

FACULTY OF ENGINEERING AND ENVIRONMENTAL SCIENCES

OSUN STATE UNIVERSITY

OSOGBO, OSUN STATE, NIGERIA

PROCEEDINGS

OF THE

1ST INTERNATIONAL CONFERENCE ON

ENGINEERING AND ENVIRONMENTAL SCIENCES

(NOVEMBER 5-7, 2019)

THEME

ADVANCING TECHNOLOGY AND ENVIRONMENTAL BURDENS: CHALLENGES AND SUSTAINABLE SOLUTIONS

EDITORS: Abidoye, L.K.; Okedere, O.B.; Alawode, K.O.; Ibrahim, R.B.;

Adebanjo, A.U.; Thanni, M.O.; Adeyemo, K.A.

© Faculty of Engineering and Environmental Sciences, Osun State University, 2019

Proceedings of the 1st International Conference on Engineering and Environmental Sciences

All rights reserved.

No part of this publication may be reproduced or stored in a retrieval system, transmitted in any form or by any means, electronics, mechanical photocopying, recording or otherwise without the prior permission of the publishers.

Published in January 2020

ISBN:

Published by: Faculty of Engineering and Environmental Sciences, Osun State University, Osogbo, Osun State, Nigeria.

PREFACE

The 1st International Conference on Engineering and Environmental Sciences was the first international conference organized by the Faculty of Engineering and Environmental Sciences, Osun State University. The aims of the conference include to foster interactions and collaborations among members of academia, industries and traditional stakeholders across the globe, with a view to tackling the challenges to sustainable development. To address socio-economic and environmental challenges facing our country and the world at large, the Faculty seeks to position itself strategically, using these formal and intellectual interactions, to proffer ingenious solutions and also initiate same with interested stakeholders. By so doing, the Faculty is promoting its ideals to the society and also fulfilling its part in the town and gown relationship.

As elucidated by the theme of the conference- *ADVANCING TECHNOLOGY AND ENVIRONMENTAL BURDENS: CHALLENGES AND SUSTAINABLE SOLUTIONS*, this conference brought to the fore, the burdens of development borne by the environment as a result of global strives for increased and improved production of building materials, automobiles, agriculture, healthcare, textiles and so on. During this conference, local, national and international participants have demonstrated the various approaches to the solutions theoretically, empirically and numerically.

Having evaluated, revised and edited the various submissions by the participants to produce this proceedings, it is believed that readers will find in this proceedings, intellectual treasures of inestimable values, to further push the frontiers of knowledge to the next level. It is hope that the last participants of the conference and readers of this proceedings will keep up the good work of research and intellectualism and produce qualitative works to qualify for the next edition of the conference.

Finally, our immense appreciations go to the members of the local organizing committee as well as the local, national and international participants for using their time, energy and material resources to make the event worthwhile.

Engr. Dr. A.A. Bello

Ag Dean, Faculty of Engineering and Environmental Sciences

Table	of	Contents
-------	----	----------

PREFACE	ii
TIME HEADWAY AS INDICES OF TRAFFIC CONGESTION	1
Emmanuel, A.A. and Mohammed, H.	1
SOME PHYSICAL PROPERTIES OF COMMON VARIETIES OF WATERME	LON
SEED	12
Obi, O.F.	12
EFFECTS OF PALM OIL POLLUTION ON THE SUBGRADE CALIFOR	RNIA
BEARING RATIO UNDER SOAKED CONDITION	24
Adeyinka, S.M., Adeyinka, A.I., Adeyinka, C.O. and Sobo, K.S.	24
RAINFALL INTENSITY-DURATION-FREQUENCY MODELS FOR IBA	DAN
USING OPTIMIZATION TECHNIQUE	34
David, A.O., Nwaogazie, I.L., Opafola, O.T., Babalola, A.A. and Lawal, N.S.	34
DEVELOPMENT OF AN INTELLIGENT BATTERY CHARGING SYSTEM BA	SED
ON PIC16F877A MICROCONTROLLER	45
Nwosu, E.U., Olalere, N.A., Shopade, G.N. and Ogbodo, J.I.	45
ASSESSMENT OF VOLUMETRIC SHRINKAGE AND HYDRAU	ULIC
CONDUCTIVITY OF LATERITE STABILIZED -COW BONE ASH ADMIXTUR	EAS
LINER MATERIALS	63
Bello, A. A.; Raji, O.I. and Ameen, I.O.	63
DESIGN AND FABRICATION OF A PLASTIC CRUSHER	75
Adesina, A.O., Adedeji, W.O. and Ajiboshin, I.O.	75
EFFECTS OF UNREGULATED CONCRETE PRODUCTION PRACTICES	BY
NIGERIAN MASONS: A CASE STUDY OF OSOGBO, OSUN STATE, NIGERIA	84
Oriaje, A.T. and Adeoye, A.A.	84

INFLUENCE OF COMPACTION ENERGIES ON SOIL SAMPLES FROM	ЭM
ABEOKUTA-SOUTH LOCAL GOVERNMENT AREA OF OGUN STA	ТЕ,
SOUTHWESTERN NIGERIA	95
Bello, A. A., Oriaje, A. T. and Raji, Z. A.	95
EFFECT OF PH AND SUGAR LEVEL ON HEAT RESISTANCE OF ESCHERICHIA COLL	I IN
SWEET ORANGE JUICE (CITRIUS SINENSIS) SOLD IN KAURA NAMODA MARKET.	108
Hassan, A.B., Tanko, H.O. and Adegboye, Y	108
USERS' LEVEL OF AWARENESS ON GREEN FEATURES IN RESIDENTI	AL
BUILDINGS: EXPERINCE FROM IBADAN MUNICIPALITY, NIGERIA	125
Adejumo, A.O., Oyedele, D.J., Adeosun, J.O. and Eluleye, P.K.	125
AN ASSESSMENT OF EXISTING GREEN FEATURES IN RESIDENTI	AL
BUILDINGS IN IBADAN MUNICIPALITY.	137
Adejumo, A.O., Oyedele, D.J., Adedokun, A.R., Fayomi, I., Adeosun, J.O.	137
ASSESSMENT OF THE EXTENT OF PARTICIPATION OF INDIGENO	OUS
CONTRACTORS IN MAJOR CONSTRUCTION ACTIVITIES IN OSUN STATE	148
Adeosun, J.O., [,] Fadipe O.O. and Adejumo, A.O.	148
EXPERT WITNESSING IN REAL ESTATE LITIGATION PRACTICE IN IBAD	AN
METROPOLIS: THE ESTATE SURVEYORS AND VALUERS' PERSPECTIVE	159
Adedokun, A. R. and Oladokun, T. T.	159
HYDRAULIC MODELING OF A NATURE-BASED APPROACH TO SUBMERG	ED
FLEXIBLE DRAINAGE LINING	173
Suleiman, M. and Busari, A.O.	173
EFFECT OF CONTINUITY OF REFINERY ON THE WORKING INDEX	OF
ELECTRIC ARC FURNACE	188
Okediran, K. I., Idris, M.O. and Adetunji, R.O.	188

EVALUATION OF QUANTITY OF WATER SUPPLY IN MINNA METROPOLIS198

Illo , N.A and Busari A.O.,	198
CARBON STORAGE IN CONCRETE: INFLUENCES OF HYDRATION STA	AGE,
CARBONATION TIME AND AGGREGATE CHARACTERISTICS	209
Abidoye, L.K. and Das, D.B.	209
SEPTIC PLUME CONTAMINATIONS OF GROUNDWATER IN NIGERIA LO	CAL
COMMUNITY: INFLUENCES OF SEASONS AND TOPOGRAPHY ON PLU	UME
MOBILIZATIONS	222
Abidoye, L.K., Alabi, O.O. and Wahab, A.A.	222
PARAMETRIC INVESTIGATION OF THE RELIABILITY OF ONE-V	WAY
REINFORCED CONCRETE SLAB	234
Olawale, S. O. A., Tijani, M. A. and Ogunleye, O. E.	234
MULTINOMIAL LOGIT APPROACH TO MODELLING CRASH SEVERITY	ON
SELECTED TWO-LANE HIGHWAYS IN ONDO STATE NIGERIA	244
Ipindola, O.O	244
FACTORS INFLUENCING CORPORATE REAL ESTATE OUTSOURCING	; IN
NIGERIA: AN EMPIRICAL STUDY FROM THE BANKING	AND
TELECOMMUNICATION SECTORS IN LAGOS, NIGERIA.	257
Fayomi, I., Oladokun T.T. and Adewolu T.O.	257
COMBINED INFLUENCE OF GRAVEL AND CRUSHED BURNT BRICKS ON	THE
PROPERTIES OF CONCRETE	273
. Kareem, M.A , Olawale, S.O.A., Bamigboye, G.O., Alade A. J.	273
GEOTECHNICAL INVESTIGATION OF THE SUITABILITY OF SOME SELEC	TED
LATERITIC SOILS FOR ROAD CONSTRUCTION IN OSUN STATE	284
Oluremi, J.R., Ishola, K., Yohanna, P. and Etim, R.K.	284
ENHANCING TECHNO-ENVIRONMENTALISM AND UNIVERS	SITY
ENTREPRENEURSHIP FOR DEVELOPMENT IN AFRICA: A POLYCENT	RIC
PLANNING PERSPECTIVE	296

Akinola, S. R., Olayode, O., Abiola, T. I., Adeosun, J. O. and Adejumo, A. O.	296
ASSESMENT OF RELIABILITY OF A CONCRETE COLUMN RESISTING	G AXIAL
AND A COMBINATION OF AXIAL AND MOMENT LOADS	317
Olawale, S.O.A., Adebanjo, A.U. and Tijani, A.O.	317
ACOUSTIC BEHAVIOUR OF CRUMB-RUBBER MASONRY H	OLLOW
CONCRETE BLOCK WALLETTE BASED ON ITS INSTALLED SELF-	335
Sanni, M.Y., Ocholi, A., Abdulkarim, A.A., Ejeh, S.P. and. Amartey, Y.D.	335
EXPERIMENTAL STUDY ON THE PROPERTIES OF SORGHUM HU	SK ASH
PERVIOUS CONCRETE	351
Tijani, M.A., Ajagbe, W.O., Olawale, S.O.A., Ganiyu, A.A. and Agbede, O.A.	351
TRAFFIC ANALYSIS AT A MULTILEGED INTERSECTION IN OSUN	STATE,
NIGERIA	359
Olawuyi, O.A., Busari, A., Akintayo, F.O, and Ojagbule, T.E.	359
AN ASSESSMENT OF URBAN HOUSEHOLD OUTDOOR RECREA	TIONAL
BEHAVIOURS IN OSOGBO, OSUN STATE, NIGERIA	370
Adedotun, S.B., Yakubu, D.A., Ajayi, O.A., Adedotun, D.O. and Tewogbade, M.	370
REDEFINING THE SCALE OF ENVIRONMENTAL POLLUTION IN N	IGERIA
USING SUSTAINABLE DEVELOPMENT GOALS	384
Gbadegesin, O.A.	384
APPRAISAL OF ENVIRONMENTAL SANITATION PRACTICES IN SEI	LECTED
MARKETS IN AKURE, NIGERIA	396
Ibrahim, R. B., Adedotun, S. B., Waheed, F. I. and Akinbosoye, B.O.	396
IMPACT ASSESSMENT OF SMOKING DURATION ON POLY	CYCLIC
AROMATIC HYDROCARBONS (PAH'S) CONTAMINATIONS OF C	ATFISH
(Ciarias gariepinus)	407
Abiona, O. O., Awojide, S. H., Adegunwa, A. O. and Tayo, A. S	407

ENVIRONMENTAL MANAGEMENT POLICIES IN NIGERIA	415
Adewoye, O.A., Oyewole, O. D. and Lawal, O. O.	415
ACCESSIBILITY AND PATRONAGE OF URBAN OPEN SPACES IN A	SOUTH-
WESTERN NIGERIA CITY.	424
Ajayi, A.O. and Amole, O.O.	424
MAPPING OF THE SUSCEPTIBILITY AREAS TO LANDSLIDE IN JOS	SOUTH
LOCAL GOVERNMENT AREA, PLATEAU STATE, NIGERIAGIS API	PROACH
	443
Fadipe, O.O., Shitta, N. Okeke, O.J. Adeosun, J.O.	443
A STUDY OF SPATIAL ACCESSIBILITY TO PUBLIC SECONDARY S	SCHOOL
EDUCATION IN OSUN WEST SENATORIAL DISTRICT, NIGERIA	452
Adeyinka, S.A.; Ojo, A.O., Olayode, O. and Ogundahunsi, D. S.	452
THE INFLUENCE OF CRUMB-RUBBER ADDITIONS ON THE	WATER
SORPTIVITY AND POROSITY OF MASONRY CONCRETE	463
Sanni, M.Y., Ocholi, A., Abdulkarim, A.A., Ejeh, S.P. and Amartey, Y.D.	463
EVALUATION OF STRENGTH CLASSES OF TWO SELECTED LE	SS-USED
NIGERIAN TIMBER SPECIES FOR STRUCTURAL APPLICATIONS	481
Rahmon, R. O., Jimoh, A. A., Babatunde, O. Y.	481
LAND USE CHANGES BETWEEN 1986 AND 2016 IN OBA HILL	FOREST
RESERVE, OSUN STATE, NIGERIA	499
Asifat, J.T. and Ogunbode, T.O.	499
EFFECT OF COMPACTIVE EFFORTS ON THE DESSICATION-IN	NDUCED
VOLUMETRIC SHRINKAGE OF BLACK COTTON SOIL TREATED	D WITH
CASSAVA PEEL ASH	512
Adeyemo, K. A., Yunusa, G. H., Bello, A. A. and Muhammad, A.	512
EVALUATION OF THE EFFECT OF PRECIPITATION VARIATI	ON ON
GROUNDWATER QUALITY IN ILORIN METROPOLIS, NIGERIA	524

Ayanshola, A.M., Sossou, P.M., Bilewu, S.O., Abdulkadri, T.S., Oluwaseun, V.O.	and
Owolabi, S.O.	524
REMOTELY CONTROLLED CAR SPEED GOVERNOR	536
Alonge, O.I., Abiola, O.A., Onigbogi, A.O., Akinbode, F.O., Okediji, A. P. and Alabi,	I. O.
	536
STALL CONTROL ON THE NACA 23012 AIRFOIL VIA SINGLE AND DOU	BLE
SUCTION	550
Alonge, O. I., Akinneye, A.O. and Julius, M. O.	550
BUS STOPS CHARACTERISTICS IN SELECTED LOCAL GOVERNMENT AR	EAS
IN IBADAN METROPOLIS	565
Akintayo, F. O., Adibeli, S. A., Oyewale, P. K. and Olawuyi, O. A.	565
THE USE OF BAGASSE ASH AS A SUITABLE RAW MATERIAL	FOR
PRODUCTION OF CONTAINER GLASS	573
Muhammed, J.O. and Alemaka, E.M	573
PRODUCTION OF A DUAL-PURPOSE WASTE GLASS PROCESSING MACH	IINE
FOR SMALL TO MEDIUM ENTERPRISE (SME)	585
Olasehinde, O. S., Gonah, C. M. and Fwatwmol, A. D	585
OPTIMAL PLACEMENT AND SIZING OF CAPACITOR IN NIGERIAN RAI	DIAL
DISTRIBUTION NETWORKS USING CUCKOO SEARCH ALGORITHM	596
Salimon, S. A., Suuti, K. A. and Aderinko, H. A.	596
DEVELOPMENT OF A DUST EXTRACTOR	610
Adeboye, B. S. and Raji, A.W.	610
HEALTH IMPAIRMENT OF CLIMATE CHANGE AMONG AGED PEOPLI	e in
IBADAN, NIGERIA	616
Kehinde, O. J. and Adeboyejo, A. T.	616

COMBATTING	ENVIRONMENTAL	BURDENS	THROUGH	ANAEROBIC
DIGESTION OF	SELECTED ANIMA	L WASTES (CO-DIGESTED	WITH FOOD
WASTES AT MES	SOPHILIC TEMPERA	TURE		627
Oladejo, O.S., Sa	ılami, A. and Adebayo, A	.0.		627
OPTIMUM AND N	NUTRITIVE UTILIZA	TION OF ORE	EOCHROMIS NI	LOTICUS FED
DIFFERENTLY P	REPARED HOUSEFL	Y MAGGOT S	SUBSTITUTED	DIETS. 641
Mustapha, A.K.				641
GEOSPATIAL A	ANALYSIS OF UR	BAN HEAT	ISLAND OV	ER BAUCHI
METROPOLIS A	ND ITS ENVIRONS			655
Isioye, O. A., Ako	molafe, E. A., Abubakar,	A. Z., Aliyu, A.	O. and Maiway	o,T. 655
MOTORISTS' CO	OMPLIANCE WITH F	ROAD TRAFF	IC SIGNS IN I	KEJA LOCAL
GOVERNMENT A	AREA, LAGOS STATE	E		670
Ogundahunsi, D.	S., Adedotun, S. B. and	Usman, A. A.		670
IMPACT OF ROA	AD EXPANSION ON	THE SOCIO	ECONOMIC A	CTIVITIES IN
OSOGBO METRO	OPOLIS			678
Yakubu, D. A., Aa	ledotun, S. B. and David,	<i>O. J.</i>		678
COMPRESSIVE	STRENGTH CHAR	ACTERISTIC	S OF STRU	CTURAL-SIZE
AKOMU (Pycnant	hus angolensis) AND E	RIRI (Vitex do	niana) AS TIM	BER COLUMN
UNDER COMPRE	ESSION			688
Rahmon, R. O.and	d Jimoh, A. A.			688
VISCOUS FLOW	EFFECT FOR SIMUL	TANEOUS SQ	UEEZE AND S	LIP FLOW OF
A POROUS EMBI	EDDED NON-NEWTO	NIAN FLUID.		706
Ilegbusi, A.O. and	d Akinshilo, A.T.			706
INNOVATING	ENGINEERING	STUDENT	CURRICUL	UM WITH
ENTREPRENEU	RSHIP			721
Adeyemi, O.A. and	d. Idris, M.O.			721

A REVIEW OF WOVEN NATURAL FIBRE COMPOSITE FOR SPIRAL ANKLE
FOOT ORTHOSIS 734
Oyewo, A., Ajide, O., Odusote, J., Adefajo, A. and Fakorede, D. 734
DETERMINANTS OF PROPERTY INVESTMENT INFLOW IN AN EMERGING
ECONOMY: THE PERSPECTIVE OF REAL ESTATE DEVELOPERS IN LAGOS
NIGERIA 747
Adebara, O. B. and Olaleye, A. 747
FRONT AND REAR YARDS OF RESIDENTIAL BUILDINGS AS OPEN SPACES IN
ILE-IFE, NIGERIA: SOME IMPLICATIONS FOR DEVELOPMENT CONTROL 762
Adebara, T. M. 762
ROTOR ANGLE DYNAMICS IN MULTI-MACHINE GRID-INDEPENDENT
DISTRICT MINIGRID 776
Ajewole, T.O., Lawal, M.O., Alawode, K.O. and Omoigui, M.O. 776
STUDY OF GLOBAL USE OF GEOSYNTHETICS TECHNOLOGY AND
IMPLICATIONS FOR NIGERIA785
Oginni, F.A. and Dada, T. T. 785
AN IMPROVED MATHEMATICAL MODEL FOR ECOLOGICAL SURVEILLANCE
OF PREY-PREDATOR. 803
Omotosho, L.O.; Olayiwola, M.O. and Olaleye, V.O. 803
PURIFICATION AND PHYSICO-CHEMICAL ANALYSIS OF CRUDE GLYCERIN
PRODUCED BYTRANSESTERIFICATION PROCESS. 816
Aworanti, O.A., Agbede, O.O., Ogunleye, O.O., Agarry, S.E., Babatunde, K.A. and Akinwum
O.D. 816
LABORATORY INVESTIGATION OF SEDIMENT TRANSPORT IN OPEN
CHANNEL FLOWS 824
Eya, S. A.; Saleh, J. Y.; Ekwo, J. E.; Nubiya, R. N. and Busari, O. A. 824

CONVERGENCE BETWEEN THE MARXIST AND INFORMATION THEOR	ky in
RELATION TO MOTIVE-BASED OCCLUSION-INVARIANT FACIAL DISPAR	NTY:
AN ANALYSIS OF CONFLICT RESOLUTION	834
Alabi, A.	834
DISTRIBUTION SYSTEM POWER LOSS MINIMIZATION BASED ON NETW	'ORK
STRUCTURAL CHARACTERISTICS	849
Ayanlade, S.O. ⁻ Komolafe, O. A., Adejumobi, I. O. and Jimoh, A.	849
SUSTAINABILITY OF IFE STEEL SLAG ON THE SPLIT AND FLEXU	JRAL
STRENGTHS OF CONCRETE	862
Adedokun, S. I., Anifowose, M. A., Oyeleke, M. O., Oduoye, W. O., Ibiwoye, E. O.	862
FACTORS INFLUENCING TIME PERFORMANCE OF CONTRACTORS	5 ON
CONSTRUCTION PROJECTS IN OSUN STATE, NIGERIA	870
Ademola, S. A., Akomolafe, M. A. and Buari, T. A.	870
Comparison of Physicochemical properties of two varieties of cucumber (Cu	cumis
sativus)	885
Lamidi, W.A., Oyedun, T. D. and Adesigbin, A.J.	885
A PARTICLE SWARM OPTIMIZATION (PSO) BASED SMART	GRID
APPLICATION FOR OPTIMUM SIZING OF HYBRID RENEWABLE	899
ENERGY SYSTEMS IN NIGERIA	899
Oyelami, S., Azeez, N. A. and Ologunye, O. B.	899
APPRAISAL OF FLOODING AND DRAINAGE CONDITIONS IN OSOGBO, O	OSUN
STATE, NIGERIA.	907
Gasu, M. B., Olaiyiwola, O. and Ezekiel, A. O.	907
DECENTRALIZED LOAD FREQUENCY CONTROL OF MULTI-A	AREA
INTERCONNECTED POWER SYSTEMS	920
Yahaya, E. H., Kunya, A. B., Jibril, Y., Okorie, P. U.	920

COMBINED INFLUENCE OF GRAVEL AND CRUSHED BURNT BRICKS ON THE PROPERTIES OF CONCRETE

. Kareem, M.A^{1*}, Olawale, S.O.A.¹, Bamigboye, G.O.², Alade A. J.¹

¹ Department of Civil Engineering, Osun State University, Osogbo, Nigeria.

²Department of Civil Engineering, Covenant University, Ota, Nigeria.

*Email of Corresponding Author: <u>mutiu.kareem@uniosun.edu.ng</u>

ABSTRACT

The quest for alternative materials in concrete production is ongoing as the demand for concrete using conventional material increases. This study investigates the properties of concrete produced with Crushed Burnt Bricks (CBB) as replacement for Unwashed Gravel (UG). Concrete mixes of 1:2:4 (cement, sand and gravel) mix ratio were produced using UG/CBB combination in varying proportion of 100:0, 75:25, 50:50, 25:75, 0:100 which were represented as sample A, B, C, D and E. The water-to-binder (w/b) ratio of 0.4, 0.5, 0.55 and 0.6 were used for each sample. Sample A without CBB (i.e. 100% UG) served as control. Slump test was carried out on the fresh concrete while compressive strength test was carried out on the hardened concrete specimens using 150 mm cubes at the curing in ages of 7, 14 and 28 days, respectively. The slump values of fresh concrete increases with increase in w/b and CBB contents. At 28 days, the compressive strength values were 26.7 N/mm² for concrete produced with sample B at w/b of 0.4 and 28.2 N/mm² for concrete produced with sample A (control). It was concluded that the optimum level of substitution of 25% CBB for gravel is viable for concrete production from a structural point of view.

Keywords: Compressive strength, Concrete, Crushed burnt brick, Unwashed gravel, Waterto-binder ratio,

1.0 INTRODUCTION

Concrete is a composite material that consists of cement, fine aggregate coarse aggregate and water with or without admixture (Bamigboye *et al.*, 2019). Concrete's versatility, durability, and economy have made it the world's most used construction material (Kosmatka *et al.*, 2003). The properties of concrete are influenced by many factors which include the properties of aggregate used in the concrete, their sizes and texture, whether angular or sub- angular, other factors include the type of cement used, the water-cement ratio used, the method of mixing and curing, relative humidity and temperature. These factors must be adequately controlled to ensure that the desired properties of the concrete are

obtained (Jimoh and Awe, 2007).

Aggregates occupy 70-80 per cent of the volume of concrete; hence, their impact on various characteristics of concrete cannot be underestimated (Neville, 2011). Aggregates are presumably inert mineral fillers such as crushed rock, gravel and sand for making concrete. It has been established that some of the aggregates exhibit chemical bond at the interface of aggregates and paste (Shetty, 2005). Aggregates are cheaper than cement; hence they are employed to the maximum advantage in concrete production. Aggregates can be classified as natural and artificial aggregates. Examples of natural aggregates include sand, gravel, crushed rock such as granite, quartzite, basalt while artificial aggregates include broken bricks, aircooled slag, sintered fly ash, bloated clay (Yang and Huang, 1996). Gravel is one of the naturally occurring aggregates which has been used over the time for structural concrete construction as an alternative to granite, believing that it is either using granite alone or the mixture of the two coarse aggregates (granite and gravel) in a designed proportion can give the required strength and durability (Bamigboye *et al.*, 2016).

The cost of the provision of affordable housing depends largely on the price of the construction material. As a result of the high cost of cement and aggregates for the production of concrete, efforts have been made by many researchers (Khalaf, 2006; Rashid *et al.*, 2008; Apebo and Agunwanba, 2014; Bazaz and Khayat, 2012; Kulkarni and Momin, 2015; Raheem and Kareem, 2017a,b) in finding ways of reducing the cost of its production. This is achieved by finding alternative ways to reduce the cost of cement and coarse aggregates. The most commonly used coarse aggregates in concrete production in residential housing by low-income earner in Nigeria is gravel. This is due to the high cost of granite and the availability of abundant gravel

at a relatively lower cost in most areas of the country. Moreso, the availability and proximity of aggregate to the construction site also affect the cost of construction taking away the infrastructural development out of reach of the common man. Over the past decades, the cost of gravel has continued to increase owing to the cost of transporting gravel to the construction site and this factor tends to increase the cost of construction (European Environmental Agency, 2008). This necessitates the use of natural or manufactured material as an alternative to gravel in concrete production.

Debieb and Kenai (2008) investigated the properties of concrete with crushed bricks as a partial replacement for fine aggregates. Concrete with 25% crushed brick contents showed better properties that are comparable to that of the control specimen. Kanchiduria *et al.* (2017) studied the strength and durability of concrete produced with partial substitution of granite with over burnt brickbat wastes and concluded that 25 to 50% replacement was suitable for normal and mass concrete production. Rekha and Potharaju (2016) analysed the properties of concrete produced with recycled brick and granite. The results indicate that the crushed clay bricks are suitable for the replacement of the granite aggregate in concrete production. Similarly, Otoko (2014) used the crushed clay bricks as aggregate in bituminous mixtures for the production of asphalt concrete. The results showed that asphalt concrete of unused and recycled brick aggregate outperformed specimens made with granite aggregates, mainly because of the high porosity and roughness of the surface of crushed clay brick aggregates, which can absorb more bitumen and provide better bonding in asphalt concrete.

Several studies (Rashid *et al.*, 2008; Khalaf, 2006; Apebo and Agunwanba, 2014; Bazaz and Khayat, 2012; Kulkarni and Momin, 2015) have used crushed bricks as coarse aggregates in making concrete. Other studies have used crushed brick as a partial replacement for crushed stone (Rashid *et al.*, 2012; Nordin, 2014; Debieb and Kenai, 2008; Kanchiduria *et al.*, 2017; Rekha, 2016) and river gravel (Apebo *et al.*, 2013). In this study, the workability and compressive strength of concrete produced by the combined use of UG and CBB was investigated.

2.0 MATERIALS AND METHODS

Materials

The UG and river sand used in this study were obtained from borrow pits in Ibadan, Oyo State. CBB samples were collected from the bricks production site at Foyer Bricks, Ofatedo area of Osogbo Local Government Area, Osogbo, Osun State. The Aggregates used in this study is shown in Figure 1. Elephant Brand of ordinary Portland cement of 32.5 grade which conforms to BS 12 (1996) was purchased from a retail shop within Ibadan and used as a binding agent. Water used for mixing was collected from the tap at the Concrete Laboratory of the University of Ibadan, Ibadan, Oyo State Nigeria. Figure 2 shows the grading curves for UG, CBB and river sand.

Figure 1: Aggregates used (a) River sand (b) UG (c) CBB

Sample Preparation

Concrete of 1:2:4 (cement, sand and gravel) mix proportions were prepared in conformity with BS 1881-125 (1986). The coarse aggregate content of the concrete mixture contained the mixture of UG and CBB in varying proportion of 100:0, 75:25, 50:50, 25:75, 0:100 which were represented as sample A, B, C, D and E. The w/b of 0.4, 0.5, 0.55 and 0.6 were used for each sample.

Sample A without CBB (i.e. 100% gravel) served as control. Table 1 shows the mix proportion for the preparation of 1 m³ concrete mix in terms of the weight of the components. A total

number of 144 concrete cubes of 150 mm size were produced for all the batches of concrete mixes. After casting, the specimens were stored in the Laboratory at 27 ± 5 °C with 90% relative humidity for 24 hours and then demoulded and cured underwater until testing ages.

The above mix was repeated for water-cement ratio of 0.5 (150 kg), 0.55 (165 kg) and 0.6 (180 kg), respectively.

Sample ID	UG/CBB Combin ation	Cement (Kg)	Sand (kg)	Coa Aggre (kş	rse gates g)	Water (kg)
	(%)			UG	CBB	
A	100/0	300	600	1200	0	120
В	75/25	300	600	900	300	120
С	50/50	300	600	600	600	120
D	25/75	300	600	300	900	120
E	0/100	300	600	0	1200	120

Table 1: Mix Pro	portion used for co	oncrete mix (0.4 W/C)
------------------	---------------------	-----------------------

Testing on Concrete

Slump test was carried out on fresh concrete in accordance with BS 1881: Part 102 (1983) to determine the effect of CBB on the workability of concrete and compressive strength test was carried out on the hardened concrete specimens at the curing in ages of 7, 14 and 28 days, respectively. These tests were carried out at the Concrete Laboratory of the University of Ibadan, Ibadan, Oyo State Nigeria

3.0 RESULTS AND DISCUSSION

Workability

The result of slump indicating the workability of concrete mixes with different combinations of UG and CBB are presented in Table 2. The Table indicates that the concrete slump decreases as the CBB content increases and increases as the water/cement ratio increases.

Figure 2: Particle size distribution of the aggregates used

The reduction in slump is attributed to the change in particle shape and nature of aggregates when CBB replaced UG (El-hassan and Kianmehr, 2019). The dust content can also also cause reduction in workability (Kesegić *et al.*, 2008).

Sample	Water/Cement	Slump
ID	Ratio	(mm)
А	0.40	0
	0.50	40
	0.55	55
	0.60	70
В	0.40	10
	0.50	30
	0.55	45
	0.60	60
	0.40	0
С	0.50	9
	0.55	20
	0.60	50

Table 2: Slump values of fresh concrete mixes

	0.40	0
	0.50	5
	0.55	10
	0.60	30
D		
	0.40	0
Е	0.50	0
	0.55	5
	0.60	15

Compressive

strength

The results of the compressive strength of concrete with different combinations of UG and CBB at the curing ages of 7, 14 and 28 days are presented in Figs. 3-5, respectively. The Figures generally showed that the compressive strength increases as the curing ages increases.

The result at 7 days as presented in Figure 3 indicate that the compressive strength of the concrete decreases with increase in CBB content and w/b ratio. The highest compressive strength was observed for concrete produced with Sample A (control) and w/b of 0.40 while the lowest was recorded for concrete produced with Sample E and w/b of 0.6. Nonetheless, the compressive strength values of concrete produced with different combinations of UG/CBB are lower compared to the control, a similar trend of decrease in compressive strength was observed as that of the control.

A similar trend was observed at 14 days as presented in Figure 4. This indicates an increasing rate of substitution of UG with CBB generally decreases the compressive strength of the concrete. Such characteristic is attributed to the higher water absorption of recycled crushed brick compared to natural aggregates (Kesegić, 2008).

The results for 28 days as presented in Fig. 2 also followed the same trend with the compressive strength ranging from 15.4 to 28.2 N/mm² for concrete produced with samples A

Figure 3: Compressive strength of UG/CBB concrete at 7 days curing age

Figure 4: Compressive strength of UG/CBB concrete at 14 days curing age

Figure 5: Compressive strength of UG/CBB concrete at 28 days curing age

to E as the CBB contents in UG increased from 0% to 100%. These values are lower compared to the values obtained from previous studies (Bhattacharjee *et al.*, 2011; Rashid *et al.*, 2009 and Apebo *et al.*, 2013) and this is attributed to the use of unwashed gravel as against the washed and granite. The compressive strength values of concrete containing the UG/CBB combination are generally lower compared to the control with the same w/b ratio. This is in agreement with the findings from previous studies (Bhattacharjee *et al.*, 2011; Rashid *et al.*, 2009 andApebo *et al.*, 2013). Meanwhile, the highest compressive strength was observed for concrete produced with Sample B with 25% CBB content for the entire w/b ratio considered compared to samples with higher CBB content. About 87%, 82%, 74% and 88% of the control was developed by concrete produced with Sample B with Sample B with the same water/cement ratio and curing ages.

4.0 CONCLUSIONS

From the results of the tests performed on the concrete, the following conclusions were drawn.

- 1. The concrete slump increases with increase in CBB content and decrease in UG content.
- 2. Increase in w/b ratio of concrete results in an increase in concrete slump.
- 3. The compressive strength of concrete decreases with increase in w/b ratio and CBB content in UG.
- 4. Concrete with 75% UG and 25% CBB content for all the w/b ratio considered attained the optimum compressive strength which is closer to the control with the same w/b ratio.
- 5. Concrete with the proportions of 75% UG and 25% CBB with 0.4 w/b ratio is suitable for producing concrete for non-load bearing structural applications.

REFERENCES

- Apebo, N.S. and Agunwambe J., 2014. The suitability of crushed over burnt brick as coarse aggregate, *International Journal of Engineering Science and Innovation Technology*, 3(1). pp. 316-321.
- Apebo, N.S., Iorwua, M.B. and Agunwamba, J. C., 2013. Comparative analysis of the compressive strength of concrete with gravel and crushed over burnt bricks as coarse aggregates, *Nigerian Journal of Technology*, 32(1), pp.7-12.
- Bamigboye, G.O., Adedeji, A.A., Olukanni, D.O., Omoleye, J.A. and Jolayemi, J.K. 2019. Influence of granite-gravel combination on the strength of self-compacting concrete:

Toward a suitable construction material, *Journal of Engineering Science and Technology*, 14(7), pp. 2746-2760.

- Bamigboye, G.O., Ede, A.N., Raheem, A.A., Olofinnade, O.M. and Okorie, U., 2016. Economic exploitation of gravel in place of granite in concrete production, *Material Science Forum*, 866, pp. 73-77.
- Bazaz, J.B. and Khayat, M., 2012. Properties and performance of concrete made with recycled low quality crushed brick, *Journal of Material in Civil Engineering*, 24, pp. 164-175.
- Bhattacharjee, E., Nag, D., Sarkar, P. P. and Haldar, L., 2011. An experimental investigation of properties of crushed over burnt brick aggregate concrete, *International Journal of Engineering Research and Technology*, 4(1), pp. 21-30.
- BS 12, 1996. Specification for Portland Cement", London, British Stand Institution.
- BS 1881-125, 1986. Method of mixing and sampling fresh concrete in the laboratory, London, British Stand Institution.
- Debieb, F. and Kenai, S., 2008. The use of coarse and fine crushed bricks as aggregate in concrete, *Construction and Building Materials*, 22, pp. 886–893.
- El-Hassan, H. and Kianmehr, P., 2019. Influence of recycled concrete aggregates and slag on the performance of pervious concrete. *Proceeding of the 4th World Congress on Civil, Structural and Environmental Engineering (CSEE' 19),* No. ICSECT 124, April 7 - 9, 2019, Rome, Italy. DOI: 10.11159/icsect19.124.
- European Environmental Agency, 2008. Effectiveness of environmental taxes and charges for managing sand, gravel and rock extraction in selected EU countries, Copenhagen. DOI: 10.2800/35981.
- Jimoh, A. A. and Awe, S. S., 2007. A study on the influence of aggregate size and type on the compressive strength of concrete, *Journal of Research Information in Civil Engineering*, 4(2), pp. 157–168.
- Kanchidurai, S., Bharani, G. and Mohan, K., 2017. Strength and durability studies on concrete with partial replacement over burnt brick bat waste, *IOP Conf. Series: Earth and Environmental Science*, 8. pp. 1-9. DOI:10.1088/1755-1315/80/1/012018.
- Kesegić, I., Netinger, I. and Bjegović, D., 2008. Recycled brick as an aggregate for concrete: Overview, *Technical Gazatte*, 15(3), pp. 34-35.
- Khalaf, F.M., 2006. Using crushed clay brick as coarse aggregates in concrete. *ASCE*. 18(4). pp. 518-526.

- Kosmatka, S.H., Kerkhoff, B. and Panarese, W.C., 2003. Design and control of concrete mixtures, EB001, 14th edition, Portland Cement Association, Skokie, Illinois, USA.
- Kulkarni, S. Momin, A.A., 2015. Experimental study on the strength properties of concrete using brick aggregates, *International Journal of Advance Engineering and Research Development*, 2(1). Pp. 129-139.
- Otoko, G.O., 2014. Use of crushed clay bricks as aggregate in concrete, *International Journal* of Engineering and Technology Research, 2(4), pp. 1-9.
- Neville, A.M., 2011. Properties of concrete performance, 5th edition. Essex, England: Pearson Education Limited.
- Nordin, N., 2014. The use of brick waste as coarse aggregates partial replacement in concrete production", An unpublished B.Eng. Thesis, Faculty of Civil Engineering and Earth Resources, Universiti Malaysia Pahang.
- Raheem, A.A. and Kareem, M.A., 2017a. Optimal raw material mix for the production of rice husk ash blended cement, *International Journal of Sustainable Construction Engineering and Technology*, 7(2), pp. 77-93.
- Raheem, A.A. and Kareem, M.A., 2017b. Chemical composition and physical characteristics of rice husk ash blended Cement, *International Journal of Engineering in Africa*, pp. 25-35, DOI:

10.4028/www.scientific.net/JERA.32.25

- Rashid, M.A., Salam, M.A., Shill, S.K. and Hasan, M.K., 2012. Effect of replacing natural coarse aggregate by brick aggregate on the properties of concrete, *DUET Journal*, 1(3), pp. 17-22.
- Rashid, M.A., Hossain, T. and Islam, M.A., 2008. Higher strength concrete using crushed brick as coarse aggregate, 82(10), pp. 18-23.
- Rekha, K. and Potharaju, M., 2016. Usage of recycled brick as coarse aggregate in concrete, *International Advanced Research Journal in Science, Engineering and Technology*, 3(9), pp. 95-100. DOI: 10.17148/IARJSET.2016.3918.
- Shetty, M.S., 2005. Concrete Technology, (Revised Edition), Ram Nagar, New Delhi, S.Chand.
- Yang, C.C. and Huang, R., 1996. A two-phase model for predicting the compressive strength of concrete, *Cement and Concrete Research*, 26(10), pp. 1567-1577.