MACHINE LEARNING-BASED PATH LOSS MODELS FOR HETEROGENEOUS

RADIO NETWORK PLANNING IN A SMART CAMPUS

POPOOLA, SEGUN ISAIAH

Matriculation Number: 16PCK01420

B.Tech. Electronic and Electrical Engineering (LAUTECH, Ogbomoso, Nigeria)

MACHINE LEARNING-BASED PATH LOSS MODELS FOR HETEROGENEOUS RADIO NETWORK PLANNING IN A SMART CAMPUS

POPOOLA, SEGUN ISAIAH

Matriculation Number: 16PCK01420

B.Tech. Electronic and Electrical Engineering (LAUTECH, Ogbomoso, Nigeria)

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING, COLLEGE OF ENGINEERING IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING (M.ENG) DEGREE IN INFORMATION AND COMMUNICATION ENGINEERING

July, 2018

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of **Master of Engineering** (**M.Eng**) degree in the Department of **Electrical and Information Engineering**, College of Engineering, Covenant University, Ota, Ogun State, Nigeria.

Mr. J. A. Philip

.....

(Secretary, School of Postgraduate Studies)

Signature & Date

Prof. A. H. Adebayo

.....

(Dean, School of Postgraduate Studies)

Signature & Date

DECLARATION

I, **POPOOLA**, **SEGUN ISAIAH** (16PCK01420), declare that this M.Eng dissertation titled "Machine Learning-Based Path Loss Models for Heterogeneous Radio Network Planning in a Smart Campus" was carried out by me under the supervision of Prof. AAA. Atayero of the Department of **Electrical and Information Engineering**, Covenant University Ota, Ogun State, Nigeria. I attest that this dissertation has not been presented either wholly or in part for the award of any degree elsewhere. All sources of scholarly information used in this dissertation are duly acknowledged.

POPOOLA, SEGUN ISAIAH

.....

Signature & Date

CERTIFICATION

We certify that the dissertation titled "Machine Learning-Based Path Loss Models for Heterogeneous Radio Network Planning in a Smart Campus" is an original work carried out by **POPOOLA, SEGUN ISAIAH** with Matriculation Number **16PCK01420**, in the Department of **Electrical and Information Engineering**, College of Engineering, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Prof. AAA. Atayero. We have examined the work and found it acceptable for the award of **Master of Engineering** (**M.Eng**) degree in **Information and Communication Engineering**.

Prof. AAA. Atayero (Supervisor) Signature & Date Dr. A. U. Adoghe (Head of Department) Signature & Date Prof. A. A. Ayeni (External Examiner) Signature & Date Prof. A. H. Adebayo (Dean, School of Postgraduate Studies) Signature & Date

DEDICATION

This work is dedicated to divine Trinity: the Father, the Son, and the Holy Spirit.

ACKNOWLEDGEMENTS

Above all, I appreciate the grace I received from God, who gives wisdom liberally without measure. There is a spirit in man, and the inspiration of the Almighty gives me understanding. All the glory be to God.

I acknowledge the immense support I receive from my parents, Mr. & Mrs. Popoola, and siblings, Tosin and Funso. I also wish to appreciate the support and encouragement I received from the family of Bro. & Sis. Abodunrin Adegbola, and Engr. Abiodun Abimbola Ogunjimi.

Special thanks to my erudite and loving supervisor, Prof. AAA. Atayero, for his support and commitment to the successful completion of this research project. I sincerely the coordinators of the Post-Graduate (PG) programmes in the Department of Electrical and Information Engineering, Dr. Ayokunle A. Awelewa, and Dr. Joke A. Badejo for their relentless efforts. I also wish to express my profound gratitude to the immediate past and present Heads of Department of Electrical and Information Engineering, Dr. Victor O. Matthews, and Prof. A. U. Adoghe. The guidance and support received from Prof. Emmanuel Adetiba is equally worthy of appreciation.

Finally, I acknowledge and appreciate the Chancellor, Dr. David Oyedepo, the Board of Regents, the School of Postgraduate Studies (SPS) under the leadership of Prof. A. H. Adebayo, and the management of Covenant University led by the Vice-Chancellor, Prof. AAA. Atayero, for providing a conducive and safe environment that encouraged sound academic research.

Cover	· Pagei
Title I	Pageii
Accep	iii
Decla	rationiv
Certif	icationv
Dedic	ationvi
Ackno	owledgementsvii
Table	of Contentsviii
List of	f Tablesxii
List o	f Algorithmsxv
List o	f Figuresxvi
List of	f Abbreviationsxix
Abstra	actxxiii
CHA	PTER ONE: INTRODUCTION
1.1.	Background of the Study1
1.2.	Statement of the Problem
1.3.	Aim and Objectives
	1.3.1. Aim
	1.3.2. Objectives
1.4.	Research Methodology7

1.5.	Justification for the Research	8
1.6.	Scope of Study	8
1.7.	Limitations of the Research	9
1.8.	Organization of Dissertation Chapters	9

CHAPTER TWO: LITERATURE REVIEW

2.1.	Pream	ble		10
2.2.	Funda	imentals of Wir	reless Communication Systems	10
2.3.	Mathe	ematical Model	ling of Radio Propagation Channel	15
	2.3.1.	Free Space Pa	ath Loss Model	16
	2.3.2.	Maxwell Equ	ation Approach to Radio Propagation Modelling	19
	2.3.3.	Empirical Ra	dio Propagation Path Loss Models	21
		2.3.3.1.	Okumura-Hata Path Loss Model	22
		2.3.3.2.	Hata Path Loss Model	24
		2.3.3.3.	COST-231 Extensions	25
		2.3.3.4.	COST 231–Hata Path Loss Model	25
		2.3.3.5.	Standard Propagation Model	27
		2.3.3.6.	Bertoni - Walfisch Path Loss Model	30
		2.3.3.7.	Stanford University Interim (SUI) Model	32
		2.3.3.8.	ECC-33 Path Loss Model	33
		2.3.3.9.	COST-231 Walfisch-Ikegami (WI) Model	34
		2.3.3.10.	Ericsson Model	36

	2.3.3.11. Lee Path Loss Model	37
2.4.	Model Calibration Techniques	37
	2.4.1. Statistical Model Calibration Method	
	2.4.2. Deterministic Model Calibration Method	38
	2.4.3. Semi-Deterministic Model Calibration Method	39
	2.4.4. Site-Specific Model Calibration Method	39
2.5.	Review of Related Works	40
СНА	PTER THREE: RESEARCH METHODOLOGY	
3.1.	Preamble	48
3.2.	Description of the Smart Campus Propagation Environment	
3.3.	Radio Signal Measurement Campaign	50
3.4.	Data Preprocessing	52
3.5.	Development of ANN-Based Path Loss Prediction Models	54
3.6.	Development of SVM-Based Path Loss Prediction Models	60
3.7.	Statistical Evaluation of Empirical, ANN, and SVM Path Loss Models	63
СНА	PTER FOUR: RESULTS AND DISCUSSION	
4.1.	Preamble	64
4.2.	Results of Radio Signal Measurement Campaign and Data Preprocessing	64
4.3.	Exploration of Field Measurement Data	67
4.4.	Statistical Analysis of Field Measurement Data	84
4.5.	ANN-Based Path Loss Models with Varying Input Data Requirements	92

4.6.	Effect of Input Data Normalization on ANN-Based Model Prediction Accuracy	/ and
	Generalization Ability	95
4.7.	ANN-Based Path Loss Models with Varying Transfer Functions	96
4.8.	ANN-Based Path Loss Models with Varying Training Algorithms	98
4.9.	ANN-Based Path Loss Models with Varying Number of Hidden Neuron	100
4.10.	SVM-Based Model for Path Loss Predictions	107
4.11.	Results of Statistical Evaluation of Empirical, ANN, and SVM Path Loss Models	109
CHA	PTER FIVE: DISCUSSIONS	
5.1.	Introduction	120
5.2.	Optimum Input Parameters for ANN-Based Path Loss Model Development	120
5.3.	Effect of Input Data Normalization o Model Performance	121
5.4.	Optimal Transfer Function for ANN-Based Path Loss Model	121
5.5.	Optimal Learning Algorithm for ANN-Based Path Loss Model	122
5.6.	Optimal Number of Hidden Neurons for ANN-Based Path Loss Model	122
5.7.	Optimal Multi-Frequency Machine Learning-Based Path Loss Model	122
CHA	PTER SIX: CONCLUSIONS AND RECOMMENDATIONS	
5.1.	Conclusion	124
5.2.	Recommendations for Future Works	126
5.3.	Contribution to Knowledge	126
5.4.	Scholarly Publications	127
	5.3.1. Selected Peer-Reviewed Journal Papers	127

5.3.2.	Selected Peer-Reviewed Papers in Conference Proceedings	128
REFERENC	'ES	130

LIST OF TABLES

Table 2.1: SUI Model Parameters.	33
Table 2.2: Values of Parameters for Ericsson Model.	36
Table 2.3: Review of Related Works.	42
Table 3.1: Geographic locations of base station transmitters.	52
Table 3.2: Training algorithm for ANN model development	57
Table 4.1: Quantitative summary of field measurement data	66
Table 4.2: Descriptive first-order statistics of training data	68
Table 4.3: Descriptive first-order statistics of testing data	69
Table 4.4: Descriptive first-order statistics of training data collected at 900 MHz	70
Table 4.5: Descriptive first-order statistics of testing data collected at 900 MHz	71
Table 4.6: Descriptive first-order statistics of training data collected at 1800 MHz	72
Table 4.7: Descriptive first-order statistics of testing data collected at 1800 MHz	73
Table 4.8: Descriptive first-order statistics of training data collected at 2100 MHz	74
Table 4.9: Descriptive first-order statistics of testing data collected at 2100 MHz	75
Table 4.10: Correlation coefficient matrix	90
Table 4.11: P-value matrix	91
Table 4.12: Optimal path loss model with minimum input variable(s)	93
Table 4.13: Results of generalization ability testing	94
Table 4.14: Effect of input data normalization on path loss prediction accuracy	95
Table 4.15: Effect of input data normalization on generalization ability	96

Table 4.16: Training Results of ANN-Based Models with Varying Transfer Functions
Table 4.17: Testing Results of ANN-Based Models with Varying Transfer Functions
Table 4.18: Training Results of ANN-Based Path Loss Models with Varying Learning Rules99
Table 4.19: Testing Results of ANN-Based Path Loss Models with Varying Learning Rules99
Table 4.20: Input Weight, Output Weight, and Bias Matrices
Table 4.21: Attribute selection using 10-fold cross validation
Table 4.22: SVM model parameters 108
Table 4.23: Final Training Results. 113
Table 4.24: Final Testing Results 114
Table 4.25: ANOVA results of path loss predictions using training data
Table 4.26: ANOVA results of path loss predictions using testing data
Table 4.27: Multiple comparison post-hoc test results of training data
Table 4.28: Multiple comparison post-hoc test results of testing data

LIST OF ALGORITHMS

Algorithm 3.1: Development of ANN Model with Varying Input Parameters	55
Algorithm 3.2: Effect of Input Data Normalization on ANN Model Performance	56
Algorithm 3.3: Development of ANN Models with Varying Activation Functions	58
Algorithm 3.4: Development of ANN Models with Varying Learning Rules	59
Algorithm 3.5: Development of ANN Models with Varying Number of Hidden Neurons	61
Algorithm 3.6: Development of SVM Model with Polynomial Kernel Function	62

LIST OF FIGURES

Figure 2.1: Elements of a Communication System	10
Figure 2.2: Median Attenuation and Area Gain Factor	23
Figure 2.3: Propagation Geometry for Bertoni - Walfisch Model	30
Figure 2.4: Diffraction Angle and Urban Scenario	35
Figure 3.1: Flowchart of Research Methodology	49
Figure 3.2: Physical environment of Covenant University campus	50
Figure 3.3: Drive test survey routes	51
Figure 3.4: Digital Terrain Map of the propagation environment	53
Figure 4.1: RSS data collected at 900 MHz	65
Figure 4.2: RSS data collected at 1800 MHz	65
Figure 4.3: RSS data collected at 2100 MHz	67
Figure 4.4: Boxplot of longitude data along 14 survey drive test routes	76
Figure 4.5: Boxplot of latitude data along 14 survey drive test routes	77
Figure 4.6: Boxplot of elevation data along 14 survey drive test routes	77
Figure 4.7: Boxplot of altitude data along 14 survey drive test routes	78
Figure 4.8: Boxplot of clutter height data along 14 survey drive test routes	78
Figure 4.9: Boxplot of distance data along 14 survey drive test routes	79
Figure 4.10: Boxplot of RSS data along 14 survey drive test routes	79
Figure 4.11: Boxplot of distance data along 14 survey drive test routes	80
Figure 4.12: Frequency distributions of longitude in (a) training data and (b) testing	80

Figure 4.13:	Frequency distribution of latitude in (a) training data and (b) testing data
Figure 4.14:	Frequency distribution of elevation in (a) training data and (b) testing
Figure 4.15:	Frequency distribution of altitude in (a) training data and (b) testing data82
Figure 4.16:	Frequency distribution of frequency in (a) training data and (b) testing data82
Figure 4.17:	Frequency distribution of clutter height in (a) training data and (b) testing data8
Figure 4.18:	Frequency distribution of distance in (a) training data and (b) testing data83
Figure 4.19:	Frequency distribution of RSS in (a) training data and (b) testing data
Figure 4.20:	Frequency distribution histograms of measured path loss in (a) training data and (b) testing data
Figure 4.21:	Scatter plot of path loss versus longitude
Figure 4.22:	Scatter plot of path loss versus latitude
Figure 4.23:	Scatter plot of path loss versus elevation
Figure 4.24:	Scatter plot of path loss versus altitude
Figure 4.25:	Scatter plot of path loss versus radio frequency
Figure 4.26:	Scatter plot of path loss versus clutter height
Figure 4.27:	Scatter plot of path loss versus distance
Figure 4.28:	Scatter plot of path loss versus RSS
Figure 4.29:	Training time versus number of hidden neuron100
Figure 4.30:	Performance evaluation of ANN-based path loss model101
Figure 4.31:	Correlation coefficient versus number of hidden neuron10
Figure 4.32:	Final Training Result

Figure 4.33:	Performance evaluation of ANN training103
Figure 4.34:	Training (900 MHz)110
Figure 4.35:	Testing (900 MHz)110
Figure 4.36:	Training (1800 MHz)111
Figure 4.37:	Testing (1800 MHz)111
Figure 4.38:	Training (2100 MHz)112
Figure 4.39:	Testing (2100 MHz)112
Figure 4.40:	Testing results for Hata model114
Figure 4.41:	Testing results for COST 231 model11
Figure 4.42:	Testing results for ECC-33 model11
Figure 4.43:	Testing results for Egli model116
Figure 4.44:	Testing results for ANN model116
Figure 4.45:	Testing Results for SVM model

LIST OF ABBREVIATIONS

3D	Three-dimensional
5G	Fifth Generation
AM	Amplitude Modulation
ANFIS	Adaptive Neuro-Fuzzy Inference System
ANN	Artificial Neural Network
ANOVA	Analysis of Variance
BFG	BFGS Quasi Newton
BTS	Base Transceiver Station
CDMA	Code Division Multiple Access
CGB	Conjugate Gradient with Powell/Beale Restarts
CGF	Fletcher-Powell Conjugate Gradient
CGP	Polak-Ribiere Conjugate Gradient
COST	COopération européenne dans le domaine de la recherche Scientifique et Technique
CW	Continuous Wave
DE	Differential Evolution
DCS	Digital Cellular System
DSR	Design Science Research
DTM	Digital Terrain Map
ELM	Extreme Learning Machine
GA	Genetic Algorithm

GDX	Variable Learning Rate Backpropagation
GHz	Giga Hertz
GIS	Geographic Information System
GPS	Global Positioning System
GSM	Global System for Mobile communications
HEI	Higher Education Institution
HF	High Frequency
ICT	Information and Communication Technology
IEEE	Institute of Electrical and Electronic Engineering
ΙоТ	Internet of Things
IMT	International Mobile Telecommunications
ITU	International Telecommunication Union
ITU-R	International Telecommunication Union-Radio
LF	Low Frequency
LM	Levenberg-Marquardt
logsig	Logarithmic sigmoid function
LOS	Line of Sight
LRNN	Layer Recurrent Neural Network
LTE	Long Term Evolution
M2M	Machine-to-Machine
MAE	Mean Absolute Error

MATLAB	MATrix LABoratory
MHz	Mega Hertz
MLP-NN	Multi-Layer Perceptron Neural Network
MMDS	Multipoint Microwave Distribution System
MSE	Mean Square Error
N/A	Not Applicable
NLOS	Non-Line of Sight
OSS	One Step Secant
PC	Personal Computer
PCS	Personal Communication System
purelin	Linear activation function
QoS	Quality of Service
R	Correlation coefficient
RAM	Random Access Memory
RAN	Radio Access Network
RBF	Radial Basis Function
RMSE	Root Mean Square Error
RP	Resilient Backpropagation
RSS	Received Signal Strength
SCG	Scaled Conjugate Gradient
SED	Standard Error Deviation

SHF	Supper High Frequency
SPM	Standard Propagation Model
SUI	Stanford University Interim
SVM	Support Vector Machine
tansig	Hyperbolic tangent function
TETRA	TErrestrial Trunked Radio
TV	Television
UHF	Ultra-High Frequency
UMTS	Universal Mobile Telecommunications System
USB	Universal Serial Board
VHF	Very High Frequency
VLF	Very Low Frequency
WEKA	Waikato Environment for Knowledge Analysis
WiMax	Worldwide Interoperability for Microwave Access
Wi-Fi	Wireless Fidelity

ABSTRACT

An easy-to-use and accurate multi-frequency path loss model is a necessary tool for heterogeneous radio network planning and optimization towards achieving a smart campus. The learning ability in artificial intelligence may be exploited to reduce computational complexity and to improve prediction accuracy. In this research project, an optimal heterogeneous model was developed for path loss predictions in a typical university campus propagation environment using machine learning approach. Radio signal measurements were conducted within the campus of Covenant University, Ota, Nigeria to obtain the logs of signal path loss at 900, 1800, and 2100 MHz. Different path loss prediction models were developed based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) learning algorithms. The prediction accuracy and generalization ability of the ANN-based model, which has seven input nodes (distance, frequency, clutter height, elevation, altitude, latitude, and longitude), single hidden layer with 43 neurons and logarithmic sigmoid (*logsig*) activation function, and a single output neuron (for path loss variable) with tangent hyperbolic sigmoid (*tansig*) activation function, was found to be the best when compared to the prediction outputs of SVM-based model, and popular empirical models (i.e. Okumura-Hata, COST 231, ECC-33, and Egli). The ANN-based path loss model was trained based on Levenberg-Marquardt learning (LM) learning algorithm. The prediction outputs of the ANNbased path loss model has the lowest Root Mean Square Error (RMSE) of 4.480 dB, Standard Error Deviation (SED) of 4.479 dB, and the highest value of correlation coefficient (R) of 0.917, relative to the measured path loss values. This finding was further validated by the results of Analysis of Variance (ANOVA) and multiple comparison post-hoc tests. In essence, ANN-based path loss model was found to be the optimal model for heterogeneous radio network planning, deployment, and optimization in a smart campus propagation environment.

Keywords: Path Loss Model; Heterogeneous Radio Network; Artificial Neural Network (ANN); Support Vector Machine (SVM); Radio Network Planning and Optimization (RNP/O); Smart Campus