated vector can be reconstructed by the simple addition of them.

As a consequence it can be said that a general quaternion

q̊⊺ = (± cos( θ
2
) ± sin( θ

2
)u) (2.43)
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Figure 2.7: Reference frame transformations interpretation by using quaternions

through the operator in Eq. (2.32) defines a rotation of an angle θ about the direction of the

unit vector u.

Note that the ± sign appears because of the ambiguity of this representation, since the rotations

encoded in quaternions q̊ and −q̊ are equivalent as result of applying Eq. (2.32).

This representation shares analogies with the Euler exponential formula for the complex numbers.

In this case a quaternion can be expressed as

q̊ = ±exp(θ
2
u) = ± cos(θ

2
) ± sin(θ

2
) (u1i + u2j + u3k) (2.44)

Transformation between different bases

The previous section describes how quaternions can be used to rotate a vector around a given

direction. However, it is not trivial to understand how these rotations allow to formulate the

transformations between reference frames that we are dealing with in this document.

When doing transformations between reference frames we are not rotating vectors, but expressing

the vector in different basis.

Take the black triad in Fig. 2.7 to be the Earth reference frame. Let the red triad be the body

reference frame obtained by the rotation of the basis vectors of the Earth reference frame encoded

in a quaternion q̊ such that

xw b = q̊ xw w q̊

yw b = q̊ yw w q̊

zw b = q̊ zw w q̊

(2.45)

Given the vector vw expressed in the world frame, the same vector in the body frame will be

given by

v̊b = q̊ v̊w q̊ (2.46)

where v̊b ⊺ = [0; vb ⊺] and v̊w ⊺ = [0; vw ⊺].
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This quaternion operation is the inverse of the operation in Eq. (2.32). It can be interpreted as

the rotation of the vector v about u by a quantity −θ or as the rotation of the coordinate frame

about u of θ magnitude keeping the vector v fixed.

As a consequence, the rotation matrix in Eq. (2.34) represents the rotation from body to Earth

frames i.e. R (q̊) = L

Kinematic effects over quaternions

As shown for Euler angles and rotation matrices, the time derivative of the attitude expressions

can be related with the angular velocity.

From the formulation of Eq. (2.44) and differentiating it with respect to time

˙̊q =
d (exp ( θ

2
u))

dt
(2.47)

Since the rotation represented by the quaternion maintains the direction of the vector u

˙̊q = θ̇
2
uexp(θ

2
u) = 1

2
ω̊w q̊ (2.48)

An equivalent expression can be found to relate the derivative of the quaternion with the body

angular velocity. By using Eq. (2.46)

q̊b = ¯̊q q̊w q̊ (2.49)

And using this result in Eq. (2.48),

˙̊q = 1

2
q̊ ω̊b (2.50)

The quaternion derivative can be written in matrix vector multiplication form by using the

relations in Eq. (2.23) and Eq. (2.24), so that

˙̊q = 1

2
Γ(q̊) ωb (2.51)

and

˙̊q = 1

2
Γ̃(q̊) ωb (2.52)

being

Γ(q̊) =
⎛
⎝

q⊺

q0I3 + [q]
×

⎞
⎠

(2.53)

Γ̃(q̊) =
⎛
⎝

q⊺

q0I3 − [q]
×

⎞
⎠

(2.54)
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Composition of rotations with quaternions

Let a rotation of a vector v be represented as in Eq. (2.32). A successive rotation encoded in a

second unit quaternion ẘ can be calculated as

v′′q = ẘ (ů̊vů) ẘ = (ẘů) v̊ (ůẘ) . (2.55)

The previous equation shows that rotations expressed in quaternions are simply concatenated

by quaternion multiplication.

DCM to quaternions.

Up until now, we have seen how a rotation matrix is composed by using quaternions, Eq. (2.34).

Now we are looking for the inverse relation. The fact that we have 4 parameters to represent a

quaternion versus 9 parameters in the rotation matrix case, makes redundancy appear.

Let lij represent the i − th row and j − th column entry of the rotation matrix L in Eq. (2.34) .

By operating with the diagonal terms of L and applying the unity norm constraint, the following

can be obtained:

4q2
0 = 1 + l11 + l22 + l33 = 1 + trace(L)

4q2
1 = 1 + l11 − l22 − l33 = 1 − trace(L) + 2l11

4q2
2 = 1 − l11 + l22 − l33 = 1 − trace(L) + 2l22

4q2
3 = 1 − l11 − l22 + l33 = 1 − trace(L) + 2l33

(2.56)

In a similar way, using the off-diagonal terms

4q0q1 = l32 − l23

4q0q2 = l13 − l31

4q0q3 = l21 − l12

4q1q2 = l21 + l12

4q1q3 = l13 + l31

4q2q3 = l32 − l23.

(2.57)

By using the Eq. (2.56) and Eq. (2.57) it is possible to recover the quaternion values from the

individual entries of the rotation matrix. However, note that Eq. (2.56) by itself cannot be used

to solve for every quaternion parameter given the ambiguity of sign in the squared power. In a

similar way, retrieving all the quaternion parameters from Eq. (2.57) implies solving a non-linear

system of equations, moreover, large round errors can occour when some quaternion parameter

take near zero values. The final procedure consists in using Eq. (2.56) to determine one parameter

of the quaternion and then using Eq. (2.57) to determine the remaining ones, provided that the

parameter determined by the first equation is far from zero, which can be known beforehand by

only checking the values of L. This procedure damps possible numeric problems that can arise

from round off errors in the rotation matrix [80, 57]. This method is described next.
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Let the highest component of the quaternion q̊ be qi. This implies that

q2
i − q2

j > 0 forj ≠ i ∧ j = 0,1,2,3 (2.58)

The addition of the three previous equations leads to

3q2
i >

j=3

∑
j=0
j≠i

q2
j (2.59)

By the unity norm constraint 1 − q2
j =

j=3

∑
j=0
j≠i

q2
j , therefore

q2
i >

1

4
(2.60)

which is far away from 0. This is useful to decide how to perform the reverse transformation.

Case1 : In case that q2
0 > q2

i for i = 1,2,3, which is achieved iff trace(L) ≥ 0 based on Eq. (2.56)

q̊ = 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
1 + l11 + l22 + l33

l32−l23
√

1+l11+l22+l33
l13−l31

√

1+l11+l22+l33
l21−l12

√

1+l11+l22+l33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.61)

Case2 : In case that q2
1 > q2

i for i = 0,2,3 which is achieved iff trace(L) < 0 and l11 =
max (l11, l22, l33) based on Eq. (2.56)

q̊ = 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l32−l23
√

1+l11−l22−l33√
1 + l11 − l22 − l33

l21+l12
√

1+l11−l22−l33
l13+l31

√

1+l11−l22−l33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.62)

Case3 : In case that q2
2 > q2

i for i = 0,1,3 which is achieved iff trace(L) < 0 and l22 =
max (l11, l22, l33) based on Eq. (2.56)

q̊ = 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l13−l31
√

1−l11+l22+l33
l21+l12

√

1−l11+l22+l33√
1 − l11 + l22 + l33

l32+l23
√

1−l11+l22+l33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.63)
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Case4 : In case that q2
3 > q2

i for i = 0,1,2 which is achieved iff trace(L) < 0 and l33 =
max (l11, l22, l33) based on Eq. (2.56)

q̊ = 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l21−l12
√

1−l11−l22+l33
l13+l31

√

1−l11−l22+l33
l32+l23

√

1−l11−l22+l33√
1 − l11 − l22 + l33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.64)

Quaternions to Euler angles.

There is no a direct relation between quaternions and Euler angles. However, simple relations

can be achieved by first construct the rotation matrix from quaternions by using Eq. (2.34) and

then using the mapping from the DCM to Euler angles presented in Eq. (2.20).

This process reduces to

φ = atan2 (2q2q3 − 2q0q1, q
2
0 − q2

1 − q2
2 + q2

3)
θ = −asin (2q1q3 + 2q0q2)

ψ = atan2 (2q1q2 − 2q0q3, q
2
0 + q2

1 − q2
2 − q2

3)
(2.65)

Euler angles to quaternions.

This mapping can be done in a very straightforward way. Since every rotation in a sequence of

Euler angles represents a rotation over a different axis it can also be represented by quaternion

concatenation.

Let q̊(ϑ,u) be the quaternion that represents a rotation of an angle theta about the axis of the

vector u. Therefore,

q̊ = q̊(φ,x)q̊(θ,y)q̊(ψ,z). (2.66)

Pros and cons of using quaternions to express the attitude

● Quaternions avoid singularities when representing the attitude. However, the arbitrariness

of sign makes the representation non unique (two quaternions for one attitude) and this

can be a problem when trying to force convergence to a certain attitude configuration.

● Quaternions are well suited to concatenate rotations, as they require less operations than

composing rotations by using DCMs.

● Obtaining a quaternion from its derivative by simple integration is not reliable. The time

integration process always carries error propagation and this does not guarantee the norm

of the obtained quaternion to be unitary.

● Understanding which attitude is encoding a quaternion by looking at its 4 component

vector is not straightforward. However, expressing the quaternion in function of the Euler

principal axis and angle produces an interpretable formulation.
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2.3.4 Rotation vector representation

Based on Euler’s theorem for rotations, Thm. (2.3.1), any pure rotation can be seen as a ro-

tation of an angle θ about a fixed axis (u). The rotation vector representation is given by a

3-dimensional vector r ∈ R3 that takes advantage of the Euler axis theorem, defined so that

r = θu (2.67)

∥r∥ = θ
r
∥r∥

= u
(2.68)

The skew symmetric matrices [r]
×

formed by the rotation vectors r ∈ R3 represent the lie algebra

of SO(3) which is denoted by so(3). This makes the exponential map A → exp (A) map any

skew symmetric matrix [r]
×

into a rotation matrix in SO(3). This leads to the relation

L = I3x3 +
sin(∥r∥)

∥r∥ [r]
×
+ (1 − cos(∥r∥))

∥r∥2
[r]2

×
(2.69)

And the inverse of the exponential map is the logarithmic map for which SO(3)→ so(3)

[r]
×
= θ

2 sin(θ)
(L −L⊺) (2.70)

This representation shares analogies with the unit quaternion and in fact uses the conversion

q̊ =
⎛
⎝

cos( ∥r∥
2

)
r
∥r∥

sin( ∥r∥
2

)
⎞
⎠
, (2.71)

to concatenate rotations and to convert the attitude measures to other attitude representations.

In addition, this representation is interesting for one special reason, which will be used in next

chapters. Let

∆a = ∫
t1

t0
ωb (t)dt (2.72)

represent a rotation vector resulting from the integration of the body angular velocity in the

time interval t0 and t1.

Therefore, if at time t0 the attitude of the body frame was known and represented by the

quaternion q̊t0 , the attitude of the body frame at time t1 can be calculated as

q̊t1 = q̊t0
⎛
⎝

cos(∥∆a∥ /2)
∆a
∥∆a∥

sin( ∥∆a∥
2

)
⎞
⎠

(2.73)
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2.4 Navigation state

The state of a rigid body is composed of all the variables that determine its position and atti-

tude (pose) and information about how they are evolving in time (their derivatives). Different

parametrizations for the attitude and how they are related with the angular velocity of the body

have been introduced in the last section. In contrast, nothing has been said about the remaining

states.

For every physical magnitude representing the state, there is still some degree of freedom related

with the vector realization of that quantity, e.g. in the literature it is very common to take

position as the directed distance of the body frame with respect to the world frame expressed

over direction of the world frame’s vectors, but equivalent information is contained in the directed

distance of the world frame with respect to the body frame expressed over the direction vectors

of the body frame or even the world frame. Taking one representation or the other is many times

a matter of choice, convenience or thoughtlessness. Below, we discuss the choices done in this

work.

Position: In this work, the position will be defined as the directed distance of the platform’s

center of mass measured from the world reference frame origin and projected over its unit axes.

This is the choice that can be seen in many works. It is also the selection made here, given that

our position sensor delivers direct measures of this state, ξw . For concision, since there is no

source of misunderstanding throughout the thesis it will be many times denoted by ξ.

Translational velocity: Velocity is defined as the rate of change of the defined position.

Measures of this state are not provided by any sensor and as consequence it is not possible to fix

any a priori predilection between the two possible choices that still exist, the velocity expressed

in world frame vw or in body frame vb . Both representations, will lead to different dynamic

equations and hence to different filter implementations.

Angular velocity: Following the same reasoning that has been used for the position, the

angular velocity used here will be the angular velocity of the body frame with respect to the world

frame expressed in the body frame and denoted as ωb . Gyroscopes provide direct measurements

of this state and by using it we avoid the use of extra mathematical relations. Again, for brevity

ωb = ω.

Attitude: Selecting the correct parametrization to express the attitude is a mater of choice.

However, quaternions offer the benefits of being a minimal non-singular representation with

efficient composition. In most of this work the attitude will be represented by the quaternion q̊

which encodes the attitude and relates world and body frames by:

uw = L(q̊) ub (2.74)
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Exceptionally, Chap. (3) deals with the attitude without explicitly chosing a unique parametriza-

tion and a three dimensional parametrization based on the Gibbs vector is introduced in Chap. (5)

and used also in Chap. (6) to work with incremental attitudes.

The collection of the presented variables represent the navigation states xn. The derivation

and formulation of the aircraft motion equations, an observability study and state estimation

processes by considering

xn1 = (ξ⊺, vw ⊺, ζ⊺, ω⊺)⊺

xn2 = (ξ⊺, vb ⊺, ζ⊺, ω⊺)⊺
(2.75a)

(2.75b)

with the variable ζ representing any of the possible attitude parametrizations, will be shown

throughout the thesis.





Chapter 3

Mathematical models of the

quadrotor dynamics

Equations of motion provide a mathematical way to express the dynamics of a system. The

general way of doing that is by means of differential equations that involve time the state and

possible inputs of the system

ẋ = f (t,x(t),u(t)) (3.1)

where t represents the time, x represents the state of the system and u represents the control

input that allows to modify at least partially the state by affecting its time derivative ẋ = dx
dt

.

Mechanical systems, normally are controlled systems for which the equations of motion are

formulated from physical principles related with Newton’s second law and usually depends on

the time in an implicit way through the time dependent state an input. Many mechanical

system’s state equations can be written as

q̈ = f (q, q̇,u) . (3.2)

where every component of the state qi represents the displacement of a degree of freedom and

its derivatives q̇i and q̈i are interpreted as the associated velocity and acceleration.

In many cases, depending on the system structure, the equations become even simpler reducing

the dynamics to what is known as affine controlled differential form

q̈ = f1 (q, q̇) + f2 (q, q̇)u. (3.3)

A quadrotor can be interpreted as a rigid body under the action of external forces and torques.

What differentiates this kind of platforms from other mechanical systems is the way that external

wrenches, such as those produced by actuators, aerodynamic effects and wrench disturbance act

over them. A simple diagram depicting the system dynamics can be seen in Fig. 1.1.

33
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This chapter is devoted to the derivation of the equations of motion that describe the dynamics

of UAVs. We present several ways of deriving rigid body dynamics (Section 3.1), and how

forces created by actuators affect the system (Section 3.2). Aerodynamic wrenches are very

complex to model and are highly dependent on the UAV geometry and flight condition (velocity,

attitude etc.). In addition, the effect of body-air is small when compared with weight forces

or actuator forces at the velocity regimes that the quadrotor uses which is the main reason

why aerodynamic effects are obviated in this chapter. This does not mean that aerodynamic

interactions are not important. In fact, drag forces allow the aircraft to reduce the velocity in

case of static force equilibrium and prevents the system equations from diverging in presence of

constant force or torque actions. Note that by ignoring aerodynamic interactions in the dynamic

model we are intentionally creating a discrepancy between the behaviour of a real plant and the

model predictions. Given that one of the aims of this work is to estimate external disturbances,

those unmodelled aerodynamics along with the unmodelled actuator dynamics or any model

discrepancy will be present in the estimation results.

3.1 Rigid body equations of motion

The dynamic equations that describe the behaviour of a rigid body in space are founded in first

principles such as Newton-Laws or energy conservation. From the physics, different methods,

the consideration of different reference frames (inertial and non-inertial ones) and the choice of

many possible states allows to derive different and, in essence, equivalent system dynamics. In

this section we present three different representations for the dynamics of a rigid body floating

in space and under the action of external forces. The first one, based on the direct application of

the Newton-Euler equations is, maybe the most known form of dynamics. For this representation

we discuss the effect of choosing the world or the body frame to express the platform dynamics

and we give explicit motion equations. In second place, we present a Lagrangian formulation

of the system dynamics. This formulation is based in a energy balance of the system and

produce a set of second order dynamic equations where some generalized terms like mass and

damping are well identified for both translational and rotational dynamics. The benefit of the

Lagrangian formulation is exploited by the third formulation provided, the Legendre formulation.

Te Legendre formulation allows to simplify the system dynamics under a change of variables.

The Newton-Euler derivations serve as basis for analysing the system observability and deriving

state estimators in Chap. (5), Chap. (6). The Legendre formulation is used to derive external

disturbance and wrench estimators and observers in Chap. (7).

3.1.1 Newton-Euler equations of motion

The Newton-Euler equations are the generalized version of Newton’s second law, which establish

the dynamic evolution of the position and attitude of a rigid body.
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Their mathematical expression is well known

dmξ̇

dt
= F

dJω

dt
= τ

(3.4)

being ξ̇ = (ẋ, ẏ, ż)⊺ the translational velocity of the mass center, ω the angular velocity of the

body frame, both expressed in an inertial frame, m the mass, J the inertia in the inertial frame,

F the sum of the external forces acting over the mass center and τ the sum of the torques

produced over the body expressed on the inertial frame.

When the Earth-fixed reference is used, assuming that the gravity acts always as a constant

pointing in the wz direction, the first equation of Eq. (3.4) can be expressed as

m ξ̈
w −mg

⎛
⎜⎜⎜
⎝

0

0

1

⎞
⎟⎟⎟
⎠
= Fw , (3.5)

where Fw now excludes the weight force.

Developing the second equation in Eq. (3.4) is much more complicated since the inertia matrix

J depends on the body orientation in the inertial frame.

The Newton-Euler equations can be formulated in a non-inertial frame by taking into account

that the moving frame is continuously accelerated due to the effect of its rotation, in this case,

d(m ξ̇
b )

dt
+ ωb × (m ξ̇

b ) = Fb

d Jb ωb

dt
+ ωb × ( Jb ωb ) = τb

(3.6)

where now ξ̇
b

represents the velocity of the vehicle’s center of mass expressed in the body frame,

ωb the angular velocity of the body expressed in the body frame and Jb is the inertia of the

vehicle on the body frame which is constant.

In the body frame the translational equations become

m ξ̈
b −LT (0,0,mg)⊺ +m ωb × ξ̇

b = Fb (3.7)

And the angular equations of motion turn up to be

Jb ω̇b + ωb × ( Jb ωb ) = τb (3.8)

The previous two systems of equations can be combined with the kinematic relations to complete

the dynamic system equations.
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As an example, let the state be defined as

x = ( ξw ,ζ, vb ,ωb)
⊺

, (3.9)

with ζ representing any attitude parametrization for which the relation ζ̇ = A ωb is known, and

let gw = (0, 0, g)⊺, then, the equations of motion become

ξ̇
w = L(ζ) vb

ζ̇ = A(ζ) ωb

v̇b = LT gw − ωb × v̇b + 1
m
Fb

ω̇b = Jb
−1 ( τb − ωb × ( Jb ω̇b ))

(3.10)

The most used version of Newton-Euler equations make use of a mixture of both, the world and

body reference frames. Given the simplicity of the translational motion equations in the inertial

(world) frame, the equations of motion are usually also written as

ξ̇
w = vw

ζ̇ = A(ζ) ωb

v̇w = gw + 1
m
Fw

ω̇b = Jb
−1 ( τb − ωb × ( Jb ω̇b ))

(3.11)

3.1.2 Lagrangian equations of motion

The Lagrangian approach is a general method to extract the equations of motion from energetic

metrics. The lagrangian function is defined as function of the kinetic and potential energy

L = T −U and is related with the equations of motion by

d

dt
( ∂L
∂q̇i

) − ∂L

∂qi
=Wi (3.12)

where qi stands for the i− th degree of freedom. The term Wi represents the generalized wrench,

i.e., the action (force or torque) component of the vector that acts over the i − th degree of

freedom.

Let us consider the state vector partition q = (ξ⊺,ζ⊺)⊺ that allows to distinguish between trans-

lational and rotational degrees of freedom. Let the inertial earth reference system be selected as

the inertial triad where to express the equations of motion. As a consequence ξ = ξw and ζ is a

parametrization for the attitude such that ζ̇ = A ωw .

The kinetic and potential energies for the translational equations of motion become

Tξ = 1
2
m ξw ⊺ ξw Uξ = −mgzw (3.13)

and equivalently for the rotational degrees of freedom

Tζ = 1
2
ωw ⊺ Jw ωw ⊺ Uζ = 0 (3.14)
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Using the Lagrange equation defined in Eq. (3.12) for the translational degrees of freedom, the

equations of motion result in

m ξ̈
w =mg

⎛
⎜⎜⎜
⎝

0

0

1

⎞
⎟⎟⎟
⎠
+ Fw (3.15)

where Fw represents the forces vector affecting the translational degrees of freedom expressed

on the world frame.

Applying the Lagrangian approach over the rotational degrees of freedom the next equation can

be obtained

Jζ(ζ)ζ̈ +Cζ (ζ, ζ̇) ζ̇ = τ (3.16)

where

Jζ(ζ) = A⊺ Jw A

Cζ (ζ, ζ̇) ζ̇ = J̇ζ̇ − 1
2
ζ̇⊺ ∂J

∂ζ
ζ̇

(3.17)

and τ represents how the external torques affect the translational degrees of freedom represented

by ζ.

Both systems of equations can be stacked to create a complete system of equations of the form

M(q)q̈ +C (q, q̇) q̇ + g =W (3.18)

being

M(q) = blkdiag (mI3, Jζ(ζ))
C = blkdiag (03×3, Cζ(ζ, ζ̇))

(3.19)

For a deeper derivation of the above equations see Ap. B.

Compared to Eq. (3.11) or Eq. (3.10), Eq. (3.18) is more compact, considers explicitly the velocity

and acceleration of the attitude degrees of freedom and is a second order system in which if q̈ is

known, q̇ and q can be found by direct integration.

3.1.3 Legendre representation

Let the generalized momentum, p, be defined as

p = Mq̇. (3.20)

with q defined as before, q = (ξ⊺,ζ⊺)⊺, and M = M(q) as in Eq. (3.18). Given that the

mass matrix is square, symmetric and positive definite, its inverse exists and velocities can be

calculated from the momentum as

q̇ = M−1p (3.21)

and

ṗ = Ṁq̇ +Mq̈ = Ṁq̇ −Cq̇ − g +W (3.22)
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Note that C = C(q, q̇) that appears in Eq. (3.18) is bilinear in terms of q̇. As a consequence,

multiple choices for C can be made such that the product C(q, q̇)q̇ is not modified. Among

them, C can be selected such that Ṁ = C+CT (see Ap. C), which simplifies the system equations

to

⎡⎢⎢⎢⎢⎣

q̇

ṗ

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

M−1p

C⊺q̇ +W

⎤⎥⎥⎥⎥⎦
(3.23)

Eq. (3.23) is a first order dynamic system of equations as the Newton-Euler equations were still

representing energy balances in the system. The new state variables allow a simplification of the

system dynamics, which benefits are clear in Chap. (7).

3.2 Quadrotor actuation principles

The quadrotor is actuated by means of four independent motors that turn four propellers with

fixed pitch. The equivalence principle of forces and couples allow to state that the aerodynamical

force and torque produced for every actuator along with its particular spatial disposition can be

reduced to a single force acting on a given point plus a torque.

In standard quadrotors, the four propellers are equal and are contained in the same plane. This

causes that when the propellers rotate at the same velocity, the individual propeller torques are

compensated and a pure force appears as the summation of the individual thrusts.

Antisymmetric deviations of the angular velocity of opposite rotors with respect to the pure

force condition produces torques in the perpendicular direction to the resultant thrust.

Finally, symmetric deviations of the angular velocity of opposite rotors with respect to the pure

force condition break the compensation of torques and induce a torque in the motor axis of

rotation direction.

These four basic actuation principles, depicted in Fig. 3.1, are the most basic actuation laws.

Mixing these four cases allows the quadrotor to produce angular accelerations that modify its

attitude and to produce linear accelerations that modify its position.

In a generic frame of reference {F} with its origin at point o, the six dimensional wrench vector

produced by the actuators is given by

W =
4

∑
ri=1

⎛
⎝

T ri

dri × T ri +Qri

⎞
⎠

(3.24)

being T ri , Qri and di the individual force vector, the torque vector and the distance from o to

any point of the hub axis, respectively, all expressed in {F}.

Given the standard configuration of propellers in quadrotors, aerodynamic forces are usually

expressed in the body reference frame, where the greatest contribution of thrust and individual

torques point in the −zb direction.
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(a) Identical thrust in all rotors to produce net
thrust.

(b) Antisymmetric thrust in rotors 2 and 4 to
produce net thrust + torque on xb direction.

(c) Antisymmetric thrust in rotors 1 and 3 to
produce net thrust + torque on yb direction.

(d) Equal radially symmetric angular velocities
but different in groups of two to produce net

thrust and torque on zb

Figure 3.1: Quadrotor actuation principles





Chapter 4

Platform description

The main issue of this thesis is to develop estimation techniques with potential application

to aerial vehicles and in particular to quadrotors. Although the derived methodologies will

remain tuneable and adaptable to the platform of application, this chapter is focused on our test

platform, an AscTec Hummingbird quadrotor. The purpose of this chapter is twofold. Firstly, it

is intended to serve as a description of the physical platform from the equipment, hardware and

software points of view. And secondly, it will present the aircraft parameters that will be used

in subsequent chapters.

4.1 Geometric and mass Properties

The geometric and mass properties of the original AscTec quadrotor are detailed in Fig. 4.1 and

a drawing of the platform is presented in Table 4.1.

Size 540 × 540 × 85.5 mm
Mass 0.53057 kg

Propeller diameter 20.32 cm

Inertia 10−3
⎛
⎜
⎝

3.65 −0.057 −0.015
−0.057 3.675 0.0043
−0.015 0.0043 7.03

⎞
⎟
⎠

kg m2

Table 4.1: AscTec default parameters

41
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Figure 4.1: AscTec Hummingbird draft with tan added computer housing and board.

The Inertia, there shown, have been provided by the manufacturer on its website and is calculated

as if the center of mass was situated in the geometric center of the platform.

The additional computer installed on the top of the aircraft modifies the mass properties of the

platform, obviously the weight changes but in addition the inertia of the aircraft and the center

of mass position does. Calculating the new mass is as simple as estimate the new weight with a

simple scale or adding the weight of the additional part to the old one. Estimating the center of

mass requires the knowledge of the individual center of masses, but the symmetry conditions of

the pieces involved and some gross assumptions do not lead to big errors. The most difficult part

is then to estimate the new inertia, which is a central point in this script. The effect of the mass

parameters change could be problematic in many different aspects related with the simulation,

the estimation and the control.

Simulation:

● Hypotheses: The simulated aircraft does not have the same exact mass and inertia

but shares the center of mass position with the original platform. In this case angular

acceleration and linear acceleration estimations will differ from the real ones in the

measurements as the mass and inertial differ from the original ones. The presence of

non-diagonal terms in the inertia does not allow to make a direct relation, but one

can expect a similar motion under the same actions.
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● Hypotheses: The simulated aircraft has the mass and inertia of the original platform

but does not share the center of mass position. In this case equations of motion will

describe well the center of mass and rotation motion of the platform but around the

gravity center. So any angular velocity will affect to the old center of gravity with

additional linear velocity.

A mixing of both hypothesis will lead to a mixing of the effects

Control:

The change of mass changes the equilibrium condition for the controller, admitting that the

new condition for the updated platform is still far form the actuator saturation limits, the

effect of an increase in mass will imply a change in the controllers gain in the case that the

controller does not compensate the error in the dynamics by itself. In the case of inertia,

the attitude controller could loose effectiveness making controllers less reactive which, at

the same time, will lead to a degradation of the position or linear velocity performance.

The center of gravity shift, however, could be more problematic, in the sense that it can

change the torque created by the actuators thus making that a controller that stabilized

the initial platform may not work in the new one.

Estimation:

Mass parameters does not appear in the estimation made in Chap. (6), given that IMU

measurements feed the dynamics instead of external forces and torques. However, since the

estimated state depends on the sensor measurements, the estimation will continue being

valid as long as the measurement model is. Magnetometer and IMU measurements are not

dependent of the center of mass position, however the position measurement of the GPS

is. The error in the GPS will then be increased by the center of mass change in a changing

direction that depends on the orientation.

The added computer and the housing have weigh 75 g, the dimensions are depicted in Fig. 4.1

and its associated inertia have been estimated as

Jc = 10−4

⎛
⎜⎜⎜
⎝

0.3996 0 0

0 0.7435 0

0 0 1.06200

⎞
⎟⎟⎟
⎠

kg m2

with a reference frame parallel to the platform one, but centered in the computer center of mass.

The modified platform has a total weight equal to the sum of the two parts

m = 0.605 kg

The center of mass has been shifted in the vertical direction, by an amount of 6 mm with respect

the geometric center of the platform and the new inertia have been calculated by using [4], which
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lead to a joint inertia of

J = 10−3

⎛
⎜⎜⎜
⎝

3.9242 −0.0567 −0.014

−0.0567 3.9688 0.00426

−0.0149 0.00426 7.0927

⎞
⎟⎟⎟
⎠

kg m2

4.2 Sensor suite

Navigation implies interaction with the environment. Sensors provide partial readings of what is

really happening. By using them, it is possible to mitigate errors that appear when only dynamic

models are considered to predict future states.

Inertial Measurement Units or IMU sensors measure accelerations and angular velocities at high

rates. IMU sensors are used in the vast majority of navigation solutions because they can be car-

ried on board and do not depend on any external source. In the last years microelectromechanical

systems (MEMS) have emerged to mitigate almost completely weight limitations, providing very

affordable solutions at the expense of precision and sensor readings stability.

Accelerometers inside IMUs sense the specific force vector, i.e., the acceleration of external and

actuator forces acting over the body expressed in the {B} frame. The specific force appeared

previously as 1
m
Fb in Eq. (3.10). However, given that the specific force will appear recurrently,

it will be simply denoted by a and it is convenient to further extend its model as

a = 1

m
(fact +L⊺fext) . (4.1)

where fact and fext represent respectively the actuator and exhogenous forces.

Let am be the measured value of a, ba the accelerometer bias and ηa the noise in the measure-

ment. In a similar way ωm represents the measurement of the angular velocity in body frame

ωb (denoted by ω from now in absence of ambiguity), bω the bias present in the gyroscopes and

ηω the noise. Then

a = am − ba − ηa
ω = ωm − bω − ηω

ḃa = ηba
ḃω = ηbω

(4.2a)

(4.2b)

(4.2c)

(4.2d)

where the biases have been modeled by zero mean random processes driven by white noises ηba
and ηbω . This sensor model, used throughout the thesis, has been used in several works. In [26]

the gyro model is used as a basis for many attitude estimation techniques applied to satellites.

And the complete model is considered in [41, 77, 93, 92].

Magnetometers measure the local electromagnetic field strength. If this value is known in the

world frame H, then measurements in the body frame given by hH can be used to infer the

attitude of the aircraft except for one degree of freedom represented by a rotation about the
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measured vector (see Fig. 4.2). Again, magnetometer sensors are carried onboard and do not

depend on external facilities. The problem associated with magnetometers comes from the fact

that the magnetic field is easily disturbed by the presence of external ferric objects. However,

magnetometers are rarely disturbed during flight. A model of the magnetometer is usually

represented by

hH =Hm = L⊺ Hw + ηH (4.3)

with ηH representing white noises.

Finally, the GPS is intended to deliver the position of the platform with respect to an earth fixed

frame through measurements of latitude, longitude and altitude with respect to a geoid model

for the earth shape. Position for the ground vehicle is decrypted in the receiver by solving a

trilateration problem concerning more than four satellite messages which contain information of

the satellite position and time of broadcast. The error on the measurement is dependent on the

satellite coverage and satellite relative positions. The latitude, longitude and altitude information

can be converted to a local horizon frame, e.g., the NED frame, by firstly transforming the

information to cartesian coordinates on the Earth Centered Earth Fixed (ECEF) reference frame

and then translating and rotating the data to refer it to the local frame whose pose in ECEF has

to be previously known. More information about this transformation is provided in the Ap. D.

After this process, the GPS data can be interpreted as the cartesian position from the world

frame to the aircraft on-board receiver position.

The expected model for the position is represented by

hξ = ξm = ξ + ηξ (4.4)

IMU, GPS and magnetometer models differ by the consideration of biases and the position of

the noise in Eq. (4.2), Eq. (4.3) and Eq. (4.4). The necessity of acounting for biases in the IMU

model will be verified later in this chapter, whereas the noise position has been intentionally

swapped to favour the particular use of each model in Chap. (5) and Chap. (6).

4.3 Sensor Calibration

4.3.1 3-axial Data sensor conditioning

In ideal conditions, the measurement of a constant vector in the world frame sensed by the three

perpendicular axis of a sensor attached to the frame of a platform under different orientations

should describe a sphere. This is implicit in the IMU and magnetometer models shown in

Eq. (4.2) and Eq. (4.3). Nevertheless, this may be not happening in the real world where data

conditioning process of the data may help to improve the fidelity of the models. In the case of a

three axial magnetometer, the sensed vector is the Earth magnetic field which is supposed to be

known. The exact value of the magnetic field is not important, but its orientation is. It allows to
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Figure 4.2: Earth magnetic field sensed in the body frame. ϑ and λ can be estimated from
the measurement, but ϕ cannot.

partially infer the aircraft attitude with respect to the world frame as Fig. 4.2 depicts. However,

non-ideal measurements are usually affected by different scales of the individual magnetometers,

their possible misalignment, and the existence of a hard iron bias created by on-board magnetic,

electric and electronic components. In the case of the IMU, three axial accelerometers and

gyroscopes provide measurements of the acceleration created by external forces and angular

velocity respectively. Contrary to the magnetometer, the physical units are important for IMU

propagation since the magnitude impacts directly on the value of the navigation states from

the measurement time onward. Again, misalignment of the axial sensors, different scales and

possible constant biases can affect the sensor providing different outputs for identical excitation.

Under these assumptions, measurements will not describe a perfect sphere anymore, but a three

dimensional not centered ellipsoid with a generic orientation. Points over the boundary of an

ellipsoid can be represented by the scalar equation

f(x, y, z) = Ax2 +By2 +Cz2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Iz + J = 0 (4.5)

being the parameters A,B, ..., J the responsibles for the exact shape of the ellipsoid. By using

homogeneous coordinates, the quadratic equation Eq. (4.5) can be rewritten as

x̄⊺Mx̄ = 0 (4.6)

where x̄ = (x, y, z,1)⊺ and

M =

⎛
⎜⎜⎜⎜⎜
⎝

A D E G

D B F H

E F C I

G H I J

⎞
⎟⎟⎟⎟⎟
⎠

is symmetric and positive definite.
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It is worth to note that the 10 parameters defining M are not unique, they are defined up to a

degree of freedom since λM is a valid solution of Eq. (4.6) ∀λ ≠ 0.

Knowing the matrix M, which represents the uncalibrated measurement space, is useful because

firstly, it will allow a calibration of the measurements, by transforming the ellipsoid into a

centered sphere and secondly, because it will allow the creation of a model to generate synthetic

data useful in simulation. The next subsections are devoted to studying the mapping between

the ellipsoid to the sphere (calibration mapping) and to finding the ellipsoid parameters from

uncalibrated data (parameter calibration).

Calibration mapping

In this section we are interested in finding the transformation which allows to map any point

of the ellipsoid to a centered unit sphere and viceversa. A usual procedure with similar effect

consists in normalizing the sensor’s measurements, so that any measurement is mapped to a unit

sphere. However, this practice is not recommended, because the ellipsoid has to be centered

in the origin to obtain good results. Secondly, the covariance pattern of the measurements is

restricted to live in the tangent plane of the sphere, and thus the covariance of the projected

measurement depends on the measured direction. Finally, it supposes a non-linear mapping

containing square roots in contrast with the ellipsoid to sphere transformation which will be

shown to correspond to a linear transformation.

Let the partitioned matrix

M =
⎛
⎝
M′ k

k⊺ J

⎞
⎠

define a generic ellipsoid whose boundary will be described by Eq. (4.6). Note that the points

of the shifted ellipsoid can be though of as points of an ellipsoid centered in the origin under

a translation. Let the homogeneous vector x̄′ define the unshifted points. The homogeneous

transformation between those points can be represented by

x̄ =
⎛
⎝

I3 t

01×3 1

⎞
⎠
x̄′ (4.7)

which certainly leads to

⎛
⎜⎜⎜
⎝

x

y

z

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

x′

y′

z′

⎞
⎟⎟⎟
⎠
+ t

By introducing this change into Eq. (4.6), an equivalent ellipsoid equation can be obtained

x̄′⊺
⎛
⎝
I3 03×1

t′ 1

⎞
⎠
⎛
⎝
M′ k

k⊺ J

⎞
⎠
⎛
⎝

I3 t

01×3 1

⎞
⎠
x̄′ =

x̄′⊺
⎛
⎝

M′ M′t + k
t⊺M′ + k⊺ t⊺M′t + 2t⊺k + J

⎞
⎠
x̄′ = 0
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Given that an ellipsoid centered at the origin will have null G, H and I coefficients, by equating

M′t + k to 03×1 it can be found that

t = −M′−1
k (4.8)

which leads to

x̄′⊺
⎛
⎝

M′ 03×1

01×3 J − k⊺M′−1
k

⎞
⎠
x̄′ = 0

or the equivalent representation

x̄′⊺
⎛
⎝

M′′ 03×1

01×3 −1

⎞
⎠
x̄′ = 0 (4.9)

with

M′′ = M′

k⊺M′−1k − J
(4.10)

In a similar way to what has been done before to obtain the mapping between the points of the

shifted ellipsoid and the unshifted one, it is possible to relate points of a centered unit sphere to

a centered ellipsoid with generic orientation. For that purpose, an stretching can be applied to

the principal axis of the sphere followed by a rotation. Let the homogeneous vector x̄′′ define the

points over the sphere, the homogeneous transformation between x̄′′ and x̄′ can be represented

by

x̄′ =
⎛
⎝

RD 03×1

01×3 1

⎞
⎠
x̄′′ (4.11)

where R represents the rotation matrix and D is a diagonal matrix with the value of each

semi-axis length at its diagonal

D =
⎛
⎜⎜⎜
⎝

rx 0 0

0 ry 0

0 0 rz

⎞
⎟⎟⎟
⎠

Introducing the change of coordinates from Eq. (4.11) into Eq. (4.9), the quadratic form for the

sphere is obtained

x̄′′⊺
⎛
⎝
DR⊺ 03×1

01×3 1

⎞
⎠
⎛
⎝

M′′ 03×1

01×3 −1

⎞
⎠
⎛
⎝

RD 03×1

01×3 1

⎞
⎠
x̄′′ =

x̄′′⊺
⎛
⎝
DR⊺M′′RD 03×1

01×3 −1

⎞
⎠
x̄′′ = 0

(4.12)

(4.13)

Given that the quadratic form of a unit sphere takes the form

x̄′′⊺
⎛
⎝

I3 03×1

01×3 −1

⎞
⎠
x̄′′

DR⊺M′′RD = I3 ⇒M′′ = R (D2)−1
R⊺ (4.14)
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a) b)

c) d) e*)

Figure 4.3: Steps for sensor calibration. a) Uncalibrated ellipsoid. b) Uncalibrated ellipsoid
centered. c) Uncalibrated ellipsoid centered and derotated. d) Derotated sphere. e) Calibrated

Sphere.

Note that R and D are closely related with the eigenvalue decomposition of M′′. In particular,

the rotation matrix represents the matrix of eigenvectors and D as the square root of the inverse

of eigenvalues of M′′.

The mapping between points in the sphere and the shifted ellipsoid can be described by using

Eq. (4.7) and Eq. (4.11)

x = RDx′′ + t (4.15)

whilst points in the ellipsoid map to points on the unit sphere by

x′′ = D−1R⊺ (x − t) (4.16)

The parameters in the transformations, t, D and R, can be obtained from the original quadratic

matrix M by using Eq. (4.8) and the eigenvalue decomposition of M′′ in Eq. (4.10).

The transformation in Eq. (4.16) ensures that points at the extremes of semi-axis map to vectors

e1 = (1,0,0)⊺, e2 = (0,1,0)⊺, e3 = (0,0,1)⊺. However, the rotation matrix R, as extracted

from the eigenvalue decomposition, does not guarantee the correspondence rx → e1, ry → e2 or

rx → e3, but instead provides an arbitrary ordering based on the eigenvalue calculation method.

The rotation matrix R can be used to rotate the sphere and align the sphere basis with the

sensor frame to fully define the calibration. Fig. 4.3 depicts the transformations involved in the

calibration process and the final calibration mapping is described by Eq. (4.17), where xuncal

represents the raw data and xcal the calibrated version.

xcal = RD−1R⊺ (xuncal − t) (4.17)
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Parameter calibration

This section describes how to proceed with the magnetometer calibration, i.e., how to estimate

the magnetometer ellipsoid given a set of measurements represented by N readings of three

dimensional points (xi, yi, zi).

Algebraic ellipsoidal fit An algebraic approach to solve the calibration is based on the

extraction of the ellipsoid parameters that minimize in the least square sense the errors of

Eq. (4.5). As stated before, the 10 parameters are not unique, and they represent the ellipsoid

with an additional degree of freedom. The most direct approach would be to fix one parameter of

the ellipsoid to restrict the degree of freedom, and then try to estimate the remaining ones. The

choice of the parameter to fix has to be done with care, since several orders of magnitude may

exist between them depending on the ellipsoid size, which may lead to numerical inaccuracies in

the estimation. By definition, Eq:ellipsoidMag0 represents an ellipsoid if A, B and C share sign.

Assuming that these parameters are positive, the extra degree of freedom can be eliminated by

fixing one of them or the sum of them, A +B +C = T , being T a positive constant as suggested

in [87]. In this case, the parameters A, B and C can be substituted by a linear combination of

two modified parameters, say U1 and U2 as

A = U1 +U2 +
T

3

B = U1 − 2U2 +
T

3

C = U2 − 2U1 +
T

3

Once the system is constrained, a linear regression model can be constructed. For each set of

three dimensional data (xi, yi, zi) a scalar equation linear on parameters can be formulated as

φθ = b (4.18)

with

φi = ((x2
i + y2

i − 2z2
i ), (x2

i − 2y2
i + z2

i ), 2xiyi, 2xizi, 2yizi, 2xi, 2yi, 2zi,1)

θ = (U1, U2, D, E, F, G, H, I, J)⊺

bi = −(x2
i + y2

i + z2
i )

for having constrained A +B +C = 3, or which is equivalent having set T = 3.

Stacking N φi vectors and N bi independent values, an N × 9 linear system can be constructed

⎛
⎜⎜⎜⎜⎜
⎝

φ1

φ2

⋮
φN

⎞
⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¸¹¹¹¹¹¶
Φ

θ =

⎛
⎜⎜⎜⎜⎜
⎝

b1

b2

⋮
bN

⎞
⎟⎟⎟⎟⎟
⎠

´¹¹¹¸¹¹¶
b
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whose least square error solution can be found for N > 9 as

θLS = (Φ⊺Φ)Φ⊺b

Geometric ellipsoidal fit The algebraic solution of the ellipsoid fitting provided in the last

section is an exact solution only for unperturbed data. When noise is present in the data set,

the ellipsoid obtained minimizes the quadratic error of the solution of Eq. (4.5). However, this

does not guarantee that the obtained ellipsoid represents the obtained data.

In order to obtain a more representative ellipsoid, a geometric fitting can be used, which consists

in minimizing the geometrical distance. The ellipsoid geometrical fit tries to fit the ellipsoid

parameters so that the distance of the measured points to the boundary of the ellipsoid is

minimized. The distance of a generic point to the boundary of an ellipsoid represented by a

matrix M is not straightforward, since it will depend on the relative orientation of the point

with respect to the ellipsoid main axis. By mapping ellipsoid points to a unit sphere Eq. (4.16),

the distance from the mapped point i to the unit sphere can be simply calculated as

di = ∣1 −x′′i
⊺

x′′i ∣ = ∣1 − (xi − t)⊺ R(D−1)2R⊺ (xi − t)∣ =
∣1 − (xi − t)⊺ M′′ (xi − t)∣

The associated matrix of the ellipsoid which minimizes the geometric distance can be obtained

as the solution of the next minimization problem

M⋆ = argmin
M

1

N

N

∑
i=1

di(xi,M) (4.19)

In practice, the minimization problem in Eq. (4.19) is not well-posed from a numerical perspective

when the data set contains noise. If that is the case, a very big ellipsoid, with center out of the

data set, and at least one semi-axis bigger that the nominal data set size could be proposed such

that after the mapping, all the transformed points are concentrated in a small neighbourhood of

a sphere boundary point in such a way that the geometrical error is minimized.

To avoid that issue, the optimization problem is formulated as a function of the matrix M′′

and the distance vector t, which is constrained to be confined to the interior of a bounding box

containing the data set, i.e, t ≤ t ≤ t with t and t representing respectively the minimum and

maximum x, y and z values in the dataset. The minimization problem can be read as

(t⋆, (M′′)⋆) = argmin
t,M′′

1

N

N

∑
i=1

di(xi, t, M′′)

subject to t ≥ t
t ≤ t

(4.20)

Solutions of that problem can been obtained by using constrained minimization algorithms. In

particular in this thesis this problem is solved by using the fmincon solver in MatLab .
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Figure 4.4: Ellipsoid fitting of ideal data.

3-axial sensor synthetic calibration results

In order to show the results of the fitting techniques presented, synthetic data with random

points distributed over the boundary of a known ellipsoid have been used. Three scenarios

are presented: with perfect known data, with noisy data in a case where the geometric fit in

Eq. (4.19) delivers a solution for the ellipsoid center outside the data set, and a scenario with

noisy data where results of Eq. (4.19) and Eq. (4.20) coincide. The used data could represent

any generic physical quantity as seen for a 3-axial sensor, so no units are used to give generality

to the results.

Ideal Data For the first scenario a set of 100 points have been generated over an ellipsoid.

The parameters used are shown in Table 4.2, and the fitting results are shown in Fig. 4.4, where

the projection of the ellipsoid over the x-y, x-z and y-z planes. In this case it can be seen that

all the fittings collapse in the true results.

Parameter t R diag (D)

Sim. True
⎛
⎜
⎝

3.38
4.29
−3.46

⎞
⎟
⎠

⎛
⎜
⎝

0.37 0.45 0.81
0.66 0.49 −0.57
−0.66 0.75 −0.12

⎞
⎟
⎠

⎛
⎜
⎝

23.24
30.25
12.15

⎞
⎟
⎠

Table 4.2: Ideal data parameters

Noisy data Next, we present a simulation for which the optimization problem in Eq. (4.19)

delivers a solution for the ellipsoid center outside the data set. Again, 100 points have been

generated over an ellipsoid whose parameters appear in the first column of Table 4.3. In this

case, noise has been added to the raw data as a Gaussian random variable with null mean and

unit covariance. Information of the estimated ellipsoid parameters is provided also in Table 4.3.

In addition, we present the sum of the geometric distance for each point to the boundaries of

each ellipsoid considered. It can be seen that in this case, the ideal ellipsoid does not represent

the best fit to the noisy data. Moreover, the values obtained by the geometric fit based on
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Figure 4.5: Results of the fitted ellipsoids when Eq. (4.19) provides a center estimation out
of the data set range.

Eq. (4.19), are not representative despite having low geometrical distance (in the sphere space).

Figs. 4.5 and 4.6 show the projection of the calculated ellipsoid over the x-y, x-z and y-z planes.

Parameter t R diag (D)
N

∑
i=1

di

Sim. True
⎛
⎜
⎝

−0.25
1.94
0.38

⎞
⎟
⎠

⎛
⎜
⎝

0.95 0.25 −0.17
−0.21 0.95 0.23
0.22 −0.18 0.96

⎞
⎟
⎠

⎛
⎜
⎝

28.4
19.20
1.16

⎞
⎟
⎠

0.270

Alg.Fit
⎛
⎜
⎝

1.64
0.63
1.00

⎞
⎟
⎠

⎛
⎜
⎝

0.91 0.37 −0.18
−0.32 0.95 0.22
0.24 −0.14 0.96

⎞
⎟
⎠

⎛
⎜
⎝

40.35
23.10
1.33

⎞
⎟
⎠

0.266

Geom. Fit
Eq. (4.19)

⎛
⎜
⎝

−4.60
0.49
−1.2

⎞
⎟
⎠

106
⎛
⎜
⎝

0.97 0.15 −0.18
−0.10 0.97 0.24
0.22 −0.22 0.95

⎞
⎟
⎠

⎛
⎜
⎝

3.93 ⋅ 102

4.54 ⋅ 103

4.74 ⋅ 106

⎞
⎟
⎠

1.3 ⋅ 10−5

Geom. Fit
Eq. (4.20)

⎛
⎜
⎝

−0.76
1.34
0.86

⎞
⎟
⎠

⎛
⎜
⎝

0.92 0.34 −0.18
−0.29 0.3 0.23
0.24 −0.16 0.96

⎞
⎟
⎠

⎛
⎜
⎝

26.48
18.41
2.50

⎞
⎟
⎠

0.14

Table 4.3: Calibration transformation parameters for noisy data where the unconstrained
geometric fitting results in an ellipsoid with center out of the data range.

The convergence of the geometric fit in Eq. (4.19) will usually depend on the data set and the

noise present in it. Even though a divergence of the fit was a possible result, it did not take

place for the experiments carried out. In the case of Eq. (4.19) producing an ellipsoid with center

inside the data set, both Eq. (4.19) and Eq. (4.20) deliver exactly the same solution. Table 4.4

and Fig. 4.7 show the simulation results where this took place. Again 100 points have been

selected and the have been corrupted with a Gaussian noise of zero mean and unit covariance.

Magnetometer experimental data

We have selected a data set containing 4975 points of the magnetometer measurements during

165 s approx. Units of the magnetic field are not provided by the manufacturer, under the

argument of not being necessary for direction determination, thus units are not provided in the
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Figure 4.6: Detail of the fitted ellipsoids when Eq. (4.19) provides a center estimation out of
the data set range.

Figure 4.7: Results of the fitted ellipsoid in the case that Eq. (4.19) provides a centre’s
estimation contained in the data range.
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Parameter t R diag (D)
N

∑
i=1

di

Sim. True
⎛
⎜
⎝

−10.68
0.63
0.76

⎞
⎟
⎠

⎛
⎜
⎝

0.66 0.53 −0.53
−0.06 0.74 0.67
0.75 −0.41 0.51

⎞
⎟
⎠

⎛
⎜
⎝

5.3
13.35
33.21

⎞
⎟
⎠

0.077

Alg.Fit
⎛
⎜
⎝

−10.88
1.03
1.08

⎞
⎟
⎠

⎛
⎜
⎝

0.66 0.53 −0.53
−0.044 0.73 0.68
0.75 −0.43 0.51

⎞
⎟
⎠

⎛
⎜
⎝

5.00
13.22
36.24

⎞
⎟
⎠

0.078

Geom. Fit
Eq. (4.19) & Eq. (4.20)

⎛
⎜
⎝

−10.75
0.92
1.05

⎞
⎟
⎠

⎛
⎜
⎝

0.66 0.53 −0.53
−0.04 0.73 0.68
0.75 −0.44 0.50

⎞
⎟
⎠

⎛
⎜
⎝

5.47
13.03
34.16

⎞
⎟
⎠

0.74

Table 4.4: Calibration transformation parameters for noisy data where the unconstrained
geometric fitting have converged, naturally.

magnetometer data that follows. A visual representation of the data is provided in Figs. 4.8 and

4.9. It can be observed that measurements are not centered at the origin and that an ellipsoid

elongation near the sensor z axis is greater than in the other directions.

The calibration procedure has been tuned to produce magnetometer measurements with an ap-

proximate norm of 1000, to maintain sensor output levels in the ideal undistorted case by dividing

the ellipsoid semiaxis by this amount. The obtained parameters are presented in Table 4.5, and

the fitted ellipsoids are shown along with the projected data in Fig. 4.9. In this case, the trans-

formation parameters derived by the algebraic and geometric fittings are very close and produce

very similar accumulated geometric distances.

Parameter t R diag (D)
N

∑
i=1

di

Alg.Fit
⎛
⎜
⎝

74.27
92.00
−891.67

⎞
⎟
⎠

⎛
⎜
⎝

0.97 0.16 0.18
−0.21 0.94 0.28
−0.13 −0.31 0.94

⎞
⎟
⎠

⎛
⎜
⎝

2.77
3.27
3.43

⎞
⎟
⎠

3.83 ⋅ 10−2

Geom. Fit
Eq. (4.19) & Eq. (4.20)

⎛
⎜
⎝

86.22
90.26
−886.96

⎞
⎟
⎠

⎛
⎜
⎝

0.97 0.18 0.17
−0.22 0.92 0.33
−0.09 −0.35 0.93

⎞
⎟
⎠

⎛
⎜
⎝

2.7883
3.2703
3.4159

⎞
⎟
⎠

3.8 ⋅ 10−2

Table 4.5: Calibration parameters for the experimental magnetometer measurements.

The calibrated data set is shown in Figs. 4.11, 4.12 and 4.13 for the algebraic parameters under

the transformation in Eq. (4.17). Results show the improvement of covariance of the magne-

tometer norm, the range of measurements in every direction and a better detection of spurious

values.

Accelerometer experimental data

The measurement of accelerometers represent the acceleration of external forces. Calibrating

those sensors using the previously presented methods requires a constant measurement in the

world frame. This can be achieved by measuring the reaction force of the weight in static
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Figure 4.8: 3D representation of the magnetometer data.

Figure 4.9: Temporal representation of the magnetometer components and norm.
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Figure 4.10: Projection of experimental data over the x-y, x-z and y-z planes and projection
of the algebraic and geometric fitted ellipsoids.

Figure 4.11: 3D calibrated points
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Figure 4.12: Temporal representation of the magnetometer calibrated measurements and
their norm.

Figure 4.13: Projection of the calibrated data over the x-y, x-z and y-z planes
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Figure 4.14: Accelerometer raw data

conditions through different orientations. Data of accelerometers at 36 different attitude config-

urations has been collected with the aircraft at rest covering the possible ellipsoid for a period

of approximately 10s at 100Hz. The results of the uncalibrated data are shown in Fig. 4.14.

The model fitting over the ellipsoid has produced the results shown in Table 4.6 where the

mapping has been fixed to reproduce a ball of radius 9.81 ms−2. Note that results are very

similar except for the rotation matrix. This is not surprising taking into account the roundness

of the raw data that can be observed in Fig. 4.15, where the projection of the fitted ellipsoid to

the raw data is shown. The more similar the initial data to a sphere is, less effect has the rotation

matrix. In the extreme case in which the raw data describes a perfect sphere, the rotation matrix

does not affect the result.

Parameter t R diag (D)
N

∑
i=1

di

Alg.Fit
⎛
⎜
⎝

0.038
−0.089
−0.027

⎞
⎟
⎠

⎛
⎜
⎝

−0.18 0.37 −0.9100
−0.73 −0.67 −0.1300
−0.66 0.64 0.39

⎞
⎟
⎠

⎛
⎜
⎝

0.99
1.00
1.01

⎞
⎟
⎠

4.16 ⋅ 10−3

Geom. Fit
Eq. (4.19) & Eq. (4.20)

⎛
⎜
⎝

0.031
−0.094
−0.027

⎞
⎟
⎠

⎛
⎜
⎝

−0.18 0.37 −0.91
−0.73 −0.67 −0.13
−0.66 0.64 0.39

⎞
⎟
⎠

⎛
⎜
⎝

0.99
1.00
1.01

⎞
⎟
⎠

4.11 ⋅ 10−3

Table 4.6: Calibration parameters for the experimental accelerometer measurements.

Given the finite number of configurations and despite the similarity of the results, the algebraic

calibration results have been taken over the goemetric ones to avoid the possible shift of the

geometric solution towards more densely sampled areas. Differences between raw and calibrated
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Figure 4.15: Accelerometer raw data projection and ellipsoidal fit projection.

Figure 4.16: Raw data and calibrated data comparison.

measurements are presented in Fig. 4.16 where it can be seen that the calibration effect almost

does not affect single axis measurements, but it has an impact over the acceleration norm. This

can be observed in Fig. 4.17, where the distribution of the magnitude of the calibrated and raw

data are presented. It can be stated that after calibration, the data dispersion shifts from a

bi-modal shape to a symmetric uni-modal one.

Gyroscope experimental data

Calibrating gyroscopes has an increased difficulty compared with the previous sensors. It is

difficult to reproduce a situation in which a constant and well known angular velocity acts over

the aircraft. In this case, the assumption of unit per axis gain will be made for the gyroscope

measurements.
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Figure 4.17: Raw data and calibrated data norm distribution.

4.3.2 Sensor error estimation

Sensor models in Eqs. 4.4, 4.3 and 4.2 include stochastic terms that reproduce the random

behaviour or noise noticeable at the real sensors output. The study and quantification of this

error fluctuation is interesting since it provides a measure of the precision and accuracy of the

sensor outputs and thus a measure of the reliability when using this sensors to feed a controller.

Under the hypothesis of Gaussian white noise, i.e., the noise is a random process that take values

for any time instant t and is represented by a zero mean, finite covariance random variable which

is independent of previous realizations,

η(t) ∼ N (0,Q) and E (η(t)η⊺(τ)) = Qδ(t − τ)

where E (●) represents the expected value function, Q represents the signal covariance and δ(t−τ)
represents the dirac’s delta function

δ(t − τ)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if t = τ
0 otherwise

The sensor models presented in Section 4.2 are continuous. However, the estimation of noise will

be made from the sensor’s output sampled at constant rates. To this end, we need to relate the

discrete and continuous versions of variables involved and their covariance. To this purpouse,

let the algebraic model

z1(t) = η1(t)

being η1 a random Gaussian variable with covariance Q1δ(t− τ) ∈ Rn×n. For every time interval

limited by consecutive sample times, t ∈ [t0, t0 +∆t] we can estimate the discrete version of z(t)
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as its mean in the interval represented by

z1(k) ≈ z̄(t0 +∆t) = 1

∆t
∫

t0+∆t

t0
η1(t)dt

The covariance of z1(k) is then

Qd1 = E (z̄(t0 +∆t)z̄⊺(t0 +∆t)) = 1

(∆t)2 ∫
t0+∆t

t0
η(t)dt∫

t0+∆t

t0
η(τ)dτ =

Q1

(∆t)2 ∫
t0+∆t

t0
∫

t0+∆t

t0
δ(t − τ)dtdτ = Q1

∆t
(4.21)

hence

z1(k) ∼ N (0,
Q1

∆t
) and η(k)η⊺(l) = Qd1 for k = l

In a similar way, given a dynamic variable z(t) ∈ Rn for which it is known that

ż(t) = η2(t)

being η2 a random Gaussian variable with covariance Q2δ(t−τ) ∈ Rn×n, its discrete counterpart

at time t0 + δt can be calculated by knowing the value of z at time t0, z(t0), by

z(t0 +∆t) = z(t) + ∫
t0+∆t

t0
η2(t)dt,

as a consequence the discrete model will have an stochastic noise represented by

ηd = ∫
t0+∆t

t0
η2(t)dt

with null mean and covariance

Qd2 = E ((∫
t0+∆t

t0
η2(t)dt)(∫

t0+∆t

t0
η⊺2(τ)dτ)) = Q2 ∫

t0+∆t

t0
∫

t0+∆t

t0
δ(t − τ)dtdτ = Q2∆t

(4.22)

resulting in

z(k + 1) ∼ N (z(k),Q2∆t) and η2(k)η⊺2(l) = Qd2 for k = l

subsequently,

η2(k) ∼ N (0,Q2∆t)

The sample covariance Q̃, an unbiased estimator of any discrete covariance Qd can be obtained

from a set of N discrete measurements of the vector z. Let zij define the j-th measurement of

the i-th component of z, then the sample covariance is a matrix Q̃ ∈ Rn×n where each i, j entry

is defined as

Q̃ij =
1

N − 1

N

∑
k=1

⎛
⎝
aik −

1

N

N

∑
j=1

(aij)
⎞
⎠
(ajk −

1

N

N

∑
i=1

(aji) ) (4.23)
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GPS error estimation

Real GPS measurements suffer from smooth random walks that cannot be obviated in general.

An example of GPS measurement taken during a lapse of 5 min with the receiver at rest can

be seen in Fig. 4.18 and Fig. 4.20, being ϕ, λ and h, the latitude, longitude and altitude of the

reciever with respect the WGS84 frame (see Ap. D). The representation in the local world NED

frame with origin given by the first instance of the GPS measurement, ϕ0 = 41.5610803 deg, λ0 =
2.0209686 deg, h0 = 3.46813 m, of the measurements is achieved by applying the transformation

in Eq. (D.5) and is shown in Fig. 4.19 and Fig. 4.21.

Figure 4.18: GPS raw data Figure 4.19: GPS raw data transformed
to NED frame. The z coordinate have
been reversed in order to make a direct

visual comparison with Fig. 4.18

Taking into account internal dynamics on the GPS, in a similar way to what is done with ac-

celerometers and gyroscopes is not feasible given that there is no other measurement of postition

to compare with, and information integrated from accelerometers does not allow to correct bias

of the position. In spite of this fact, measurements of the GPS are not useless as they provide

position measurements with a prescribed degree of accuracy and in an incremental way they

could be used to provide better estimations of the velocity. To this end it is desired to find a

covariance for the GPS model in Eq. (4.4) with the additional restriction of being consistent

with the velocity quantities inherent to the GPS.

An approximation of the derivative of the GPS readings by using finite differences is presented

in Fig. 4.22 and a histogram representing its distribution is shown in Fig. 4.23.

In Eq. (4.23) it can be observed that the error distributions are approximately symmetric and

that the central values are contained in the neighbourhood of zero. Here, the hypotheses of

admitting the derivatives of the GPS measurements distributed as normal random variables

with null mean is justified. The estimated sample variances for the estimated velocities have
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Figure 4.20: GPS latitude, longitude
and altitude data time historic

Figure 4.21: GPS x,y and z coordinates
time historic

been calculated using Eq. (4.23) leading to

Qdϕ̇λ̇ḣ
= diag (1.244 ⋅ 10−12, 6.0301 ⋅ −13, 0.0491)⊺

Using the relations in Eq. (4.21) and Eq. (4.22), the discrete covariance Qdϕ̇λ̇ḣ
can be related

with the discrete covariance of the GPS measurements by

Qdϕλh = Qdϕ̇λ̇ḣ
∆t2 = diag (4.9780 ⋅ 10−14, 2.4123 ⋅ 10−14, 0.002)⊺ (4.24)

The equivalent covariance in the NED frame can be achieved by doing a similar analysis after

transforming the latitude, longitude and altitude data or, given the proximity of the data to the

origin of the frame, making use of the jacobian in Eq. (D.6) by

Qξ = JQdϕλhJ
⊺ = diag (5.9723 ⋅ 10−4, 1.6788 ⋅ 10−4, 0.002)⊺ (4.25)

It is important to have in mind that the derived covariance matrix for Qgps is smaller than what

it would have to be to cover the size of variability that can be observed in Fig. 4.19. The use of

the model in Eq. (4.4) with the derived covariance matrix for state filtering, as it will be proposed

in Chap. (6), will result in a position estimation which will closely follow the gps position (which

can be biased), but with a more trustworthy velocity estimation. One may discuss that the

ad-hoc proposed solution can be also achieved by using a model for the velocity related with the

covariance in Eq. (4.24), instead of a model for the position. However, the proposed solution has
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Figure 4.22: GPS latitude, longitude
and altitude velocities approximation

Figure 4.23: GPS latitude, longitude
and altitude velocities approximation his-

togram

been preferred for its wider applicability in case of using more accurate position sensors, e.g.,

differential GPS or motion capture systems.

Magnetometer error estimation

Magnetometer measurements are principally affected by quantization noise. This can be observed

in Fig. 4.24 and Fig. 4.25 which show 830 raw and calibrated (geometric fit in Table 4.5) point

measurements of the sensor in a steady position after having removed the means of every axis.

A normal Gaussian (continuous) distribution has been constructed to approximate the error in

the data set by computing the covariance as presented in Eq. (4.23) which has lead to

QH =
⎛
⎜⎜⎜
⎝

71.76 −40.67 72.87

−40.67 90.42 16.33

72.87 16.33 249.64

⎞
⎟⎟⎟
⎠

(4.26)

The validity of the approximation is verified by Fig. 4.26, which shows a histogram comparing

the experimental data against synthetic errors generated by simulation using Eq. (4.26). In this

case, the total frequency of the plots has been normalized to sum one and the bin length has

been chosen as half of the quantum size in order to better compare the results.
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Figure 4.24: Magnetometer raw mea-
surement error

Figure 4.25: Magnetometer calibrated
measurement error

IMU error estimation

Accelerometers and gyroscopes share the model, as shown in Eq. (4.2a) and Eq. (4.2b). Esti-

mating the noise covariance of both, bias and gyroscope (equivalently bias and accelerometer),

from only measurements of the gyroscope (equivalently accelerometer) is not straightforward.

For this purpose, the discrete model of Eq. (4.2) presented in [25] and only developed for the

gyro model is used

ωm(k + 1) = ω(k + 1) + 1

2
(bω(k + 1) + bω(k)) + (Qω

∆t
+ 1

12
Qbω∆t)

1
2

nω (4.27a)

bω(k + 1) = bω(k) + (Qbω∆t)
1
2 nbω (4.27b)

Where (P)
1
2 must be interpreted as the Cholesky factorization of the covariance matrix P, i.e.,

L = (P)
1
2 such that LL⊺ = P, and n● are instances of random vectors obtained from a normal

distribution.

This discrete model can be used in simulation to provide synthetic values of the measurements

ωmfor null ω as a function of Qω, Qbω and the initial value of bω.

In order to determine the values of the covariance matrices, the temporal and spectral represen-

tation of both measured and synthetic generated data are compared for zero initial conditions of

the bias. In addition, diagonal structures for the covariance matrices have been assumed so that

the per axis sensor measurements are implicitly supposed independent, which is not a strong

assumption when calibrating the data following the methodology described in Section 4.3.1.
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Figure 4.26: Magnetometer error histogram.

Figs. 4.27 and 4.28 show the value of time and frequency spectra for real and simulated data of

IMU accelerometers with estimated matrix covariances

Qa = diag (1.85, 1.60, 1.60) ⋅ 10−5

Qba = diag (1.69, 1.44, 1.44) ⋅ 10−6

In a similar way, Figs. 4.29, 4.30 show the value of time and frequency spectra for experimental

and simulated data of IMU gyroscopes with estimated matrix covariances

Qω = diag (6.72, 9.21, 9.21) ⋅ 10−7

Qbω = diag (0.36, 4.0, 4.0) ⋅ 10−10

Figs. 4.29, 4.30, reveal that the model chosen for gyroscopes match the experimental results and

that the effect of the gyroscope bias is small enough to not affect the temporal signal trend in

the analyzed period of time. Whereas for the case of accelerometers shown in Figs. 4.27 and

4.28, it can be seen that the spectral response of the measurements is not represented by the

provided model. However the the tuning of the model have been done taking into account a

covering of the of the spectral response. This results in higher covariance of the time signal as

can be appreciated in 4.27.
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Figure 4.27: Simulated model vs. real
data for the accelerometer.

Figure 4.28: Frequency spectra. Sim-
ulated model vs. real data for the ac-

celerometer.

Figure 4.29: Simulated model vs. real
data for the gyroscope.

Figure 4.30: Frequency spectra. Simu-
lated model vs. real data for the gyro-

scope.
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4.4 Actuators

Quadrotors are actuated by four propellers usually driven by electric motors. As a consequence an

acuator model must contain: 1) the dynamical system representing the electric motor dynamics,

and 2) a model of the aerodynamic actions created by the air-propeller interaction. Inputs for

the actuation model are desired angular velocity references and the outputs are the actuation

forces and torques.

4.4.1 Electric subsystem, Motor+ESC

Electric motors used on small scale UAVs are usually Brushless DC motors. This kind of electric

machines are efficient motors whose velocity is controlled at high frequencies by the use of

external hardware implemented controllers named electronic speed controllers or ESC. The ESC

transforms the DC power into a three phase AC output to feed the motor. The speed is controlled

by controlling the energizing sequence of the windings in the stator.

The presence of the ESC makes a model of the open loop dynamics of the motor irrelevant as

long as the controller implemented in the ESC is not known. In this situation, the dynamics of

the closed loop system are often approximated as first order systems with parameters estimated

during tests as done in [64].

ω̇ = k1 (k2u − ω) (4.28)

being u an escalated input coming from the RC.

In many other works, the motor dynamics are directly neglected [43, 70, 72] or obviated [11]

arguing that the time constant of this closed loop system is several orders of magnitude greater

than the time constant of the attitude dynamics. In these cases it is assumed that desired angular

velocities for the rotors are achieved instantaneously and the model simplifies in

ω = k1u (4.29)

Four X-BL-52S 80 W motors with four dedicated ESC translate commanded power to the pro-

pellers. We have estimated the time constant of the first order model for the motor to be

k1 = 1
0.076

s−1. However this value is only used for simulations while we admit instantaneously

achievement of the commanded velocity when using the actuator model for state estimation

purposes.

4.4.2 Individual thrust and torque models

Aerodynamic forces over the blades of a quadrotor appear as a consequence of the interaction

of the propeller’s geometry with the local flow. The state of the flow in the surroundings of the

propeller depends on the fluid properties and flow conditions which are mainly affected by the

rotational velocity of the rotor.
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In general terms, aerodynamic forces and torques depend on the square of the angular velocity.

However, inflow speed, inflow direction, turbulence and wake interferences make accurate models

to be unavailable.

The Navier Stoke’s equations are a set of differential equations that describe the flow behaviour.

However they depend on the flow state (velocity, pressure, temperatures etc.) at different size

scales which prevents from obtaining a closed solution for complex geometries or general non-

stationary surrounding conditions. Instead, burdensome computations have to be carried out to

analyse particular configurations to obtain approximations of the solution, which at the moment

is far away to be achievable in real time.

For real sized rotors, simplified theories that rely on the hypotheses of inviscid and incompressible

flows such as the Momentum Conservation (MC), the Blade element method (BE) or the junction

of both named Blade Element Momentum (BEM) allow the prediction of a good approximation

of aerodynamic forces and torques over the rotors on hover, climbing, descent and forward

manoeuvres.

The size and different rotational speeds of the small-scale rotors make the flow conditions around

the rotor different from the flow conditions around a real-size rotor. In particular, small-scale

rotors fly on a low-Reynolds number environment for which the classical theories are not fully

proven [85]. The only work found in this direction, [60], presents a verified and tested model

based in BEM for predicting aerodynamic thrust and torque, and different performance metrics

of propellers. However this work applies only to flight conditions in which the flow is parallel to

the hub axis, which is only the case of propellers mounted in fixed-wing UAVs.

For miniature helicopters or quadrotors the forward flight represents the majority of operation

time and currently there is no a model that accounts for all possible modes in the literature.

As a consequence, many works that deal with control, e.g. [64, 14] among many others, assume

models of the form

T = kTω2
p

Q = kQω2
p,

(4.30)

for all the flight operational modes, being kT and kQ constants that hasve to be estimated

empirically. In the previous model, both T and Q are vectors pointing in the hub direction.

A slightly more precise model can be found in the works [70, 53], where blade flapping and the

induced drag (effects of forward flight) are taken into account. These effects disturb the norm

of the thrust and slightly tilt it, making T have non null components on the xb − yb plane.

The Hummingbird implements four APC 8 × 3.8 propellers. Values of the thrust and torque

coefficients for this propeller can be found in [15] for different flow conditions (Reynolds numbers)

and with or without advance flight. A rough value for kt and kq have been obtained by fitting a

second order polynomial with null independent and linear terms to the data using least squares

which results in

kT = 5.6031 ⋅ 10−6 Ns2

kQ = 8.0974 ⋅ 10−8 Nms2
(4.31)
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The thrust coefficient leads to a hover angular speed of about 4553 rpm which is very close to

the value that has been experienced in numerous real flight tests.

4.5 Onboard computers and hardware

4.5.1 AscTec AutoPilot Board

The AscTec Hummingbird has an on-board flight control unit (FCU) pre-installed named AscTec

AutoPilot Board. The Autopilot Board embeds two ARM7 microprocessors, accelerometers and

gyroscopes, a pressure sensor, I/O ports to communicate with the GPS, the magnetometer and

the motors and other external devices.

The two processors of the FCU have different purposes. The Low Level Processor (LLP) reads

information directly from all sensors with the exception of the GPS and contains factory algo-

rithms for sensor fusion and control that are always running and can not be accessed. The LL is

also directly connected to the R/C inputs and is in charge of commanding actions to the motor

controllers. In contrast, the High Level Processor (HLP) is open to modifications through an

SDK provided by AscTec and can interact with the information in the LL using SPI protocols.

The HL has been flashed with a modified firmware AscTec hl firmware[2] to work as a bridge

between sensor readings and the second onboard computer.

4.5.2 Odroid XU4

The platform has been modified to hold a second computer to extend computation capabilities

for algorithms that do not fit in the HLP of the FCU and to house possible new sensors. The

Odroid XU4 is a card-sized computer with 2GB of RAM and eight Samsung Exynos 5422 @

2 GHz. The computer runs an Ubuntu 16.04LTS desktopless operative system, with ROS as

middleware. The computer has the asctec mav framework [1] package that works as a driver to

receive information provided by the AscTec hl firmware at the UART serial port of the vehicle

in the ODROID. Thus, providing the aircraft information such as sensor readings, battery and

motor states among some other information in a standard and readable format via UDP.

The ROS middleware [73] provides libraries for Python and C++ programming languages that

allow the access and writing of the UDP information to easily derive new applications. In this

case, the implementation of algorithms derived in the next sections make use of those libraries to

communicate with the aircraft. An additional communication port is provided via an AD-HOC

WIFI network, which is automatically created when the the computer boots. Using this network,

external computers can monitorize the process running on the ODROID and have access to the

aircraft information.

A communication/architecture diagram depicting the aircraft-computer setup is given in Fig. 4.31.
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Chapter 5

Observability of quadrotor’s

states

This chapter is devoted to study the observability of VToL vehicles equipped with a specific sensor

suite. In particular, it is desired to unveil which states of an VToL vehicle can be determined

when making use of IMU, GPS and magnetometer readings.

Observability is a system’s property related to the possibility of recovering the system states from

the system input-output data. Observability of linear systems is a well understood property.

However, non-linear observability analysis relies on richer concepts which in turn lead to more

complex treatment. Non-linear analysis results are not easy to interpret and usually need a good

understanding of the system behaviour to be meaningful.

The structure of this chapter is as follows: First, in Section 5.1 fundamentals of non-linear

observability, and the essential concepts used along the chapter are presented. A review of non-

linear observability analysis applications to self-localization and attitude estimation done by some

authors is detailed in Section 5.2. In Section 5.3 the dynamics of the system under analysis are

given. By including IMU measurements in the system dynamics, IMU internal states representing

non-constant bias can be taken into consideration for estimation. This state extension implies

a state increase from thirteen to sixteen state variables and the benefit of avoiding uncertain

terms related to external external forces and torques. The resulting dynamic system is a basis

for IMU, GPS and magnetometer integration for localization and auto-calibration. After that,

we introduce the application of observability analysis present in the literature to our specific

case in Section 5.4 and Section 5.5. In Section 5.4 we demonstrate the observability of the

system by using the well known observability rank criterion over the system non-linear dynamic

equations. However this analysis does not match our needs since, for the derived system, the

inputs are externally determined and then, no longer manipulable. In Section 5.5 it is shown,

by using methods present in the literature, that for the linearized system there exist singular

inputs i.e. inputs that do not allow full-state reconstruction. Finally, those results are extended

by using non-linear analysis on the non-linear system in Section 5.6. For the provided singular

inputs, the indistinguishable regions associated to them, i.e, the connected set of states which

75
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cannot be distinguished from the true state, are presented. Observability issues in presence

of singular inputs are shown by using simulations. Comparisons of the linear and non-linear

results are presented showing that the non-linear analysis provides a better and more accurate

description of the observability issues. The results derived take relevance by demonstrating

that the conflicting inputs match those inputs needed to perform flight configurations central to

missions of VToL platforms.

5.1 Observability of non-linear systems

This section revises the basic concepts of non-linear observability present in [34, 38, 13] using

own notation.

Let a non-linear system of the form

Σ ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ(t) = f(x(t),u(t))
y(t) = h(x(t))

(5.1)

with x ∈ X a smooth infinite differentiable manifold (C∞) contained in Rn, u ∈ U ⊆ Rp, y ∈
Y ⊆ Rm with f and h representing smooth infinitely differentiable functions. Let the space of

admissible input functions be represented by U . It will be assumed that the dynamic system is

complete, i.e. for every control input u(t) ∈ U and initial state x0 ∈ X the differential equation

accepts a finite solution. By accepting the notation (v(t), [t0, t1]) to represent vector valued

functions in the time interval T ∶ [t0, t1], the system in Eq. (5.1) with initial state x0 can be seen

as a mapping between inputs (u(t), [t0, t1]) and outputs (y(t), [t0, t1]). The mapping produced

by the pair (Σ,x0) can be denoted as

Σx0 ∶ (u(t), [t0, t1])→ (y(t), [t0, t1])

Definition 5.1.1 (Indistinguishability). Two states x1 ∈ X and x2 ∈ X are said to be indis-

tinguishable if the pairs (Σ,x1) and (Σ,x2) produce the same input output map, i.e, for every

admissible input (u(t), [t0, t1])

Σx1 ∶ (u(t), [t0, t1]) = Σx2 ∶ (u(t), [t0, t1])

Definition 5.1.2 (Observability). Let I(x) represent the set of points indistinguishable from

x, a dynamic system is observable at x = x1 if I(x1) = x1. The whole system is said to be

observable if I(x) = x∀x ∈ X .

The definition of observability is said to be a global concept in the sense that a system is

observable even if the system’s input-output map only fails to be equal after a long time or

having deviated a lot from the initial point. A more restrictive observability property can be

formulated by restricting the state distinguishability to be present from the initial times. To this

end, let the concepts of V-indistinguishability and local observability be defined as
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Definition 5.1.3 (V-Indistinghishability). Let V represent a subset of X . The set of initial state

points in V whose associated trajectories (x(t), [t0, t1]) under the same input (u(t), [t0, t1]) are

contained in V and are indistinguishable from x is represented by IV(x).

Definition 5.1.4 (Local Observability). A system is said to be locally observable (LO) at x1 if

for every open neighbourhood V of x1 IV(x1) = x1. The system is said to be locally observable

if the previous statement is accomplished ∀x ∈ X .

In practice observability is a hard property for a system to fulfil so it can be weakened by

restricting the indistinguishability comparison to a neighbourhood of each state.

Definition 5.1.5 (Weak Observability). A system is said to be weakly observable (WO) at x1 if

there exists a neighbourhood V of x1, such that I(x1) ∩ V = x1. The system is said to be weakly

observable if the previous statement is accomplished ∀x ∈ X .

Definition 5.1.6 (Weak Local Observability). A system is said to be weakly locally observable

(WLO) at x1 if there exists an open neighbourhood V of x1, such that for every open neighbour-

hood W of x1 contained in V, IW(x1) = x1. The system is said to be locally weakly observable

if the previous statement is accomplished ∀x ∈ X .

Roughly speaking, a system is locally observable if every state can be uniquely identified without

the need of having the state to travel too far or for a long time. A system is weakly observable if

the state can be distinguished from its neighbours. Finally, a system is weakly locally observable

if every state can be distinguished from its neighbours without having to travel too far or for a

long time.

WLO is preferred over the other kinds of observability due to its simplicity of verification. WLO

of a system can be checked by means of a binary test, known as observability rank condition.

5.1.1 Observability rank conditon

Let the output of the system h(x) be interpreted as a set of scalar measurement equations

hj(x) , j = 1,2, ..., p.

Definition 5.1.7 (Observation Space). The observation space, denoted by S, is the smallest real

vector space of C∞ functions which contain the components of the measurement function h(x)
and closed under Lie differentiation along the vector flows fuq = f(., uq), for some constant

uq ∈ U, i.e., hj ∈ S as well as Lfui ...Lfuk ...hj ∈ S, j = 1,2, ...p and i, k = 1,2, ...

In the previous definition Lγφ represent the Lie derivative of the scalar function φ along the

direction of the vector field γ calculated as

Lγφ = (∇xφ)γ

being ∇xφ = ∂φ
∂x

the gradient of φ, expressed as a row.
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Definition 5.1.8 (Observable Codistribution). The observable codistribution, denoted by Ω(x)
is the vector space spanned by the gradients of the elements of the observation space S, i.e.,

Ω(x) = span (∇xh, ...∇xLfui ...Lfuk ...hj) j = 1,2, ...p and i, k = 1,2, ... (5.2)

Elements of the observable codistribution are known as covectors, dual elements to vector fields.

Definition 5.1.9 (Observability rank condition). The system satisfies the observability rank

condition at x0 if

dim (Ω(x0)) = n

being n the state dimension. The system is said to satisfy the observability rank condition if

dim (Ω(x)) = n∀x ∈ X .

Theorem 3.11 in [34] establishes that a system in the form of Eq. (5.1) satisfying the observability

rank condition is WLO. Note that the test depends on the many possible choices for fuq and it

may be necessary to consider multiple (maybe infinite) vector fields and their Lie derivatives in

multiples orders to determine the dimension of the codistribution. However, in practice it may

suffice to consider only an a priori unknown but finite set of them for which dim (Ω(x)) = n.

For input control affine systems of the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ = f0(x) +
m

∑
i=1

f i(x)ui

y = h(x)

(5.3a)

(5.3b)

this analysis is simplified since the set of vector fields under consideration is finite. In [38],

algorithm 1 is provided to derive the observability codistribution in at most n-1 steps.

Algorithm 1: Calculation of codistribution Ω

Data: hi for i = 1,2, ..., p
Result: Ω
begin

Ωk = {∅}
Ωk+1 = span (∇xhi) i = 1, ..., p

while Ωk+1 > Ωk do
Ωk = Ωk+1

Ωk+1 = Ωk +Lf0
Ωk +∑mj=1LfjΩ

k

Ω = Ωk

where the sum operator over two vector fields must be understood as the span of all generators of

both spaces, LfΩ = span (Lfw∀w ∈ Ω), with Lfw representing the Lie derivative of a covector

defined as

Lfw = f⊺ ∂w
⊺

∂x
+w⊺

∂f

∂x

Ap. 1 presented is related to Eq. (5.2) given that for a scalar function φ (as hi(x) or Lkfhi(x)
are) its partial derivative can be interpreted as a covector, called exact differential, for which it
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can be stated that
∂Lfφ(x)

∂x
= Lf

∂φ(x)
∂x

Using Algorithm. 1, the computation of the observability codistribution is still not straightfor-

ward since the convergence criteria should be evaluated for all x ∈ X . As an alternative, some

works [41, 92] analyse the WLO by studying the rank of an observability matrix O, a matrix

whose rows are given by covectors of Ω.

5.1.2 Analytic conditions for observability

WLO of a system implies that there exist inputs for which the state can be fully recovered form

input-output data. It is worth noting that a system can be WLO and still exist some inputs for

which the state can not be fully inferred. Inputs that allow the discrimination of the initial state

are known as universal inputs.

Definition 5.1.10 (Universal inputs). An input (u(t), [t0, t1]) is universal for system in Eq. (5.1)

if ∀x0 ≠ x1

Σx0 ∶ (u(t), [t0, t1]) ≠ Σx1 ∶ (u(t), [t0, t1])

There exist systems for which, under any input, the state of the system can be reconstructed.

Definition 5.1.11 (Uniform observability). The system in Eq. (5.1) is said to be uniformly

observable if every input u(t) is universal.

Definition 5.1.12 (Local uniform observability). The system in Eq. (5.1) is said to be locally

uniformly observable if every input u(t) is universal in the interval [0, t].

In practice, real dynamic systems are not necessarily uniformly observable and the inputs to be

command them need not be universal. In these cases it is interesting to determine the singular

inputs and the effect that they have on the system.

5.1.3 Univalence of the state-output map

Although nonlinear geometric analysis has received attention in the literature to determine ob-

servability properties of UAVs, given the input dependence that observability has in the non-

linear case, it could be interesting to consider a more basic formulation as the ones in [44, 32].

Let yi = hi(x) be the i-th output of the measurement vector of Eq. (5.12b). The successive time

derivatives of every output function can be recovered by using the system dynamic equation e.g.

Eq. (5.1) as

yi = hi(x)
ẏi = (∇xyi)f(x,u)
ÿi = (∇xẏi)f(x,u) + (∇uẏi) u̇

...
y i = (∇xÿi)f(x,u) + (∇uÿi) u̇ + (∇uẏi) ü

⋮

(5.4)
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Let the vector U , contain the input and its time derivatives

U = (u⊺, u̇⊺, ü⊺, ...)⊺ ,

then, Eq. (5.4) formulated for every output can be grouped under what is known as observability

mapping of the system

Y = F (x,U)

The system is weakly locally observable at a given point x⋆ if the mapping F (x⋆,U) is a local

dipheomorfism in the neighbourhood of x⋆, i.e. if it is smooth, if it has an inverse and if this

inverse is also smooth. A sufficient condition for bijectivity on the neighbourhood x⋆, given that

F is smooth by construction (from smooth conditions of f and h), is that the gradient of F , a

linearized version of the mapping, is full column rank, or equivalently

rank (∇xF (x,U)) ∣x=x⋆ = n.

By ensuring the full column rank of ∇xF (x,U) it is ensured that the mapping F is invertible

at least locally, meaning that by knowing values of Y and U , the state x can be recovered.

It is not difficult to realise, given the similarities between Eq. (5.2) and Eq. (5.4), that the

jacobian of the mapping is related under a row swap with the definition of observability matrix

O mentioned in the previous subsection. The equivalence of the space spanned by the right hand

side of Eq. (5.4) and Ω in Eq. (5.2) is demonstrated in [90]. Since the rank of a matrix does not

vary under row swapping, abusing notation it is considered that

O = ∇xF (x,U) (5.5)

Note that, in contrast with previous definitions, the assumption of constant u has not been made.

The observability matrix in this case is still input dependant. This will be useful to formulate

results in Section 5.6.

5.1.4 System symmetries and indistinguishable regions

If a system is not observable at a given point x⋆ it does not mean that no state can be identified,

instead there may exist some states or combination of the states that are still observable.

In [38, propositions 1.6.1 and 1.7.2] it is demonstrated that if dim (Ω(x⋆)) = d < n, a coordinate

transformation in the neighbourhood of x⋆ of the form

⎛
⎝
z1

z2

⎞
⎠
= Ξ(x)
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with z1 ∈ Rn−d and z2 ∈ Rd can be found, such that the system in Eq. (5.3) can be locally

represented by

ż1 = g1(z1,z2) +
m

∑
i=1

g1i(z1,z2)ui (5.6a)

ż2 = g2(z2) +
m

∑
i=1

g2i(z2)ui (5.6b)

y = h(z2) (5.6c)

The subsystem given by Eq. (5.6b) and Eq. (5.6c) is by construction WLO of dimension d, while

subsystem in Eq. (5.6a) is not observable.

The relation between state and input (x, u) and the system output y is given in Eq. (5.2) or

equivalently in Eq. (5.4). As a consequence, state regions for which Lie derivatives of the output

function do not change will be formed by indistinguishable points.

Definition 5.1.13 (Indistinghishable region [59]). Given a system described by Eq. (5.1) or

Eq. (5.3), an indistinguishable region associated with the point x⋆ is a connected set which

contains the point x⋆ and the points where all Lie derivatives have the same value as in x⋆.

Definition 5.1.14 (Continuous symmetry [59]). The vector field ws(x) is a continuous sym-

metry of the system described by Eq. (5.3) at the point x⋆ if, and only if, it is a non-null vector

belonging to the null space of the observability matrix O.

O(x⋆)ws = 0

Given a state x⋆ for which rank (O) = d < n, the system has n − d symmetries associated to x⋆

(ws1 ,ws2 , ...,wsn−d). An indistinguishable region xI(τ,x⋆) can be identified as the solution of

the ordinary differential equation (ODE)

dxI
dτ

=
n−d

∑
i=1

wsi(xI)ηi(τ)

with wi representing the i-th symmetry of the system, initial condition xI = x⋆ and for every

possible choice of ηi compatible with the uniqueness of the ODE solution.

5.2 Observability in the field of navigation and self-calibration

There are many works dealing with the problem of estimation for autonomous positioning and

navigation of satellites, cars, unmanned aerial vehicles and underwater autonomous vehicles.

However the problem of observability does not precede the majority of these studies. This is

because in the majority of applications the vehicle is highly equipped with multiple sensors,

mostly of high quality and many times even redundant. Since observability depends mainly

on the system dynamics and outputs, the topic must be revised any time that a new sensor
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configuration is considered or if the same set of sensors equips a new platform. It turns out that

the dynamics of those vehicles are not so different and they are commonly described by the same

basic principles. If any platform is seen as a rigid body, the equations of motion that describe

its pose are the ones derived in Chap. (3). Differences arise in the kind of inputs and constraints

that limit vehicle motion.

While many sensors may be necessary to determine the state of a generic vehicle, inertial mea-

surement units (IMU) play an important role in navigation. An IMU is usually composed of a set

of 3 orthogonal accelerometers and 3 orthogonal gyroscopes that provide measurements of the

specific acceleration (acceleration produced by external forces ignoring weight) and angular ve-

locity in the body frame. As we will see explicitly in the next subsection, IMU measurements can

be used to replace many uncertain and unknown terms in the system equations. The obtained

dynamics rely primarily on kinematic relations comprising acceleration, velocity, position, angu-

lar velocity and attitude, then being generic and representing a wider range of systems. When

using a low-precision (usually associated to low-cost) IMU, this choice can be done at a cost of

enlarging the system state to consider internal calibration parameters of the IMU. This is why

many works related to the topic talk about self-calibration.

Following this line, [41] makes use of the non-linear analysis introduced in the previous sections

to verify the observability of camera-IMU self-calibrating system. The analysis reveals that full

state recovery requires the camera–IMU platform to undergo rotational and accelerated motion

about at least two IMU axes directions.

The work [93, sec. 3.4.3], offers an overview of observability of UAVs equipped with several sets of

sensors with special focus on camera-IMU integration. It is stated there that the combination of

GPS and IMU sensors represent a minimal and self-calibrating sensor suite for globally consistent

position and attitude navigation. The results are established based on weak local observability

tests over the non-linear system and under the assumption of controllable inputs.

Observability of integrated IMU and GPS systems has been assessed in [36] by using motion

equations in incremental error form by means of LTV analysis. The approach differs from the

previous ones in that it does not assume constant inputs. Instead generic inputs are used to

derive an LTV observability matrix whose rank condition is evaluated for specific values of the

input.

It is surprising that the sensor configuration given by IMU-GPS-Magnetometers has not recieved

attention in literature given that is the standard for outdoor navigation of unmanned aerial

vehicles. In the following section, different system dynamics that enable the system observability

analysis corresponding to this setup are derived.
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5.3 IMU driven dynamics for observability and estimation

5.3.1 Motion equations

Dynamics equation of the aircraft platform can be formulated by considering the Newton-Euler

equations in the mixed body-world reference frames as was shown in Eq. (3.11). When the

attitude is represented by quaternions the system equations can be written as

ẋn =

⎛
⎜⎜⎜⎜⎜
⎝

ξ̇

v̇
˙̊q

ω̇

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

v

g +L(q̊)fact
m

+ fext
m

1

2
Γ(q̊)ω

J−1 (τ act + τ ext −ω × Jω)

⎞
⎟⎟⎟⎟⎟⎟
⎠

(5.7)

where g represents the gravity vector expressed in {W}, fact are the forces coming from the

actuators expressed in {B} , fext are external force disturbances expressed in {W}, τ act are

the torques coming from the actuators expressed in {B}, τ ext are external torque disturbances

expressed in {B}, m represents the mass of the body, J its inertia as seen from frame {B} and

L(q̊) and Γ(q̊) are the rotation matrix and quaternion kinematic matrix defined respectively in

Eq. (2.37) and Eq. (2.53).

5.3.2 IMU driven nonlinear model

The time dependency of the unknown biases in Eq. (4.2) prevents the straightforward use of the

IMU measurements to correct the navigation state of the platform. Moreover, there is always

some degree of uncertainty in Eq. (5.7) associated to the actuator and unknown external forces

and torques. Considering the accelerometer and gyroscope bias as additional states, the vector

given by

x⊺ = (ξ⊺, v⊺, q̊⊺, b⊺a, b⊺ω) (5.8)

describes the state of the system. Note that if x is known, the only navigation variable left, ω,

can be recovered by using Eq. (4.2b).

The dynamics of x can be derived by using Eq. (5.7), eliminating the equation of angular velocity,

substituting the linear forces using Eq. (4.1) and taking into account the IMU model in Eq. (4.2)

leading to

ẋ = f(x,u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

v

g +L(q̊) (am(t) − ba − ηa)
1
2
Γ(q̊) (ωm(t) − bω − ηω)

ηba
ηbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.9)
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The resulting dynamic system is not driven anymore by controllable inputs, in contrast the

dynamic system input u composed by IMU outputs

u =
⎛
⎝
am

ωm

⎞
⎠

Observations of the system come from the GPS and magnetometer outputs presented in Eq. (4.3)

and Eq. (4.4) respectively. In addition, since using the quaternion implies considering an ad-

ditional state (enlarging the state dimension by one) when compared with any other minimal

attitude representation, it is usually considered necessary to add an additional virtual measure

to ensure the quaternion unit norm and reduce the non-observable degrees of freedom

hq̊ = (q2
0 + q⊺vqv) (5.10)

The final vector of measurements of the system is taken as

y = h(x) =
⎛
⎜⎜⎜
⎝

hξ(x)
hH(x)
hq̊(x)

⎞
⎟⎟⎟
⎠

(5.11)

As it is common, the observability analysis will be performed over the nominal system neglecting

the noise sources, in that case the system equations are

ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

v

g +L(q̊) (am − ba)
1
2
Γ(q̊) (ωm − bω)

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.12a)

y = h(x) =
⎛
⎜⎜⎜
⎝

ξ

L⊺H

q2
0 + q⊺vqv

⎞
⎟⎟⎟
⎠

(5.12b)

Eq. (5.12a) as it is, will be used in Section 5.6, while the input affine factorization

ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

v

g −L(q̊)ba
− 1

2
Γ(q̊)bω

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f0(x)

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

03×3 03×3

L(q̊) 03×3

04×3
1
2
Γ(q̊)

03×3 03×3

03×3 03×3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F(x)

⎛
⎝
am

ωm

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
u

(5.13)
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where every column and entry i of the matrix F and vector u can be interpreted as the i-th

vector field f i and i-th input ui appearing in Eq. (5.3), will be used to analyse the WLO of the

system in Section 5.4.

5.3.3 IMU driven error based model

Considering the non-linear model with quaternions as attitude parametrization leads to a 16-

dimensional state and the inclusion of an additional constraint. To avoid the additional state

and the added equation, some works [51, 56, 92, 77] use an error model to enable the use of

minimal attitude representations and achieve a 15-dimensional state without the need of extra

constraints. Minimal attitude representations have the weakness of being singular at some points

of its domain [82]. However, if the system is formulated in an error form, the state represents

deviations from a nominal point, and if these deviations are small enough so that they are always

far from the singularity, then the use of minimal attitude parametrizations is justified.

Composition of any three dimensional quantity conforming the state, positions, velocities and

biases is simply made by addition. However, composition of orientations is not so simple given the

structure of SO(3). The usual way to compose two different attitudes is to map them to rotation

matrices, compose the attitude by matrix multiplication and then perform the inverse mapping to

recover the final attitude in the expected representation form. This process is different depending

on the representation choice but identical results can be expected after interpreting the calculated

attitude. However, given the way attitude is composed, deriving the error formulation is not so

straightforward.

For a quaternion q̊ representing the true attitude, and a quaternion ˆ̊q representing the nominal

orientation, the attitude error can be denoted by δq̊. This incremental rotation can be thought

as the necessary attitude that, composed by the left (or the right) with the nominal quaternion,

leads to the true attitude

q̊ = δq̊L ˆ̊q

q̊ = ˆ̊q δq̊R

(5.14a)

(5.14b)

The interpretation of these attitude errors is as follows. δq̊R is known as the body frame attitude

error. It represents a small rotation applied to the body frame such that, when followed by the

nominal rotation, the resulting frame and the world frame coincide Eq. (5.14b). Conversely,

the world frame attitude error, δq̊L considers that the misalignment is produced near the world

reference frame as described by Eq. (5.14a).

The error quaternion δq̊ still maintains the problem of the unit-norm, but as commented, it can

be easily related to any 3-dimensional attitude parametrization, as long as the attitude error

remains far enough from the singularity.

In [56] different 3D parametrizations for the error quaternion are considered and are claimed

equivalent up to second order. To the purpose of this section the attitude error α will be repre-

sented by the Gibb’s vector multiplied by two. This choice is made based on some computational
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savings that the particular parametrization choice brings to the estate estimation implementa-

tions (this model will be used also in the estimation chapter)

The error attitude can be obtained from δq̊ as

α = 2
δq

δq0
, (5.15)

the inverse mapping is given by

δq̊ = 1√
4 +α⊺α

⎛
⎝

2

α

⎞
⎠

(5.16)

and a rotation matrix can be constructed from Eq. (2.35) as

L(α) = 4

4 +α⊺α (I3 +α) + 1

4 +α⊺α
(2αα⊺ −α⊺αI3) (5.17)

The derivative of the error quaternion δq̊L can be derived from

˙̊q = δ ˙̊qL ˆ̊q + δq̊L ˙̂
q̊

Taking into account the quaternion dynamics in Eq. (2.50) and taking as nominal angular velocity

ω̂ = ωm − b̂ω
δ ˙̊qL ˆ̊q = ˙̊q − δq̊L ˙̂

q̊ →

δ ˙̊qL ˆ̊q = 1
2
q̊
⎛
⎝

0

ω

⎞
⎠
− 1

2
δq̊L˚̂q

⎛
⎝

0

ω̂

⎞
⎠
→

δ ˙̊qL = 1
2
δq̊L ˆ̊q

⎛
⎝

0

ω

⎞
⎠

ˆ̊q−1 − 1
2
δq̊L˚̂q

⎛
⎝

0

ω̂

⎞
⎠

ˆ̊q−1 →

δ ˙̊qL = 1
2
δq̊L ˆ̊q

⎛
⎝

0

ω − ω̂
⎞
⎠

ˆ̊q−1 →

δ ˙̊qL = 1
2
δq̊L ˆ̊q

⎛
⎝

0

b̂ω − bω − ηω
⎞
⎠

ˆ̊q−1

by defining bω − b̂ω as δbω finally the next relation is achieved

δ ˙̊qL = −1

2
Γ(δq̊L) (L(ˆ̊q) (δbω + ηω)) (5.18)

A different relation can be obtained when considering the error quaternion δq̊R, in this case

˙̊q = ˙̂
q̊δq̊R + ˆ̊qδ ˙̊qR
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which leads to
ˆ̊qδ ˙̊qR = ˙̊q − ˙̂

q̊δq̊R →

ˆ̊qδ ˙̊qR = 1
2
q̊
⎛
⎝

0

ω

⎞
⎠
− 1

2
˚̂q
⎛
⎝

0

ω̂

⎞
⎠
δ ˙̊qR →

δ ˙̊qR = 1
2

⎛
⎝
δq̊R

⎛
⎝

0

ω

⎞
⎠
−
⎛
⎝

0

ω̂

⎞
⎠
δq̊R

⎞
⎠
→

δ ˙̊qR = 1
2

⎛
⎝
⎛
⎝

−δq⊺vRω
δq0Rω + δqvR ×ω

⎞
⎠
−
⎛
⎝

−δq⊺vRω̂
δq0Rω̂ + δω̂ × qvR

⎞
⎠
⎞
⎠

Finally,

δ ˙̊qR = 1
2

⎛
⎝

−δq⊺vRδbω
δq0Rδbω + δqvR × (ω + ω̂)

⎞
⎠

(5.19)

The derivative of the Gibbs vector can be related with the error quaternion derivative by using

the chain rule

α̇ = 2
(δq̇δq0 − δqδq̇0)

(δq0)2
=
√

4 +α⊺α (−α
2

I3×3) δ ˙̊q (5.20)

Eq. (5.20) can be particularised for δq̊R, respectively δq̊L, by substituting the respective quater-

nion derivative in Eq. (5.18) and Eq. (5.19) which leads to

α̇L = −1

2
(2I3 +

αLα
⊺

L

2
+ [αL]×)L(ˆ̊q) (bω − b̂ω + ηω)

α̇R = −(I3 +
αRα

⊺

R

4
)(bω − b̂ω + ηω) +

1

2
αR × (2ωm − bω − b̂ω − ηω)

(5.21a)

(5.21b)

Let the true state be denoted as x, and the nominal estate

x̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ξ̂

v̂
ˆ̊q

b̂a

b̂ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Then, the error state can be denoted as

δxL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δξ

δv

αL

δba

δbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ξ − ξ̂
v − v̂
αL

ba − b̂a
bω − b̂ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.22)
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or equivalently

δxR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δξ

δv

αR

δba

δbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ξ − ξ̂
v − v̂
αR

ba − b̂a
bω − b̂ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.23)

The error state dynamics can be obtained then as

˙δxL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δ̇ξ
˙δv

α̇L

δ̇ba

δ̇bω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δv

L(αL)L(ˆ̊q) (am − ba − ηa) −L(q̂) (am − b̂a)
− 1

2
(2I3 + αLα

⊺
L

2
+ [αL]×)L(ˆ̊q) (bω − b̂ω + ηω)

ηba
ηbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.24)

respectively

˙δxR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δ̇ξ
˙δv

α̇R

δ̇ba

δ̇bω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δv

L(ˆ̊q)L(αR) (am − ba − ηa) −L(q̂) (am − b̂a)
− (I3 + αRα

⊺
R

4
) (bω − b̂ω + ηω) + 1

2
αR × (2ωm − bω − b̂ω − ηω)

ηba
ηbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.25)

By assuming α≪ 1 and neglecting second order terms, Eq. (5.17) reduces to

L(α) = I3 + [α]
×
,

and Eq. (5.24) and Eq. (5.25) can be written as

˙δxL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δv

−L(ˆ̊q)δba −L(ˆ̊q)ηa − [L(ˆ̊q) (am − ba)]
×
αL

−L(ˆ̊q)δbω −L(ˆ̊q)ηω
ηba
ηbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.26)

and

˙δxR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δv

−L(ˆ̊q)δba −L(ˆ̊q)ηa −L(ˆ̊q) [(am − ba)]×αR
−δbω − [ωm − bω]×αR

ηba
ηbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.27)

respectively.

Considering the measurement equations, Eq. (5.26) and Eq. (5.27) can be rewritten as
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ẋL = AL(t)xL
y = CL(t)xL

with

xL = (δξ, δv, αL, δba, δbω)⊺ (5.28a)

AL(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

03 I3 03 03 03

03 03 − [La]
×

−L 03

03 03 03 03 −L

03 03 03 03 03

03 03 03 03 03

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.28b)

CL(t) =
⎛
⎝

I3 03 03 03 03

03 03 L⊺ [H]
×

03 03

⎞
⎠

(5.28c)

or
ẋR = AR(t)xR
y = CR(t)xL

with

xR = (δξ, δv, αR, δba, δbω)⊺ (5.29a)

AR(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

03 I3 03 03 03

03 03 −L [a]
×

−L 03

03 03 − [ω]
×

03 −I3

03 03 03 03 03

03 03 03 03 03

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.29b)

CR(t) =
⎛
⎝

I3 03 03 03 03

03 03 [L⊺H]
×

03 03

⎞
⎠

(5.29c)

The models in Eq. (5.28) and Eq. (5.29) are linear time varying systems where the time depen-

dency is implicit in the inputs am = am(t), ωm = ωm(t) and in the rotation matrix L(ˆ̊q) which

depends on the system angular velocity ω.

The same equations can be found in [77] with the difference of being derived considered a different

error attitude representation.

5.4 WLO test over the non-linear IMU driven dynamics

The observability of the system in Eq. (5.12) can be assessed by using the tools derived in Sec-

tion 5.1. This section reproduces the results derived in [41] and [93] for visual inertial integration

but particularised to our navigation system i.e considering GPS, IMU and magnetometers as sen-

sors.
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Theorem 5.4.1. The dynamic system in Eq. (5.13), under measurement equations in Eq. (5.11)

is Weakly locally observable.

Proof. The demonstration is founded in finding a subset of the observation space represented

by some rows of the observability matrix in Eq. (5.5) which is demonstrated to have maximum

dimension under generic input conditions.

Let the matrix O be composed by elements of O corresponding to the GPS mearuments and

some specific Lie derivatives

O =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∂

∂x
(hξ)

∂

∂x
(Lf0

hξ)
∂

∂x
(L2
f0
hξ)

∂

∂x
(Lf1

Lf0
hξ)

∂

∂x
(Lf2

Lf0
hξ)

∂

∂x
(Lf3

Lf0
hξ)

∂

∂x
(Lf0

Lf1
Lf0

hξ)
∂

∂x
(Lf0

Lf2
Lf0

hξ)
∂

∂x
(Lf0

Lf3
Lf0

hξ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

I6 06×4 06×3 06×3

03×6 U1(q̊,ba) −L(q̊) 03×3

09×6 A(q̊) 09×3 09×3

09×6 U2(q̊,bω) 09×3 B (q̊)

⎞
⎟⎟⎟⎟⎟⎟
⎠

(5.30)

where

U1(q̊,ba) = −∂(Lba)∂q̊
, U2(q̊,bw) = − 1

2
∂
∂q̊

⎛
⎜⎜⎜
⎝

∂L1

∂q̊
Γ(q̊)bw

∂L2

∂q̊
Γ(q̊)bw

∂L3

∂q̊
Γ(q̊)bw

⎞
⎟⎟⎟
⎠
,

A(q̊) = ∂

∂q̊

⎛
⎜⎜⎜
⎝

L1

L2

L3

⎞
⎟⎟⎟
⎠
, (5.31)

B(q̊) = 1

2
A(q̊)Γ(q̊), (5.32)

with Li representing the i-th column of L.

Let O′ be a permutated version of O obtained by circle-shifting block columns two, three and

four and exchanging block rows three and four of Eq. (5.30), i.e.,

O′ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

I6 06×3 06×3 06×4

03×6 −L(q̊) 03×3 U1(q̊,ba)
09×6 09×3 B(q̊) U2(q̊,bω)
09×6 09×3 09×3 A (q̊)

⎞
⎟⎟⎟⎟⎟⎟
⎠

By considering the properties in [37]
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● For a generic block diagonal matrix M =
⎛
⎝
M11 0

0 M22

⎞
⎠

,

rank (M) = rank (M11) + rank (M22)

● For a generic upper block triangular matrix M =
⎛
⎝
M11 0

M12 M22

⎞
⎠

,

rank (M) ≥ rank (M11) + rank (M22)

the rank of O′ must acomplish the next relation

rank (O′) ≥ rank (I6) + rank (−L(q̊)) + rank (B(q̊)) + rank (A(q̊)) (5.33)

A singular value decomposition of matrices A(q̊) and B(q̊) reveals 4 and 3 non-zero singular

values respectively, represented by

σA = 2 (q2
0 + q⊺q) (

√
2,

√
2,

√
2,

√
3) = 2 (

√
2,

√
2,

√
2,

√
3)

⊺

σB = 2
√

2 (q2
0 + q⊺q) (1, 1, 1) = 2

√
2 (1, 1, 1)⊺

As a consequence rank (A) = 4 and rank (B) = 3, equivalently A and B are full column rank

matrices.

The use of Eq. (5.33) and the fact that rank (O′) ≤ min{m,n} = n and rank (L(q̊)) = 3, leads

to rank (O′) = rank (O) = n or equivalently O is full column rank. Given that O is formed by

elements of the observability matrix O, the dimension of the observable codistribution will equal

the rank of O, which by the observability rank criterion discussed in Section 5.1.1 guarantees

the weak local observability of the system.

The derived result reveals that the weak local observability of the system can be guaranteed

without the need of considering measures of the magnetometer, (the quaternion unit norm con-

straint has been used in the singular value decomposition of A and B). Moreover, this result is

independent of the system state configuration since it does not depend on ξ, v, ba nor bω and it

is valid for any quaternion q̊.

5.5 Singular inputs of the IMU driven error based linear

model

The work [36] deals with observability issues of a navigation system composed by an INS (In-

ertial Navigation System, called IMU in this work) and a GPS. The approach makes use of the

system error equations to derive a linear time varying (LTV) dynamic model of the system in an

equivalent form of what has been done in Section 5.3.3. In particular the body frame attitude
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error is considered under the argument of simplifying the observability analysis. Eq. (5.28b)

coincides with Eq. (22) in [36], except for the column related to the distance between the center

of mass and the antenna, not considered here. In addition, biases are considered as state, while

here only the errors of biases are considered. Given the linearity of biases dynamics, estimating

the state or the error of the state is equivalent except for an added shift value. There is also

a sign discrepancy in the entries related to the biases, which arises from considering biases and

noises as subtracting terms instead of additive ones.

The results of that paper are based in the observability analysis of LTV system provided [20].

The findings presented there are not directly comparable to the ones given here because both

states and measurements are different. However, the methodology presented in [36] can be

used to reconstruct the unobservable regions of the system described in Eq. (5.12) using similar

hypothesis. We will refer to this procedure as LTV observability analysis method.

A direct implication of using linear models in the observability tests is that the nullspace of

the observability matrix can be directly related with the indistinguishable region instead of its

dynamics, then further integration is not needed to reconstruct the indistinguishable region from

the symmetry.

Analysing the possibility of recovering the state from the input-output mapping for every of

the possible combinations of inputs and input derivatives may be a hard task. However, in the

remaining part of this section (and also the next one Section 5.6) we are going to restrict this

analysis to the case of constant inputs, i.e, null derivative signals. The case of constant inputs

is meaningful since constant input values represent many of the flight modes characteristic of

VTOL vehicles, such as, constant velocity vertical take-off and landing, and most importantly,

hover.

In this section, the LTV observability analysis is applied to systems in Eq. (5.28) and Eq. (5.29)

to find the constant singular inputs that make the state unrecoverable.

When the inputs of the system, am and ωm, are considered constant, the system specific force

a and the system angular velocitiy ω can be considered constant too given that in the ideal case

(absence of disturbance) biases of the system have null derivative. In this case, the platform

rotates at a constant rate (the angular velocity is integrated into the nominal quaternion ˆ̊q) and

matrices A(t) and C(t) in Eq. (5.28) and Eq. (5.29) take explicit time dependence. In particular

the rotation matrix

L(ˆ̊q(t)) = L(ˆ̊q(0))(I3 cos(∥ω∥ t) + (1 − cos(∥ω∥ t))
∥ω∥2

(ωω⊺) sin(∥ω∥ t)
∥ω∥ [ω]

×
) (5.34)

where L(ˆ̊q(0)) is a constant matrix that determines the vehicle attitude at the initial time

just before the platform starts rotating. It can be shown that the derivative of L(ˆ̊q(t)) fulfils

Eq. (2.14), is infinitely differentiable and its k derivative, defined by

(k)
L = L [ω]k

×
(5.35)

make matrices A(t) and C(t) also infinitely differentiable.
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The singular input analysis is finds the values of the input variables variables am and ωm and

states that make the matrix

O(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

N0(t)
N1(t)
N2(t)
⋮

Nn−1(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.36)

rank deficient [20], being n the system dimension and

Nk+1(t) = Nk−1(t)A(t) + Ṅk−1

N0(t) = C(t)
(5.37)

The connected sets of states that make the observability matrix full column rank for a given input

constitutes and indistinguishable region. The observability matrix in Eq. (5.36) and Eq. (5.37)

are obtained from Eq. (5.5) in the case that the system is described by a linear time varying

model.

It is useful in the present analysis to consider a partition of the measurement matrix C(t) as

C(t) =
⎛
⎝
C1(t)
C2(t)

⎞
⎠

where C1(t) represent the first three rows and C2(t) the last three rows of Eq. (5.28c) or

Eq. (5.29c) respectively. With this partition and given that the rank of a matrix is invariant

under permutation of rows

rank (O(t)) = rank
⎛
⎝
O1(t)
O2(t)

⎞
⎠

where

O1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

N′

0(t)
N′

1(t)
N′

2(t)
⋮

N′

n−1(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

O2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

N′′

0(t)
N′′

1(t)
N′′

2(t)
⋮

N′′

n−1(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

with N′

k(t) and N′′

k(t) generated by Eq. (5.37) with C(t) = C1(t) and C(t) = C2(t) respectively.

In the next, a nullspace analysis will be presented for the observability matrices generated for

the LTV systems in Eq. (5.28) and Eq. (5.29). Six conflicting flight configurations are studied

based in the particular values of a and ω present A(t) and C(t). The explicit dependence of

time in matrices and variables will be omitted from now on for clarity purposes.
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5.5.1 Singular input analysis of the world frame attitude error equa-

tions

This section deals with the singular input analysis of the LTV system in Eq. (5.28). The study

of this case is simplified noting that the matrix AL in Eq. (5.28b) is idempotent, i.e., Ai
L = 0

for some integer i > 0, which in this case is i = 4 and that the k-th time derivative of AL can be

written as

(k)
AL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

03 03 03 03 03

03 03 − [
(k)
La]

×

−
(k)
L 03

03 03 03 03 −
(k)
L

03 03 03 03 03

03 03 03 03 03

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∀k ≥ 1

Noting that Ċ1L = 0 and that CȦL = 0, the observability matrix O1 after eliminating null rows

reduces to

OL1 =

⎛
⎜⎜⎜⎜⎜
⎝

CL1

CL1AL

CL1A
2
L

CL1A
3
L

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

I3 03 03 03 03

03 I3 03 03 03

03 03 − [La]
×

−L 03

03 03 03 03 [La]
×

L

⎞
⎟⎟⎟⎟⎟
⎠

(5.38)

The general analysis of OL2 is more intricate given that Ċ2 ≠ 0. However noting that

CL2A
2
L = 0

(k)
CL2A

2 = 0
(k)
CL2ȦLAL = 0

(k)
CL2ALȦL = 0

∀k ≥ 1, the matrix OL2 can be expressed as

OL2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

CL2

ĊL2 +CL2AL

C̈L2 + 2ĊL2AL +CL2ȦL
...
CL2 + 3C̈2LAL + 3Ċ2LȦL +C2LÄL

⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

03 03 D1 03 03

03 03 D2 03 E1

03 03 D3 03 E2

⋮ ⋮ ⋮ ⋮ ⋮
03 03 D15 03 E15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.39)

The binomial-like form of the left hand side matrix in Eq. (5.39) can be exploited along with

Eq. (5.35) to derive

Di = (−1)i−1 [ω]i−1
×

L⊺ [H]
×
∀i ≥ 1

and

Ei+1 =
i

∑
l=1

⎛
⎝
i

l

⎞
⎠
[ω]i−l

×
L⊺ [H]

×
L [ω]l−1

×
∀i > 1

As a consequence, the observability matrix for the system in Eq. (5.28) can be expressed as
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OL

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03 03 03

03 I3 03 03 03

03 03 − [La]
×

−L 03

03 03 03 03 [La]
×

L

03 03 D1 03 03

03 03 D2 03 E1

03 03 D3 03 E2

⋮ ⋮ ⋮ ⋮ ⋮
03 03 D15 03 E15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.40)

A nullspace analysis over OL reveals that:

● In the case that both a and ω are null, after eliminating null rows matrix OL reduces to

OL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03 03 03

03 I3 03 03 03

03 03 03 −L 03

03 03 L⊺ [H]
×

03 03

03 03 L̇⊺ [H]
×

03 −L⊺ [H]
×

L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Elements in the nullspace of the reduced OL have the form

nL1 =

⎛
⎜⎜⎜⎜⎜
⎝

06×1

H

03×1

L⊺H

⎞
⎟⎟⎟⎟⎟
⎠

and singular inputs can be identified as

us1 =
⎛
⎝
ba

bω

⎞
⎠

● If the platform is not rotating, i.e, ω = 0 and assuming non null value of the specific forces

a ≠ 0, matrices Di = 0∀i ≥ 2 and Ei = 0∀i ≥ 3, reducing the observability matrix to

OL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03 03 03

03 I3 03 03 03

03 03 − [La]
×

−L 03

03 03 03 03 [La]
×

L

03 03 L⊺ [H]
×

03 03

03 03 03 03 −L⊺ [H]
×

L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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The nullspace is again non-empty and contains elements of the form

nL2 =

⎛
⎜⎜⎜⎜⎜
⎝

06×1

H

− [a]
×

L⊺H

03×1

⎞
⎟⎟⎟⎟⎟
⎠

and singular inputs can be identified as

us2 =
⎛
⎝
k

bω

⎞
⎠
∀k ∈ R3,k ≠ ba

● In the case that a = 0, and the platform is rotating in a generic direction ω ≠ 0, OL1

simplifies whereas OL2 does not. The resulting observability matrix is represented by

OL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03 03 03

03 I3 03 03 03

03 03 03 −L 03

03 03 D1 03 03

03 03 D2 03 E2

⋮ ⋮ ⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Noting that matrices Ei share the nullspace represented by the vector H and that for a

generic ω matrices Di do not, the nullspace of OL is spanned by the vector

nL3 =
⎛
⎜⎜⎜
⎝

06×1

H

06×1

⎞
⎟⎟⎟
⎠

and singular inputs can be identified as

us3 =
⎛
⎝
ba

k

⎞
⎠
∀k ∈ R3,k ≠ bω

● If ω is parallel to the magnetic field direction, i.e, ω = κL⊺H and a take generic values,

matrices Ei share the same nullspace than Di. From a rank perspective this means that

block rows given by Di and Ei ∀i > 2 are redundant. As a consequence the nullspace

analysis can be made over the smaller matrix

O′

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03 03 03

03 I3 03 03 03

03 03 − [La]
×

−L 03

03 03 03 03 [La]
×

L

03 03 L⊺ [H]
×

03 03

03 03 L̇⊺ [H]
×

03 −L⊺ [H]
×

L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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As it can be observed this is the same observability matrix than the one presented when

ω = 0. As a consequence, the nullspace is spanned by the same vector

nL4 =

⎛
⎜⎜⎜⎜⎜
⎝

06×1

H

− [a]
×

L⊺H

03×1

⎞
⎟⎟⎟⎟⎟
⎠

and singular inputs can be identified as

usL4 =
⎛
⎝

k1

bω + k2L
⊺H

⎞
⎠
∀k1 ∈ R3,k1 ≠ ba, k2 ∈ R

Note that this case includes the case ω = 0 if k2 = 0.

● In the case that the vehicle rotates about the magnetic field vector and the specific force

also points in that direction, i.e., ω = κ1L
⊺H, a = κ2L

⊺H, OL1 reduces to

OL1 =

⎛
⎜⎜⎜⎜⎜
⎝

I3 03 03 03 03

03 I3 03 03 03

03 03 −κ1 [H]
×

−L 03

03 03 03 03 κ2 [H]
×

L

⎞
⎟⎟⎟⎟⎟
⎠

When is it the case, block columns three and five of OL1 share the nullspace of Di and Ei.

Then elements in the nullspace of OL have the form

nL5 =

⎛
⎜⎜⎜⎜⎜
⎝

06×1

H

03×1

L⊺H

⎞
⎟⎟⎟⎟⎟
⎠

and singular inputs are then

usL5 =
⎛
⎝
ba + k1L

⊺H

bω + k2L
⊺H

⎞
⎠
∀k1, k2 ∈ R

● In the case that a and ω are constant and do not fulfil any of the previous requirements, the

nullspace of OL does not simplify in any special way, however its kernel its still non-empty

and it is spanned by the vector

nL6 =

⎛
⎜⎜⎜⎜⎜
⎝

06×1

H

− [a]
×

L⊺H

03×1

⎞
⎟⎟⎟⎟⎟
⎠

The vector spanning the nullspace represents a rotation about the direction of the mag-

netic field for the attitude and an increment of accelerometer bias that is orthogonal to



98 CHAPTER 5. OBSERVABILITY OF QUADROTOR’S STATES

the direction of the magnetic field and the specific force. The constant singular inputs

compatible with this condition are given by

usL6 =
⎛
⎝
k1

k2

⎞
⎠

∀k1,k2 ∈ R3

with k1 ≠ ba + k1L
⊺H, k2 ≠ bω + k2L

⊺H for any k1, k2 ∈ R.

5.5.2 Singular input analysis of the body frame attitude error equa-

tions

This section deals with the singular input analysis of the LTV system in Eq. (5.29). By succes-

sively exponentiating matrix AR in Eq. (5.29b) and taking into account that [v]3
×
= − ∥v∥2 [v]

×
,

A5+i
R =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∝ A4
R for, i = 1,3,5, ...

∝ A5
R for, i = 2,4,6, ...

As a consequence, terms of the form CjRA5+i
R for i ≥ 1, j = 1,2 are proportional to previous

rows of the observability matrix, being redundant in terms of matrix rank. In addition note that

the time derivatives of AR share the same block structure and its k-th time derivative can be

calculated as

(k)
AR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

03 03 03 03 03

03 03 −
(k)
L [a]

×
−
(k)
L 03

03 03 03 03 03

03 03 03 03 03

03 03 03 03 03

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∀k ≥ 1

Considering the observability matrix related with C1R, and taking into account that Ċ1R = 0

and that C1RȦR = 0 the observability matrix corresponding to the measurement matrix C1R

can be written as

OR1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

CR1

Cr1AL

CL1A
2
L

CL1A
3
L

CL1A
4
L

CL1A
5
L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03 03 03

03 I3 03 03 03

03 03 −L [a]
×

−L 03

03 03 L [a]
×
[ω]

×
03 L [a]

×

03 03 −L [a]
×
[ω]2

×
03 −L [a]

×
[ω]

×

03 03 L [a]
×
[ω]3

×
03 L [a]

×
[ω]2

×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.41)
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By taking into account that CR2AR = 0 the observability matrix for CR2 can be written as

OR2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

CR2

ĊR2 +CR2AR

C̈R2 + 2ĊR2AR
...
CR2 + 3C̈R2AR + 3ĊR2A

2
R +CR2A

3
R

⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

⋮
i

∑
l=0

⎛
⎝
i

l

⎞
⎠
(i−l)
CR2A

l
R

⋮

⎞
⎟⎟⎟⎟⎟
⎠

(5.42)

where k in the last equations indicates the (block) row index. By developing the matirix expres-

sions it can be found that

OR2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

03 03 D1 03 03

03 03 D2 03 E2

03 03 D3 03 E3

⋮ ⋮ ⋮ ⋮ ⋮
03 03 D15 03 E15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where

Di+1 =
i

∑
l=0

(−1)i
⎛
⎝
i

l

⎞
⎠

[[ω]i−l
×

L⊺H]
×

[ω]l
×

∀i ≥ 0

Ei+1 =
i

∑
l=1

(−1)i
⎛
⎝
i

l

⎞
⎠

[[ω]i−l
×

L⊺H]
×

[ω]l−1
×

∀i ≥ 1

It is worth noting that matrices Di∀i > 1 share the vector L⊺H as an element of its nullspace

whatever the vector ω is. However this is not the case for matrices Ei whose linear combination

is full column rank. A nullspace analysis over O⊺

R = O⊺

R1
O⊺

R2
reveals that:

● For the case in which both a = 0 and ω = 0, the observability matrix OR reduces to

OR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03 03 03

03 I3 03 03 03

03 03 03 −L 03

03 03 [L⊺H]
×

03 03

03 03 03 03 − [L⊺H]
×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Elements in the kernel of OR have the form

nR1 =

⎛
⎜⎜⎜⎜⎜
⎝

06×1

L⊺H

03×1

L⊺H

⎞
⎟⎟⎟⎟⎟
⎠

and the associated singular input can be described by

usR1 =
⎛
⎝
ba

bω

⎞
⎠
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● In the case that the vehicle does not rotate, i.e., ω = 0 and the specific force is not null

a ≠ 0, after eliminating null rows, matrix OR reduces to

OR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03 03 03

03 I3 03 03 03

03 03 −L [a]
×

−L 03

03 03 03 03 L [a]
×

03 03 [L⊺H]
×

03 03

03 03 03 03 − [L⊺H]
×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

In that case the nullspace is spanned by vectors as

nR2 =

⎛
⎜⎜⎜⎜⎜
⎝

06×1

L⊺H

− [a]
×

L⊺H

03

⎞
⎟⎟⎟⎟⎟
⎠

And the associated constant singular input is represented by

usR2 =
⎛
⎝
k

bω

⎞
⎠
∀k ∈ R3,k ≠ ba

● In the case that there are no external actions acting over the platform a = 0 and the aircraft

rotates freely, ω ≠ 0, OR1 simplifies and the observability matrix is represented by

OR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03 03 03

03 I3 03 03 03

03 03 03 −L 03

03 03 [L⊺H]
×

03 03

03 03 D2 03 D3

03 03 D3 03 E3

⋮ ⋮ ⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Since as said Di ∀i ≥ 1 share the same nullsspace vector L⊺H, the nullspace of OR is

spanned by the vector

nR3 =
⎛
⎜⎜⎜
⎝

06×1

L⊺H

06×1

⎞
⎟⎟⎟
⎠

The associates singular input in this case is given by

usR3 =
⎛
⎝
ba

k

⎞
⎠
∀k ∈ R3,k ≠ bω



5.5. SINGULAR INPUTS OF THE IMU DRIVEN ERROR BASED LINEAR MODEL 101

● For the specific case in which ω is constant and parallel to the magnetic field, i.e, ω = κL⊺H

terms of the form [[ω]p
×

L⊺H]
×
∀p > 0 present in Di, Ei, i = 1,2, ..15 get null and OR

simplifies in

OR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03 03 03

03 I3 03 03 03

03 03 −L [a]
×

−L 03

03 03 L [a]
×
[L⊺H]

×
03 L [a]

×

03 03 −L [a]
×
[L⊺H]2

×
03 −L [a]

×
[L⊺H]

×

03 03 L [a]
×
[L⊺H]3

×
03 L [a]

×
[L⊺H]2

×

03 03 [L⊺H]
×

03 03

03 03 − [L⊺H]2
×

03 − [L⊺H]
×

03 03 [L⊺H]3
×

03 [L⊺H]2
×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Which shows that OR1 has a non-empty nullspace spanned by elements of the proportional

to

nR4 =

⎛
⎜⎜⎜⎜⎜
⎝

06×1

L⊺H

− [a]
×

L⊺H

03×1

⎞
⎟⎟⎟⎟⎟
⎠

Similarly as discussed for nL1, the vector spanning the nullspace represents a rotation about

the direction of the magnetic field for the attitude and an increment of accelerometer bias

that is orthogonal to the direction of the magnetic field and the specific force.

In contrast, the constant singular input compatible with this condition is given by

usR4 =
⎛
⎝
am

ωm

⎞
⎠
=
⎛
⎝

k1

bw + k2L
⊺H

⎞
⎠

∀k1 ∈ R3,k1 ≠ ba, k2 ∈ R

Note that this case includes the case ω = 0 which implies a non-rotating aircraft.

● In the much more particular case in which vectors a and ω are parallel and take the direc-

tion of the magnetic field, i.e., a = κ1L
⊺H and ω = κ2L

⊺H. Considering that redundant

rows are not necessary in terms of rank, the nullspace of OR is equivalent to that of O′

R

given by

OR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03 03 03

03 I3 03 03 03

03 03 − [L⊺H]
×

−L 03

03 03 [L⊺H]2
×

03 L [L⊺H]
×

03 03 −L [L⊺H]3
×

03 −L [L⊺H]2
×

03 03 [L⊺H]
×

03 03

03 03 − [L⊺H]2
×

03 − [L⊺H]
×

03 03 [L⊺H]3
×

03 [L⊺H]2
×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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from where it can be observerd that block columns three and five of OR share the same

nullspace L⊺H and as a consequence the nullspace of OR is represented by the vector

nR5 =

⎛
⎜⎜⎜⎜⎜
⎝

06×1

L⊺H

03×1

L⊺H

⎞
⎟⎟⎟⎟⎟
⎠

In a similar way as discussed before for nL2, nR2 represents a possible drift in the values

of the attitude and bω in the direction of the magnetic field. In this case the singular input

is identified by the vector

usR5 =
⎛
⎝
am

ωm

⎞
⎠
=
⎛
⎝
ba + k1L

⊺H

bω + k2L
⊺H

⎞
⎠

∀k1, k2 ∈ R

● For generic non-null constant values of a and ω, respectively constant values of am ≠ ba,

the rank analysis of OR can be related with the rank study of the reduced matrix O′

R

constructed from row elements of OR

O′

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03 03 03

03 I3 03 03 03

03 03 −L [a]
×

−L 03

03 03 L [a]
×
[ω]

×
03 L [a]

×

03 03 [L⊺H]
×

03 03

03 03 − [[ω]
×

L⊺H]
×
− [L⊺H]

×
[ω]

×
03 − [L⊺H]

×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Let the partition of O′

R as

O′

R = (r⊺1, r⊺2, r⊺3, r⊺4, r⊺5, r⊺6)
⊺

with ri representing the block row matrix and

nR6 = (n1
⊺, n2

⊺, n3
⊺, n4

⊺, n5
⊺)⊺

representing an element of the nullspace of O′

R, then

rinR6 = 0 ∀i = 1,2, ...,5

From a nullspace perspective, block rows r1 and r2, force any vector in the nullspace of

O′

R to have null n1 and n2, i.e., n1 = 0 and n2 = 0. The fifth block row r5 suggests that

components n3 of the null space vector have to be either zero or conform a vector parallel

to L⊺H, i.e,

r5nR6 = D1n3 = 0⇒ n3 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0

L⊺H
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In fact it can be seen that L⊺H is in the nullspace of any Di ∀i = 1,2, ..16. Using this, the

last block row of O′

R, r6, implies that n5 has to be again, either zero or conform a vector

parallel to L⊺H

r6nR6 = D2n3 +E2n5 = 0⇒ n5 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0

L⊺H

It can be shown that the non-null values of n3 and n5 proposed are not compatible with

the fourth block row i.e.,

L [a]
×
[ω]

×
L⊺H +L [a]

×
L⊺H ≠ 0

thus leading to the conclusion that n3 and n5 have to be null. With that, using the third

block row, it can be shown that n4 has to be also null, leading to an empty kernel for O′

R.

This implies that the matrix O′

R is full column rank. Furthermore, since O′

R is produced

from rows of OR, OR is also full column rank and as a consequence the system represented

by Eq. (5.29) is WLO.

5.5.3 LTV singular input analysis: results summary

Results presented shown that under particular aircraft configurations the observability of the

dynamic system is compromised.

Table 5.1 shows a condensed summary of the results obtained in the previous sections. It can be

observed that for the particular values of ω and a discussed the system has to have equivalent1

elements in the kernel produced by the same singular inputs. Many of the analysed configurations

are not likely to appear in practice, or usually controllers will not seek to hold those configurations

in time, e.g., turning about the magnetic field direction while the external forces points in the

same direction. From all of this singular inputs and associated system indistinguishable regions

the case for which ω = 0 and a ≠ 0 is the most generic configuration. In fact, this configuration

represents the aircraft in hover mode, a flight configuration central in many UAV misions.

The most stunning result is that the observability matrix derived for system Eq. (5.28) has not

full rank whenever ω and a are constant in contrast with the results for Eq. (5.29) which for

generic constant values of ω and a is demonstrated to be WLO. This inconsistency may have

been produced by the incremental formulation. If it is the case, this is a problem that may

compromise all the results. In order to verify them, the next section deals with the singular

input analysis directly over the nonlinear system.

1Note that for the system accounting for αL, H, represents a rotation about the vector field direction, which
is the same rotation represented by L⊺H for the system accounting for αR
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Condition System Nullspace Singular
inputs

a = 0
ω = 0

Eq. (5.28) (01×6, H
⊺, 01×3, (L⊺H)⊺)⊺

(b⊺a, b⊺ω)
⊺

Eq. (5.29) (01×6, (L⊺H)⊺ , 01×3, (L⊺H)⊺)⊺

a ≠ 0
ω = 0

Eq. (5.28) (01×6, H
⊺, − ([a]

×
L⊺H)⊺ , 01×3)

⊺

(k⊺, b⊺ω)
⊺

Eq. (5.29) (01×6, (L⊺H)⊺ , − ([a]
×

L⊺H)⊺ , 01×3)
⊺

a = 0
ω ≠ 0

Eq. (5.28) (01×6, H
⊺, 01×6)

⊺

(b⊺a, k⊺)
⊺

Eq. (5.29) (01×6, (L⊺H)⊺ , 01×6)
⊺

a ≠ 0
ω = κL⊺H

Eq. (5.28) (01×6, H
⊺, (− [a]

×
L⊺H)⊺ , 01×3) ⎛

⎜⎜⎜
⎝

k1

bω + k2L
⊺H

⎞
⎟⎟⎟
⎠Eq. (5.29) (01×6, (L⊺H)⊺ , (− [a]

×
L⊺H)⊺ , 01×3)

⊺

a = κ1L
⊺H

ω = κ2L
⊺H

Eq. (5.28) (01×6, H
⊺, 01×3, (L⊺H)⊺)⊺ ⎛

⎜⎜⎜
⎝

ba + k1L
⊺H

bω + k2L
⊺H

⎞
⎟⎟⎟
⎠Eq. (5.29) (01×6, (L⊺H)⊺ , 01×3, (L⊺H)⊺)⊺

a =constant
ω =constant

Eq. (5.28) (01×6, H
⊺, 01×3, (L⊺H)⊺)⊺ (k⊺1, k⊺2)

Eq. (5.29) - -

Table 5.1: Singular input comparison for LTV dynamics
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5.6 Singular inputs for the non-linear IMU driven dynam-

ics

This section is devoted to the finding of the singular inputs of Eq. (5.12) that make the full

state not estimable from the system input-output data. Again, constant inputs (null derivative

signals) are going to be considered as argued in Section 5.5. Assuming constant inputs implies

that time derivatives of input signal in Eq. (5.4) vanishes and reduces the observavility analysis

to the study of the rank of

O(x,u) =
⎛
⎜⎜⎜
⎝

⋮
∇xLkfhi(x)

⋮

⎞
⎟⎟⎟
⎠

for i = 1, ..,7 andk = 0, ...,m (5.43)

with f(x,u) representing the unique vector field obtained by considering ωm and am in Eq. (5.12a)

constant. Note that this is the main difference with respect to what is done in Section 5.4.

In this case, the codistribution matrix O depends on the singular input vector. We will use this

fact to find the singular inputs that make the system’s state not fully recoverable. To this end,

first the state dependent codistribution matrix is formulated. Then a set of singular inputs are

identified for which the system state can not be recovered from input-output data. For these

conditions the undistignuishable region is explicitly identified. Finally we use the same reasoning

line to show that no singular inputs appear in the case of not considering the bias dynamics.

5.6.1 General form of the codistribution matrix for constant inputs

Let Oj contain the Lie derivatives in Eq. (5.43) for hj with j = ξ,H, q̊

Oj =
⎛
⎜⎜⎜
⎝

∇x (L0
fhj)

∇x (L1
fhj)
⋮

⎞
⎟⎟⎟
⎠

(5.44)

and f be the dynamics in Eq. (5.12a). It is straightforward to derive

Oξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03×4 03 03

03 I3 03×4 03 03

03 03 A1 −L 03

03 03 A2 B2 C2

03 03 A3 B3 C3

⋮ ⋮ ⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.45)

being

Ap =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∇q̊ (L (am − ba)) forp = 1

∇q̊ (Ap−1 (Γ

2
(ωm − bω))) forp > 1

(5.46a)
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Bp = ∇ba (Ap−1 (Γ

2
(ωm − bω))) forp > 1 (5.46b)

Cp = ∇bω (Ap−1 (Γ

2
(ωm − bω))) forp > 1 (5.46c)

Noting that in general

∇q̊ (Lv)
Γ

2
p = L (p × v) (5.47)

the previous matrices can be written as

A2 = ∇q̊ (L (ω × a)) (5.48a)

A3 = ∇q̊ (L (ω × (ω × a))) (5.48b)

A2p = − ∥ω∥2
Ap ∀p > 2 (5.48c)

Bp = −L [ω]p−1
×

∀p > 1 (5.48d)

Expressing matrices Cp explicitly is not so simple, however the first of them can be written as

C2 = L [a]
×

C3 = −L ((a⊺ω) I3 + (ωa⊺) − 2 (aω⊺))
C4 = −C2 (3 (ω⊺ω) I3 + 2 [ω]2

×
)

The covector matrix related to the magnetometer measurements is given by

OH =

⎛
⎜⎜⎜⎜⎜
⎝

03 03 D1 03 03

03 03 D2 03 E2

03 03 D3 03 E3

⋮ ⋮ ⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟
⎠

(5.49)

being

Dp =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∇q̊ (L⊺H) forp = 1

∇q̊ (Dp−1 (Γ

2
(ωm − bω))) forp > 1

Ep = ∇bω (Dp−1 (Γ

2
(ωm − bω))) forp > 1

Noting that

∇q̊ (L⊺v) Γ

2
p = [L⊺v]

×
p (5.50)

the Dp matrices can be generated recursively as

Dp+1 = (−1)p [ω]p
×

Dp (5.51)
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for p > 1. The matrices Ep, as the matrices Cp are not easy to express explicitly, however as has

been done for Cp, the first of them can be expressed as

E2 = − [L⊺H]
×

E3 = − ((H⊺Lω) I3 + (ωH⊺L) − 2 (L⊺Hω⊺))
E4 = −E2 (3 (ω⊺ω) I3 + 2 [ω]2

×
)

Finally the covector matrix corresponding to the unit quaternion constraint can be expressed as

Oq̊ =

⎛
⎜⎜⎜⎜⎜
⎝

01×6 F1 01×3 01×3

01×6 F2 01×3 G2

01×6 F3 01×3 G3

⋮ ⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟
⎠

(5.52)

being

Fp =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∇q̊ (q2
0 + q⊺vqv) = q̊⊺ forp = 1

∇q̊ (Fp−1 (Γ

2
(ωm − bω))) forp > 1

Gp = ∇bω (Fp−1 (Γ

2
(ωm − bω))) forp > 1

Given that q̊⊺Γ = 0 by construction, Fp and Gp are null for p > 1. Then, the columnspace

spanned by Oq̊, named col (Oq̊) reduces to

col (Oq̊) = col ((01×6 q̊⊺ 01×3 01×3)) (5.53)

which can be shown to be a linear combination of the first three rows of OH i.e. noting that

R⊺H ≠ 0 ∀R ∈ SO(3)
(L⊺H)⊺ D1 ∝ q̊⊺

or which is equivalent,

det
⎛
⎝

D1

q̊⊺
⎞
⎠
= 0

Hence, considering Oq̊ in the observability analysis is redundant and, as a consequence, following

the rank criterion, the system is WLO if there exist u such that the matrix

O(x,u) =
⎛
⎝
Oξ(x,u))
OH(x,u))

⎞
⎠
, (5.54)

is full rank ∀x ∈M.

Finding all the points where the rank of O(x,u) is not complete is a difficult task. However, a

wide region of states where the rank of O fails to be maximum for a particular value of constant

inputs is identified in the next section.
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5.6.2 The role of angular speed in the observability

Theorem 5.6.1. The vector

u =
⎛
⎝

k1

bω + k2L
⊺H

⎞
⎠

for fixed k1 ≠ ba and fixed k2 ∈ R, is a singular input for the system Eq. (5.13), under measure-

ment equations Eq. (5.11).

Proof. The selected input relates with the aircraft angular speed and specific force by Eq. (4.2a)

and Eq. (4.2b) with null ηa and null ηω, which results in ω = k2L
⊺H and constant non null a.

Consider the case in which the aircraft is not rotating i.e. ω = k2L
⊺H with k2 = 0. By imposing

this condition over O(x) it can be verified that matrices Ap, Bp and Dp for p > 1 and matrices

Cp and Ep for p > 2 become null. That reduces the covector matrix O to

Os =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03×4 03 03

03 I3 03×4 03 03

03 03 A1 −L 03

03 03 03×4 03 C2

03 03 D1 03 03

03 03 03×4 03 E2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.55)

It can be verified that rank (Os) = 15. As a consequence, Os has a non-empty kernel spanned

by a unique symmetry

ws = kern (Os) =

⎛
⎜⎜⎜⎜⎜
⎝

06×1

1
2
Γ(q̊)L⊺H

[L⊺H]
×
(am − ba)

03×1

⎞
⎟⎟⎟⎟⎟
⎠

(5.56)

When k2 ≠ 0, O does not simplify. However, it can still be demonstrated that Eq. (5.56) is a

symmetry of the system by verifying that Ows = 0. Given that Os is a subpart of O it suffices

to verify, that for any p > 1

(03×6 Ap Bp Cp)ws = 0 (5.57a)

(03×6 Dp 03 Ep)ws = 0 (5.57b)

with ws the symmetry in Eq. (5.56). Eq. (5.57b) will always be satisfied since as shown in

Eq. (5.51) all Dp share the same nullspace. Then, by introducing Eqs. (5.48a-5.48d) in Eq. (5.57a)

and using Eq. (5.47) leads to

L ([k2L
⊺H]

×
[ω]p−1

×
a − [ω]p−1

×
[k2L

⊺H]
×
a) = 0

for p > 1, which is null for any ω = κL⊺H with independence of the value of p. As a consequence,

the covector matrix O is not full column rank, and the input-output map for this singular input

fails to be invertible.
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The integration of the continuous symmetry in Eq. (5.56), leads to the indistinguishable region

of x0 given by xI and parameterized by the scalar τ as

xI(x0, τ) = ∫
τ

0
wh(x(γ))dγ

whose solution is

xI(τ,x0) = (ξ⊺0, v⊺0, q̊I , b
⊺

aI
, b⊺ω0

)
⊺

(5.58)

where

q̊I = q̊0q̊τ = q̊0

⎛
⎜
⎝

cos(τ)
sin(τ) H

∥H∥

⎞
⎟
⎠

(5.59)

and

baI = am +L⊺(q̊I)L⊺(q̊0) (g) (5.60)

The connected set of infinite states represented by Eq. (5.58) maps to the same system’s output,

i.e. the same sensor readings with identical derivatives. As a consequence, the true value of the

state cannot be inferred without ambiguity. In particular, the state can be estimated up to an

arbitrary rotation of the attitude about the magnetic field direction represented by Eq. (5.59).

This rotation affects, in addition, the acceleration bias which, as shown in Eq. (5.60), adapts to

fulfill the velocity dynamics in Eq. (5.12a) with v̇ = 0.

It is important to note that this singular input is part of many important flight modes, char-

acteristic of Vertical Take-off and Landing (VTOL) UAVs. These include take-off and landing

manoeuvres, constant speed movement and, especially, the hover condition. These conditions

represent the most usual manoeuvres in the majority of missions of VTOL vehicles.

5.6.3 The role of specific forces in the observability

Theorem 5.6.2. The vector

u =
⎛
⎝
ba + k1L

⊺H

k2

⎞
⎠

for fixed k1 ∈ R and k2 ≠ bω, k2 ∈ R3 is a singular input for the system Eq. (5.13), under

measurement equations Eq. (5.11).

Proof. The input selected implies null external acceleration a = k1L
⊺H and constant turn rate

of the platform. The former relation, a = k1L
⊺H implies null matrices Ai, Bi and Ci for any

i given Eq. (5.46a). As a consequence, after eliminating null rows, the codistribution matrix O
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reduces to

O =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03×4 03 03

03 I3 03×4 03 03

03 03 A1 −L 03

03 03 D1 03 03

03 03 D2 03 E2

03 03 D3 03 E3

⋮ ⋮ ⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Given that the nullspace of D1, represented by the vector

w3 = null (D1) =
Γ(q̊)

2
L⊺H

is shared for any Dp, p > 2 (see Eq. (5.51)), and L, E3 and obviously identity matrix are full row

rank, the dimension of the columnspace of O is 9 and its nullspace is spanned by the symmetry

ws =
⎛
⎜⎜⎜
⎝

06×1
Γ(q̊)

2
L⊺H

06×1

⎞
⎟⎟⎟
⎠

(5.61)

As a consequence, the state can not be obtained from the input-output map which fails to be

invertible locally.

The integration of the symmetry leads to an indistinguishable region represented by a rotation

obout the magnetic field direction affecting the attitude, i.e,

xI(τ,x0) = (ξ⊺0, v⊺0, (q̊0q̊I)⊺ , b⊺a0 , b
⊺

ω0
)
⊺

(5.62)

where

q̊I =
⎛
⎜
⎝

cos(τ)
sin(τ) H

∥H∥

⎞
⎟
⎠

(5.63)

The ideal case in which the specific forces are null is interesting because it is related with what

can be expected when the aircraft actuation is null during flight. However, in practice, external

actions are never null even in the case of null actuation given that drag forces are always present

for a moving platform. The case in which a = k1L
⊺H is very narrow, and unlikely to happen

in normal aircraft missions. Note that the main source term contributing to a is the actuator

force, whose main task is to control the aircraft. Then, the conflicting case a = k1L
⊺H with k1

will be accomplished if fact points in a direction near to L⊺H which might only depend on the

controlling or trajectory tracking purposes.
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5.6.4 Singular input analysis for generic constant inputs

When system inputs do not take the particular values discussed previously the observability

matrix has full row rank. This can be demonstrated analysing the nullspace of the reduced

matrix

O′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03×4 03 03

03 I3 03×4 03 03

03 03 A1 −L 03

03 03 A2 B2 C2

03 03 D1 03 03

03 03 D3 03 E3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.64)

Since any element in the nullspace of O has to be also in the nullspace of O′, demonstrating that

the nullspace of O′ is empty implies that the nullspace of O is also empty.

Let

ws = (w⊺

1, w
⊺

2, w
⊺

3, w
⊺

4, w
⊺

5, )
⊺

be the a potential symmetry for the system, then for every block row of O′, denoted by ri i =
1,2, ...,6 has to be orthogonal to the symmetry

riws = 0

It is clear that the orthogonality condition for r1, r2 can only be accomplished by choosing

w1 =w2 = 0.

The relation

r5ws = D1w3 = 0

forces w3 be either 0 or Γ
2
L⊺H. Eq. (5.51) shows that any vector in the nullspace of D1 is also

a null vector of Dp, then the product

r6ws = D3w3 +E3w5 = E3w5

Given that E3 is full rank it can be seen that w5 = 0.

Developing the product r3, ws leads to

A1
Γ(q̊)

2
L⊺H −Lw4 = L [L⊺H]

×
a −Lw4 = 0

which lead to w4 = [L⊺H]
×
a = − [a]

×
L⊺H.

Finally, r4ws leads to

L ([L⊺H]
×
[ω]

×
a − [ω]

×
[L⊺H]

×
a)

which is not zero in the general case that a ≠ 0 or ω ≠ L⊺H. As a consequence w3 = 0

which forces all the vector ws to be null indicating that the nullspace of O′ and henceforth the
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nullspace of O are empty. Since the nullity of O is zero its rank is maximum and equals the

system dimension (n = 16) as a consequence the state is observable from the input-output map.

5.6.5 Singular input analysis without bias

Even though the literature is used to admit the sensor model in Eq. (4.2) to account for the

internal dynamics of the IMU, system biases could be taken as constant in the case of having

precise enough sensors (with stable readings). However, the estimation performance would be

closely linked to the accomplishment of the sensor stability premise.

Consider the reduced state

xr = (ξ⊺, v⊺, q̊⊺)⊺ (5.65)

whose dynamics are defined by

ẋr = f(xr) =
⎛
⎜⎜⎜
⎝

v

g +L(q̊) (am − b̄a)
1
2
Γ(q̊) (ωm − b̄ω)

⎞
⎟⎟⎟
⎠

(5.66)

where b̄ω and b̄a are fixed known quantities. The WLO of the reduced system can be verified from

results in Section 5.4 and ensuring that the rank of the reduced observability matrix (composed

by the two left column blocks of Eq. (5.30)) equals the dimension of the reduced estate, i.e., 10.

This section, introduced for the sake of completeness, is devoted to show that for the reduced

dynamic system is not free of singularities. In the case that u = (a⊺m, ω⊺m) is constant, the

codistribution matrix is represented by

Or(xr,u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03×4

03 I3 03×4

03 03 A1

03 03 A2

⋮ ⋮ ⋮
03 03 D1

03 03 D2

⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

which is full row rank provided that (A⊺

1D⊺

1)⊺ is full column rank which is produced whenever

am ≠ L⊺H + b̄a.

When a = k1L
⊺H Ai = Bi = Ci = 0 as can be seen in Eq. (5.46a). Since the nullspace of matrices

Di is represented by vectors multiples of 1
2
Γ(q̊)L⊺H, the nullspace of Or is spanned by the

symmetries

wsr =
⎛
⎝

06×1

= 1
2
Γ(q̊)L⊺H

⎞
⎠

(5.67)
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This will also hold even in the case of considering the angular velocity bias and its dynamics. In

that case, the codistribution matrix

Or2(xr,u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I3 03 03×4 03

03 I3 03×4 03

03 03 A1 03

03 03 A2 C2

03 03 A3 C3

⋮ ⋮ ⋮
03 03 D1 03

03 03 D2 E2

03 03 D3 E3

⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

is full column rank for generic values of a, however, Eq. (5.67) is still a symmetry when a = L⊺H.

This integration of this symmetry, produces and indistinguishable region composed by an addi-

tional rotation about the magnetic field direction as it was the case in Section 5.6.3.

As commented before, since the actuator direction, fixed in the body frame, represents the

leading term in a, it is very unlikely to have system trajectories visiting the undistinguishable

region for long time periods.

5.7 Observability issues: results

In order to highlight and give sound to the presented findings, the results of applying an estimator

to a controlled UAV described by Eq. (5.7) in hover flight is analysed. This simulation intends

to highlight the unability to obtain good state estimations in the hover case.

A diagram of the simulated system is shown in Fig. 5.1.

Figure 5.1: Simulation diagram

Note that the controller is not in feedback with the estimator output data. Otherwise, in

the case when the estimator failed to produce good estimations (when the system visited the

indistinguishability region) the control actions would provide undesired motion and deviations

from the hover condition. It is a non-realistic simulation for control, although it is legitimate in

this case since only in simulation it is possible to know the true values of the biases.

Noise is present in the sensors through a realistic model calibrated from static measurements

of a real quadrotor. The state estimation implemented is a Multiplicative Extended Kalman
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Filter (MEKF) [77, 26] adapted to the dynamics in Eq. (5.9). It has been designed to receive

sensors outputs of the IMU, magnetometers and GPS asynchronously at rates of 100 Hz, 30 Hz

and 5 Hz respectively and supply estimates of the state at 100 Hz. The state reconstructed by

the estimator is depicted in Fig. 5.2 as well as the true values of the simulated states, Fig. 5.3,

Fig. 5.4, Fig. 5.5 and Fig. 5.6.

Figure 5.2: Position Figure 5.3: Linear velocity

Figure 5.4: Attitude quaternion

From the results it is apparent that the position, the velocity and the gyroscope bias converge to

the true values. However, the accelerometer biases and the attitude quaternion do not. This is

the effect of the singular inputs. The state estimator cannot distinguish between the true value of

the attitude and the accelerometer bias and any other value inside the indistinguishable region.

As a consequence, the state drifts, evolving inside the indistinguishable region, and cannot be
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Figure 5.5: Accelerometer bias Figure 5.6: Gyroscope bias

corrected. To better illustrate this effect, the incremental quaternion rotation between every

estimated quaternion shown in Fig. 5.4 has been calculated as

δq̊k = q̊k+1q̊
−1
k .

From there, the direction about which the incremental rotation is made can be extracted by

normalizing the vectorial part of the quaternion

ek =
δqvk

∥δqvk∥
(5.68)

Fig. 5.7, shows an histogram of the values of e by axis against the normalized direction of the

true magnetic field set in simulation as

H = (0.546, 0.007, 0.838)
⊺

.

It can be observed that while the noise introduces random rotations in almost any direction, the

preference to rotate about H and hence to evolve inside the indistinguishable region prevails in

the estimated system trajectory.

Finally Fig. 5.8 shows how the velocity equation in Eq. (5.12a) is fulfilled (achieving null value)

in spite of the non converging values of the estimated bah and q̊h.
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Figure 5.7: Incremental rotation direc-
tion

Figure 5.8: Acceleration for the esti-
mated state

Comparing results with LTV analysis

The observability properties of the system in Eq. (5.12a), driven by IMU outputs and assuming

magnetometer and GPS outputs as measurements, have been analyzed in the previous sections. A

non-linear analysis of the non-linear system in Eq. (5.13) under measurement equations Eq. (5.11)

showed that the system has singular inputs for which an important symmetry exists, Eq. (5.56).

The integration of the symmetry leads to an indistinguishable region that compromises the state

estimation whenever the aircraft is in hover.

Similar indistinguishable regions, as the one derived for the non-linear case, are shown in Sec-

tion 5.5.1 and Section 5.5.2 when using the LTV system equations and analysis. However, as has

been pointed out before and it is shown in Table 5.1, the LTV analysis presents an incongruence.

The singular input analysis of Eq. (5.28) predicts estimation problems for constant angular ve-

locity ω and constant specific force a. This results differ from which have been obtained in the

singular input analyses of Eq. (5.29) under same conditions which coincides with what has been

derived for the the non-linear case.

The results of applying an estimator to a controlled UAV are provided to verify the observability

predictions derived from the non-linear and the LTV procedures. In this case the same simulation

set up presented in the previous section (Fig. 5.1) with the same controller and state estimator

parameters has been used. The only difference is that, in this case, noise at the output has been

eliminated to enhance results readability.

The first simulation implements a hover flight. Results (Figs. 5.12, 5.13, 5.11) show that, as

expected, the estimator is not capable to estimate correctly neither the acceleration bias nor the
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attitude quaternion. In contrast, position (Fig. 5.9) and velocity(Fig. 5.10) estimates converge

to the true values in less than 3 s. This is what was expected given the input analysis results.

The second scenario is near hover flight, but with the aircraft spinning with a constant yaw rate

(i.e., yaw is linearly increasing). In this case, the LTV method associated to Eq. (5.28) still

expects observability issues while the method considering Eq. (5.29) and the non-linear analysis

predict the proper estimation of the state. Simulation results shown in Figs. (5.14-5.18) depicts

the proper convergence of all the states to their true values.

The comparison of the LTV and non-linear observability analyses shows how the later does not

suffer from parametrization induced problems when compared with the simpler LTV analysis.

Given that the analysis needs to be done only once, complexity of the method is justified by

providing a more accurate description of the observability issues on the platform.

Figure 5.9: Position for the hovering case
Figure 5.10: Velocity for the hovering

case
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Figure 5.11: Attitude quaternion for the hovering case

Figure 5.12: Accelerometers bias for the
hovering case

Figure 5.13: Gyroscopes bias for the
hovering case
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Figure 5.14: Position for the yawing case Figure 5.15: Velocity for the yawing case

Figure 5.16: Accelerometers bias for the
yawing case

Figure 5.17: Gyroscopes bias for the
yawing case
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Figure 5.18: Attitude quaternion for the yawing case
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5.8 Conclusion

In this chapter the observability study of a body flying in a 3D space using GPS, IMU and

magnetometer sensors has been contemplated. Linear and non-linear observability analyses have

been presented. These analyses show that the system has singular configurations for the specific

case of some constant inputs. When aplying these results to VTOL aircrafts it is possible to

conclude that the observability is degraded in many important flight modes containing the hover

condition. In these cases, attitude and accelerometer biases can not be uniquely determined

since the estimation is free to evolve along a unidimensional path that relates every possible ori-

entation to a different accelerometer bias. In particular, with the aircraft in hover, the estimated

orientation is determined except for a rotation about the magnetic field direction, whereas the

accelerometer bias adapts itself to compensate for the difference between the measured specific

force and the gravity which is expressed in the body frame by means of the estimated orientation.

The non-linear observability analysis provided avoids the discrepancies that the linear analysis

present depending on the model error equations in use. Since the goal of the observability study

is to verify the possibility of implementing state estimation solutions, its anlaysis implies off-line

calculations that only need to be run once. Hence, the unambiguity and insights provided by

the non-linear formulation justify its additional complexity.





Chapter 6

State Estimation

State estimation is an important element in any automatic control system that is to be imple-

mented in a flying vehicle. Autonomy of flying robots and in particular navigation of unmanned

aerial vehicles needs of state estimation algorithms to provide complete knowledge of the aircraft

state and at the same time remove noise of the measured variables. Even the simplest controller

for attitude stabilization requires some kind of data fusion to obtain the pitch, roll and yaw

angles.

The attitude determination problem has been deeply studied in the past for its importance in

satellite and space missions. A good overview of filtering techniques and attitude determination

methods, a central problem in this area is provided in [26].

State estimation of unmanned aircraft needs in addition the tracking of the linear velocity and

position variables which are coupled with the attitude as shown in Chap. (3). State estimation

with navigation purposes can be approximated using linear theory with a Luenberger observer or

a Kalman filter when the aircraft is near hover. However, equations of motion for flying vehicles

are non-linear and linear approximations may be too crude for many applications and specifically

for those that need high manoeuvrability of the platform. Consequently, it is more usual to use

nonlinear state observers, such as the Extended Kalman Filter (EKF) [35, 77], the Unscented

Kalman Filter [49, 33], the sliding mode observer [12] and algorithms derived from them.

This chapter deals with the EKF, probably the most frequent state observer in the UAV domain.

However few derivations considering the full navigation state exist and none of them have dealt

with our specific sensor setup. In the Section 6.1 the discrete Kalman Filter (KF) and Extended

Kalman Filter (EKF) basics are exposed. In Section 6.2 we derive the adaptation of the system

dynamics and discuss filtering strategies to implement our particular EKF for which precise al-

gorithmic expressions are given. We also discuss issues that are typically not reported in the

literature, such as when to update or propagate in the estimator algorithm or which coordinate

frame (body or world) should be used to represent each state variable. This leads to the formu-

lation of four potentially different but equivalent discrete event-based filters. An initialisation

routine to determine the initial attitude of the aircraft in a steady condition is presented and

123
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the section concludes with flow diagram of the filter to be implemented. Section 6.2.7 shows the

simulation results of the execution of the four filters and a small comparative of the results for

a specific scenario were observability is guaranteed.

6.1 Kalman and Extended Kalman filters

The Kalman Filter used for state estimation is able to produce optimal (minimum variance)

results for linear systems with linear measure equations in presence of white Gaussian noise,

such as

xk+1 = Φxk +Gvk

zk = Cxk +Fwk

where, xk, zk, vk and wk represent the state, the measurement, the model error and the mea-

surement noise at the discrete time instant k. The matrix Φ is known as propagation matrix,

whereas C is known as measurement matrix. Both describe the effect of the system state in the

next time step. B and D represent the effect of uncertainty in the system outputs and does not

have any special name in literature.

The idea under the Kalman filter is to track the evolution of the state and a measure of its

uncertainty in time and fuse them with the also uncertain system observations. In the case that

vk and wk are normal distributed, and time uncorrelated (white Gaussian processes), given the

linearity of the model, it is guaranteed that the states can be defined as white Gaussian processes

too. Since a Gaussian variable can be completely described by its first two static moments (mean

and covariance), the process of filtering a random variable reduces to tracking the value of the

two parameters that define the distribution.

Let x̂k represent the estimation of of the state vector x at the time instant k and let Pk describe

the covariance of the estimation error xk − x̂k. Let Qk represent the covariance of Gv and Rk

the covariance of Fw. Let x− and x+ identify the predicted and corrected estimation values

respectively. Then, the Kalman filtering process can be decomposed in two steps:

● Prediction or propagation: The mean estimation of the system states are propagated

through the mean nominal model. In this phase the covariance of the error grows contin-

uously due to the model errors

x̂−k+1 = Φx̂+k

P−

k+1 = ΦPkΦ
⊺ +Qk

(6.1)

● Correction or update: When a measurement is available, the state and the state error

covariance are updated by means of a linear correction. The linear gain K is known as

Kalman Gain and ensures minimum covariance of the estimation error after correction
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K = P−

k+1C
⊺ (C⊺P−

k+1C +Rk)−1

x̂+k+1 = x̂−k+1 +K (zk+1 −Cx̂−k+1)
P+

k+1 = (I −KC)P−

k+1

(6.2)

The optimal gain calculated above will change at every iteration based on the past value of the

error estimation covariance. However since the system is guaranteed to converge to the optimal

estimation, the gain matrix achieves an stationary value after some iterations. This constant

value can be calculated beforehand and used as Kalman gain. This procedure still ensures the

convergence to the optimal result and avoids calculating an inverse of an p × p matrix (being p

the measurement dimension) at the expense of a accepting slower convergence.

In practice, real dynamic systems are not linear, measurement equations are not linear, and the

disturbances involved do not behave as white gaussian noises. The Extended KF (EKF) is an

extension of the traditional Kalman Filter that applies the same structure of Kalman filter to sys-

tems that aren’t linear or are involved with non-gaussian noises or disturbances. In the filtering

process, the EKF predicts incoming measurements and future states using the system non-linear

equations while the second statistic moment is propagated through a linearized version of the

system dynamics and measurement equations. It must be clear that the probability density

function (pdf) of a random variable transformed by a non-linear function may not be character-

izable by the same set of parameters than before the transformation. While the Kalman gain is

still selected to minimize the size of the second statistic moment, this does not ensure minimum

error on the estimation. As a consequence the results of applying the EKF are suboptimal in

the sense that they would converge to the optimal ones as the nonlinearities of the system are

relaxed and the probabilistic distribution of the errors and noises present in the system approach

to the white-noise case.

For the general discrete non-linear system described by

xk+1 = f (xk,vk)
zk = h (xk,wk)

the propagation and correction steps are defined by Algorithm. 2 and Algorithm. 3 respectively.

Algorithm 2: EKF propagation

Data: x̂+k−1, Pk−1, zk, Qk

Result: x̂−k , P−

k

1. Linearize the process model on x = x̂+k−1 → Φ = ∂f
∂x

∣
x̂+
k−1

, G = ∂f
∂v

∣
x̂+
k−1

2. Predict the covariance at the next time step P−

k = ΦPk−1Φ
⊺ +GQG⊺

3. Predict x̂−k from x̂+k−1 and the process model x−k+1 = f (x+k ,0)

The jacobian of functions f and h present in both, propagation and correction algorithms, con-

stitute the linear approximation of the system used for the covariance propagation, the Kalman

gain calculation and state and covariance correction.
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Algorithm 3: EKF correction

Data: x̂−k , P−

k , zk, Rk

Result: x̂+k , P+

k

1. Linearize the measurement model on x = x̂−k → C = ∂h
∂x

∣
x̂−
k

2. Calculate the suboptimal gain K = P−

kC
⊺(CP−

kC
⊺ +R)−1

3. Update the covariance of the estimation error P+

k = (I −KC)P−

k

4. Estimate the sensor output ẑ from the measurement model at x = x̂−k , ẑ = h(x̂−k ,0)

5. Update the state x̂+k = x̂−k +K(zk − ẑ)

6.2 Particularizing the EKF

The generalities of the last section are particularised here to generate a state estimator for

our platform. The estimation problem can be reduced to estimating the state Eq. (2.75a) or

Eq. (2.75b) whose dynamics are given by Eq. (3.10), Eq. (3.11) respectively under the measure-

ments of GPS, IMU and magnetometer sensors. However, two important drawbacks difficult

the implementation of the general filter shown in the last section. Firstly, the specific suite of

sensors under consideration. Particularly the bias present in the IMU sensors make the use of

its measurements invalid for state correction. IMU measures, can be used to drive the dynamic

system instead of correcting it, by replacing angular velocities and the effect of external forces,

at expenses of extending the state as shown in Chap. (5). While increasing the length of the

state will in general increase the computational burden of the estimation algorithm, by consid-

ering IMU measurements in the propagation phase prevents the inversion of square matrix with

dimension the length of the measurement vector (6 × 6 in this case) at a rate given by the IMU

sampling rate (usually about 100 Hz) speeding up the algorithm execution.

Secondly, the quaternion constraint ∥q̊∥ = 1 is not satisfied by default by the update of the filter.

The consideration of that constraint makes the covariance matrix to be positive semi-definite

(PSD) by construction [46]. This is a case difficult to deal with in both propagation and update

stages. In the propagation step is difficult to guarantee the PSD condition of the covariance

matrix after the propagation step due to the linear transformation. Singular covariances are

conflicting in the update stages cause they can lead to non-symmetric or negative definite error

covariance matrix after the update. As a consequence, quaternions should be avoided when using

filters with linear correction updates. The solution is to use an incremental error state δx over

the mean estimation of the true state x which uses a minimal representation for the attitude. In

such a way, the variables contemplated by the EKF filter are δx and its associated covariance,

which will not have singularity problems when using a minimal attitude parametrization. If that

is the case, the true estate x can be related with the nominal x̂ and incremental one δx by

x = x̂⊕ δx (6.3)
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or

x = δx⊕ x̂ (6.4)

where the symbol ⊕ stands for composition. For the case that the error state relates with the

true state by direct addition or subtraction over the nominal state, the composition is commu-

tative and then, the two previous relations become equivalent. However, since the incremental

attitude is naturally defined over the nominal attitude by multiplication (in contrast to the ad-

ditive structure usually used), and attitude composition is not commutative, the nominal plus

incremental error state decomposition leads to two possible sets of states as shown in Eq. (5.14).

In view of the fact that the correction step only affects the incremental state, a new filter step

has to be considered right after the correction in order to transfer the information from the

incremental state to the nominal state and reset the incremental value to zero. This new stage

was introduced under the name of reset step in [56].

6.2.1 Nominal and error state dynamics and measure equations

The incremental state formulation and its impact on the system dynamics have been already

presented in Section 5.3.2 and Section 5.3.3, where the observability of the state in Eq. (2.75a)

have been considered. In what follows, they will be reproduced for the sake of completeness and

similar results will be provided by considering the alternative state in Eq. (2.75b). This leads to

four different filter dynamics and measurement equations that will be derived.

The IMU driven state equivalent to Eq. (2.75a) is represented by

xIMU1 = (ξ⊺, vw ⊺, q̊⊺, b⊺a, b
⊺

ω)
⊺

with dynamics Eq. (5.9)

ẋIMU1
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

vw

g +L(q̊) (am − ba − ηa)
1
2
Γ(q̊) (ωm − bω − ηω)

ηba
ηbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.5)

By defining the relation between the true attitude, the estimated attitude, and the attitude error

(represented by twice the Gibbs vector) in the body αR or world αL frames using Eq. (5.16)

results in

q̊ =

ˆ̊q
⎛
⎝

2

αR

⎞
⎠

√
4 +α⊺RαR

(6.6)

or

q̊ =

⎛
⎝

2

αL

⎞
⎠

ˆ̊q

√
4 +α⊺LαL

(6.7)
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two possible error states

δxL1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δξ

δv

αL

δba

δbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ξ − ξ̂
vw − v̂w

αL

ba − b̂a
bω − b̂ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.8)

δxR1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δξ

δv

αR

δba

δbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ξ − ξ̂
vw − v̂w

αR

ba − b̂a
bω − b̂ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.9)

can be obtained.

These error states lead to two feasible and different dynamic systems Eq. (5.24) and Eq. (5.25)

˙δxL1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δ̇ξ
˙δv

α̇L

δ̇ba

δ̇bω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δv

(L(αL) − I3)L(ˆ̊q) (am − b̂a) −L(αL)L(ˆ̊q) (δba + ηa)
− 1

2
(2I3 + αLα

⊺
L

2
+ [αL]×)L(ˆ̊q) (δbω + ηω)
ηba
ηbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.10)

and

˙δxR1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δ̇ξ
˙δv

α̇R

δ̇ba

δ̇bω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δv

L(ˆ̊q) (L(αR) − I3) (am − b̂a) −L(ˆ̊q)L(αR) (δba + ηa)
− (I3 + αRα

⊺
R

4
) (δbω + ηω) + 1

2
αR × (2ωm − 2b̂ω − δbω − ηω)
ηba
ηbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.11)

Note that by assuming αL << 1 or αR << 1 and neglecting second order terms Eq. (5.26) and

Eq. (5.27) are obtained.

A similar procedure can be carried out by considering the second navigation state in Eq. (2.75b).

The difference form the previous case is that now the velocity v is defined in the body frame

xn2 = (ξ⊺, vb ⊺, q̊⊺, ω⊺)⊺

The alternate IMU driven state is defined by

ẋIMU2
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

vb

L⊺(q̊) gw + (am − ba − ηa) − (ωm − bω − ηω) × vb

1
2
Γ(q̊) (ωm − bω − ηω)

ηba
ηbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.12)
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From here, again two different error representations are valid

δxL2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δξ

δv

αL

δba

δbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ξ − ξ̂
vb − v̂b

αL

ba − b̂a
bω − b̂ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.13)

or equivalently

δxR2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δξ

δv

αR

δba

δbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ξ − ξ̂
vb − v̂b

αR

ba − b̂a
bω − b̂ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.14)

whose dynamics are defined by

˙δxL2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δ̇ξ
˙δv

α̇L

δ̇ba

δ̇bω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(L(αL) − I3)L(ˆ̊q) v̂b +L(αL)L(ˆ̊q)δv
L⊺(ˆ̊q) (L⊺(αL) − I3)) gw + −δba − ηa + (δbω + ηω) × ( v̂b + δv) − (ωm − b̂ω) × δv

− 1
2
(2I3 + αLα

⊺
L

2
+ [αL]×)L(ˆ̊q) (bω − b̂ω + ηω)

ηba
ηbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.15)

and

˙δxR2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δ̇ξ
˙δv

α̇R

δ̇ba

δ̇bω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

L(ˆ̊q) (L(αR) − I3) v̂b +L(ˆ̊q)L(αR)δv
(L⊺(αR) − I3)L⊺(ˆ̊q) gw − δba − ηa + (δbω + ηω) × ( v̂b + δv) − (ωm − b̂ω) × δv

− (I3 + αRα
⊺
R

4
) (bω − b̂ω + ηω) + 1

2
αR × (2ωm − bω − b̂ω − ηω)

ηba
ηbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.16)

Using the decomposition of the true state as in Eq. (6.3) or Eq. (6.4) the measure equations for

the magnetometer in Eq. (4.3) become

hH(x̂, δx,ηH) = L(ˆ̊q)⊺L(αL)⊺ Bw + ηH (6.17)
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or

hH(x̂, δx,ηH) = L(αR)⊺L(ˆ̊q)⊺ Bw + ηH (6.18)

In the case of the GPS measurement Eq. (4.4), the same equation holds with independence of

the attitude

hξ(x̂, δx,ηξ) = ξ̂ + δξ + ηξ (6.19)

Depending on the navigation state chosen and the choice for the incremental attitude error, four

different but a priori equivalent non-linear dynamic systems are obtained. The initial estimation

problem is then converted to the estimation of the IMU driven state, the incremental state and

its associated covariance under known dynamics that use IMU measurements to propagate the

state and GPS and magnetometer observations to perform corrections.

6.2.2 Implementation

On the implementation side, the EKF need of:

● The integration of the continuous dynamic equations in the propagation step. The nonlin-

earities of the equations makes impossible, in many cases, to find closed solutions. When

that is the case, approximations or numerical integration schemes are used.

● The derivation of discrete jacobians that allow to propagate the uncertainty in the state

variables and fuse them with the measurement uncertainties. This can be done by numer-

ical approximation or preferably, in the cases when it is possible, by means of symbolic

derivation for further faster evaluation.

This section focuses on the specific derivation and implementation of the filter equations for

propagation correction and reset steps of the filter concerning the state xIMU1 and δx1L . The

remaining three options will be presented compactly at the end of the section.

For convenience we will denote xIMU1 as x, we usually will refer to its estimation, denoted by

x̂, as nominal state. In accordance, δxL1 will be denoted by δx and referred to as state error or

incremental state. The process errors will be considered to be part of the vector

ηp = (η⊺a,η⊺ω,η⊺ba ,η
⊺

bω
)⊺

and the inputs, am and ωm will be grouped under

u = (a⊺m,ω⊺m)⊺

The nominal state dynamics in Eq. (6.5) will be denoted by fx(x,u,ηp), or simply fx and the

dynamics of the error state in Eq. (6.10) as f δx(δx, x̂,u,ηp), or in short, f δx.
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Propagation step

During the propagation step, both, the nominal state and error state are propagated by integrat-

ing their respective non-linear models. At the beginning of the generic time step k, the nominal

state representing the best approximation to the true state available is x̂+k−1 and the error state

associated to it is considered as null (imposed as initial condition and later forced by the reset

step).

The particular form of the flow f δx for a null initial value of the error state δx = 0 results in

˙δxL1 = 0

and as a consequence the value of the error state will not be altered, remaining null at the end

of the propagation step δx−k = δx+k+1 = 0

The estimation of the nominal state at time tk, can be obtained by using the its value at time

k − 1, x̂+k−1, taking the input vector u as constant during the integration time and imposing a

null mean value for the process noise ηp = 0

x̂−k+1 = x̂+k + ∫
tk+1

tk
fx

RRRRRRRRRRRR
x=x̂+k
ηp=0

dt (6.20)

While the integral concerning the position and velocity states can be calculated by

⎛
⎝
ξ̂k+1

v̂k+1

⎞
⎠
=
⎛
⎝
ξ̂k

v̂k

⎞
⎠
+ ∫

tk+1

tk

⎛
⎝

v̂w

g +L(ˆ̊q) (am − b̂a)
⎞
⎠

dt (6.21)

and it can be seen that the biases does not change its values in the integration interval

⎛
⎝
b̂ak+1
b̂ωk+1

⎞
⎠
=
⎛
⎝
b̂ak
b̂ωk

⎞
⎠

(6.22)

for the quaternion, the simple integration

q̊−k+1 = q̊+k + ∫
tk+1

tk

1

2
q̊˚̂ω dt

may not produce a unit quaternion at the time instant tk+1 given the finite numerical precision.

Note that since the quaternion product can be written as

1

2
q̊˚̂ω = M(˚̂ω)q̊

being

M(˚̂ω) = 1

2

⎛
⎝

0 −ω̂⊺

ω̂ − [ω̂]
×

⎞
⎠
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taking ω̂ = ωmk−bωk as piece-wise constant between time measures, the solution of the differential

equation is

q̊−k+1 = exp (M (tk+1 − tk)) q̊+k = exp (M∆t) q̊+k (6.23)

it turns out that exp (M∆t) for constant ω can be exactly calculated resulting in

exp (M∆t) = (cos( ∥ω̂∥
2

∆t) I4×4 +M
sin(

∥ω̂∥
2 ∆t)

∥ω̂∥
)

which is equivalent to compose the actual quaternion from the right as

q̊−k+1 = q̊+k r̊ (6.24)

with

r̊ =
⎛
⎝

cos( ∥ω̂∥
2

∆t)
sin( ∥ω̂∥

2
∆t) ω̂

∥ω̂∥

⎞
⎠

(6.25)

A similar result can be achieved by interpreting ω∆t as a rotation vector (see Section 2.3.4) and

using Eq. (2.71) to generate the quaternion r̊.

In the EKF framework, the covariance of the error state is propagated using the discrete transi-

tion matrix and the discrete process model covariance matrix. Those matrices can be estimated

from their continuous counterparts as

Φ = Φ(∆t) = exp (A∆t)

Qk = ∫
∆t

0
Φ(s)GQcG

⊺Φ(s)⊺ds

(6.26a)

(6.26b)

with A and G representing the jacobian of the continuous dynamics f δx evaluated at x =
x̂+k , δxk = 0 and under the assumption of null mean process noise and constant inputs in the

integration interval

A = ∂f δx
∂δx

RRRRRRRRRRRRRRRR
δx=0
x̂=x̂+k
ηp=0

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

03 I3 03 03 03

03 03 − [L(ˆ̊q+k) (am − b̂+ak)]
×

−L(ˆ̊q+k) 03

03 03 03 03 −L(ˆ̊q+k)
03 03 03 03 03

03 03 03 03 03

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.27)

G = ∂f δx
∂ηp

RRRRRRRRRRRRRRRR
δx=0
x̂=x̂+k
ηp=0

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

03 03 03 03

−L(ˆ̊q+k) 03 03 03

03 −L(ˆ̊q+k) 03 03

03 03 I3 03

03 03 03 I3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.28)

Integrals in Eq. (6.26a) and Eq. (6.26b), are often numerically approximated by truncation of

a series expansion and assuming GQcG
⊺ diagonal. In Section 6.2.4 we describe a numerical
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method for their exact calculation under the assumption of constant A and Qc and a closed

form for the specific case of the IMU driven state under consideration in this section, xIMU1 .

The propagation step will be run any time that IMU measurements are available. Denoting by

∆t the difference in time between the last propagation and the current one, the propagation step

is summarised in Algorithm. 4

Algorithm 4: EKF propagation

Data: x̂+k−1, P+

k−1, ωm, am, ∆t
Result: x̂−k , P−

k

1. Calculate the incremental quaternion using Eq. (6.25).

2. Propagate the mean state by using Eqs. (6.21,6.22 and 6.24) to obtain x̂−k

3. Evaluate the jacobians in Eqs. (6.27 and 6.28)

4. Obtain the discrete transition matrix and process noise using Eq. (6.26)

5. Predict the covariance at the current time step P−

k = ΦP+

k−1Φ
⊺ +Qk

Measurement equations and update step

Measurements from magnetometers and GPS will not generally coincide in time, therefore, dif-

ferent updates steps must be applied depending on the incoming measure. Processing the system

measures separately is, in fact, beneficial since in the calculation of the Kalman gain, a large

matrix (with size, the length of the measurement vector) has to be inverted. By splitting the

correction step in two, the inversion of a 6x6 matrix is simplified to the inversion of two 3x3

matrices. If the measurements from the GPS and magnetometer were uncorrelated (which is

not the general case) then the update process could be run once for every component of the

measurement avoiding any matrix inversion.

From the implementation perspective, the update step is given by the evaluation of the Algo-

rithm. 3 slightly adapted to deal with our specific case. When a new measurement of the GPS

or the magnetometer is available, at instant k, the state of the filters must be propagated up to

that instant using Algorithm. 4 along with the most recent values of ωm and am to obtain x̂−k

and P−

k (δx−k must remain null). Then, the correction procedure, particularised for the type of

measurement in queue, allows to obtain the corrected state δx+k , and its associated covariance

P+

k .

The state correction makes use of the real measurement and a synthetic measurement generated

by the predicted state and the measurement equations, present in Eq. (6.17) and Eq. (6.19), to

correct the incremental state and the jacobian of the measure equations to correct the covariance.
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Both equations and jacobians evaluated at the generic state x̂ = x̂−k , and δx−k = 0 result in

ẑ = ĥξ(x̂, δx,ηξ)

RRRRRRRRRRRRRRRRRR

x=x̂−k+1
δx=δx−k+1=0

ηξ=0

= ξ̂−k (6.29a)

Cξ =
∂hξ

∂δx

RRRRRRRRRRRRRRRRRR

x=x̂−k+1
δx=δx−k+1=0
ηH=0

= (I3 03×12) (6.29b)

for the GPS measurements and

ẑ = hH(x̂, δx,ηH)
RRRRRRRRRRRRRRR
x̂=x̂−k
δx=0
ηH=0

= L(ˆ̊q−k)⊺ Bw (6.30a)

CH = ∂hH
∂δx

RRRRRRRRRRRRRRRRRR

x=x̂−k+1
δx=δx−k+1=0
ηH=0

= (03×6 L(ˆ̊q−k) [ B
w ]

×
03×6) (6.30b)

for the magnetometer.

The error measurement covariance matrices R can be obtained by examining the sensor’s output

in stationary conditions during a long period of time.

RH = cov(ηH)

Rξ = cov(ηξ)

Specific values for this matrices are presented in Section 4.3.2.

The update algorithm can be then formulated as

Algorithm 5: EKF correction

Data: P−

k , ωm, am, zk, measurement type
Result: δx+k , P+

k

1. Evaluate the measurement function and Jacobian in Eq. (6.29) or Eq. (6.30) depending of
the measurement type to obtain ẑ and C.

2. Calculate the suboptimal gain K = P−

kC
⊺(CP−

kC
⊺ +R)−1

3. Update the covariance of the estimation error P+

k = (I −KC)P−

k

4. Update the state δx+k = K(zk − ẑ)

Note that by admitting null incremental state after propagation, it does not need to be an input

of Algorithm. 5, which is also reflected in line four of the algorithm.
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Reset step

After the update, the incremental states are corrected and in general they will take non-zero

values. In contrast, the nominal state is not affected by the correction. The reset step, run at

the end of every correction step, transfers the information accumulated in the incremental state

to the nominal state implementing Eq. (6.4) and resetting the incremental state to zero,

ξ̂
+

k = ξ̂
−

k + δξ+k (6.31a)

v̂+k = v̂−k + δv+k (6.31b)

ˆ̊q+k =

⎛
⎝

2

α̂L

⎞
⎠

ˆ̊q−k

XXXXXXXXXXX

⎛
⎝

2

α̂L

⎞
⎠

ˆ̊q−k

XXXXXXXXXXX

(6.31c)

b̂
+

ak
= b̂−ak + δb

+

ak
(6.31d)

b̂
+

ωk
= b̂−ωk + δb

+

ωk
(6.31e)

Note that Eq. (6.31c) has been slightly modified from Eq. (6.7). Given that the denominator in

Eq. (6.7) is just an scalar factor, Eq. (6.31c) serves the same purpose enforcing the unit-norm

that otherwise can be lost due to numerical precision errors.

After the reset of the filter states, Eq. (4.2b) and Eq. (4.2a) can be used to correct the values of

the a and ω variables by accounting for the estimated bias as

â = am − b̂a
ω̂ = ω − b̂ω

(6.32a)

(6.32b)

The reset step is summarised in Algorithm. 6

Algorithm 6: EKF reset

Data: P−

k , ωm, am, zk, measurement type
Result: δx+k , P+

k

1. Transfer information of the incremental state to the nominal state using Eq. (6.31).

2. Update the values of the estimated angular velocity and external force acceleration using
Eq. (6.32).

3. Reset the incremental state to zero.
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Note that the last step of the algorithm can be omitted, since algorithms Algorithm. 4 and

Algorithm. 5 are already adapted to consider null value of the incremental step.

6.2.3 Summary and formulation for other filter realisations

The derivation of the filter equations carried out with the state variables xIMU1 and δxL can be

similarly done with the remaining variables leading to four different filter formulations. Eq. (6.22)

and Eq. (6.24) in the propagation, Eq. (6.30a), Eq. (6.29a) and Eq. (6.29b) in the correction

and Eq. (6.31) with the exception of Eq. (6.31c) in the reset step, do not depend on the attitude

and velocity parametrization chosen. The incremental state δx is also independent of the filter

choice and does not modify its value during the propagation step as long as it is selected to be

null at the beginning of the filtering process.

The values of the jacobian matrices A and G both depend on the attitude error and the velocity

parametrizations chosen. Whereas the update equations of hH and the jacobian CH depend

only on the quaternion error representation.

In Table 6.1, the equations describing
˙̂
ξ, ˙̂v and α̇ are specified along with the values of A, G

and CH that define the implementation of the four filters proposed.
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6.2.4 Exact calculation of Φ and Qk

In the filtering process, the propagation routine is called when a new IMU measurement arrives.

IMU’s are able to run at rates up to ≈ 1 kHz and as a consequence it is important to optimize

the code inside the propagation.

As presented in [89], the calculation of the transition matrix Φ and the discrete covariance Qk

can be achieved in the case that A and G are constant by the calculation of a unique matrix

exponential with twice the size of A as

exp
⎛
⎝

⎡⎢⎢⎢⎢⎣

−A GQcG
⊺

0 A⊺

⎤⎥⎥⎥⎥⎦
∆t

⎞
⎠
=
⎡⎢⎢⎢⎢⎣

F2 M

03 Φ⊺

⎤⎥⎥⎥⎥⎦

from where the dimension of the zero matrix 0 is equal to the dimension of A, F2 is not used

and Qk = ΦM.

There exist many ways for computing efficiently the matrix exponential and python and MatLab

both use implementations based on the article [66]. Those methods usually approximate the

exponential by either using a truncation of a series expansion, calculating eigenvalues or using

other kinds of approximations for the matrix exponential. However, for the specific case of the

filter developed in depth in the previous sections, Filter 1, the matrix exponential can be exactly

determined.

Closed form for Filter 1

The jacobian matrix A in Eq. (6.27) derived for the filter state δxL1 is a nillpotent matrix, i.e.

its powers, Ak, become null for a finite value of k. In this particular case, for k > 3.

As a consequence, the decomposition of the matrix exponential as an infinite Taylor series sum-

mation,

Φ(∆t) = exp (A∆t) =
∞

∑
j=0

(A∆t)j

j!

reduces to

Φ(∆t) = exp (A∆t) =
3

∑
j=0

(A∆t)j

j!

when the term am − ba inside A is considered constant.

The transition matrix Φ can be then written as

Φ(∆t) =

⎛
⎜⎜⎜⎜⎜
⎝

I3 I3∆t S∆t2

2
R∆t2

2
SR∆t3

6

03 I3 S∆t R∆t SR∆t2

2

03 03 I3 03 R∆t

06×9 I6

⎞
⎟⎟⎟⎟⎟
⎠

(6.33)

being R = −L(ˆ̊q) and S = − [L(ˆ̊q) (am − b̂a)]
×
.
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By substituting Eq. (6.33) in Eq. (6.26b) and integrating, the next discrete error covariance

matrix is obtained

Qk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

t5A1 + t8 (W3 +AB2) + t10WB5 t2A1 + t6 (W3 +AB2) + t9WB5 t7WB4 + t3W2 t3AB1 t4WB3

t1A1 + t5 (W3 +AB2) + t8WB5 t2W2 + t6WB4 t2AB1 t3WB3

t1W1 + t5WB2 03 t2WB1

SYM t1Rba 03

t1Rbω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

being

A1 =RRaR⊺ W1 =RRωR⊺ WB1 =RRbω WB4 = SRRbωR⊺

AB1 =RRba W2 = SRRωR⊺ WB2 =RRbωR⊺ WB5 = SRRbωR⊺S⊺

AB2 =RRbaR⊺ W3 = SRRωR⊺S⊺ WB3 = SRRbω

and

t1 = ∆t t2 =
∆t2

2
t3 =

∆t3

6
t4 =

∆t4

24
t5 =

∆t3

3

t6 =
∆t4

8
t7 =

∆t5

30
t8 =

∆t5

20
t9 =

∆t6

72
t10 =

∆t7

252

This closed form, avoids the general calculation of the matrix exponential replacing it by a few

matrix multiplications without any approximation.

Closed analytic forms for the transition matrix and discrete covariances can be also obtained

for the remaining filters despite of having non-nillpotent A matrices. It is possible given the

structure of A and properties of the skew-symmetric matrix powers. However the solution

obtained is analytically complex and depends of multiple evaluation of trigonometric functions.

6.2.5 Initialising the filter

Initial values of the estimated states are needed to start the filtering process. Initial rough values

for the position and angular velocity can be set from their respective sensor measurements by

neglecting bias and errors ba = bω = ηp = 0. Moreover by initialising the filter at a rest position

(e.g., with the quadrotor steady on the ground), vw or vb can be set to zero. In this section a

procedure similar to one the shown in [88] is presented to estimate the quaternion orientation that

relates the world and body frames based on measurements of accelerometers and magnetometers.

The method is based on the attitude parametrization in [86] which decomposes a generic rotation

in a sequence of two rotations about a known vector and its perpendicular direction. Compared

to [88], the present method calculates the quaternion in a clearer and simpler way, with less

operations and without the need to impose the direction of gravity in the world frame to be

vertical.
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Quaternion orientation from 2 vectors

Let two different frames with coincident origin be denoted by {F1} and {F2}. Let in addition

the vectors a and b represent physical 3D quantities for which their coordinates are known in

{F1} and {F2}, i.e., the four three dimensional vectors aF1 , bF1 , aF2 and bF2 are known.

Figure 6.1: Two generic reference frames with different attitude and two vectors.

Let q̊0 be the quaternion that represents the relative attitude between the frames such that

aF1 = L(q̊0) aF2

bF1 = L(q̊0) bF2

(6.34a)

(6.34b)

Finally, let the quaternion to be decomposed as

q̊0 = q̊∥q̊�

where:

● q̊� represents a rotation from frame {F2} to an intermediate frame {Fi} which shares the

direction of a with the frame {F1}, but does not necessarily share the direction of b. Then

aFi = L(q̊�) aF2 = aF1 (6.35)

● q̊∥ represents a rotation from the intermediate frame about the direction of aF1 = aFi that

makes

bF1 = L(q̊∥) bFi = L(q̊∥)L(q̊�) bF2 (6.36)

Note that the rotation L(q∥) will have no effect when applied over aF1 which implies that

Eq. (6.35) and Eq. (6.36) are compatible.

By admitting the above proposals the problem of finding an initial attitude is reduced to finding

q̊∥ and q̊� which map both, a and b from frame {F2} to {F1} which after composition gives q̊0.
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The first rotation is defined to make aF1 = L(q�) aF2 . The simpler and shorter rotation will be

a rotation about the orthogonal direction of the plane that contains aF2 and aF1 , i.e.,

u = aF2 × aF1

∥ aF2 × aF1 ∥ (6.37)

an angle θ ∈ [−π,π] given by

θ = arccos( aF2 ⊺ aF1

∥ aF2 ∥ ∥ aF1 ∥) (6.38)

Such rotation can be directly encoded in a quaternion by

q̊� =
⎛
⎝

cos(θ/2)
sin(θ/2)u

⎞
⎠

(6.39)

which needs the computation of a dot product, a cross product, three vector norms and three

trigonometric computations.

Even not being indispensable, the same quaternion can be constructed in a more straightforward

way without the use of trigonometric functions and substituting the three vector norms by two

quaternion norms as formulated in Algorithm. 7:

Algorithm 7: Quaternion from two vectors

Data: aF1 , aF2

Result: q̊�

1. Calculate the auxiliar non-unit quaternion

q̊temp = ( aF2 ⊺ aF1

aF2 × aF1
) (6.40)

and its norm ∥q̊temp∥.

2. Replace the scalar component of the quaternion by

q̊temp0 = q̊temp0 + ∥q̊temp∥ (6.41)

3. Normalize the resulting quaternion as

q̊� =
q̊temp

∥q̊temp∥
(6.42)

Note that the quaternion in Eq. (6.40) could be written as

q̊temp = ∥ aF2 ∥ ∥ aF1 ∥
⎛
⎝

cos(θ)
sin(θ)u

⎞
⎠
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whose norm is ∥ aF2 ∥ ∥ aF1 ∥. After Eq. (6.41) the norm transforms to

∥q̊temp∥ = 2 ∥ aF2 ∥ ∥ aF1 ∥
√

1 + cos(θ)
2

Finally, given that for θ ∈ [−π,π]
√

1 + cos(θ)
2

= cos(θ
2
)

and by considering the double angle trigonometric relation, sin(θ) = 2 cos(θ/2) sin(θ/2) Eq. (6.42)

produces

q̊� =

⎛
⎜⎜⎜⎜⎜
⎝

cos(θ) + 1

2
√

cos(θ)+1
2

sin(θ)

2
√

cos(θ)+1
2

u

⎞
⎟⎟⎟⎟⎟
⎠

=
⎛
⎝

cos( θ
2
)

sin( θ
2
)u

⎞
⎠

The quaternion q̊∥ represents a rotation about the line of aF1 that finally makes vectors in

{Fi} to meet {F1}. The quaternion that performs this rotation can be found by following the

procedure in Algorithm. 7 by substituting inputs aF1 and aF2 by b′ and b′′ being

b′ = bF1 × aF1 (6.43)

and

b′′ = bFi × aF1 = L(q̊�) bF2 × aF1 (6.44)

The initialisation process shown is reversible in the sense that the same exact result can be

obtained by exchanging a and b but having different intermediate quaternions.

The initial orientation of the aircraft can be obtained by replacing the vectors aF1 , bF1 , aF1

and bF2 by gw , Hw , ab and Hb , under force equilibrium (gravity compensated, i.e. steady in

the ground). However, in practice, misalignment between accelerometers and magnetometers

sensors as well as uncertainty in the components of Hw and in a more limited sense gw , make

the presented procedure not fully reversible. When the relative disposition between vectors a

and b is not the same for every frame, the described methodology, recreates the quaternion q̊0

that aligns the vector a in both frames and minimize the angle between the representations of

b, i.e.,

q̊0 =arg min
q̊

( Hw ⊺L(q̊) Hb )2

s.t. gw ⊺ −L(q̊) ab = 0

Moreover, once calculated q̊0 this process allows to produce new estimations of the local gravity

and magnetic field vectors as gw′ = L(q̊0) ab and Bw ′ = L(q̊0) ( Bb ). Given that the new gw′,

Bw ′ make sensor readings coherent with the model, its use replacing the nominal ones will

diminish the effect of the miss-alignment and sensitivity calibration enhancing the estimation in

the filtering process.
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6.2.6 Filter execution flow

As has been exposed before, the initial continuous-discrete filter (continuous dynamics and dis-

crete measurements) have been converted at a discrete discrete event-triggered filter after con-

sidering the IMU state and its incremental form. Fig. 6.2, shows the diagram flow that describes

the implementation of the Filter 1, detailed in the previous section.

measurement

Measurement Measurement

measurement

Algorithm. 6

Algorithm. 5

Algorithm. 4

Algorithm. 4

Figure 6.2: Flow diagram for the state filtering process of the Filter 1.

A lock has been added to guarantee single thread access to the state in the presence of multiple

events occurring simultaneously in time. The event based filtering updates the time whenever a

new measurement is available. Given the serial communication with the platform it is unlikely

to have delayed measurements, so a simple discard strategy is applied over sensor outputs if the

measurement corresponds to a time instant in the past. This strategy is also supported by the

high rate associated to the sensor measurements.
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Figure 6.3: First loop path trajectory commanded to the aircraft

6.2.7 Results

In order to show the operation of the filters, the simulation framework shown in Fig. 5.1, have

been considered again. The controller is given by a PID for the attitude in cascade with a

PD position controller with gravity compensation. The reference trajectory is an eight-shaped

trajectory with constant height, constant path velocity and linearly increasing heading angle

represented by the lemniscata equation

x(t) = a sin(γ(t))
y(t) = a cos(γ(t)) sin(γ(t))

z(t) = 0

ψ = ωpt
λ̇(t) = vp

a
√

2 + cos2(γ(t)) − 2cos2(γ(t)) sin2(γ(t))

with a = 4 m defining the path span, vp = 1 m s−1 the path velocity and ωp = 2π
30

rad s−1 the angular

heading velocity.

The resulting path is shown in Eq. (6.3), and has been intentionally selected to avoid the constant

appearance of singular inputs described in Section 5.6.

Initial conditions for the simulation have been set to guarantee null initial yaw angle and null

initial position and velocity. The true north magnetic field direction vector has been chosen to

be

Hw = (569.0,6.5,822.3)⊺ (6.45)
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The calibrated sensor models (equal per axis gain and fixed bias corrected) presented in Sec-

tion 4.2 have been used to reproduce asynchronous and noisy sensor outputs during the simula-

tion. Initial value for the accelerometer and gyroscope bias have been set higher than the usual,

to help visualize the filter bias convergence

ba0 = (0.19, 0.071, −0.29)⊺ bω0 = (−0.097, 0.077, 0.80)⊺

respectively.

The run of the four filters has been made after the initialization described in Section 6.2.5, and

assuming the same sensor models than in simulation. The initial error covariance matrix have

been chosen large enough to account for the uncertainty of the initial estimates. In particular,

it have been chosen as

P0 = blkdiag (Pξ0 ,Pv0 ,Pα0 ,Pba0 ,Pbω0
)

being

Pξ0 = diag (1, 1, 1) (6.46a)

Pv0 = diag (0.3, 0.3, 0.3) (6.46b)

Pba0 = diag (0.05, 0.05, 0.05) (6.46c)

Pbω0 = diag (0.05, 0.05, 0.05) (6.46d)

Pα0 = 10−4

⎛
⎜⎜⎜
⎝

5.1781 0.0407 7.5490

0.0407 5.1791 0.1684

7.5490 0.1684 13.7766

⎞
⎟⎟⎟
⎠

(6.46e)

The first four matrix error covariances shown have been selected to ensure that with a 95% of

probability the initial position, velocity, accelerometer bias and gyroscope bias errors will be

contained in a ball of 3 m, 1.65 ms−1, 0.22 ms−2 and 0.22 rad s−1 of radius respectively. The initial

covariance of the attitude error has been derived by running the initialization algorithm over a

synthetic test of 1000 random vector realizations for the magnetic field and the gravity assuming

an error covariance in Hw as defined by Eq. (4.26) and the error distribution for a = gw given

by the initial covariance error in Eq. (6.46c). The resulting quaternions have been transformed

to twice the Gibbs vector as in Eq. (5.15) and matrix Pα0 , Eq. (6.46e), represents its covariance.

The covariance ensures that with a 95% of probability the initial attitude will be determined

within an error inferior to 13 deg about any direction.

Figs. (6.4-6.12) show the output of the Filter1 compared with the true state. Filters outputs are

generated from simulated data and model sensors and true values are obtained from the simulated

state. The plots that contain magnitudes directly related with the incremental state by addition

or subtraction such that the estimated position (Fig. 6.4), velocity (Fig. 6.5), the accelerometer

bias (Fig. 6.8) and the gyroscope bias (Fig. 6.9), incorporate information of the confidence

intervals calculated from the diagonal elements of covariance matrix. Finally, Fig. 6.4, Fig. 6.10,

Fig. 6.11 and Fig. 6.12 also show the value of the simulated sensors. The filter convergence to
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the true values is attained within the first two seconds of simulation for the position, attitude

and gyroscope bias and convergence of the velocity and accelerometer bias is achieved in the

next three seconds.

Figure 6.4: Aircraft position.

Figure 6.5: Aircraft velocity.
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Figure 6.6: Aircraft attitude quaternion.

Figure 6.7: Aircraft Euler angles.
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Figure 6.8: Aircraft accelerometer bias.

Figure 6.9: Aircraft gyroscope bias.
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Figure 6.10: Aircraft external forces acceleration.

Figure 6.11: Aircraft angular velocity.
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Figure 6.12: In-body magnetic field direction.
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Results of the four filter implementations are given in the error plots Figs.(6.13-6.20). Duplicate

velocity plots are shown in order to consider the different velocity choices between filters. The

same has been done to show the attitude error, however in this case it was just a choice since the

same error could be used from the known quaternion at the output of the four filters. As it can

be seen, with independence of the filter, the errors and error covariances shown are very similar,

demonstrating the equivalence of the four filters. Table 6.2 show the accumulated estimation

error calculated as

Ej =
√

1

T
∫

T

0
e⊺jej dt

with j representing either position, velocity, attitude, accelerometer bias or gyroscope bias, e

representing the estimation error of that variable and T the simulation time.

Figure 6.13: Aircraft position estimation error.
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Figure 6.14: Aircraft velocity estimation error for filters 1 and 2.

Figure 6.15: Aircraft velocity estimation error for filters 3 and 4.
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Figure 6.16: Aircraft attitude estimation error for filters 1 and 3.

Figure 6.17: Aircraft attitude estimation error for filters 2 and 4.
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Figure 6.18: Accelerometer’s bias estimation error.

Figure 6.19: Gyroscope’s bias estimation error.
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Figure 6.20: Log-log plots of the diagonal entries of the estimation error covariance matrix.



156 CHAPTER 6. STATE ESTIMATION

Table 6.2: Accumulated estimation error for the 4 filter implementations

6.3 Dealing with observability issues

Biases are slow varying, and this is the reason why many people takes them as constant. In

Chap. (5) it has been shown that taking biases as constant eliminates the most conflicting

indistinguishable region that appears around the hover configuration. This is not a bad idea

when good estimates of the initial values of biases are available and the system running time is

short enough not to have the real value of the bias deviated too much from its assumed constant

estimation. However, if any of the previous conditions is not fulfilled, the system state estimates

can diverge from the true values. An engineering approach to the problem is to inflate the

covariance of the state process noise to account for the uncertainty associated to the considered

bias value in the reduced states. This solution comes with the drawback of having to tune the

covariance by trial-and-error [96].

A way of dealing with this problem is by using the Schmidt Kalman Filter ( SKF, also known as

Consider Kalman Filter CKF) [78, 96]. This filter allows a separation of the full state between

traditional states and “considered” states, i.e., those states whose value is going to be considered

as if they were known parameters. With such a partition in mind, an optimization problem can

be solved to find the optimal filter gain that minimizes the a posteriori error covariance under the

constraint of not updating the considered states. This procedure leads to a modified gain, which

is suboptimal in the sense that does not minimize the full state error covariance. In contrast,

the new filter does not modify the considered states values nor the associated covariances in the

correction step, but it takes into account the effect of the uncertainty of the considered states in

the remaining state. This is useful because, at this point the considered states can be dropped

from the filter, and just the short version of the states and its associated equations need to be

taken into account. The Schmidt Kalman filter has also demonstrated to be effective in the case

that the considered states have low observability as for example when considering camera offsets

or gravity coefficients [96, 98].

Observability results of Chap. (5) demonstrated that flying in some configurations cause ob-

servability degradation in the sense that the state can not be fully recovered from input-output

information. By studying the kernel of the observability matrix it has been demonstrated that

the system has one degree of freedom represented by the extra parameter in the indistinguishable

region in Eq. (5.58) that relates the system attitude and the accelerometer biases. Note that, this

degree of freedom could be eliminated by having a sensor measuring one of the states involved in

the indistinguishable region or, what is shown to be equivalent [84], by imposing an additional

constraint involving one of those states. By default, the Schmidt Kalmand Filter (SKF), will
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implement the optimal solution of the problem under the constraint of constant value on the

considered states eliminating the extra degree of freedom. However, the observability analysis

suggests that there is no need to impose all the bias values to be constant. On the contrary, by

fixing one of them the state turns out to be recoverable from input-output data.

Estimation examples have been provided in this chapter and at the end of Chap. (5) depict-

ing estimation performance under favourable and unfavourable flight conditions. In particular,

results in Chap. (5) are appealing since they demonstrate that the traditional EKF, tends to

provide incorrect estimations when the system is inside an indistinguishable region. In what

follows, we present a filter based in the Schmidt Kalman Filter, that exploits information from

the symmetries and indistinguishable regions derived in Chap. (5) to restrict the evolution of

the solution in some undesirable directions.

6.3.1 The Schmidt Kalman filter update

Let the values of x− and P− be known at the time instant when a new noise corrupted measure-

ment related with the state by the linear (or linearized) measurement model

y = Cx + η

is available. Then a linear update can be produced by

x̂+ = x̂− +K (y −Cx̂−)

Denoting by e− = x − x̂− the a priori error, and using the measurement model, the a posteriori

error can be calculated as

e+ = x − x̂+ = (I −KC)e− +Kη

And the a posteriori error covariance as

P+ = E ((x − x+) (x − x+)⊺) = P− −KCP− −P −C⊺K⊺ +KW−1K⊺ (6.47)

being

W = (CP−C⊺ +R)

Note that at this point no assumptions have been made for the gain. Thus Eq. (6.47) is valid

for any choice of K. The Kalman filter selects the gain K that minimizes the trace of the a

posteriori error covariance matrix. i.e.

Kopt = argmin
K

trace(P+)

which leads to the the optimal gain

Kopt = P−C⊺W−1 (6.48)
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and updates for the state and error covariance in Algorithm. 5.

Let now the state partition be,

x⊺ = (xs,xp)

where xs represents the states that are going to be updated and xp represents the states that

are not going to be updated, but whose uncertainty is expected to impact the estimation of xs.

This partition extends to the system measurement matrix as

C = (Cs Cp)

and the Kalman gain matrix

K =
⎛
⎝
Ks

Kp

⎞
⎠

and allows the formulation of the a posteriori error covariance matrix as

P+ =
⎛
⎝
P+

ss P+

sp

P+

ps P+

pp

⎞
⎠

(6.49)

being

P+

ss = P−

ss −KsC
⎛
⎝
P−

ss

P−

ps

⎞
⎠
−
⎛
⎝
P−

ss

P−

ps

⎞
⎠

⊺

C⊺K⊺

s +KsWK⊺

s

P+

sp = P−

sp −KsC
⎛
⎝
P−

sp

P−

pp

⎞
⎠
−
⎛
⎝
P−

ss

P−

ps

⎞
⎠

⊺

C⊺K⊺

p +KsWK⊺

p

P+

ps = (P+

ps)
⊺

P+

pp = P−

pp −KpC
⎛
⎝
P−

sp

P−

pp

⎞
⎠
−
⎛
⎝
P−

sp

P−

pp

⎞
⎠

⊺

C⊺K⊺

p +KpWK⊺

p

Under this partition, the optimization problem to compute the gain is

(Ksopt ,Kpopt) = argmin
Ks,Kp

trace(P+) = trace(P+

ss) + trace(P+

pp) (6.50)

Since Ks is only present in the P+

ss equation and it is not contained in P+

pp and the same is true

for the case of Kp and P+

pp and P+

ss respectively, the optimization problem could be split in two

Ksopt = argmin
Ks

trace(P+

ss) = (P−

ss P−

sp)C⊺W−1
(6.51)

Kpopt = argmin
Kp

trace(P+

pp) = (P−

ps P−

pp)C⊺W−1
(6.52)

which represents the same solution of Eq. (6.48) with the difference of having two separated

parts.
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By substituting the optimal gain Ks = Ksopt but letting Kp undefined in Eq. (6.49), the off-

diagonal elements of the error covariance matrix can be written without considering Kp as

P+

sp = P−

sp −KsoptC
⎛
⎝
P−

sp

P−

pp

⎞
⎠
−
⎛
⎝
P−

ss

P−

ps

⎞
⎠

⊺

C⊺K⊺

p + (P−

ss P−

sp)C⊺K⊺

p =

P−

sp −KsoptC
⎛
⎝
P−

sp

P−

pp

⎞
⎠

(6.53)

and P+

ps = (P+

ps)
⊺

. This leads to the error covariance matrix

P+ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

P−

ss −KsoptWK⊺

sopt P−

sp −KsoptC
⎛
⎝
P−

sp

P−

pp

⎞
⎠

P−

ps −
⎛
⎝
P−

sp

P−

pp

⎞
⎠

⊺

C⊺K⊺

sopt P−

pp −KpC
⎛
⎝
P−

sp

P−

pp

⎞
⎠
−
⎛
⎝
P−

sp

P−

pp

⎞
⎠

⊺

C⊺K⊺

p +KpWK⊺

p

⎞
⎟⎟⎟⎟⎟⎟
⎠

In the case of also imposing Ks = Ksopt , the error covariance matrix in Algorithm. 5 is recovered.

It can be written, in partitioned form, as

P+

opt =

⎛
⎜⎜⎜⎜⎜⎜
⎝

P−

ss −KsoptWK⊺

sopt P−

sp −KsoptC
⎛
⎝
P−

sp

P−

pp

⎞
⎠

P−

ps −
⎛
⎝
P−

sp

P−

pp

⎞
⎠

⊺

C⊺K⊺

sopt P−

pp −KpoptWK⊺

popt

⎞
⎟⎟⎟⎟⎟⎟
⎠

In the case of the Schmidt Kalman filter, the value of Kp is forced to be null if the constraint of

not updating the state xp for any measurement y and with independence of the previous state

estimate x̂− is considered. Since Eq. (6.51) does not depend on Kp, the solution of Eq. (6.48)

leads to a suboptimal gain

KSKF =
⎛
⎝
KsSKF

0

⎞
⎠
=
⎛
⎝
Ksopt

0

⎞
⎠
=
⎛
⎝
P−

ssC
⊺

s +P−

spC
⊺

p

0

⎞
⎠

W−1 (6.54)

By substituting the result in Eq. (6.54) into Eq. (6.49), the a posteriori covariance turns up to

be

P+

SKF =

⎛
⎜⎜⎜⎜⎜⎜
⎝

P−

ss −KsSKFWK⊺

sSKF
P−

sp −KsSKFC
⎛
⎝
P−

sp

P−

pp

⎞
⎠

P−

ps −
⎛
⎝
P−

sp

P−

pp

⎞
⎠

⊺

C⊺K⊺

sSKF
P−

pp

⎞
⎟⎟⎟⎟⎟⎟
⎠

(6.55)

The choice of the filter gain K in Eq. (6.54) guarantees not updating the states xp while at the

same time considers the effect of their associated uncertainty in the xs states through the cross

covariance terms. In the traditional SKF, the state of the system can be at this point reduced

by directly not considering the xp states anymore.
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Initially, the SKF was intended to deal with the problems associated with slow varying para-

meters with observability issues, which is indeed our problem if we consider xs to represent the

navigation state, i.e., xs = (ξ⊺, v⊺,α⊺)⊺ and xp = (b⊺a, b⊺ω)
⊺

. Note however, that not updating

the values of the bias terms while using the SKF tends to increase the uncertainty associated to

the estimation of the remaining states. Thus, ideally we would like to use the SKF update at

the time that some of the states are not observable while using the full EKF in the case that full

observability of the system’s states is guaranteed. This means that in practice the state cannot

be reduced and that a smooth transition between different observers has to be provided. Noting

that the SKF a posteriori covariance matrix in Eq. (6.54) can be produced from the optimal

Kalman Filter covariance error by

P+

SKF = P+

opt +
⎛
⎝
0 0

0 +KpoptWK⊺

popt

⎞
⎠

(6.56)

and that the SKF update for xp can just be forced to take the values of the a priori estimation

in the update as

x̂+SKF =
⎛
⎝
x̂+sopt
x̂−

⎞
⎠

the SKF can always be obtained by the KF outputs, thus guaranteeing an easy transition between

both estimators when needed.

6.3.2 Update strategy

As commented in the previous sections, the observability results in Chap. (5) reveal a non-

empty kernel for the observability codistribution matrix spanned by a unique symmetry in many

different flight configurations. Among them, the most conflicting one is related with flying in

hover mode.

Traditionally, the SKF was used on systems with low observable states by holding the value of

all the conflicting states. However, the indistinguishable region in Eq. (5.58), reproduced here

for convenience,

xI(τ,x0) = (ξ⊺0, v⊺0, q̊I , b
⊺

aI
, b⊺ω0

)
⊺

(6.57)

being

q̊I = q̊0q̊τ = q̊0

⎛
⎜
⎝

cos(τ)
sin(τ) H

∥H∥

⎞
⎟
⎠

(6.58)

and

baI = am +L⊺(q̊τ)L⊺(q̊0) (g) (6.59)

has only one degree of freedom, given by τ in Eq. (6.57), that represents the magnitude of a drift

rotation of the platform about the magnetic field direction.

Note that taking

ba0 = L⊺(q̊0) (g)
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Figure 6.21: Bias and attitude drifts effects in hover related singular input conditions

which corresponds to the nominal value of the bias in a hover condition v̇ = 0 and denoting

gb = L⊺(q̊0) gw , the bias drift bτ = baI − ba0 can be written as

bτ = (R⊺(q̊τ) − I3) gb

The drift of the bias can be interpreted as an incremental bias, bτ , that lies in the base of a cone

whose axis has the same direction as the magnetic field and whose generatrix is represented by

the gravity vector1 as depicted in Fig. 6.21 The instantaneous bias drift is represented by the

symmetry in Eq. (5.56) associated to the accelerometer bias, i.e,

∂baI
∂τ

= β [R⊺H]
×
(am − ba)

where β represents the angular velocity related to the rotated angle τ . Given that in hover,

am − ba = R⊺g

this drift is, by construction, perpendicular to the magnetic field direction and perpendicular to

the gravity vector rotated by the orientation drift

∂baI
∂τ

∥R⊺(q̊I) (H × g) (6.60)

With the aim of preventing errors in the EKF estimation when visiting the described indis-

tinguishable region, we present an SKF correction step based on only fixing one component of

1Equations are formulated with vectors in the body frame, however from a geometrical point of view the relative
position of those vectors does not change under a frame transformation. Thus, the results can be generalised for
vectors g and H in any frame.



162 CHAPTER 6. STATE ESTIMATION

the accelerometer bias vector. The suggested approach forces the vector component of the ac-

celerometer bias, related with the maximum absolute value component of the vector resulting

from Eq. (6.60), to remain constant during the correction step. In that way, if baτ is forced to be

take a constant value in one of the equations of Eq. (6.59), this equation will allow to determine

the value of τ removing the extra degree of freedom and avoiding the estimation drift inside the

indistinguishable region.

A similar result could arise if instead of the accelerometer bias, one of the components of the

attitude is fixed. However, note that the time scale of the biases dynamics is usually slower

than the attitude one. Therefore, fixing components of the biases is usually safer than fixing any

attitude component.

This SKF estimation strategy will modify the EKF update described in Algorithm. 5. Algo-

rithm. 8 provides a pseudocode of this process.

Algorithm 8: SKF correction

Data: P−

k , ωm, am, zk, measurement type
Result: δx+k , P+

k

1. Evaluate the cross product in Eq. (6.60) and search for the vector entry with minimum
absolute value i.

2. Store the a priori accelerometer bias in the vector position i and its associated covariance
bahold = b−ai , Pahold = P

−

ai,i

3. Evaluate the measurement function and Jacobian in Eq. (6.29) or Eq. (6.30) depending of
the measurement type to obtain ẑ and C.

4. Calculate the suboptimal gain K = P−

kC
⊺(CP−

kC
⊺ +R)−1

5. Update the covariance of the estimation error P+

k = (I −KC)P−

k

6. Update the state δx+k = K(zk − ẑ)

7. Set the stored values in the a posteriori state and covariance estimations b+ai = bahold and
P +

ai,i = Pahold

This alternative correction strategy can be activated anytime that the system configuration

coincides with a hover state. Although this is a simple condition to visualize, noise in the

sensors and possible biases make this hover test dificult in practice. Given that the SKF is a

suboptimal filter, here it is proposed to maintain the SKF correction stage activated during any

flight condition. In this way, when the aircraft visits the indistinguishable region, the SKF will

protect the estimations from drifting whereas in non singular input conditions, it will behave

suboptimally. Notice that under conditions ω ≠ αL⊺H, the state is by definition recoverable and

given that the aircraft is rotating, L⊺(q̊0)g will change forcing an alternation in the component

of the bias to fix.
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Figure 6.22: Uncalibrated scenario path. Hover until t = 70 s followed by an 8-shaped
trajectory until t = 100 s

6.3.3 Results

In order to demonstrate the benefits that the presented SKF strategy provides, we have compared

filtering results generated by the EKF and SKF estimators in two simulation scenarios whose

structure is represented by Fig. 5.1. Both simulation scenarios share the controller parameters,

the mass properties, the magnetic and gravity directions, the sensors sampling rate and the GPS

and magnetometer parameters presented in Chap. (4). However, they differ in the parameters

defining accelerometers and gyroscope sensors covariances. The first scenario uses an IMU with

intentionally higher sensor covariance, while the second scenario uses the sensor calibrated pa-

rameters in Chap. (4). For this reason we will refer to the first scenario as uncalibrated scenario

whereas the second scenario will be called calibrated scenario.

Both scenarios share a similar commanded trajectory, which will be composed by a hover flight

during an initial time window followed by a segment of the eight shaped path shown in Fig. 6.3.

Both trajectories share the geometry but differ in the time spent in hover and performing the

path segment with motion. The trajectory of the uncalibrated scenario can be seen in Fig. 6.22.

Both filters rely on the Filter 1 dynamics shown in Table 6.1 and its implementation discussed

in Section 6.2. As a remainder, both sensors differ in the update step, the EKF implements

the update in Algorithm. 5 while the SKF implements the slightly modified version described in

Algorithm. 8. The execution of the filters share the same initialization procedure of Section 6.2.5

with g = gw = (0,0,9.81)⊺, H in Eq. (6.45) and the initial value of the error covariance in

Eq. (6.46).
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Uncalibrated scenario

In order to analyse the performance of the SKF when the full state of the system is not recoverable

from input-output data, this scenario considers 70 s of the trajectory in hover and 30 s performing

the 8-shaped trajectory. In addition, this scenario is characterized by having values of the IMU

error covariance of

Qa = 4 ⋅ 10−3I3 Qba = 3.8 ⋅ 10−2I3

Qω = 1.1 ⋅ 10−3I3 Qbω = 2 ⋅ 10−3I3

and initial values for the bias in simulation

ba0 = (−0.61, −0.06, 0.04)⊺ bω0 = (0.063, 0.0518, −0.010)⊺

respectively.

Figs. (6.23-6.34) show the estimation results of both filters. As expected, during hover, both

filters approximate correctly the position, the velocity and the gyroscope bias and have problems

recovering some components of the state related with the attitude and the accelerometer bias.

By calculating the cross product in Eq. (6.60) assuming null attitude drift

R(q̊I)⊺ (H × g) =H × g = (63.7, −5576.2, 0)⊺

it can be seen that the bias drift is affecting mostly the second component of the estimated

accelerometer bias, bay . It can be appreciated in Fig. 6.31 where inconsistent results are obtained

near t = 60 s because the estimate falls outside the confidence interval. The SKF approach, fixes

automatically bay during the hover condition as can be seen in Fig. 6.32. By enforcing the

constant value of the estimation through the update, since in the propagation biases are not

modified, the estimation takes a constant value until the eight-shaped trajectory starts. The

covariance grows continuously as a result of the successive propagation steps and its value is not

modified in the correction step.

By comparing Fig. 6.31 with Fig. 6.32, it can be observed that the SKF provides improved

estimations of the remaining bias states. Similar effects can be interpreted by looking at the

attitude, either by using the quaternions in Fig. 6.27 and Fig. 6.28 or the Euler angles in Fig. 6.29

and Fig. 6.30, the estimation of the orientation is also improved when using the SKF.

When the 8-shaped trajectory starts, both systems converge to the true values. However, it

can be appreciated in Fig. 6.25, that the gross error accumulated by the EKF during the hover

manoeuvre affects the initial transient estimation of the velocity providing more error than the

SKF. The effects of alternating the fixed component of the bias during the 8-shaped trajectory are

visible in the alternated periods of covariance increasing and decreasing that affects components

bax and bay of the SKF.

Despite being theoretically worse during the guaranteed estimation periods, the SKF behaves

well and no special difference is observed when compared with the EKF results.
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Figure 6.23: EKF position estimation in
the uncalibrated scenario

Figure 6.24: SKF position estimation in
the uncalibrated scenario

Figure 6.25: EKF velocity estimation in
the uncalibrated scenario

Figure 6.26: SKF velocity estimation in
the uncalibrated scenario
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Figure 6.27: EKF quaternion estimation
in the uncalibrated scenario

Figure 6.28: SKF quaternion estimation
in the uncalibrated scenario

Figure 6.29: EKF Euler angles estima-
tion in the uncalibrated scenario

Figure 6.30: SKF Euler angles estima-
tion in the uncalibrated scenario
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Figure 6.31: EKF accelerometer bias es-
timation in the uncalibrated scenario

Figure 6.32: SKF accelerometer bias es-
timation in the uncalibrated scenario

Figure 6.33: EKF gyroscope bias esti-
mation in the uncalibrated scenario

Figure 6.34: SKF gyroscope bias estima-
tion in the uncalibrated scenario
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Calibrated scenario

In this simulation, IMU sensors take its calibrated values presented in Chap. (4). Compared

with the previous scenario, these values are smaller and as a consequence lower variance on the

sensor biases and their covariances will be expected. The simulation time in hover has been

reduced to 50 s and the 8-shaped incremented accordingly. Initial simulation biases have been

set to

ba0 = (0.19, 0.071, −0.294)⊺ bω0 = (−0.097, 0.0767, 0.802)⊺

respectively.

Estimation results are presented in Figs. 6.35-6.46. Again, positions, velocities and gyroscope

biases are estimated by both filters with a very similar result. In contrast, it can be seen

that the SKF outperforms the EKF solution related to the accelerometer bias and attitude.

Specifically, the EKF estimation of bay moves away from the true value diminishing at the same

time the covariance and affecting the attitude estimation. In the same situation the SKF holds

constant the component of bay , while accumulates uncertainty on its covariance. The effect of

this accumulation is present in the plot. However it is not appreciated because of the low values

found in the sensor calibration phase.

Figure 6.35: EKF position estimation in
the calibrated scenario

Figure 6.36: SKF position estimation in
the calibrated scenario
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Figure 6.37: EKF velocity estimation in
the calibrated scenario

Figure 6.38: SKF velocity estimation in
the calibrated scenario

Figure 6.39: EKF quaternion estimation
in the calibrated scenario

Figure 6.40: SKF quaternion estimation
in the calibrated scenario
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Figure 6.41: EKF Euler angles estima-
tion in the calibrated scenario

Figure 6.42: SKF Euler angles estima-
tion in the calibrated scenario

Figure 6.43: EKF accelerometer bias es-
timation in the calibrated scenario

Figure 6.44: SKF accelerometer bias es-
timation in the calibrated scenario
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Figure 6.45: EKF gyroscope bias esti-
mation in the calibrated scenario

Figure 6.46: SKF gyroscope bias estima-
tion in the calibrated scenario
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6.4 Conclusion

The first part of the the chapter presents four different EKF derivations for the aircraft dynamics

based in different but equivalent aircraft dynamics. Among the different alternatives, those

considering attitude composition by the left presented better accuracy (Filter 1 and Filter 3 in

Table 6.1 and Table 6.2). Moreover, the dynamics considered in Filter 1 allows for the derivation

of a closed form filter that avoids the use of iterative calculation routines in favour of more direct

ones.

The SKF based filter, described in the second part of the chapter, constitutes a filter alternative

that avoids the drifting of the solution present in the traditional EKF when the full state of

the system is not recoverable from input-output data. The SKF procedure, here presented,

supported by the indistinguishable region equations derived in previous chapters does not need

to fix all the biases as is usually suggested in the literature but only one of them. In particular,

the SKF identifies a direction in space where the accelerometer biases are more prone to drift,

it analyses which component of the estimation bias vector will be mostly affected and does not

allow to change its value in the filter update step. From an implementation perspective, the

SKF needs only adding two simple actions in the update step of the EKF.

The results show how both filters perform. The proper behaviour of the SKF compared with the

EKF is verified inside and outside of the indistinguishable region. In the former, the SKF solution

is shown to provide more coherent and precise results when compared with the EKF. In the later,

it is shown that in practice the SKF sub-optimal solution resembles quite well the optimal one

and the effects of freezing the covariances alternate among the estimated accelerometer bias

components as the aircraft rotates.



Part III

External Disturbance Estimation

173





Chapter 7

External Disturbances Estimation

in UAVs

7.1 Introduction

Disturbances and model uncertainty are usually undesirable characteristics that are always

present in real systems and their models. Controllers work to ideally ensure stability and maxi-

mize performance (tracking or regulation). However, the presence of these disturbances degrade

the effectiveness of nominal controllers and may even destabilize the system. One way of dealing

with those perturbations is to consider the disturbance rejection performance as an additional

objective in the controller design which lead to the concepts of H∞ [91, 3] or the input-to-state

stability (ISS) [5, 6]. The result of the controller synthesis problem is, in that case, a com-

promise between tracking and robust performance. An alternative way which has been studied

extensively for a number of years is the design of disturbance observers. The idea that when a

disturbance estimation is available, a control action can be taken to compensate for the influence

of the disturbance, has given birth to disturbance-observer-based control (DOBC), which has

been reviewed extensively in [23]. Since the 1960s, several techniques have been proposed to

obtain the disturbance estimation, such as unknown input observers [40], perturbation observers

[45], equivalent input disturbance-based estimators [79], extended state observers [47], nonlinear

disturbance observers [21, 22] and fuzzy Takagi-Sugeno filters [24]. There are applications of

the cited observers in areas like chemistry and aerospace, while they are extensively used in

industrial mechanical systems like manipulators [83].

Dealing with disturbances and unmodelled dynamics is a crucial and critical issue in the control of

unmanned aerial vehicles (UAVs). In some environments, controlling UAVs is a very challenging

task, since any controller that does not take into account the disturbances may lead to undesired

behaviours ranging from performance degradation to instability. For this reason, there has been

some interest in applying DOBC to UAVs. For example, in [75, 76], the non-linear equations of

motion expressed in world and body frames with the generalised momentum as state serve as basis

175



176 CHAPTER 7. EXTERNAL DISTURBANCES ESTIMATION IN UAVS

to reconstruct the disturbance. In these works, algebraic equations involving the disturbance

and the unknown derivatives of the state are derived and the disturbance estimation is obtained

by feeding the integral of the algebraic equations to a second order filter. In [97] a non-linear

disturbance observer is derived. It is based on the Newton-Euler non-linear equations of motion

using velocities and accelerations as states. The angular magnitudes are expressed in the body

reference frame and the translational magnitudes are given in the world frame. Stability of

the estimator is demonstrated in the case of constant external disturbances (null derivative)

and in the absence of noise. The estimator there is a simplified version of the observer in [83]

which, although it does not use the UAV equations of motion, shows a similar development

with the consideration of non-constant disturbances as time polynomial varying signals. Note

that the effectiveness of the above works has been demonstrated either by using indoor sensors,

which provide very precise measurements of position and velocity, or by considering noise-free

simulation scenarios. At the same time, they share the hypothesis that the disturbance is slow

varying.

In the particular case under study, we propose to use the momentum dynamic equations (linear

and spin) expressed in the world reference frame as a model of the system. In Addition, the UAV

model is extended by incorporating a high order disturbance model, as proposed by [42, 31, 83].

This way of expressing the system presents the advantage of producing a completely linear model

with potential high order dynamics which allows the inclusion of information about the nature

of disturbances at a desired derivative order.

In the current chapter, the observers in [83] and [76] are adapted to our system and derived

considering the outputs of the state estimators of Chap. (6) and actuator actions as inputs. An

additional Kalman Observer is also derived and analysed. It takes advantage of the linearity of

the system to bring optimal properties to the estimation. The Kalman observer differs from the

other two filters in that it is formulated directly in discrete time, which favours its implementation

in digital platforms. Besides, it also takes explicitly into account noise and model errors. A

comparison of the three estimators is provided to highlight their limitations and estimation

behaviour.

The structure of this chapter is as follows: Firstly, Section 7.2 introduces the high order dynamic

model. In Section 7.3 we take advantage of this fact to obtain simplified versions of some wrench

observers derived in the literature for similar systems and formulate two additional observers

based on Kalman theory. A comparison of the four filter performance over ideal and noisy

scenarios is also presented there.

7.2 High Order Dynamic Equations

Let the vector

pw =
⎛
⎝
m vw

Jw ωw
⎞
⎠
∈ R6 (7.1)

represent the lumped linear and spin momenta in the world frame {B}, where the vector vw ∈ R3

defines the relative velocity of the origin of the body frame {B} with respect to the origin of the
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world frame, expressed in world coordinates; ωw ∈ R3 represents the relative angular velocity

of the body frame with respect to the world frame, also in world coordinates; m ∈ R denotes

the body mass and Jw ∈ R3 is the inertia of the body as seen from the inertial frame. Let, in

addition, q̊ be the quaternion that represents the aircraft attitude such that, as in Chap. (2)

rw = L(q̊) rb (7.2)

where rw and rb are different representations of a generic vector r ∈ R3 expressed in the frames

{W} and {B} respectively, and L(q̊) ∈ SO(3) the rotation matrix given by Eq. (2.35). By

knowing the orientation, the system inertia Jw can be related with the constant inertia of the

body Jb by Jw (q̊) = L(q̊) Jb L(q̊)⊺.

The rate of change of the momenta vector in the inertial frame can be simply described by

ṗw =
⎛
⎝
m gw +L(q̊) fb a + fw e

L(q̊) τb a + τw e

⎞
⎠

(7.3)

where gw ∈ R3 is the gravity’s acceleration vector, known in {W}; fb a ∈ R3 and τb a ∈ R3 are the

actuator force and torque vectors actions over the system’s center of mass, which are naturally

described in the body frame and, finally, fw e ∈ R3 and τw e ∈ R3 are the unknown external forces

and torques acting on the platform also over the center of mass.

Eq. (7.3) can be written in a compact way as

ṗw = (mg′ +L′(q̊)wa + d) (7.4)

where

g′ = ( gw ⊺,0,0,0)⊺ (7.5)

is the extended gravity vector,

L′(q̊) =
⎛
⎝
L(q̊) 0

0 L(q̊)
⎞
⎠

(7.6)

is an augmented rotation matrix,

w⊺

a = ( fb a

⊺

, τb a

⊺) (7.7)

is the actuator wrench, and

d = ∆wa +∆g′ +
⎛
⎝
fw e

τw e

⎞
⎠

(7.8)

is a vector representing the disturbances acting on the system, which accounts for the effect of

the external wrench but also the effect of unmodelled dynamics, represented by ∆wa and ∆g′.

The main goal of Eq. (7.3) is to serve as a model for disturbance estimation. Therefore, there

is no need to extend the model in the upward direction to relate the momenta integrals with

the position and attitude, magnitudes that will be provided by the state estimator as shown in

Chap. (6). At this point it will be assumed that q̊, vw , ωb and the unbiased measures from
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accelerometers represented by

ab = fb a +L⊺ fw ext

m

are provided at regular instants of time by the output of the estimator derived in Chap. (6).

Under this hypothesis, Eq. (7.3) is a simple integrator system driven by external inputs, whose

dynamics must match with the measures of vw , ωb and ab .

Note that the linearity of the system has been achieved by the proper choice of state and

reference frame and is not a product of a linearization neither an approximation of the non-

linear counterparts.

7.2.1 Disturbance model

The dynamics of d is generally unknown and this is the main reason why works like [75] and

[97] suppose that ḋ = 0. However, this constraint could slow down the estimation output in the

case of fast varying dynamics. In order to alleviate this drawback, it could be assumed that the

disturbance d is a continuous function driven by an unknown time varying exogenous input η(t)
at its r-th derivative

(r)
d = η(t) (7.9)

as suggested in [42], and later used in [83].

In this case, it is interesting to consider an augmented version of the disturbance vector, given

by

dv = (d⊺, ḋ⊺, ⋯,
(r−1)
d⊺)

⊺

(7.10)

with the dynamics of dv described by

ḋv = Fdv +Gη (7.11)

where F ∈ R6r×6r is given by

F =
⎛
⎜
⎝

06r×6

I6(r−1)

06×6(r−1)

⎞
⎟
⎠

(7.12)

and G ∈ R6r×6 is defined as

G =
⎛
⎜
⎝

06(r−1)×6

I6

⎞
⎟
⎠

(7.13)

The disturbance vector d can be recovered anytime from dv as d = Hdv, where H ∈ R6×6r is

another selection matrix defined by

H = (I6, 06×6(r−1)) (7.14)
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7.2.2 Extended model considering disturbances

The augmented dynamic model with state x = ( pw ⊺, d⊺v)
⊺

and dynamics given by Eq. (7.4) and

Eq. (7.11) can be summarized as

ẋ =
⎛
⎝
ṗw

ḋv

⎞
⎠
=
⎛
⎝
mg′ +L′(q̊)wa +Hdv

Fdv +Gη

⎞
⎠

(7.15)

Let q̊ and wa be known and let η = η(t) represent an unknown input, then the dynamics in

Eq. (7.15) are linear and can be rewritten as

ẋ = Ax +Bu +W1η (7.16)

where

A =
⎛
⎜
⎝

06(r+1)×6

H

F

⎞
⎟
⎠
, (7.17)

B =
⎛
⎝

I6

06r×6

⎞
⎠

(7.18)

W1 =
⎛
⎝

06×6

G

⎞
⎠

(7.19)

and

u =mg′ +L′(q̊)wa (7.20)

A discrete version of the model in Eq. (7.15) can be formulated as

xk+1 = Φdxk +W′ηk +Bduk, (7.21)

where

Φd = expm (A (tk+1 − tk))

Bd = M
⎛
⎝

I6×6

06r×6

⎞
⎠

M = ∫
tk+1

tk
expm (Φc(tk+1 − τ)) dτ

uk =mg′ +L′wak is assumed constant during the integration,

W′ =
⎛
⎜
⎝

06(r+1)×6r

06r×6

I6×6

⎞
⎟
⎠
,

and ηk is the discrete counterpart of η(t).
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Remark 1: Φk, M and hence Bd are constant provided that the sampling period represented

by ∆t = tk+1 − tk is also constant. Moreover, given the structure of A, Ai = 0 for i > r, then Φk

and M can be calculated as a finite sum of matrices

Φk = expm (Φc∆t) =
∞

∑
i=0

(Φc∆t)i

i!
=

r

∑
i=0

(Φc∆t)i

i!
,

M = ∫
∆t

0
expm (Φcτ)dτ =

∞

∑
i=0

Φic∆t
i+1

i + 1!
=

r

∑
i=0

Φic∆t
i+1

i + 1!
.

7.3 Ext. Disturbances estimation using Linear and Spin

Momenta

This section describes four disturbance observers that will be compared subsequently. The first

two are drawn from the literature but adapted to the dynamics considered in Section 7.2, while

the remaining ones are Kalman based observers.

7.3.1 Momentum Based External Forces Estimator revisited

A Momentum Based External Forces Estimator (MBEFE) is presented in [75] and [76]. This

estimator assumes that the derivative of the disturbance is null and consequently the derivatives

of the estimation are not taken into account.

The disturbance, d, is isolated from Eq. (7.4) as

d = ṗw −mg′ −L′wa.

Since this signal is affected by noise and ṗw is not known, the authors propose to filter d using

a second order filter.

This way, the estimation of the disturbance becomes

¨̂
d +K1

˙̂
d +K2d̂ = K2 ( ṗw −mg′ −L′wa)

which, by integrating twice in time and replacing ∫
t

0 ṗw dτ by pw leads to

d̂ = −∫
t

0
[K1d̂ −K2 ( pw − ∫

t

0
[mg′ +L′wa + d̂] dτ ′)]dτ . (7.22)

Remark 2: Gain matrices K1 and K2 shape the dynamic response of the estimator and must

be chosen to make the filter stable. In case they are chosen diagonal

K1i,i = 2ζiωn,i,

K2i,i = ω2
n,i,
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where ωn,i and ζi represent the natural frequency and damping factor, respectively, of the i− th
DOF of the estimator dynamics.

7.3.2 High Order non-linear Disturbance Observer revisited in mo-

mentum form

The High Order non-linear Disturbance Observer (HODO) is presented in [83]. The derivations

and conclusion presented in this section follow the lines of the original work adapted to the

system in Eq. (7.15).

Let e be the error between the real disturbance dv and its estimated counterpart d̂v

e = dv − d̂v. (7.23)

The error dynamics can be described using Eq. (7.11) as

ė = ḋv − ˙̂
dv = Adv +Wη(t) − ˙̂

dv. (7.24)

By choosing
˙̂
dv = K ( ṗw −mg′ −L′wa) + (A −KH) d̂v, (7.25)

which implies that

d̂v = K pw + ∫
t

0
[(A −KH) d̂v −K (mg′ +L′wa)]dτ, (7.26)

the error dynamics becomes

ė = (A −KH)e +Wη, (7.27)

where K ∈ R6r×6 is a gain matrix to be defined. Selecting it such that (A −KH) is negative defi-

nite, the system in Eq. (7.27) is bounded-input-bounded-output (BIBO) stable which means that

the error on the disturbance estimation will be bounded as long as the model error represented

by η(t) is bounded.

Remark 3: The design of K may not seem trivial. However, given the constant and simple

structures of A and H, K can be designed by pole placement using a similar approach as the

one shown in [83].

7.3.3 Kalman High-order Observer

In this section two different Kalman High-order Observers (KHO) for the system in Eq. (7.21)

are derived. The estimators of the previous sections use measurements of velocities, attitude and

actuator wrenches and do not allow to consider extra information coming from the accelerom-

eters. However, the Kalman Observer allows by its nature to reconcile measures from multiple

sensors even if they are related or redundant. The two filters derived here differ in the mea-

sures taken into account in the estimation. The first one, named KHO1, uses the same set of
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inputs as the filters in previous sections and the second one, named KHO2, uses, in addition,

the accelerometers measurements.

From the model in Eq. (7.21), a linear Kalman observer can be formulated as a two stage

algorithm that estimates the disturbance and the momentum simultaneously. Let x−k be the best

estimate of the state at time instant tk, assuming that all the measures up to tk−1 are known,

and x+k represent the best estimate of the state at time instant tk when a new measurement

yk has entered the system. The matrix Pk represents the covariance of state error, i.e. P−

k =
E((x̂−k −xk)(x̂−k −xk)⊺) while P+

k = E((x̂+k −xk)(x̂+k −xk)⊺)

The linear Kalman filtering algorithm that produces the estimations of x+k and P+

k is represented

by the concatenation of Eq. (6.1) and Eq. (6.2), reproduced here for clarity purposes,

x̂−k =Φkx̂+k−1 +Bduk,

P −

k =ΦkP+

k−1Φ
⊺

k +Qk,

K =P−

kC
⊺ (CP−

kC +R)−1
,

ŷk =Cx̂−k +Dwak ,

x̂+k =x̂−k +K(yk − ŷk),
P+

k = (I −KC)P−

k .

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

is run once a new measure is available at time instant k.

Matrix Qk = W′Q (W′)⊺ in Eq. (7.29) is a positive definite matrix representing the covariance

of the model error, assumed here as ηk ∼ N (0,Q).

While the propagation equations Eq. (7.28) and Eq. (7.29) are common for both Kalman filters,

the sensor model in Eq. (7.31) differs. Matrix R represents the covariance of the measurement

errors and is defined differently for each implementation in the next two subsections.

KHO1

The first Kalman observer uses the same information as the MBEFE and HODO filters. The

measurement model is defined as

y =
⎛
⎝
vw

ωb
⎞
⎠
+ vk = Cxk + vk,

where

C = (blkdiag( 1
m

I3, Jb
−1

L⊺) 06×6(r−1))

while D in Eq. (7.31) is null.

vk ∈ R6 ∼ N (0,R) is the sensor noise vector which is assumed normally distributed with covari-

ance R.
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Figure 7.1: Simulation setup

KHO2

The second Kalman observer considers also the accelerometer readings. The measurement model

is then given by

y =
⎛
⎜⎜⎜
⎝

vw

ωb

1
m

(L⊺d + fa)

⎞
⎟⎟⎟
⎠
+ vk = Cxk +Dwak + vk,

where

C = (blkdiag( 1
m

I3, Jb
−1

L⊺, 1
m

L⊺) 09×6(r−1)−3)

and

D = 1

m

⎛
⎜
⎝

06×3

I3×3

09×3

⎞
⎟
⎠
.

vk ∈ R9 ∼ N (0,R) is again the sensor noise vector, assumed as before normally distributed with

covariance R.

7.3.4 Case studies

The simulation setup of Fig. 7.1 has been used to test and compare the derived estimators.

A quadrotor with m = 1.023 kg and Jb = diag (9.5,9.5,18.6)10−3 kgm2 is controlled to perform

a hovering flight during all the simulation time with a simple cascade controller composed by

a gravity compensated PD for trajectory control and a PID for attitude control. The inputs

of the dynamic model are the desired angular velocities of the four rotors ΩR along with the

disturbance d. The system measurements are provided by the usual sensor suite in the thesis, an

IMU that measures the angular velocity of the aircraft and the acceleration of external forces, a

tri-axial magnetometer that outputs the Earth’s magnetic field direction and a GPS sensor that

outputs the position in the world frame. As mentioned before, this information feeds the state

estimator presented in Chap. (6) to produce estimates of the attitude quaternion, q̊, and linear

velocity, vw , while it also corrects and alleviates the noise in the IMU’s outputs ωb and ab .

Moreover, the actuator wrench wa is reconstructed by using the simple model in Eq. (4.30) and

parameters in Eq. (4.31). Discrepancies between the reconstructed model and the simulated one

may exist because in this case the motor dynamics are not considered, however it is expected that

this error will be estimated in d as pointed out before in Eq. (7.8). Inputs for the disturbance
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estimators are updated at 100 Hz and they are held constant between updates for the continuous

disturbance estimators.

Ideal scenario

This scenario tests the disturbance estimators with noise-free inputs when the force shown in

Fig. 7.2 acts over the system in the world x direction. The initial value of the estimation has

been set to zero while the initial value for the state error covariances in the case of Kalman

observers have been set high enough to smooth out the possible initial errors.

0 10 20 30 40 50

-5

0

5

0 10 20 30 40 50

-5

0

5

Figure 7.2: Disturbance applied to the quadrotor. First part is a succession of constant
signals (from t = 5 to t = 15). The second one is a triangular signal (from t = 20 to t = 30 and

the third part is a quadratic signal (from t = 35 to t = 35)

Fig. 7.3 shows the disturbance estimation and the estimation errors for the described observers.

In this scenario the parameters have been tuned to show the fundamental limitations of each

observer as follows: for HODO and MBEFE gains are high enough to rapidly accommodate the

system dynamics; for KHO1 and KHO2, the measurement error covariances R are small enough

to reflect the absence of noise in the inputs and the model covariances Q are high enough to

consider possible errors in the model. They have been selected as shown in Table 7.1

Filter Parameters
MBEFE K1 = 10I6 K2 = 20I6

HODO K = (45I6, 675I6, 3375I6)⊺ r = 3

KHO1 Q1 = 0.1I6 R1 = 1 ⋅ 10−6I6 r = 3

KHO2 Q2 = 0.1I6 R2 = 1 ⋅ 10−6I9 r = 3

Table 7.1: Filter parameters for the ideal scenario

It can be observed that even in the ideal case the MBEFE observer fails to recover the behaviour

of the disturbance. This error cannot be alleviated by improving the tuning since it is a limitation

of the force model (null derivative) implicit in the estimator. The HODO and the KHO observers

are able to reconstruct the signal properly, only showing discrepancies in the abrupt changes (high

frequency content) not represented by the 3-rd null derivative model chosen.
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Figure 7.3: Disturbance estimation and errors for the proposed observers

Table 7.2: Accumulated Error E for the estimation in the ideal scenario

Ideal Case E [ N]

MBEFE 1.06

HODO 0.20

KHO1 0.52

KHO2 0.18

The accumulated estimation error for each filter, calculated as

E =
√

1

T
∫

T

0
e2dt (7.34)

is shown in Table 7.2. It can be observed that KHO2 performs better than KHO1 with equivalent

parameters. This behaviour has been observed in the rest of experiments.

Realistic scenario

In order to test the presented estimators under a more realistic disturbance scenario, the results

in section IV.B of [75] where a quadrotor with additional payload flies in hover in front of a fan

have been used. An approximation of their reconstructed wrench presented in Fig. 7.4 has been

taken as disturbance input to the system depicted in Fig. 7.1. Moreover, the sensor models have

been calibrated to mimic the actual sensors of a real quadrotor before state estimation. As a

consequence, the inputs to the disturbance observer q̊, vw , ωb and ab are perturbed by noise,

thus affecting the estimation performance.
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Figure 7.4: Disturbance applied over the system

For the sake of clarity, considering the similar structures of the KHO1 and KHO2 and the better

performance of KHO2, this section does not show the results of KHO1.

Since the performance of the observers varies with the tuning of their parameters, the gains have

been chosen to minimize the mean squared error while keeping sensible tracking performance.

The values of these parameters are shown in Table 7.3

Filter Parameters
MBEFE K1 = 2.5I6 K2 = 10I6

HODO K = (5.8I6,11.4I6,7.4I6)
⊺

r = 3

KHO2 Q2 = 1 ⋅ 10−6I6 R2 = 4 ⋅ 10−4blkdiag (I3, 0.07I3, 0.1I3 ) r = 3

Table 7.3: Filter parameters for the noisy scenario

Figs. 7.5 and 7.6 show the time evolution of the estimation errors for every component of the

force and torque respectively. In addition, the accumulated estimation errors calculated as in

Eq. (7.34) are presented in Table 7.4.

The MBEFE is able to reject noise easily while it is still unable to follow correctly the proposed

disturbances. Regarding the HODO, it has been observed that noise perturbs the output of the

estimation and, while selecting less demanding tuning parameters would filter better the noise,

it would also make the estimation performance poorer. The KHO2 presents the best results

among the three estimators. The main benefit of the Kalman observer is that it can adapt its

gain given R and Q. In the case that R and Q match the covariances of noise and error model
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Figure 7.5: Force estimation errors in the realistic scenario

Table 7.4: Accumulated Error E for the estimation in a realistic scenario

Non-ideal Case HODO MBEFE KHO2

Ed̂1 [ N] 0.0669 0.0439 0.0360

Ed̂2 [ N] 0.1911 0.1886 0.1788

Ed̂3 [ N] 0.0868 0.0835 0.0456

Ed̂4 [ Nm] 0.0154 0.0275 0.0121

Ed̂5 [ Nm] 0.0129 0.0206 0.0112

Ed̂6 [ Nm] 0.0062 0.0093 0.0057
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Figure 7.6: Torque estimation errors in the realistic scenario
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perfectly, the estimation is guaranteed to be optimal. In contrast, by selecting different R and

Q (which is the case) the estimation is expected to be suboptimal. However, in the experience

of the authors, even with a poor selection of the covariance matrices the KHO2 produces better

estimations of the disturbance than the other observers.

7.4 Conclusion

In this chapter a linear model for external disturbance estimation is provided. The linearity

of the model enables the simplification of some wrench observers derived in the literature and

allows to formulate two new observers based on Kalman theory. Simulation results show the

superiority of the Kalman observers. This approach outperforms traditional ones because the

Kalman methods are able to reconcile data and take into account multiple redundant or related

inputs while other observers do not. Moreover, the tuning of the Kalman observers is related to

noise and model descriptions and although this fact has not been used here, the authors have

experienced more robustness of the tracking performance when tuning the Kalman observers

than when fine-tuning the other type of observers.





Chapter 8

Quadratic Bounded Observers.

Application to UAVs External

Disturbances Estimation

This chapter is mainly focused in the design of a special kind of quadratically bounded state

observer and its application to the disturbance estimation.

Roughly speaking, quadratic boundedness (QB) refers to guaranteeing the boundedness of all

the state trajectories of a system by means of a quadratic Lyapunov function. This concept was

introduced first for nonlinear systems in [16], and later extended to nominally linear systems in

[17]. Since then, several results have exploited this concept for the purpose of state estimation.

For instance, [7] has used QB to deal with stability and design of receding-horizon estimators.

On the other hand, [8] has applied QB to the design of state estimators for discrete-time linear

systems with polytopic uncertainties, and this work has been extended further by [99], where

state disturbances and measurement noise have been considered independently. Notably, QB

has been invoked to solve problems related to output feedback stabilization [28, 29, 30, 69, 68],

fault tolerant control [94] and fault estimation [19, 18, 95]. Recently, further extensions of the

QB concept have been investigated, see e.g. the extended nonquadratic boundedness introduced

by [100].

The quadratically bounded state observers derived here take into account the existence of a

trade-off between the convergence rate and the ultimate (steady-state) error bounding ellipsoid.

In order to handle both objectives, a scalarised objective function with one design parameter

is built, such that the design problem is made convex. The obtained design procedure ensures

an optimal trade-off between transient and asymptotic behaviours, in the same spirit as [8], but

differing from it in two important aspects. First, instead of minimizing the ultimate upper bound

of the error, the volume of the ellipsoid to which the error belongs is minimized, which leads

to minimal error solutions. Considering the volume of the solution as an objective to minimize

is an idea that has not been presented in the literature before. Second, while the whole state

191



192 CHAPTER 8. QB OBSERVERS FOR UAVS EXT. DIST. ESTIMATION

estimation is guaranteed to converge to the real state, the proposed design method allows the

user to select a part of the state, whose associated estimation error is minimized, which gives

tighter solutions for the considered part of the state. These facts make the proposed approach

different from other techniques developed for observer design, such as the ones based on H∞

optimization [91, 3] or the input-to-state stability (ISS) concept [5, 6] which do not minimize

explicitly the volume of the steady state ellipsoid’s error.

Finally it is shown how the proposed approach can be effectively applied to the problem of esti-

mating the disturbances in UAVs, by using the high-order model introduced in Section 7.2. The

possibility of choosing only a part of the state whose associated error wants to be minimized is

exploited here to produce minimum volume error disturbance and fast convergence estimators.

The considered example exhibits the effect of the decision variable in the design and the sim-

ulation results demonstrate the performance of the observer for different choices of the design

parameter estimating a disturbance.

Information of this chapter is organized in two differentiated sections covering the design of QB

observers (Section 8.1) and the disturbance estimator design and its application (Section 8.3)

respectively.

8.1 Optimal Quadratic Boundedness Observer

Consider the dynamic system defined as 1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ = Ax +Bu +W1η1

y = Cx +Du +W2η2

z = E1x

(8.1)

where x = x(t) ∈ Rn represents the state, u = u(t) ∈ Rm represents the input, y = y(t) ∈ Rp

represents the output, η1 = η1(t) ∈ Rl1 represents the disturbances affecting the dynamic model,

η2 = η2(t) ∈ Rl2 represents the measurement noise and z = z(t) ∈ Rq represents a subset of the

state vector. Moreover, the matrices A ∈ Rn×n, B ∈ Rn×m, W1 ∈ Rn×l1 , C ∈ Rp×n, D ∈ Rp×m,

W2 ∈ Rp×l2 and E1 ∈ Rq×n are constants with E1 representing a part of a permutation matrix.

Let the vector containing the disturbance and noise terms, denoted as η̄ = (η⊺1, η⊺2)
⊺

, be bounded

by the ellipsoid εQ(η̄), i.e.,

η̄⊺Qη̄ ≤ 1 (8.2)

and let the estimation of the state x be represented by x̂ and the error associated to the state

estimation be denoted as e = x − x̂. In addition, let the error of estimation of z be defined as

ez = E1e.

The main goal of this section is to design a linear observer for the state, which provides some

guarantees on the ultimate bounds and transient behaviour of the signal ez .

1Throughout the section, the dependence of signals on time is omitted to ease the notation.
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To this end, let the dynamics of x be rewritten as

ẋ = Ax +Bu +W1η1 +Ky −Ky (8.3)

which leads to

ẋ = (A +KC)x +Bu +KDu +W1η1 +KW2η2 −Ky (8.4)

By defining the estimation dynamics as

˙̂x = (A +KC) x̂ + (B +KD)u −Ky, (8.5)

the dynamics of the estimation error are described by

ė = (A +KC)e +W1η1 +KW2η2 (8.6)

Definition 8.1.1. The system in Eq. (8.6), under conditions in Eq. (8.2) is quadratically

bounded for a given symmetric matrix P > 0, if the derivative of the quadratic Lyapunov function

V = e⊺Pe given by

V̇ = 2e⊺Pė (8.7)

is guaranteed to be negative for values of V > 1, i.e.,

V = e⊺Pe > 1⇒ V̇ = 2e⊺Pė < 0 ∀ η̄ ∈ εQ (8.8)

The quadratic boundedness conditions stated above can be formulated as a feasibility problem.

Proposition 8.1.1. The dynamic system Eq. (8.6) with Eq. (8.2) is quadratically bounded with

a Lyapunov matrix P if there exists a symmetric matrix P > 0, a matrix K and a scalar α > 0

for which
⎡⎢⎢⎢⎢⎢⎢⎣

Ψ + αP PW1 YW2

W⊺

1P
−αQ

W⊺

2Y⊺

⎤⎥⎥⎥⎥⎥⎥⎦

≤ 0 (8.9)

being

Ψ = A⊺P +PA +YC +C⊺Y⊺ (8.10)

and

Y = PK (8.11)

Proof. The time rate of change of the quadratic Lyapunov function V (e) = e⊺Pe along the

solutions of Eq. (8.6) is given by

V̇ (e,η1,η2) = e⊺Pė + ė⊺Pe = e⊺P ((A +KC)e +W1η1 +KW2η2)+
(e⊺ (A +KC)⊺ + η⊺1W⊺

1 + η⊺2W⊺

2K⊺)Pe

= e⊺ (A⊺P +PA +PKC +C⊺K⊺P)e+
η⊺1W⊺

1Pe + e⊺PW1η1 + η⊺2W⊺

2K⊺Pe + e⊺PKW2η2

(8.12)
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Given the unknown nature of η1 and η2, it is not guaranteed that V̇ is negative definite. However,

note that the condition in Eq. (8.2), bounds the values of η1 and η2, making V̇ < 0 for sufficient

large values of e and any choice of K that makes A +KC < 0.

Defining x̄ = (e⊺, η̄)⊺ and making the change of variables Y = PK, the last equation can be

rewritten in a quadratic form as

V̇ (x̄) = x̄⊺
⎡⎢⎢⎢⎢⎢⎢⎣

Ψ PW1 YW2

W⊺

1P 0 0

W⊺

2Y⊺ 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

x̄ (8.13)

which is negative semi-definite in the case that

⎡⎢⎢⎢⎢⎢⎢⎣

Ψ PW1 YW2

W⊺

1P 0 0

W⊺

2Y⊺ 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

≤ 0 (8.14)

On the other hand, considering the condition V = e⊺Pe > 1 and Eq. (8.2), the inequality

e⊺Pe > η̄⊺Qη̄, (8.15)

can be established or, equivalently,

x̄⊺
⎡⎢⎢⎢⎢⎣

−P 0

0 Q

⎤⎥⎥⎥⎥⎦
x̄ < 0 (8.16)

which implies that the symmetric matrix

⎡⎢⎢⎢⎢⎣

−P 0

0 Q

⎤⎥⎥⎥⎥⎦
< 0. (8.17)

By applying the S-procedure over the inequalities Eq. (8.14) and Eq. (8.17), Eq. (8.9) is obtained.

Proposition 8.1.2. The quadratic boundedness in Eq. (8.9) implies exponential convergence of

the error e to the interior of εP(e) with decay rate driven by α provided that η̄ fulfills Eq. (8.2).

Proof. Pre and post-multiplying Eq. (8.9) by x̄⊺ and x̄, respectively, leads to

V̇ (e) + αV (e) − αη̄⊺Qη̄ ≤ 0 (8.18)

By using Eq. (8.2), it is clear that

V̇ (e) ≤ αη̄⊺Qη̄ − αV (e) ≤ α (1 − V (e)) (8.19)
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which makes V̇ (e) < 0 for e⊺Pe > 1.

By integrating the case scenario in which V̇ ′(e) = α (1 − V ′(e)), it can be seen that

V (e) ≤ 1 + (V0 − 1)exp (−αt) (8.20)

with V0 = V (t0) = e(t0)⊺Pe(t0) representing the unknown value of V (t) at the initial time

instant t0. ∀t > t0 the solutions of V (e(t)) are ultimately bounded by V = 1, the errors e are

guaranteed to converge to εP(e) whenever V0 > 1 and will remain inside εP(e) as soon as they

reach it or as long as V0 < 1. Moreover, the value α modulates the decay rate: the higher α, the

higher the convergence rate.

As a consequence of the convergence guarantee of e to εP(e), the estimation error ez is guaran-

teed to converge to the interior of the ellipsoid εPz(ez), where εPz(ez) is the resulting ellipsoid

after projecting εP(e) over the vector space generated by the rows of E1, ⟨E1⟩ and

Pz = E1PE⊺

1 −E1PE⊺

2 (E2PE⊺

2)
−1

E2PE⊺

1 (8.21)

with E2 representing any orthogonal complement of E1, i.e., E1E
⊺

2 = 0. An exhaustive derivation

is provided in the Ap. E.

8.2 State observer design

From the statements presented above, given a fixed measure of the ellipsoid containing the terms

η̄, it can be established that the estimation error ez will depend on:

● The size of εPz(ez), which represents a measure of the ultimate error bounds and can be

measured through the volume of the ellipsoid

Vol (εPz) =
Bq√

det (Pz)
, (8.22)

where Bq represents the volume of the unit-ball of dimension q (the dimension of the row

space of E1).

● The convergence rate represented by α, which defines the behaviour of the transient re-

sponse.

Ideally, the chosen observer gain K must try to maximize α while minimizing Vol (εPz). However,

both objectives are not independent but are subject to the satisfaction of the constraint Eq. (8.9).

Indeed, there does not necessarily exist a solution of the problem which optimizes α and Vol (εPz)
at the same time.
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Following the spirit of [8], but re-scaling the objectives as suggested in [65], a parametrized mixed

objective function that fuses both objectives can be defined as

Jµ(α,Pz) = µJ1 + (1 − µ)J2 (8.23)

where µ has been introduced as a design parameter that defines the trade-off between J1 and

J2, defined as

J1 =
⎛
⎝

Vol (εPz) −Vol (εPz)
⋆

Vol (εPz)
† −Vol (εPz)

⋆

⎞
⎠

(8.24)

and

J2 = ( α − α
⋆

α† − α⋆ ) . (8.25)

The introduction of Ji, i = 1,2 scales the values of the individual objectives. Ji ∈ [0,1] assigns

the value of 0 to the complete achievement of the objective, i.e., α = α⋆, Vol (εPz) = Vol (εPz)
⋆

and the value of 1 to the nadir (worst) values α = α†, Vol (εPz) = Vol (εPz)
†
.

The optimal quadratic bounded state observer which minimizes Eq. (8.23), can be designed by

solving the optimization problem

min
α>0,P>0,Y

Jµ(α,Pz)

subject to Eq. (8.9)
(8.26)

for a fixed value of µ. In general the solution of Eq. (8.26) is not straightforward. However, an

alternative optimization problem, which shares the same solution, can be achieved in two steps:

1. The constraint in Eq. (8.9) is not linear due to the product of unknowns α and P. Nev-

ertheless, it can be interpreted as an LMI for constant values of α. Thus, an equivalent

problem to Eq. (8.26) can be obtained by splitting it in two nested optimization prob-

lems, one efficiently solvable by SDP solvers inside a second one with a single optimization

variable

min
α>0

Jµ(α,Vol (ε+Pz)) (8.27)

with ε+Pz representing the ellipsoid whose associated quadratic matrix P+

z is obtained by

using Eq. (8.21) with P = P+, that solves the optimization problem for fixed values of α

and µ

(P+,Y+) = argmin
P>0,Y

Jµ(α,Vol (εPZ ))

subject to Eq. (8.9)
(8.28)

2. For fixed values of α and µ, J2 is a constant and µBq acts as a scaling parameter. Given

that the square root function present in Eq. (8.22) is monotonically increasing, solving

Eq. (8.28) is equivalent to maximizing the alternative objective function J ′(Pz) = det (Pz)
subject to Eq. (8.9).

Although the determinant of Pz can be rendered convex, since Pz is positive definite by

construction, its relation to the original unknown P cannot due to the product on the right
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hand side of Eq. (8.21). This drawback can be overcome by considering a new matrix X ≥ 0

and the constraint

X ≤ Pz. (8.29)

Eq. (8.29) can be expressed as an LMI on P by considering it as the Schur complement of

P′

22 in P′, with

P′ =
⎡⎢⎢⎢⎢⎣

P′

11 P′

12

P′

21 P′

22

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

E1PE⊺

1 −X E1PE⊺

2

E2PE⊺

1 E2PE⊺

2

⎤⎥⎥⎥⎥⎦
> 0. (8.30)

Given that E = (E⊺

1 E⊺

2)
⊺

is a full rank matrix representing a permutation, the transforma-

tion

E⊺P′E ≥ 0, (8.31)

leads to the simpler matrix inequality independent of E2

P −E⊺

1XE1 ≥ 0 (8.32)

The previous condition implies the existence of an ellipsoid εX(ez) that encloses εPz(ez).
Minimizing the volume of εX(ez), i.e., maximizing the determinant of the matrix X will

make εX(ez) converge to the minimum volume εPz(ez) as long as no additional conditions

over X are applied.

As a result of the above, Eq. (8.28) can be substituted by the convex optimization problem

(X+,P+,Y+) = argmax
X>0,P>0,Y

det (X)

subject to Eq. (8.9)
Eq. (8.32)

(8.33)

which guarantees that ε+X = ε+Pz . Note that since µ is not present in Eq. (8.33), the optimal

values X+ = X+(α), P+ = P+(α) and Y+ = Y+(α) will only depend on the chosen value α.

Taking into account the previous comments, the optimal quadratic bounded observer represented

by K⋆ = (P⋆)−1
Y⋆ is given by the solution of the optimization problem in Eq. (8.27) with

ε+X = ε+Pz and X+ being the solution of Eq. (8.33).

8.3 UAV optimal quadratic boundedness observer

In this section, we use the design procedure presented in Section 8.1 to generate an observer for

the disturbance of an UAV which dynamics are represented by Eq. (7.16) under measurement

equations represented by those in Section 7.3.3 i.e.

y =
⎛
⎜⎜⎜
⎝

vw

ωb

1
m

(L⊺d + fa)

⎞
⎟⎟⎟
⎠
+ vk = Cxk +Duk +W2vk,
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where

C = (blkdiag( 1
m

I3, Jb
−1

L⊺, 1
m

L⊺) 09×6(r−1)−3) ,

D = 1

m

⎛
⎜
⎝

06×3

I3×3

09×3

⎞
⎟
⎠
,

W2 = I9,

and uk =wak

To demonstrate the estimation performance, we use the simulation setup presented in Sec-

tion 7.3.4 and Fig. 7.1 when the system is affected by the disturbance force acting on the world

x direction in Fig. 7.2. Outputs of the state estimation process produce estimates of the vector

y for which the measurement errors have been identified to be inside an ellipsoid εQ2(η2) with

Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1.5 −0.3 0.3 8.3 −3.2 −3.1 −0.2 −0.02 −0.1

0.7 −0.1 −10.5 9.3 −6.2 0.04 −0.03 −0.01

0.9 3.30 3.7 −3.9 0.02 −0.02 −0.09

2903 111.7 −277.8 −2.4 −0.6 −0.2

4281 242.1 0.6 2.5 −1.5

951.2 −1.6 1.6 1.05

SYM 0.2 −0.01 −0.01

0.1 −0.01

0.1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(8.34)

As before, the wrench is generated by the model in Eq. (4.30) and parameters in Eq. (4.31) and

any error model is expected to be collected under the disturbance d.

The value ofthe disturbance model order has been set to r = 3 while Q1 = 106I6 has been

selected big enough to make εQ1(η1) sufficiently small enough while taking into account possible

numerical errors on the simulation. As consequence, the matrix

Q = 1

2

⎛
⎝
Q1 0

0 Q2

⎞
⎠

(8.35)

defines the model and measurement errors ellipsoid.

Since in this case the ultimate goal is to estimate only the disturbances d whereas the exact

values of the remaining state are irrelevant, E1 has been chosen as

E1 = (06×6,H) (8.36)

By using the previous data, the optimization problem in Eq. (8.33) has been solved for values of

α ∈ [0,20]. The optimal volume of the produced ellipsoids ε+X(α) is shown in Fig. 8.1.

The results of the objective function for several values of µ along with the optimal value as a

function of α can be found on Fig. 8.2. Finally, the optimal values of the unnormalized objectives
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Figure 8.1: Minimum value of Vol(ε+X) as a function of α.
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Figure 8.2: Values of the objective function as a function of α for fixed µ and optimal value
of the objective function as a function of α.

α⋆ and Vol(ε+X) as a function of the design parameter µ are shown in Fig. 8.3.

The results of the estimation disturbance for the values of the decision variable µ = 0.2 and

µ = 0.95 are shown in Fig. 8.4. Note that the estimation of the disturbance is not straightforward

since in the piecewise transitions the signal derivatives are by definition unbounded. However,

even in this case, the filter design guarantees the error stability and, by comparing the two

outputs, it can be appreciated that when the hypothesis of the filter (in this case
...
d ∈ εQ1(η1))

is fulfilled the estimation corresponding to higher µ is slower than the one with lower value of µ,

while it converges to a smaller region in the neighbourhood of the true signal, as it can also be

observed in Fig. 8.3.
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Figure 8.3: Optimal values of the convergence rate and ultimate bounding volume as a
function of the design parameter.
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Figure 8.4: Disturbance estimation and errors for the proposed observers

8.4 Conclusion

Under the QB methodology the disturbance estimator tuning reduces to the specification of the

sensor and model error ellipsoids, the degree, r, of the r−th derivative to expand the disturbance

model and the choice of µ. For a given disturbance, and experimental platform, r and the error

ellipsoids may be determined and as consequence the only variable left is the design parameter µ.

The choice of µ can be made in a meaningful way by giving priority to one of the objectives, i.e,

low values of µ prioritize the convergence rate while high values will favour the minimum volume

objective. Furthermore, even not having any criterion on the value of µ the derived estimator

will still be stable.

Relations exist between the derived QB disturbance observer and the HODO disturbance esti-

mator in Chap. (7). In essence both filters provide linear corrections to the estimation by means

of a constant gain determined in advance. Under this viewpoint, the QB estimators can be gen-

erated by using the QB obtained gain in the same HODO filter and vice versa. Differences arise

then, on how the filter gain is chosen and the guarantees associated to the particular choice. In

particular, the QB procedure guarantees stability and a trade-off between the minimum volume

error ellipsoid and the decay rate scheduled by the design parameter µ under ellipsoid bounding

of the model and sensor errors. In contrast, any other stable gain selected for the HODO only

guarantees a bounded estimation of the disturbance.
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Chapter 9

Concluding Remarks

Navigating under physical interaction or the continuous effect of disturbances requires a state

estimation solution that takes into account the effect of these phenomena.

This thesis approaches this problem in the case of considering a limited but standard sensor

suite given by an IMU, a GPS and a 3axial magnetometer. To this end models of the aircraft

dynamics, sensors and characteristics of the specific system are provided in the first part of this

dissertation.

The ability of the considered sensor suite to allow the reconstruction of the state is assessed by

performing linear and non-linear observability analyses over the system. These studies reveal

the existence of singular observability conditions associated to a state space region inside which

the state cannot be uniquely identified.

The traditional Extended Kalman filter formulation is then adapted to our system and several

formulations are obtained and compared in the case of non-singular operations. Implementation

efficiency and accuracy is discussed for each method. In order to circumvent the singular observ-

ability problems a Schmidt Kalman Filter is provided. The proposed SKF slightly modifies the

presented EKF structure to take into account the nature of the indistinguishable regions. This

solution does not suffer from state drifts inside the indistinguishable region and is demonstrated

to provide more coherent and precise results in singular conditions while still providing similar

performance in non-singular ones.

A disturbance model and several disturbance estimation methods based on the assumption of full

state availability (provided, for example, by the state estimators of the previous chapters) has

been developed. The linearity of the wrench (force, torque) – twist (linear and angular velocities)

relation under a proper coordinate selection is exploited to construct disturbance models. These

models are then used to derive linear filters that provide estimations of the external disturbances

acting over the aircraft. Filters from the literature are modified and simplified to contemplate

the proposed model and compared with new Kalman based filters that exploit linearity to obtain

optimal estimations.

203
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The design of Quadratic Bounded linear estimators that take into account bounds on the model

uncertainty and measurement noise to provide estimations that consider explicitly a trade off

between convergence velocity and minimum error solutions is presented and discussed. Finally,

the QB formulation is applied to derive a disturbance observer for the UAV for which the effect

on performance of the design parameter is evaluated.

In summary, this thesis contributes in three main fields related to the perception of UAVs. The

provided advances regarding state observability and state estimation are generally applicable to

any kind of VTOL UAVs equipped with the considered sensor suite. The disturbance estimation

contribution extends the traditional perception capabilities of any UAV aircraft equipped with

a state estimator solution providing information about the interaction with the environment by

means of wrench like effects.

9.1 Summary and contributions

Chapters 2 and 3:

These chapters discuss the proper selection of state parametrizations regarding possible

reference frames and many attitude choices, Chap. (2), and the alternative derivations for

the system dynamics, Chap. (3). Despite the basic level of the derivations presented there,

it is worth noting that the discussions provided are usually not present in the literature,

where the various alternatives seem to have been obviated.

Chapter 4:

Chap. (4) is devoted to the description of platform specifics, starting from sensor models

and their calibration and finishing with hardware description and actuation principles.

A method is proposed to identify the ellipsoid parameters that allow calibrating three axial

sensors ensuring convergence in case of considering noise. Although this is not an utmost

contribution to the field, this method is proposed here for the first time, to the best of the

author’s knowledge.

Chapter 5:

The observability analysis of the system under the consideration of the basic navigation

sensor suite composed by an IMU, a GPS and a magnetometer had not been considered

before. This chapter shows that a system given by the vehicle dynamics and measure

equations is guaranteed to be observable under the observability strict definition. At the

same time, it is shown that there exist particular flight conditions associated to singular

inputs and system symmetries for which the system state can not be inferred from input

output information. These conflicting conditions can be derived from either using an

LTV analysis approach, which needs the linealization of the system or by a non-linear

approach. It can be appreciated that LTV methods are not free of problems, since the

results provided may not match for different parametrizations of the state. In contrast,

the nonlinear approach presented, although more complex, is free of that problem. The

most relevant result comes from noting that the hover condition, one of the most usual
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flight configurations in VTOL UAV missions, has an associated singular input and system

symmetry and as a consequence the state can not be discerned without ambiguity. For

this flight condition, the indistinguishable region which describes the connected set of

possible state solutions of the estimation problem is derived. This problem is confirmed in

simulation and its effects over noise and ideal scenarios are reported.

Chapter 6:

This chapter presents EKF based estimators for the system under study. Four different, a

priori equivalent, dynamic models considering different velocity realizations and different

ways of composing attitude are explored here. For each of them, their associated discrete

time event-based estimators are derived and precise algorithmic expressions that describe

their implementation are presented. In particular, motivated by the idempotence property

of the linearized dynamics corresponding to one of the models under study, the closed

form (not relying in numerical solutions) of one of the filters is completely derived. The

filters equations along with a non-straightforward but efficient initialization procedure and

a description of the initialization parameters allow to compare simulation results of the

estimation procedure for the four filters.

This chapter includes also the derivation of a filter that improves the EKF estimations in

conflicting observability scenarios. The proposed filter is based on the SKF formulation

along with the observability results in the previous chapter. The formulated filter identifies

a direction in space where the accelerometer biases are more prone to drift, analyses which

component of the estimation bias vector will be more affected and freezes its value in

the filter update step. From an implementation perspective, the SKF can be integrated

by simple adding two actions in the update step of the EKF. Results presented over two

different scenarios show how both filters perform, verify the proper behaviour of the SKF in

the indistinguishable region and its good performance in normal observability conditions.

Chapter 7:

Contributions of this chapter have impact in modelling and disturbance estimation areas.

Regarding modelling, we present in this chapter an extended linear model which contains

system navigation dynamics along with a linear high order model for the disturbance. The

linearity of the system navigation dynamics is not the product of a linearization but the

result of a proper selection of the system state which is represented by the system linear and

spin momenta in the world frame. The high order model used to describe the disturbance

dynamics represents a generalization of the null derivative condition used in many works

in the literature, however this choice allow to estimate fast varying disturbances and also

consider explicitly uncertainty in the systems.

The presented model is used to reformulate disturbance estimators already present in the

literature. In order to take advantage of the linearity of the model two disturbance Kalman

filters estimators are proposed and its performance is compared with the previous one. The

inherent optimality under the Kalman filters and its ability to accommodate redundant

measurements makes this estimators outperform. In practice, for any specific situation

any filter could be specifically tuned to provide good results but more robustness of the
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tracking performance has been experienced when tuning the Kalman observers than when

fine-tuning the other type of observers.

Chapter 8:

The main contributions of Chap. (8) are related with the design of state observers for linear

systems under quadratic bounded model and measurement uncertainties and its application

to disturbance estimation.

The first part of the chapter describes the design of quadratically bounded observers. This

design procedure takes into account the existence of a trade-off between the convergence

rate and the volume of the ultimate (steady-state) error bounding ellipsoid. In order to

handle these conflicting objectives, a scalarised objective function with one design param-

eter is built, such that the design problem is made convex. The main contributions of the

presented methodology are twofold. First, instead of minimizing the ultimate upper bound

of the error, the volume of the ellipsoid to which the error belongs is minimized, which

gives minimum error solutions. Second, while the whole state estimation is guaranteed to

converge to the real state, the proposed design method allows the user to select a part of

the state, whose associated estimation error is minimized, which gives tighter solutions for

the considered part of the state.

The later contribution described allows the use of the QB observers as a disturbance

observers when used along with the high order model derived in previous chapters. An

example is provided to show the effect of the decision variable in the design and the

simulation results depict the performance of the observer for different choices of the design

parameter estimating a disturbance.

9.2 Next steps and future lines of research

Practical implementation:

Many of the thesis results have been generated to solve a practical application. Even

though there exist some parts of the chapters that clearly push the contents of the thesis

in that direction as the calibrations in Chap. (4) or the efficient and event-based filter

derivations in Chap. (5), there has not been time to test everything on a real platform.

Then, the natural next steps have to do with

● On-line testing the estimation algorithms

● Revise the derivation of the the continuous disturbance estimation algorithms consid-

ering low level implementation aspects as the discretization, computational burden

and/or execution times.

● Working in the integration of both state estimation and disturbance estimation run-

ning in the platform at the same time.

● Publishing code. In particular, state estimation algorithms presented here have been

carefully coded an implemented as standalone libraries which will be open to the

community soon.
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GPS model:

In Chap. (4) it is considered that the GPS sensor provides measurements of the cartesian

position in a local frame. It has been shown in appendix Ap. D that what really is hap-

pening is that the sensor provides measurements of latitude, longitude and altitude and

that these measurements can always be converted to the local frame through a non-linear

mapping. In the neighbourhood of the origin point of the local frame (up to ≈ 5 km) this

mapping is almost linear and a direct relation can be made between real measurements

and the world frame position as well as between the measurement noise (assumed gaussian)

in the latitude, longitude and altitude coordinates and the noise associated to x, y and

z positions. Notice that we have made the assumption that the covariance of the posi-

tion error was constant but this will not hold if the jacobian associated to the non-linear

transformation changes. This condition gets worse as the aircraft operates farther form

the origin of the local frame. This can be solved by considering the conversion between

ECEF frame and the local frame as part of the measurement equation. This consideration

will not affect the observability results since the jacobian of the non-linear transformation

in Eq. (D.4) has guaranteed full row rank (its determinant is equal to 1 for any λ0 ϕ0). It

will affect the filter equations in Chap. (6), but the EKF derivation could be modified to

accommodate the non-linear model.

System symmetries and singular inputs:

The aim of Chap. (5) was to demonstrate that the possibility of determining the state of the

UAV platform equipped with an specific sensor suite in specific flight configurations was

degraded. Those results arise when examining the conditions for which a codistribution

matrix of the system had not maximum row rank. The solutions for which the rank was

deficient were found in many cases by simple observation of a common nullspace along

every block row of the matrix, i.e., solutions provided for the problem of

⎛
⎝
A +B

C

⎞
⎠
v = 0

were found such that Av = 0, Bv = 0 and Cv = 0, which is equivalent to find

null

⎛
⎜⎜⎜
⎝

A

B

C

⎞
⎟⎟⎟
⎠

Since

null

⎛
⎜⎜⎜
⎝

A

B

C

⎞
⎟⎟⎟
⎠
⊆ null

⎛
⎝
A +B

C

⎞
⎠

solutions for which (A +B)v = 0 but Av ≠ 0 Bv ≠ 0 were missed. Even though we expect

those solutions to be marginal, their implications will scale depending of the times that

the aircraft visits this specific region.
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In a similar way, the analysis has been restricted to constant values of angular velocity and

specific forces. By allowing them to change in time, many more indistinguishable regions

might appear.

Attitude parametrization in the incremental error models:

Incremental error models in Chap. (5) and Chap. (6) are derived from the non-linear equa-

tions of motion and use minimal attitude representations to parametrize locally the aircraft

attitude change. In such a way, singularity points inherent in the minimal representations

can be held far from the interest point and singular covariance problems associated to

the model error covariance matrix when considering non-minimal attitude parametriza-

tions (quaternions or the rotation matrix) and its contraints simply disappear. It has been

shown how those incremental models could be derived by considering the composition of

the incremental attitude with the nominal one, either by the left or by the right. In the

Chap. (5) we saw how those representations do not lead to the same singular input analy-

sis results. In particular, the composition by the left showed a wider observability region,

not present in the other incremental model neither in the non-linear one. Moreover, in

Chap. (6) both representation led to different (a priori equivalent) system dynamics that

led to different filter equations.

As a future line of research it could be interesting to study the incremental attitude repre-

sentation

q̊ = ˆ̊qxδq̊ ˆ̊q1−x

with 0 ≤ x ≤ 1 representing a fraction of the total rotated angle and ˆ̊qx representing its

associated rotation quaternion such that

ˆ̊q = ˆ̊qx ˆ̊q1−x

which considers the two extreme cases (x = 0 leads to the left composition and the case

x = 1 leads to the right one) but also many more, in order check if it is able to shed light

about why both singular input analysis results do not coincide or even if it brings benefits

to the singular input analysis or estimation.

Exploiting the initialisation procedure

In the literature, attitude estimators exist which use information of the aircraft angular rate

and vector observations (usually magnetic field and accelerometers as if they were free of

bias, noise and as if accelerometers sensed gravity) to provide filtered attitude and filtered

bias free angular velocity quantities [52, 50]. Those procedures usually work by estimating

the attitude from angular velocity integration and by estimating the same quantity through

an optimization problem for later fusing them in a filter.

The initialization algorithm proposed in Chap. (6.2.5) may replace the minimization algo-

rithms providing the exact solution in a deterministic way instead of providing an approx-

imation using iterative methods.

Fine improving of the state estimator
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In the derivation of the filtering equations for the state estimator of Chap. (6), the as-

sumption of constant specific force, angular velocity and attitude is made to propagate

the system nominal state and error covariance, i.e., the state is known at a given time tk,

and it is used to provide estimations at time tk+1 by means of Eq. (6.20). This constant

assumption approximates the results better the smaller the time interval tk+1 − tk is. This

aspect can be improved by considering:

● Higher order approximations to the angular velocity and specific force between IMU

updates. When a new IMU measurement arrives, the present implementation propa-

gates the state and error covariance using the last available estimations of the angular

velocity and acceleration. However, notice that by having the bias estimated, a new

estimation of these quantities can be reconstructed in the present time with the new

IMU measurements and in particular the mean of both estimations can be used as an

estimation of the mean value of those quantities.

● Since attitude is related with the integral of the angular velocity, constant attitude

can only be achieved under zero angular velocity. The change of attitude along the

integral of a trajectory can be taken into account in a simple way for constant angular

velocities by expressing the rotation by means of the rotation vector parametrization

in Section 2.3.4.

Observability under no observable conditions

The state estimator presented solves partially the problem of the solution drift in case

of being in singular input conditions. As briefly commented in the dissertation, an ideal

estimation would implement the extended Kalman filter during estimation favourable flight

conditions and the proposed filter only in the instants that estimation is degraded. This

mixed filter implementation has been set aside because the lack of a reliable switching

mechanism that identifies if the aircraft is or is not in singular input conditions. The study

of the viability of this switching mechanism based in sensor measurements, covariance

expected behaviour or any other criteria may be considered in further works.

Next step in estimating disturbances

The high order model introduced in Eq. (7.2) has been used to derive disturbance estima-

tors in Chap. (7) and Chap. (8). In the cases of the KHO or the QB disturbance estimators

(Section 7.3.3 and Section 8.3 respectively) the filters have taken profit of the information

regarding the disturbance uncertainty in its design phase. In the dissertation, only informa-

tion of the disturbance bounds at the last derivative considered have been used. However,

both methods could conciliate additional information over the bounds of the disturbance

at other levels of the model (not only the last derivative) to enhance results.
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Appendix A

Skew-symmetric matrices

A skew symmetric matrix can be constructed from a 3-dimensional vector as

[x]
×
=
⎛
⎜⎜⎜
⎝

0 −x3 x2

x3 0 −x1

−x2 x1 0

⎞
⎟⎟⎟
⎠

Skew symmetric matrices arise naturally to express the cross product of 3-dimensional vectors

as a matrix-vector product

v ×u = [v]
×
u = − [u]

×
v

Matrix exponentiation of a skew-symmetric has the property of

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[x]2n+1
×

= (−1)n ∥x∥2n [x]
×

[x]2(n+1)
×

= (−1)n ∥x∥2n [x]2
×

for n = 1,2,3, ...
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Appendix B

Lagrange equations

The equations of motion for a rigid body floating in space can be derived from energetic metrics

by using the lagrangian formulation.

Let

T = 1

2
q̇⊺Mq̇ = 1

2

N

∑
i=1

N

∑
j=1

Mij q̇iq̇j (B.1)

represent the kinetic energy and

U = −mgzw (B.2)

represent the potential energy of a rigid body with respect to an inertial frame.

Let the Lagrangian function be defined as L = T − U . Therefore the motion equations of the

system can be derived from
d

dt
( ∂L
∂q̇i

) − ∂L

∂qi
=Wi (B.3)

Or equivalently
d

dt
(∂T
∂q̇i

) − ∂T
∂qi

+ ∂U
∂qi

=Wi (B.4)

where it has been imposed that ∂U
∂q̇i

= 0.

d

dt

⎛
⎝
∂T

∂q̇i

⎞
⎠
− ∂T
∂qi

+ ∂U
∂qi

=Wi

∂T

∂q̇i
= 1

2

N

∑
k=1

Mkj q̇k +
1

2

N

∑
j=1

Mkj q̇j . (B.5)

Since the inertia matrix M is symmetric, the previous equation simplifies in

∂T

∂q̇i
=
N

∑
j=1

Mij q̇j . (B.6)

215



216 APPENDIX B. LAGRANGE EQUATIONS

d

dt
(∂T
∂q̇i

) − ∂T
∂qi

+ ∂U
∂qi

=Wi

d

dt
(∂T
∂q̇i

) = d

dt

⎛
⎝
N

∑
j=1

Mij q̇j
⎞
⎠
=
N

∑
j=1

Mij q̈j +
N

∑
j=1

∂Mij

∂t
q̇j =

N

∑
j=1

Mij q̈j +
N

∑
j=1

N

∑
k=1

∂Mij

∂qk
q̇j q̇k (B.7)

d

dt
(∂T
∂q̇i

) − ∂T

∂qi
+ ∂U
∂qi

=Wi

∂T

∂qi
= 1

2

N

∑
k=1

N

∑
j=1

∂Mkj

∂qi
q̇kq̇j (B.8)

d

dt
(∂T
∂q̇i

) − ∂T
∂qi

+ ∂U

∂qi
=Wi

∂U

∂qi
= −mgr(ϑ) = g(ϑ) (B.9)

where r(ϑ) relates the position of the center of mass on the chosen inertial frame with the

altitude on the inertial world frame.

Putting all together

M(q)q̈ +C (q, q̇) q̇ + g(ϑ) =W (B.10)

where

C (q, q̇) q̇ =
N

∑
j=1

∂Mij

∂t
q̇j −

1

2

N

∑
k=1

N

∑
j=1

∂Mkj

∂qi
q̇kq̇j (B.11)



Appendix C

Proper choice of C for Legendre

representation

This section intends to show that C (q, q̇) in the product C (q, q̇) q̇ can be chosen in such a way

that Ṁ = C⊺ +C.

C (q, q̇) q̇ =
N

∑
j=1

∂Mij

∂t
q̇j −

1

2

N

∑
k=1

N

∑
j=1

∂Mkj

∂qi
q̇kq̇j (C.1)

The term
∂Mij

∂t
can be rewritten as

∂Mij

∂t
=

N

∑
k=1

∂Mij

∂qk
q̇k (C.2)

or equivalently

∂Mij

∂t
= 1

2

∂Mij

∂t
+ 1

2

N

∑
k=1

∂Mij

∂qk
q̇k (C.3)

This leads to

C (q, q̇) q̇ =
N

∑
j=1

N

∑
k=1

∂Mij

∂qk
q̇kq̇j −

1

2

N

∑
k=1

N

∑
j=1

∂Mkj

∂qi
q̇kq̇j =

1

2

N

∑
j=1

∂Mij

∂t
q̇j +

1

2

N

∑
j=1

N

∑
k=1

(∂Mij

∂qk
− ∂Mkj

∂qi
) q̇j q̇k

(C.4)

Since the index j and k inside the summation can be interchanged without affecting the operation

C (q, q̇) q̇ = 1

2

N

∑
j=1

∂Mij

∂t
q̇j +

1

2

N

∑
j=1

N

∑
k=1

(∂Mik

∂qj
− ∂Mkj

∂qi
) q̇j q̇k, (C.5)
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and thus C(q, q̇) can be selected as

C (q, q̇) = 1

2

∂Mij

∂t
+ 1

2

N

∑
k=1

(∂Mik

∂qj
− ∂Mkj

∂qi
) q̇k, (C.6)

or equivalently

C = 1

2
Ṁ + 1

2
S (C.7)

Since the generalised inertia matrix M is symmetric, the matrix

S =
N

∑
k=1

(∂Mik

∂qj
− ∂Mkj

∂qi
) q̇k (C.8)

is skew symmetric, that is, for the i = j Sij = 0 and for i ≠ j Sij = −Sji.

As a consequence

C⊺ +C = 1

2
Ṁ⊺ + 1

2
Ṁ + 1

2
S⊺ + 1

2
S = Ṁ (C.9)



Appendix D

GPS geoidal measurements to

local reference frame

The GPS sensor demodulates satellite signals to provide measurements of the receiver’s latitude,

longitude and altitude. This physical quantities are referred to a reference frame named WGS84,

which defines an orthogonal reference frame with origin at the Earth center of mass (considering

oceans and atmosphere), whose z vector points to the direction of the IERS reference pole [67]

and defines the direction of rotation of the mean ellipsoid, the x vector is contained in plane

perpendicular to z pointing to the IERS reference meridian and y can be obtained by the cross

product of z × x [27]. Once the frame is defined, a model for the earth ellipsoid can be easily

formulated. The WGS84 geoid model is a revolution ellipsoid about the z axis with semi-major

axis length

a = 6378137.0 m (D.1)

and flattening

f = 1

298.257223563
(D.2)

with additional parameters defining the earth angular velocity, and gravitational constants and

coefficients. The value of the model parameters is constantly checked and updated if needed. For

the case of the semi-major axis length a, it has been determined through recent measurements

that it may be inaccurate for a few decimeters. The low impact of these decimeters in most

applications have motivated to leave the original value for this parameter unchanged.

Given the geoid parameters in Eq. (D.1) and Eq. (D.2) and knowing the latitude (ϕ), longitude

(λ) and altitude (h) contained in the vector Φ = (ϕ, λ, h)⊺ of a point, its cartesian position in

the WGS84 frame can be recovered by the non-linear transformation

⎛
⎜⎜⎜
⎝

x

y

z

⎞
⎟⎟⎟
⎠
= fWGS84(Φ) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

( a
√

1−e2sin2
(ϕ)

+ h) cos(ϕ) cos(λ)

( a
√

1−e2sin2
(ϕ)

+ h) cos(ϕ) sin(λ)

( a(1−e2)
√

1−e2sin2
(ϕ)

+ h) sin(ϕ)

⎞
⎟⎟⎟⎟⎟⎟
⎠

(D.3)
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where e2 is known as the first eccentricity squared and is related with the flattening as

e2 = (2f − f2) = 6.69437999014 ⋅ 10−3

Let Φ0 = (ϕ0, λ0, h0)⊺ represent the origin of a NED reference frame. Points in the WGS84

reference frame can be expressed in the NED frame by accounting for the relative orientation

between frames and the distance to its origins Eq. (D.3). The orientation of the NED frame

with respect to the WGS84 can be achieved after a rotation of λ0 about the WGS84 z direction

followed by a rotation of − (ϕ0 + π
2
) about the y resultant axis. This leads to the next rotation

matrix

NEDLWGS84 =
⎛
⎜⎜⎜
⎝

− cos(λ0) sin(ϕ0) − sin(λ0) sin(ϕ0) cos(ϕ0)
− sin(λ0) cos(λ0) 0

− cos(λ0) cos(ϕ0) − sin(λ0) cos(ϕ0) − sin(ϕ0)

⎞
⎟⎟⎟
⎠

(D.4)

By using this rotation matrix, the center of the WGS84 reference frame can be expressed in the

NED frame as

oNED
WGS84 = −NEDLWGS84fWGS84(Φ0)

With the origin and orientation between WGS84 and NED frames already defined, any point

defined b yΦ can be defined in the NED frame by

ξNED (Φ) =NED LWGS84fWGS84(Φ) + oNED
WGS84 =NED LWGS84 (fWGS84(Φ) − fWGS84(Φ0))

(D.5)

This transformation can be adapted to any other local reference frame such as ENU or NWU

by simply changing the transformation matrix to reflect the different attitudes, e.g,

ENULWGS84 =
⎛
⎜⎜⎜
⎝

− sin(λ0) cos(λ0) 0

− cos(λ0) sin(ϕ0) − sin(λ0) sin(ϕ0) cos(ϕ0)
cos(λ0) cos(ϕ0) sin(λ0) cos(ϕ0) sin(ϕ0)

⎞
⎟⎟⎟
⎠

or

NWULWGS84 =
⎛
⎜⎜⎜
⎝

− cos(λ0) sin(ϕ0) − sin(λ0) sin(ϕ0) cos(ϕ0)
sin(λ0) − cos(λ0) 0

cos(λ0) cos(ϕ0) sin(λ0) cos(ϕ0) sin(ϕ0)

⎞
⎟⎟⎟
⎠

The non-linear transformation in Eq. (D.5) is used to convert readings of the GPS sensor to

a local frame defined by Φ0. The linearization of the transformation around the point Φ0 is

independent of the latitude and is given by the diagonal jacobian matrix

J =

⎛
⎜⎜⎜⎜⎜
⎝

a(1−e2)

(1−e2sin2
(ϕ0))

3
2
+ h0 0 0

0 cos(ϕ0) ( a
√

1−e2sin2
(ϕ0)

+ h0) 0

0 0 −1

⎞
⎟⎟⎟⎟⎟
⎠
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which for the approximate coordinates of a point in Terrassa, Spain, ϕ0 = 41.5610803 deg, λ0 =
2.0209686 deg, h0 = 3.46813m, takes the value of

J =
⎛
⎜⎜⎜
⎝

1.11071 ⋅ 105 0 0

0 8.34222 ⋅ 104 0

0 0 −1

⎞
⎟⎟⎟
⎠

(D.6)

when considering latitude and altitude in degrees. The diagonal structure of the jacobian holds

up to an approximate distance of 5 km from the reference point, which means that in short

distances latitude and longitude act as x and y positions up to a scale factor.





Appendix E

Ellipsoid projection over a

subspace

This section is devoted to finding the projection of the ellipsoid defined by

εP(x) ∶= x⊺Px ≤ 1 (E.1)

with x ∈ Rn and P > 0, over the subspace to which the vector z1 belongs, being z1 ∈ Rm, m < n
a part of the vector x, i.e., z = E1x with E1 ∈ Rm×n representing a distribution matrix. This

problem is equivalent to finding the ellipsoidal projection of εP(x) over the subspace spanned

by the rows of E1, denoted by ⟨E1⟩.

Consider also E2 ∈ Rl with l = m − n to be any orthogonal complement of E1, i.e., ⟨E2⟩ is

orthogonal to ⟨E1⟩� and z2 = E2x. Then, the next relation can be written

z = Ex (E.2)

with

E =
⎡⎢⎢⎢⎢⎣

E1

E2

⎤⎥⎥⎥⎥⎦
(E.3)

and z = (z⊺1, z⊺2)
⊺

Moreover, since the matrix E represents an orthonormal basis of Rn, its inverse E−1 = E⊺ and,

as a consequence

x = E⊺z = [E⊺

1 E⊺

2]z = E⊺

1z1 +E⊺

2z2 (E.4)

The projection of the boundary of the ellipsoid in Eq. (E.1) represented by ∂εP(x) over ⟨E1⟩ will

describe the boundary of the target ellipsoid εPz(z1) represented as ∂εPz(z1). Let the scalar
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function S = x⊺Px − 1, then,

∂εPz(z1) ∶= (x ∣ S = 0,∇x (S) ∈ ⟨E1⟩)

or, equivalently

∂εPz(z1) ∶= (x ∣ S = 0,E2∇x (S) = 0) (E.5)

The second condition on the right hand side of Eq. (E.5) implies that

E2Px = 0 (E.6)

By substituting Eq. (E.4) into the previous relation, a mapping between z1 and z2 can be found

for points on the boundary as

z2 = − (E2PE⊺

2)
−1

E2PE⊺

1z1

The previous result, along with Eq. (E.4), can be substituted in x⊺Px = 1, leading to

∂εPz(z1) ∶= (z1 ∣ z⊺1Pzz1 = 1)

with

Pz = E1PE⊺

1 −E1PE⊺

2 (E2PE⊺

2)
−1

E2PE⊺

1

Since εPz(z1) must contain the origin just as εP(x) did, εPz(z1) will be defined by

εPz(z1) ∶= (z1 ∣ z⊺1Pzz1 ≤ 1)
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