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Abstract. In this paper, He’s polynomials solution method (HPSM) is fully utilized for solving 
telegraph equation.  The proposed HPSM is technically presented and applied to homogeneous 
linear form the telegraph equation. The results are expressed in closed form with good 
agreement compared to those in literature thereby attesting to the efficiency and reliability  of 
the method as proposed. The HPSM remarked to be less time consuming with high level of 
accuracy. As such, it can serve as alternative to other methods. 
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1.  Introduction 
In most physical and mathematical situations, modelling of physical phenomena leads to differential 
models in the form of equations which can be termed linear or nonlinear. Whichever way, the 
solutions of such are hard to obtain if they exist. Hence, the quest for effective and reliable methods of 
solution [1-12]. The model to be considered in this work is the generalized telegraph equation (TE) 
which is a linear partial differential equation (PDE) describing the current and voltage on an electrical 
transmission line with x  and t  as distance and time parameter respectively. The generalized form of 
the telegraph equation is as follows: 
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                                 (1.1) 

where the constants , ,  and a b c  are real numbers, while    1, , ,g x t f x  and  2f x  are known 

functions. The unknown function,  ,x t   to be determined denotes voltage or current through the 

wire at position, x  with respect to time, t .  The derivation of (1.1) is contained in [13]. 
Recently, a good number of solution analysts have deliberated on various techniques for the exact 

and/or approximate solution to (1.1) [14-24]. This work proposes He’s polynomial method for the 
solution of (1.1) [8-12, 25, 26]. Related researches on communication system, circuit, wave 
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transmission, networking and so on include those of [27-28]. It is worth noting that the method being 
introduced is entwined in terms of applications with numerical analysis, computational finance, 
stochastic or random differential equations, and so on [29-34].  

 

2.  Remark on the HPSM 
 

Let   be an operator (integral or differential), such that: 

  0.                   (2.1) 

Suppose we defined a convex homotopy function,  ,H c f  by: 

       , 1 ,H c f f c f G c               (2.2) 

such that  G c is referred to as a functional operator. Hence, we get: 

   ,0H c G c  and    ,1 ,H c c                        (2.3) 

if  , 0H c f   is satisfied and a given embedded parameter,   0,1f   is considered. In HPM, 

f p  is applied as an expanding parameter term to obtain: 
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The approach takes the nonlinear term  to be  N   whenever (2.1) is decomposed, such that 

'kH s  are the so-called He’s polynomials defined as: 
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3.  The Generalized Telegraph Model and the HPSM (He’s Polynomials Solution Method) 
 

The HPSM is applied to the Telegraph equation in (1.1) as follows. Let us re-write (1.1) in integral 

form, while the two-fold integral operator,   0
tI   is applied accordingly. Thus: 
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         (3.1) 

This implies that: 
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In standard HPSM, the series solution is conveyed as: 
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Hence, by homotopy convexity [9, 10] in line with (3.3), we have: 
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Thus, comparing the exponents (powers) of the 'p s  in (3.4), we have: 

 
       
      

0

2
1 0 0 0 0

2
2 0 1 1 1

,

t

xx t

t

xx t

F x t

I c a b ab

I c a b ab

 
       

       

                   (3.5)
 

        
        

         

2
3 0 2 2 2

2
4 0 3 3 3

2
1 0

        

, 0.

t

xx t

t

xx t

t
j j j jxx t

I c a b ab

I c a b ab

I c a b ab j

       

       

        


                    (3.6)

 

So, the required solution is: 
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4.  Applications 
 
Let the following linear telegraph equation be considered [15, 24]: 
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with an exact solution of the form: 

 , x tx t e   .                   (4.2) 

If (4.1) is compared with (1.1), then we have: 
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So, the recursive relation based on (3.5) and (3.6) is: 
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The solution in (4.5) corresponds to those obtained in [14, 19]. Though, the approach contained 
herein appears simpler and straight forward. The approximate and the exact solutions are graphically 
displayed in Figure 1 and Figure 2 respectively. 

 

 

Figure 1: HPSM 6-term Approximate solution  

 



1st International Conference on Sustainable Infrastructural Development

IOP Conf. Series: Materials Science and Engineering 640 (2019) 012117

IOP Publishing

doi:10.1088/1757-899X/640/1/012117

5

 
 
 
 
 
 

 

Figure 2: HPSM Exact solution 
 

5.  Conclusions 
 
This work has successfully presented the application of the proposed solution method referred to as 

HPSM to the generalized telegraph equation in terms of approximate-analytical solutions. Closed form 
solutions of the solved problems were realized with ease, even with less computational time. Though, 
it may require coupling with other methods for highly nonlinear models. Hence, the HPSM is 
recommended for nonhomogeneous version of the generalized telegraph equation, and other highly 
nonlinear models.  
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