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ABSTRACT 
 

In this article, effective numerical methods for the solution of fractional order delay differential equations 
(FODDEs) are presented. The fractional derivative (FD) is defined in Caputo sense. Shifted Legendre 
polynomials are used in the Collocation and Galerkin methods to convert FDDEs to the linear and/or 
nonlinear system in algebraic form of equations. Example problems are addressed to show the powerfulness 
and efficacy of the methods. 
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1. INTRODUCTION  
 

Fractional Calculus (FC) is a vital branch in 
applied mathematics. It is a generalization of the 
classical ordinary calculus (differentiation and 
integration) to an arbitrary order. FC arises in 
electromagnetism, rheology, 
electrochemistry,viscoelasticity, and so on. For 
points of interest, one may see the references [1-5]. 
In current years, physicists likewise 
mathematicians have dedicated considerable efforts 
to discover robust and stable semi-approximate, 
numerical and analytical methods aimed at solving 
the fractional differential equation of substantial 
interest. Some of the numerical techniques may be 
recorded as a generalized differential transform 
method (See [6] to [7]), Sumudu transform method 
[8], Adomian decomposition method (See [9] to 
[10]), homotopy perturbation technique (See [11] 
to [13]), Residual power series method (See [14] to 
[15]), differential transform method (See [16] to 
[18]) and Homotopy analysis method [19]. One 
may see the detailed study on fractional calculus in 
[20]. Also, a new solution method in analytical 
form has been presented in [21] to solve “The 
Time-Fractional Coupled-Korteweg-deVries 
Equations” through homotopy decomposition 

method by the same researchers. The sinc methods 
have been illustrated in [22] and extended in [23] 
by Frank Stenger. The sinc functions have been 
firstly examined in Ref. [24-25]. In Ref. [26-27], 
the sinc-Galerkin method has been applied to the 
nonlinear differential equations processing 
homogeneous and or nonhomogeneous boundary 
conditions.  

Differential Equations (DEs) are of various 
forms. They appear in several arms of disciplines 
ranging from social sciences (as in the theory of 
economics), sciences, and engineering with basic 
structures in modeling. DEs can be ordinary or 
partial in nature. In pure and applied mathematics, 
Delay Differential Equations, shortly written as 
DDEs represent a type of DE where the unknown 
derivative functions at a specific time is defined in 
terms of values of the concerned function at 
previous times. DDEs can take systematic forms. 
The delay term or function can be proportion or 
constant. substantial skill, softwares and methods 
are required to solve a realistic system of  DDEs. 
Therefore, obtatining the solutions of DDEs (if 
they exist) need reliable and effective solution 
approaches. 
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In this paper, two methods (Shifted Legendre 
polynomials and Galerkin) are proposed for 
handling the FODDEs. However, to the best of our 
knowledge, Legendre Galerkin and Legendre 
Collocation methods have not been used for the 
fractional order delay differential equations. It may 
be worth mentioning that these well-known 
methods turn out to be simpler for handling the 
titled problems by the use of the shifted Legendre 
polynomials. Fractional order delay differential 
equation may be written as [28], 
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where  denotes the fractional-order derivatives, 
BD boundary conditions, and h  represents the 
supposed continuous  function in delay form 

defined on the interval  ,a b . 

The remaining parts of the article are organized 
as follows. Some essential definitions in line with 
titled problems are introduced are contained in 
Section 2. Similarly, in Section 3, the mathematical 
expression of the Legendre series is included. 
Legendre Collocation and Legendre Galerkin 
methods w.r.t fractional order delay differential 
equation are proposed in Section 4 and 5. In 
Section 6, four cases of examples are included to 
demonstrate the effectiveness and accuracy of the 
present method. Also, a conclusion is given in 
Section 7. 

2. PRELIMINARIES 

Definition 2.1 (See [4] and [5]): 

According to Riemann-Liouville, the fractional 

differential (FD) operator D   of order   is 
defined as: 
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(3)  

Definition 2.2 (See [1], [2] and [5]): 

In fractional order form, the Riemann-Liouville 

integral operator J  is described as 
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Following Podlubny [5] we may have 
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Definition 2.3 (See [2], [4] and [5]): 

The Caputo FD operator D of order  is given 
as 
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3. MATHEMATICAL EXPRESSION FOR 
LEGENDRE SERIES  

 
The Legendre polynomials are well-defined on a 

given interval  1,1 .I    The following 

recurrence formula yields these polynomials [29] 



Journal of Theoretical and Applied Information Technology 
29th February 2020. Vol.98. No 04 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
537 

 

   

 

1

1

1 ( ) 2 1 ( )

                         ( ),  

1 1 ,





  



  

k k

k

k p x k xp x

kp x

k

       (7)   

where 1)(0 xp  and xxp )(1 . The 

analytic form of the Legendre polynomial of order 
n  is given by 
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In order to handle the title problem on the 

defined interval,  0,1 , )(xn  is defined as the 

shifted Legendre polynomials. These are defined in 

term of Legendre polynomials )(xpn  by the 

following relation 

)12()(  xpx nn , and the recurrence formula 

for this is 
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where 1)(0 x  and 12)(1  xx . The 

shifted Legendre polynomial )(xk of degree k   

in analytic form is given by 
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Thus, the condition for orthogonality is: 
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It may be noted that Legendre polynomials can 
easily approximate the solution of a given 
differential equation with dependent variable, 
  ]1,0[Cxu   as follows 
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4. LEGENDRE GALERKIN METHOD  

 
Consider the FODDE of the form [28] 
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We assume the following as an approximate 
solution for (12): 
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where  xh  controls the boundary conditions and 
,

i s  are the shifted Legendre polynomials. 

Substituting Eq. (13) in Eq. (12) one may get the 
residual R as [30]. 
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Eq. (14) gives  1n  system of equations 

involving  1n  unknown variables, that can be 

resolved by using any known method. Thereafter, 

substituting the estimated constants 0 1, , , nc c c
 

in Eq. (13) one may get the approximate solution 
for Eq. (12). 

 
5. LEGENDRE COLLOCATION METHOD  

 
Consider the FODDE of the form [28] 
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Again, an approximate solution of (15) is assumed 
to satisfy the boundary condition with the unknown 

constants  :  0 1ic i n   as: 

)(xu =    
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where  xh  controls the boundary conditions and 
,

i s are the shifted Legendre polynomials 

Substituting Eq. (16) in Eq. (15) one may get the 
residual R  as [30] 
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become zero at  1 n points: say, 
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Here also, Eq. (17) gives  1n  system of 

equations involving  1n  unknown variables 

that can be resolved by any known method. 

Substituting the estimated constants 0 1, , , nc c c  

in Eq. (16) one can get the solution approximation 
for the original Eq. (15). 

6. NUMERICAL RESULTS   
 

Here, the proposed methods are implemented for 
both linear and nonlinear examples of FODDEs. 
The first two examples are solved by Legendre 
Galerkin method, and examples 3 and 4 are solved 
by using Legendre Collocation Method. Solutions 
of these examples are thereafter compared with 
those from Legendre Pseudospectral method. 
 
Example 1. Consider the nonlinear FODDE of the 
form [28]: 
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where  h x x  which will control the boundary 

conditions. 
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where  10  , and 121  x  are the shifted 

Legendre polynomials in the domain [0 1]. 

Using the function )(xh , 0  and 1 in Eq. (20), 
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Now by using Legendre Galerkin Method, we have 
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Solving the above two nonlinear systems of 
equations, we obtain 

0
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0.5000000001

0.5000000002.
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So, the following solves the FODDE: 
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One may see that the exact solution of Eq. (18) 
agrees precisely by taking two terms. The 
numerical results of the present solution and 
solution solved by Legendre pseudospectral 
method are given in table 1. The behavior of the 
exact and present solutions of this example has 
been presented in figure 1 
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Figure 1: Graphic Of Exact And Present Solutions Of Example 1.

Table 1: Comparison Of The Present Solution With 

Ref. [28] 

 

Example 2. Here, the following form of linear 
FODDE is considered [28]: 

1.5

3 1.5

( )
2

( ) ,
7 6

8 (2.5)

(0) 0, (1) 1.

      
          

  

x
u x u

D u x

x x

u u

,     (25)                                                                        

Here we take 4 term solution as till 3 term solution 
it was not converging. 

As such let us take 
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where xxh )( , which will control the boundary 

conditions. 

The residual 
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where 3210 &,,  are the shifted Legendre 

polynomials of order zero, one, two, and three. 

Here: 

x  Present solution 
1n   

solution [28] 

0.0 0.000 0.00 

0.1 0.0099 0.01 

0.2 0.040 0.04 

0.3 0.090 0.09 

0.4 0.160 0.16 

0.5 0.250 0.25 

0.6 0.360 0.36 

0.7 0.490 0.49 

0.8 0.640 0.64 
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Substituting the shifted Legendre polynomials 
given in [28] and ( )h x x , in Eq. (27), we have 
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Using Legendre Galerkin Method, we have 
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Solving Eqs. (29) to (32) we have 
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The following solution solves the original Eq. (25): 
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One may see that the exact solution of Eq. (25) 

agrees by taking four terms. The numerical results 

of the present solution and the solution solved by 

Legendre Pseudospectral method are given in table 

2. The behavior of the exact and present solutions 

of this example has been represented in figure 2. 
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Figure 2:  Graphic Of Exact And Present Solutions Of Example  2. 

 
Table 2: Comparison Of The Present Solution With Ref. [28]. 

x   Present solution  Ref.[28] 

1n   2n   3n  

0.0   0.0   0.0   0.0   0.0  

1.0   31812.00292 10   49.99999 10   31.00000 10   31.00000 10  

2.0   33595.02821 10   7.9999910 3  
38.00000 10   38.00000 10  

3.0   35349.07587 10   310*99999.26    310*00000.27    310*00000.27   

4.0   37074.14590 10   310*99999.63    310*00000.64    310*00000.64   

5.0   310*23829.8770    124.99999*10 3   310*00001.125    310*00000.125   

6.0   210*73530.1043    310*99999.215  310*00001.216  310*00000.216 

7.0   210*54901.1207    310*99999.342    310*00001.343    310*00000.343   

8.0   210*46496.1368    310*99999.511    310*00001.512    310*00000.512   

Example 3.  In this case, we consider the 

nonlinear fractional order delay differential 

equation [28] 
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Now taking two terms guess solution, we have 
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where xxh )(  which will control the boundary 

conditions. 
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The suitable collocation points which are the roots 

of the shifted Legendre polynomials )(2 x  and 

their values may be taken as [28] 

 

 

0 1

3 3 3 3
 and 

6 6
x x
    
  

 .                    (35)                                                                                                  

As such 0x in Eq. (34) gives 
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Also at the point 1x , Eq. (34) becomes, 
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Solving the system of nonlinear Eqs. (36) and (37) 
we have 
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One may see that the exact solution of Eq. (33) 
agrees well by taking two terms only. The 
numerical results of the present solution and the 
solution solved by Legendre pseudospectral 
method [28] are given in table 3. The behavior of 
the exact and present solutions of this example has 
been presented in figure 3. 

 
Figure 3: Graphic Of Exact And Present Solutions Of Example 3. 
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Table 3: Comparison Of The Present Solution With Ref. 
[28]. 

x  Present solution 
1n  

Solution [28] 
 

0.0 0.000 0.00 

0.1 0.0099 0.01 

0.2 0.0399 0.04 

0.3 0.0899 0.09 

0.4 0.1599 0.16 

0.5 0.2499 0.25 

0.6 0.3599 0.36 

0.7 0.4899 0.49 

0.8 0.6399 0.64 

 

Example 4. Here, the following form of  linear 
FODDE is considered [28]: 

1.5

3 1.5

( )
2

( ) ,
7 6

8 (2.5)

(0) 0, (1) 1.

       
          

  

x
u x u

D u x

x x

u u
               

 (38)                                                                        

Taking four terms guess solution, we have 
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h x a x
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The Residual  
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x x
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(39) 

where  h x x  will control the boundary 

conditions. 

Here: 

0

1

2
3

3 2
3

1,

2 1,

6 6 1,

20 30 12 1.

x

x x

x x x









  
   
    

 

For collocation point, we use the roots of the 

shifted Legendre polynomials )(5 x and )(2 x . 

Accordingly putting: 

 
6

33
0


x

   
 

in Eq. (39),  we have
 

1 2

3 0

0 2.036192284 3.639528963

9.80522842    

  

0.1056624327

0.4467287920.  

 
   
  

 a a

a a        

                                                                            (40) 

Similarly substituting: 

 1 2 3

3 3
,  0.5,  and 0.769

6
2x x x


     

in Eq. (39) we have the following respectively: 

1 2

3 0

0 4.547011186 7.11339489

209.2796436     

    

0.3943375673

3.590517262 ,

 
   
  

 a a

a a      

    (41)    

 

1 2

3 0

3.316538243 0.218749996

60.92879397 0.25

1.705144122 0,

 
   
  

a a

a a       (42)               

and 

1 2

3 0

4.461439776 6.50525526

195.4525972 0.38460000

3.443129097 0.

 
   
  

a a

a a      (43) 

Solving Eqs. (40) to (43) we get 
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0

1

2

3
9

0.3333314797

0.5000001672

0.1666667028

1.371310 10 0

a

a

a

a 


 
 
   

 

As such, the solution to Eq. (38) may be written as 

 
 

 

7

2

3

0.0000019847 1.17 10

1.000000217

      1.000 .000217 

    
  

  
 

x
u x x

x

x

 

One may see again that the exact solution of Eq. 
(38) agrees fully by taking four terms. The 
numerical results of the present and exact solution 
solved by Legendre Pseudospectral method [28] 
are given in table 4. The behavior of the exact and 
present solutions of this example has also been 
represented in figure 4. 

 

 

Figure 4: Graphic Of Exact And Present Solutions Of Example 4. 

Table 4: Comparison Of The Present Solution With The Solution Of Ref. [28]. 

x  Present solution Ref.[28] 
 

1n  2n  3n  

0.0  0.0  0.0  0.0  0.0  

1.0  31687.53452 10  49.99999 10  31.00000 10  31.00000 10  

2.0  33349.86327 10  37.99999 10  38.00000 10  38.00000 10  

3.0  34986.98624 10  326.99999 10  327.00000 10  327.00000 10  

4.0  36598.90343 10  363.99999 10  364.00001 10  364.00000 10  

5.0  38185.61485 10  3124.99999 10  3125.00000 10  3125.00000 10  

6.0  39747.12049 10  3215.99999 10  3216.00004 10  3216.00000 10  

7.0  21128.34203 10  3342.99999 10  3343.00007 10  3343.00000 10  

8.0  21279.45144 10  3511.99999 10  3512.00001 10  3512.00000 10  
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7.0  CONCLUSIONS 

In this present paper, two proposed methods 
have been successfully applied to the fractional 
delay differential equations (FDDEs). It is 
remarked to the best of our knowledge, that 
Legendre Galerkin and Legendre Collocation 
methods have not been used for solving the 
FDDEs. Furthermore, these well-known methods 
appear simpler in application for handling the titled 
problems by the use of the shifted Legendre 
polynomials. From the above results, one may 
draw the following conclusions: 

(i) The present solutions are in excellent 
agreement with the exact solutions. 

(ii) The accuracy of present methods may be 
improved by taking more terms of shifted 
Legendre polynomials in different other 
problems. 

(iii) These methods are used in linear and 
nonlinear fractional differential equations, 
and the solutions are validated. 
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