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Key Points: 

● Probabilistic forecasts and rapid estimates of event impacts offer new possibilities for 

coping with damaging events in the emergency phase. 

● Developing impact forecasting that includes exposure and vulnerability estimates will 

tap into synergies across disciplines. 

● Extending single- to multi-hazard impact forecasts considering interactions between 

hazards and vulnerabilities is the next challenge. 

http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020RG000704&domain=pdf&date_stamp=2020-08-24
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Abstract  

Forecasting and early warning systems are important investments to protect lives, properties 

and livelihood. While early warning systems are frequently used to predict the magnitude, 

location and timing of potentially damaging events, these systems rarely provide impact 

estimates, such as the expected amount and distribution of physical damage, human 

consequences, disruption of services or financial loss. Complementing early warning systems 

with impact forecasts has a two-fold advantage: it would provide decision makers with richer 

information to take informed decisions about emergency measures, and focus the attention of 

different disciplines on a common target. This would allow capitalizing on synergies between 

different disciplines and boosting the development of multi-hazard early warning systems. This 

review discusses the state-of-the-art in impact forecasting for a wide range of natural hazards. 

We outline the added value of impact-based warnings compared to hazard forecasting for the 

emergency phase, indicate challenges and pitfalls, and synthesize the review results across 

hazard types most relevant for Europe. 

 

Plain language summary 

Forecasting and early warning systems are important investments to protect lives, properties 

and livelihood. While such systems are frequently used to predict the magnitude, location and 

timing of potentially damaging events, they rarely provide impact estimates, such as the 

expected physical damage, human consequences, disruption of services or financial loss. 

Extending hazard forecast systems to include impact estimates promises many benefits for the 

emergency phase, for instance, for organising evacuations. We review and compare the state-

of-the-art of impact forcasting across a wide range of natural hazards, and outline opportunities 

and key challenges for research and development of impact forecasting. 
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1 Introduction 
 

Over the last decade (2010-2019), relevant natural loss events worldwide caused on average 

economic losses in excess of US$ 187 billion per year (Munich Re, 2019), and displaced an 

average of 24 million people each year (UNDRR, 2019). Among the global risks, extreme 

weather events and geophysical phenomena such as damaging earthquakes and tsunamis are 

perceived as the top 1st and 3rd risks in terms of likelihood and as the top 3rd and 5th risks in 

terms of impact (World Economic Forum, 2019). Urbanization, population growth, increasing 

interconnectivity and interdependence of critical infrastructure are expected to further 

aggravate the risks imposed by natural hazards (Helbing, 2013) (Winsemius et al., 2016, 

Jongman, 2018, Vousdoukas et al., 2018). Climate change is also acting as a major driver and 

amplifier of the losses related to hydro-meteorological events (UNDRR, 2019). Both heat 

waves and droughts will become more frequent and are expected to persist over longer time 

periods under climate change (Perkins et al., 2012, Russo et al., 2015, Samaniego et al., 2018). 

Similarly, climate-driven increases in river, urban and coastal flooding are a global problem, 

affecting mainly developing countries, but also industrialized regions (Hallegatte et al., 2013, 

Willner et al., 2018, Blöschl et al., 2019). 

Forecasting, early warning and the provision of rapid disaster risk information are cornerstones 

of disaster risk reduction (UNDRR, 2019). The Sendai Framework for Disaster Risk Reduction, 

agreed upon at the Third UN World Conference on Disaster Risk Reduction in 2015, calls for 

a substantial increase in the availability of multi-hazard early warning systems and rapid 

disaster risk information by 2030 (UNISDR, 2015b). Forecast and warning have focused on 

physical event characteristics, such as magnitude, spatial extent and duration of the impending 

event. Recently, the provision of information on the potential event impacts, such as number 

and location of affected people, damage to buildings and infrastructure, or disruption of 

services, has gained attention. This requires considering additional information on exposure, 

i.e. people, property or other elements present in hazard zones (UNISDR, 2009, Pittore et al., 

2017), and on vulnerability, defined as the characteristics of the exposed communities, systems 

or assets that make them susceptible to the damaging effects of a hazard (UNISDR, 2009). 

Impact forecasting and warning is an emerging topic in science, for companies developing 

forecasting technology, and at the level of institutions responsible for natural hazards 

management (Taylor et al., 2018, Zhang et al., 2019). For instance, the World Meteorological 

Organization has recently launched a program on multi-hazard impact-based forecast and 

warning services (WMO, 2015). This program aims to assist WMO members to further develop 

forecast and warning services tailored to the needs of users to fully perceive and understand 

the consequences of severe weather events and, as a consequence, to undertake appropriate 

mitigating actions. 

In this paper we review the state of the art in forecasting impacts of hazardous events for a 

wide range of geophysical and weather-/climate-related natural hazards. We define forecasting 

as the provision of timely information to improve the management in the emergency phase, i.e. 

shortly before, during and after a hazardous event. Hence, we do not address medium- and 

long-term risk assessments that are carried out to assist decision-makers in risk prevention and 

mitigation activities. We discuss the added value of impact forecasting (as a basis for impact-

based warnings) compared to hazard forecasting (hazard-based warning), indicate challenges 

and pitfalls, and synthesize the review results across hazard types. Being the first review of 

impact forecasting of natural hazards, this paper demonstrates that the state of the art in impact 

forecasting is very different across hazard types and disciplines. As forecasting science and 

technology are typically advanced within specific disciplinary contexts, this comparative 
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review across hazard types aims at transferring knowledge and harmonizing concepts across 

discipline borders, and bridging gaps between different scientific communities and between 

science and practice. 

  

1.1 Hazard forecasting: provision of timely information on the physical event 
characteristics 

 

The United Nations terminology on disaster risk reduction (UNISDR, 2009) defines an early 

warning system as “the set of capacities needed to generate and disseminate timely and 

meaningful warning information to enable individuals, communities and organizations 

threatened by a hazard to prepare and to act appropriately and in sufficient time to reduce the 

possibility of harm or loss”. Monitoring, analysis and forecasting of hazards is an essential 

cornerstone of early warning systems. Hazard forecasts provide information on the physical 

event characteristics, such as the location, timing and magnitude of a potentially damaging 

event. 

We consider events as natural phenomena with a specific magnitude that unfold with a given 

space-time footprint and with the potential for adverse consequences. The event footprint may 

vary significantly across hazards. Examples are short-term, local-scale events, e.g. pluvial 

floods with event duration and extent in the order of 1 h and 1 km, even shorter-term but large-

scale events such as earthquakes, and creeping events, e.g. droughts, with duration and extent 

in the order of months to years and several hundred to a few thousand kilometers (Figure 1). 

Accordingly, the possibilities and the challenges for emergency management in response to a 

forecast vary widely across hazards.     
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Figure 1: Space-time scales of the hazard types covered. These scales are related to the event´s 

spatial extent (or footprint) and its duration. For earthquakes the spatial scale shown is the 

range within which severe impacts occur for significant events. Colors code the maturity of 

impact forecasting systems from ‘development in infancy’ (Red) through ‘prototype systems 

exist’ (Blue) to ‘operational systems implemented’ (Blue). The assignment to a certain maturity 

class is based on our synthesis (section 3.1). 

 

 

In addition to the large range of event footprints, lead times of operational warning systems 

and forecast possibilities vary strongly between hazard types (exemplified in Figure 2). In the 

case of earthquakes, for instance, the prediction of the location, time and magnitude of an event 

is not possible prior to its occurrence. However, a rapid estimation of event characteristics may 

be carried out as soon as the event has been detected. Earthquake early warning (EEW) refers 

to the prompt detection of a potentially damaging earthquake within a few seconds from its 

actual onset, possibly triggering immediate risk mitigation measures. The lead time of 

earthquake early warning systems is thus in the order of several seconds to several tenths of 

seconds (Nakamura et al., 2011, Satriano et al., 2011, UNEP, 2012, Minson et al., 2018). For 

windstorms, National Hydro-Meteorological Services (NHMSs) issue forecasts and early 

warnings one to several days in advance, providing estimates of the expected wind gust 

velocities for the potentially affected locations. Several NHMSs issue weather warnings based 

on short-term forecasts with lead times of less than 48 hours (e.g., meteoalarm.net from 

EUMETNET, which currently pools the warnings from 34 European countries; Stepek et al., 

2012). Droughts develop much slower compared to earthquakes and windstorms. Here 

forecasts and early warning can be issued one to several months prior to the event (Pozzi et al., 
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2013, Sheffield et al., 2014). Consequentially, our understanding of forecasting includes pre-

event predictions, as in the case of windstorms and droughts, to near real-time assessments 

once an event has already occurred as in the case of earthquakes. 

 

 

Figure 2: The concept of early warning (EW) and its placement in time with respect to the 

actual occurrence of the event, exemplified for earthquakes, windstorms and droughts. In the 

case of earthquakes, even very short lead times, up to 60 seconds after the occurrence of  the 

event (dark flash), still allow to automatically trigger real-time mitigation measures, such as 

emergency braking of high-speed trains, before the most potentially dangerous earthquake 

waves reach a given location (light flash). For earthquakes also Operational Earthquake 

Forecasting (OEF) is indicated. Windstorms can be forecasted with lead times from a couple 

of hours to several days. The lead times of droughts are even longer, in the range of one to 

several months.   

 

 

It is important to consider the uncertainty inherent in a forecast, and it has been argued that 

probabilistic forecasts have greater value for decision making than single deterministic 

forecasts (Palmer, 2000, Roulston et al., 2006, Joslyn and LeClerc, 2013, Fundel et al., 2019). 

Probabilistic forecasts potentially provide more reliable and a greater wealth of forecast 

information and longer lead time (Boelee et al., 2019, Palmer, 2017) and can increase trust in 

forecasts (LeClerc and Joslyn, 2015). Nowadays National Hydro-Meteorological Services 

(NHMS) frequently use ensemble prediction systems to consider uncertainty inherent in a 

forecast. Such ensembles are based on tens of weather forecasts with different initial conditions 

and model physics or by pooling the output of several numerical weather prediction (NWP) 

models. Ensembles provide not only a general estimate of the uncertainty of forecasts, but in 

particular also the probability of occurrence of extreme events. Different indices to summarize 

the probability of extreme events are used by weather services for operational warnings. For 

example, the Extreme Forecast Index (EFI; Lalaurette, 2003) ranks the departure between the 

statistical distribution of an ensemble forecast and the observational event catalog. It ranges 
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from -1 to +1, with 0 and +1 denoting a standard situation and a record-breaking high value, 

respectively. Another index is the Shift Of Tails (SOT) index, which indicates whether a 

fraction of the members forecast an extreme event, even if the rest of the members do not, thus 

putting even more emphasis on the most extreme events (Zsoter, 2006). In the case of volcanic 

eruptions, most forecasts are probabilistic and often combine the analysis of monitoring 

parameters with information about past behavior of a volcano by means of statistical tools, 

such as Bayesian Event Trees (Marzocchi et al., 2008, Rouwet et al., 2014, Tonini et al., 2015) 

or Bayesian Belief Networks (Aspinall and Woo, 2014). For earthquake early warning, 

probabilistic methodologies have been employed, often based on Bayesian statistics, to 

assimilate noisy or partial instrumental observations (Cua and Heaton, 2007, Meier et al., 2015) 

or to detect multiple overlapping events (Liu and Yamada, 2014). Probabilistic approaches 

have been integrated between 2008 and 2016 in the prototyping phase of the EEW system for 

the West Coast of the USA. Similar to numerical weather models, ensemble forecasting for 

operational earthquake forecasting (OEF) applications is also increasingly considered 

(Marzocchi et al., 2014, Shebalin et al., 2014, Van Dinther et al., 2019). Hence, not only event 

footprints and lead times vary between hazard types, but also forecasting concepts, such as 

providing probabilistic or deterministic forecasts.    

 

1.2 Impact forecasting: provision of timely information on the socio-economic event 
consequences 
 

We use the term impact forecasting as illustrated in Figure 3: Impact forecasting considers 

information on the elements at risk, i.e. the exposure and their vulnerability, to extend the 

traditional forecasting model chain translating the hazard characteristics (intensity, duration, 

spatial extent) into impact statements. According to this definition, forecasting the inundation 

area due to a tsunami, for example, belongs to hazard forecasting. It turns into an impact 

forecast as soon as the information on inundation areas is combined with exposure and 

vulnerability information, so that the forecast allows deriving statements about the affected 

elements and the respective values at risk. Impact forecasts can include direct and indirect 

effects that can be described by quantitative physical and socio-economic indicators, such as 

affected critical infrastructure, number and location of damaged buildings, expected number of 

fatalities and displaced people, and financial loss resulting from direct damage, business 

interruption or disruptions of supply chains. 

Particularly for weather hazards, there is a recent development to include general information 

about expected adverse consequences and general behavioral recommendations (UNISDR, 

2015a). For instance, severe weather warnings may include statements such as ‘Mobile homes 

will be heavily damaged or destroyed’, or ‘Significant damage to roofs, windows and vehicles 

will occur’ (Casteel, 2016). As such warnings do not consider the specific exposure and 

vulnerability of the affected locations and are not based on a hazard-impact model, we do not 

include such general impact-oriented forecasts and warnings in our review. 
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Figure 3: Definition of impact forecasting used in this review: Impact forecasting extends the 

traditional hazard forecast by including information on exposure and/or vulnerability, 

translating the physical hazard characteristics into socio-economic consequences. 

 

 

The incorporation of exposure and vulnerability information and the link to the hazard 

information, e.g., through fragility curves, into the forecasting process requires additional 

efforts, data and models (Aznar-Siguan and Bresch, 2019), hence adding further uncertainty. 

To be helpful for decision making, impact forecasting typically depends on detailed knowledge 

of the local contexts (UNISDR, 2015a). Hence, the perspectives of stakeholders and decision 

makers earn an even more prominent role when moving from hazard forecasting to impact 

forecasting. However, impact forecasting is expected to significantly improve the emergency 

response by providing detailed and comprehensive information about the possible extent of a 

disaster either prior to or directly after the event (UNISDR, 2015a). This is perceived as more 

meaningful than mere hazard warnings, since it could provide the basis for more informed 

decisions pertaining to evacuations and preparedness measures and forward-looking resource 

allocation in general (WMO, 2015). As has been learned from many past events, an accurate 

and timely hazard forecast alone does not allow for prevention of major social or economic 

adverse consequences (WMO, 2015). Impact forecasting is motivated by the observation that 

exposed people accept warnings more often, when they are provided with specific information 

about impacts as well as behavioral recommendations on what to do (Weyrich et al., 2018). 

Hence, more and more NHWS move towards forecasting and warning services that translate 
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hazard information into sector- and location-specific impacts, i.e. they move from “what the 

weather will be” to “what the weather will do” (Campbell et al., 2018).  

 

1.3 Hazard types considered and paper outline 
 

Our review covers the following hazard types (see also Figure 1): Windstorms, severe 

convective storms (SCS), droughts and heatwaves, floods, coastal storm surges, earthquakes, 

tsunamis and volcanic eruptions. This selection covers a wide range of geophysical and 

climate-related hazards with very different physical characteristics and possibilities for 

forecasting and emergency management. These hazards are of high relevance for Europe, but 

also for many other regions around the world. Whenever possible, the review of the different 

hazard types has been based on scientific peer-reviewed articles. For those hazards and sectors, 

where this constraint would exclude a substantial part of the work done, grey literature has also 

been considered.  

For each hazard type, our review is organized into four sections: (1) Hazard forecasting: The 

state-of-the-art in forecasting hazard characteristics is briefly summarized, including lead 

times, forecast variables and indicators. This is supplemented by summary information on the 

main methodological approaches, on the status in terms of operational forecasting and on the 

benefit of forecasts. (2) Impact forecasting: This section contains an overview on impact 

models. It evaluates how hazard forecasts are translated into impact forecasts, including 

information on the types of impacts that are typically considered and the impact indicators 

used. (3) Uncertainties and challenges of impact forecasting: A summary on the issues of 

validation and forecast uncertainty is provided. (4) Maturity and added value of impact 

forecasting: This section summarizes the state of implementation of impact forecasting and 

evaluates the evidence on its added benefit compared to hazard forecasts. Section 3 provides a 

comparative analysis of impact forecasting across the different hazard types. It outlines key 

challenges in the development of impact forecasting. 
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2 State-of-the-art of impact forecasting 
 

2. 1. Extra-tropical windstorms 

 

Extra-tropical windstorms, also called winter storms or intense mid-latitude cyclones, form in 

association with the strong temperature gradient between cold air in polar regions and warmer 

subtropical air. Cyclogenesis and intensification typically take place along the polar front, 

which divides these two air masses. The passage of extra-tropical storms is associated not only 

with strong winds and wind gusts (local sudden increases in wind speed, typically a sharp 

increase of more than 5 m/s and lasting several seconds), but also with intense precipitation 

and potentially storm surges. Hence, such storms are typically compound events, i.e. events for 

which more than one variable is involved (Zscheischler and Seneviratne, 2017). Western 

Europe is mostly affected by windstorms in autumn and winter, which travel eastward along 

the North Atlantic storm track, influenced by large-scale weather patterns and atmospheric 

currents (Ulbrich et al., 2009, Feser et al., 2015). Extra-tropical storms generally last for several 

days and affect areas which may exceed a thousand kilometers in length and several hundred 

kilometers in width (Fink et al., 2009). This affected area is generally denominated windstorm 

footprint. Wind impacts encompass direct damage to humans, infrastructure, agriculture and 

forestry, transport, and industry due to damaging wind speeds, wind gusts, lightning, hail and 

extreme precipitation. Indirect impacts are flooding and storm surges triggered by the storm. 

We focus here on wind impacts, while rainfall and surges are covered in other sections. 

 

2.1.1 Extra-tropical windstorms: Hazard forecasting 
 

Windstorm forecasts focus on the track and intensity of extra-tropical cyclones on the synoptic 

scale and on the associated winds and wind gusts on the mesoscale. They are based on 

Numerical Weather Prediction (NWP) models with grid sizes of tens of km and lead times of 

1-2 weeks down to a few km and 1-2 days, which are complemented with real-time 

observations such as satellite and radar imagery. There are well-established theories on the 

physical mechanisms leading to the development and intensification of extra-tropical cyclones, 

including the formation of surface fronts and associated airflows (see Catto, 2016, for a 

review), and their tracks and intensity are overall well predicted by NWP models several days 

in advance (Pantillon et al., 2017). There are also efforts to develop seasonal forecasts for 

windstorms (Renggli et al., 2011, Befort et al., 2019).  

Extreme windstorms can be anticipated using EFI (Lalaurette, 2003; Petroliagis and Pinson, 

2014) and SOT (Boisserie et al., 2016) with skill up to ten days in advance (Pantillon et al., 

2017). However, a general issue when using such indices for forecasting extreme events is to 

identify an adequate tradeoff between a rate of detection and false alarms. 

Extra-tropical storms are operationally forecasted worldwide, e.g. using global NWP models 

from the European Center for Medium Range Forecast (ECMWF) in Europe and the National 

Centers for Environmental Prediction (NCEP) in the US. In Europe, several National Weather 

Services (NWS) provide windstorm warnings based on thresholds of wind speed and wind 

gusts, but those thresholds differ among the weather services, as do the lead times that range 

between one and several days ahead. This calls for a unified European warning system (Stepek 

et al., 2012). In the US, the NWS issues wind warnings for non-convective storms based on 

uniform thresholds. As a consequence, the majority of fatal and injury-causing events occurs 
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with winds below the high wind warning threshold (25.9 m/s), while wind warnings are 

disproportionately issued in areas of complex terrain (Miller et al., 2016). These examples 

highlight the need for forecasts based on impact rather than on thresholds of hazard variables. 

For windstorms with hazardous potential, warnings may encompass official announcements 

and siren signals, warnings issued via internet, television, and broadcasting and enhanced 

preparedness for emergency services and disaster control. These early warnings can thus lead 

to less fatalities, damage reduction, disaster mitigation, and better societal preparedness 

(Bergen and Murphy, 1978, Potter et al., 2018). 

 

2.1.2 Extra-tropical windstorms: Impact forecasting 
 

Several approaches have been developed to estimate the impacts associated with extra-tropical 

windstorms (Palutikof and Skellern 1991, Klawa and Ulbrich, 2003, Welker et al., 2016). 

Impact models are typically based on empirical data. They relate the impact to the peak wind 

or wind gusts during the passage of a storm but may include other meteorological factors such 

as storm duration. These models are commonly applied to station observations, reanalysis 

datasets or climate model data. They are mainly used to quantify the damage to buildings and 

other infrastructure like roads, railways and bridges. Klawa and Ulbrich (2003) introduced the 

storm severity index (SSI), a popular insurance socio-economic loss model. It is based on the 

cubed wind gusts (V³) to account for the wind’s destructive power and uses only values 

exceeding the local 98th percentile. This threshold was found to account for the local 

vulnerability of infrastructure and buildings to wind gusts. The SSI includes population density 

as a proxy for insured property and is found to highly correlate with actual losses from 

insurance companies. This simple approach was further developed and successfully applied to 

reanalyses, global and regional climate model predictions and projections (Leckebusch et al., 

2007, Donat et al., 2011, Pinto et al., 2012, Booth et al., 2015). Other impact models range 

from simple exponential damage functions to the probabilistic approach proposed by Heneka 

et al. (2006) to account for the distribution of critical gust speeds among different buildings 

(Prahl et al., 2015). However, impact models often do not consider a crucial factor, namely the 

possible change in population and insured values over time. Impact modelling for extra-tropical 

cyclones is a rather recent topic, and limited peer reviewed literature is available. 

Although impact models have been widely applied to long datasets for the past and future from 

reanalysis and climate model projections, they have rarely been combined with NWP models 

to create impact forecasts. However, a few recent studies have emphasized the potential of this 

approach. Based on a 20-year homogeneous dataset of ensemble forecasts, Pantillon et al. 

(2017) showed that the SSI of severe European windstorms can be predicted with confidence 

up to 2-4 days in advance. This lead time may seem short given that first hints of extreme 

windstorms can be derived from ensemble forecasts up to ten days ahead, but it is certainly 

sufficient to issue warnings and take appropriate response. Pardowitz et al. (2016) further 

demonstrated skill in predicting extra-tropical windstorm losses over Germany at the district 

level for lead times beyond one week. This was achieved by using a loss model that required 

training with records of local insurance data. Beyond these published studies, several 

companies in the insurance sector (e.g. Willis Towers Watson, Aon, Guy Carpenter, AIR, 

RMS) provide loss estimates of impending or current windstorm events as a service for their 

clients (see Pinto et al., 2019, for an overview). These models link freely available forecasts 

from the weather services to in-house company loss models. The results are loss estimates and 

an uncertainty range, which is useful information for the clients for short-term planning. 

Unfortunately, little documentation is publicly available on the details of such models. One 
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exception is the recent study of Welker et al. (2020) comparing an insurer’s proprietary model 

with the open-source CLIMADA (CLIMate ADAptation; Aznar-Siguan and Bresch, 2019), 

which combines hazards, exposure, and vulnerability. This and other open-source initiatives 

will be key for the further development of impact forecasts. 

 

2.1.3 Extra-tropical windstorms: Uncertainties and pitfalls of impact forecasting   
 

Forecasting the impact of extra-tropical windstorms requires a combination of models for 

numerical weather prediction and impact. Uncertainties and pitfalls are thus inherited from 

both models. Statistical methods are often applied to weather and climate model output to 

correct model deficiencies. For instance, Roberts et al. (2014) used a statistical model to rescale 

the intensity of damaging gusts above 20 m/s in windstorm footprints from reanalysis data. 

This improved the estimated wind impact for the 50 most extreme European windstorms 

between 1979 and 2012 according to several loss model metrics. Other approaches targeted at 

a better estimation of wind gusts via post-processing, providing a closer agreement with 

observations (Haas and Pinto, 2012, Haas et al., 2014). Intense wind gusts are often related to 

fine-scale characteristics such as orography, convection and strong pressure gradients. 

However, even with a state-of-the-art, kilometer-scale ensemble prediction system, Pantillon 

et al. (2018) found that specific windstorms show forecast errors less than one day ahead, which 

cannot be corrected with statistical methods.  

Concerning the uncertainty in impact models, Prahl et al. (2015) compared four windstorm 

damage functions. They were applied to meteorological observations from stations over 

Germany and reanalysis model data and were assessed against insurance loss data from the 

local to the national level. The authors found that probabilistic models (e.g. Heneka et al., 2006) 

provide the most accurate estimates of insurance losses, whereas the simpler deterministic SSI 

of Klawa and Ulbrich (2003) performs well for extreme losses. Similarly, Pardowitz et al. 

(2016) found best results for forecasting windstorm losses by taking both meteorological and 

impact model uncertainties into account, the latter arising from the local vulnerability and 

exposure that are not known exactly. The meteorological model uncertainty was obtained from 

an ensemble forecast post-processed with statistical methods, while the damage model 

uncertainty was based on a logistic regression analysis between gusts and damage records 

(Pardowitz et al., 2016). Other factors that may play a role include differences in vulnerability, 

for example associated with different construction types, and the neglect of temporal changes, 

for instance due to adaptation measures. Moreover, multiple consecutive events (cyclone 

clustering; Pinto et al., 2014) or associated compound events such as flooding and storm surges 

may lead to enhanced cumulative losses compared to single windstorm events. These results 

emphasize the need to account for uncertainties in both meteorological and damage models. 

This will be a crucial requirement for future developments of impact forecasting systems. 

 

2.1.4 Extra-tropical windstorms: Maturity and added value of impact forecasting 
 

Forecasting windstorm impact is still in its infancy and its operational implementation varies 

between countries, weather services and private companies. Since 2011 the UK National 

Severe Weather Warning Service delivers an impact matrix for weather forecasts (Figure 4; 

Neal et al., 2014). The matrix combines the likelihood of a meteorological hazard with its 

impact, both ranging from very low to high. (The same or similar matrixes are used for SCS 

and floods, see section 2.2, 2.4.) The likelihood is given by a dedicated short-term ensemble 
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prediction system combined with statistical post-processing, while the estimated socio-

economic impact is based on thresholds that vary locally according to the frequency of hazards, 

the density of population as well as the season. While the highest warning level (red, “take 

action”) requires both high likelihood and high impact, warnings can also result from a 

combination of low/high likelihood and high/low impact (Figure 4). 

Companies in the insurance sector provide similar products for their clients, typically with an 

early estimate three days in advance, followed by updates 48 and 24 hours before the event, 

and a detailed evaluation in the aftermath (Alexandros Giorgiadis, AON IF, personal 

communication). These impact estimates and their uncertainty provide a clear added value to 

the clients, as they enable them to take measures to minimize potential impacts of an impending 

storm, e.g. to assign staff or to buy short-term additional windstorm damage coverage (Welker 

et al., 2020). Unfortunately, such information is not widely accessible, which calls for enhanced 

communication between public and private research (Pinto et al., 2019). To the authors’ 

knowledge, there is no published study on the quantitative benefits of windstorm impact 

forecasts yet. 

 

 

Figure 4: Weather impact matrix and color key for the UK National Severe Weather Warning 

Service (from Neal et al., 2014). Green signifies weather with no significant impact on peoples’ 

day-to-day activities. Yellow signifies ‘be aware’ and stay up to date with the latest forecast, 

amber signifies ‘be prepared’ to take action. Red signals ‘take action’ to mitigate impacts. 

 
 

2.2 Severe Convective Storms (SCS)  
 

Thunderstorms are high-frequent perils that develop in unstable environments with deep-

tropospheric wind shear and therefore have been documented on every continent except 

Antarctica. Those storms that produce hail in excess of 2 cm, damaging winds in excess of 90 

km/h, or a tornado are usually referred to as Severe Convective Storms (SCS; Doswell III, 

2007, Bluestein, 2013); other phenomena associated with SCS are heavy rainfall, which may 

lead to flooding and lightning. Even though the associated phenomena usually do not occur at 

the same time and place, they can be regarded as compound events. Typical time and length 

scales of these convective phenomena range from seconds to one hour and from meters to tens 

of kilometers, respectively (Markowski and Richardson 2010). However, severe convective 

storms can also travel for hundreds of kilometers during a period of several hours. Of all 

convective phenomena, hail causes by far the largest damage (Kunz and Geissbuehler, 2017), 

whereas lightning and flash floods cause the highest number of casualties (Holle, 2008; Shabou 
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et al., 2017; EM-DAT, 2020). Affected assets include buildings (mainly hail and wind to roofs, 

walls; fire from lightning), vehicles (hail dents, fallen trees and objects carried by winds), 

agriculture (hail, wind, local flooding from rain) and infrastructures (fallen trees, flooded 

underpasses, hail accumulation on roads). For cars, exposure varies strongly over the day, 

whereas crop vulnerability depends on the plant growth state (Bell et al., 2020). Solar panels 

(photovoltaic or solar thermal), which have been increasingly installed in several European 

countries in recent years, are particularly susceptible to hail (Gupta et al., 2019). 

 

2.2.1 Severe Convective Storms: Hazard forecasting 
 

SCS forecasts and warnings are routinely issued by National Weather Services (NWS; Rauhala 

and Schultz, 2009). The forecasts usually contain the expected convective phenomena 

including their intensity (e.g., hail size, wind speed, rain total), the affected area, and a time 

frame of occurrence. In several countries, a severe thunderstorm warning is issued either when 

an event is less than 24 hours ahead (e.g., in the UK or Germany), or when the respective 

weather event has already been observed (termed as thunderstorm/tornado watch in the USA). 

Cascading hazards such as flash floods triggered by convective rainfall are usually not 

forecasted.  

The prediction of SCSs and related phenomena is one of the greatest challenges for numerical 

weather prediction (NWP). Even during convectively unstable situations the predictability of 

the location, timing, and intensity of SCSs is usually very low (Done et al., 2012). Forecast 

errors are mainly due to uncertainty in the synoptic-scale setting for convection development 

(Doswell and Bosart, 2001), initial conditions uncertainty on small scales (Stensrud, 2001), 

and parameter uncertainty in microphysical schemes (Miltenberger et al., 2018, Wellmann et 

al., 2018).  

The forecast lead time ranges from hours to several days, with uncertainty increasing with lead 

time. Although NWP models still have low skill in predicting SCSs one to eight days ahead, 

favorable environments for SCS can be forecasted via various indices, a method referred to as 

ingredients-based forecasting (such as thermal stability or wind shear; Doswell et al., 1996, 

Kaltenböck et al., 2009). For lead times of two or more days, mostly probabilistic ensemble 

forecasts providing a range of possible realizations of future weather are used instead of 

deterministic models with only one realization (Grell and Dévényi, 2002, Gensini and Tippett, 

2019). These forecasts are not intended for individuals to take immediate action, but rather to 

help key stakeholders such as emergency management and broadcasting groups to prepare for 

subsequent and more accurate predictions. For example, the ECMWF provides the ensemble-

based extreme forecast index (EFI) and in particular its shift of tails (SOT) products that 

facilitate forecasting SCS outbreaks especially in the medium range beyond day 2 (Tsonevsky 

et al., 2018).  

More recently, improvements in the forecasting of SCSs have been achieved for short-range 

prediction (6-36 hours) of storm-scale outputs using high-resolution convection-permitting 

models with sophisticated assimilation schemes for the inclusion of radar and satellite 

observations (Clark et al., 2016). In addition, nowcasting tools for very short lead times (0-2 

hours), which combine radar and satellite observations with rapid-update cycles of NWP model 

output and statistical tools, have shown reasonable skill for accurate location, hazard 

type/intensity, and timing forecasts (Nisi et al., 2014, James et al., 2018).  

Substantial difficulties in analyzing convective environments, constraining theory and models, 

and evaluating model output arise from the lack of consistent, homogeneous and 
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comprehensive observations of convective phenomena. The number of ground weather stations 

is too small to reliably detect these events. Hailpad networks, albeit having a very high density, 

exist only for a few limited regions in Europe and around the globe (Sánchez et al., 2009, 

Dessens et al., 2016, Ni et al., 2017). To fill this monitoring gap, several databases have been 

installed that pool eye-witness reports from trained storm spotters or from the public into severe 

weather archives (e.g., European Severe Weather Database ESWD; Groenemeijer et al., 2017). 

Although reporting is selective and biased towards population density, these databases provide 

valuable information about the frequency and intensity of SCS-related phenomena.  

 

2.2.2 Severe Convective Storms: Impact modeling and forecasting 
 

Because of the large uncertainty inherent in NWP, impacts of SCSs are rarely forecasted. 

Operational forecasts of impacts are mostly generic, both in the description of potential impacts 

and in the recommended precautionary measures. Warnings from NMS are usually issued on 

county level indicated by a color scheme. A red warning is issued when dangerous weather is 

expected and urgent actions are needed. In this case, it is very likely that there will be a risk to 

life, substantial disruption of mobility and energy supplies, and widespread damage to property 

and infrastructure. Similar systems exist from several NWS, such as Meteo France or the 

German Weather Service (James et al., 2018). The warnings issued by the UK Met Office are 

depicted using the same 4 x 4 matrix used for windstorms (Figure 4) based on the combination 

of expected impact severity and the likelihood of those impacts (Neal et al., 2014). In Europe, 

most of the warnings are summarized by Meteoalarm (www.meteoalarm.eu), an initiative of 

the European Meteorological Services Network (EUMETNET).  

Only a few models are available that explicitly estimate the impact in terms of damage to 

buildings, vehicles, infrastructures or crops depending on the event intensity (wind speed, hail 

size, precipitation totals). Potential losses have been quantified for single events or scenarios, 

most of them related to tornadoes in the USA hitting major cities (Wurman et al., 2007, 

Simmons and Sutter, 2011) or Europe (Antonescu et al., 2018). Hail damage is usually 

parameterized as a function of the kinetic energy of the hailstones or their expected diameter, 

which can be roughly estimated from observed radar reflectivity (Hohl et al., 2002, Puskeiler 

et al., 2016, Schmidberger, 2017). However, the damage increase in case of high horizontal 

wind speeds, affecting also the walls of a building, is usually not factored in (Schuster et al., 

2006). Tornado and straight-line winds are usually parameterized using maximum 3-second 

gust wind speeds (Holmes, 2015). Local climatic conditions and the time of year are 

particularly relevant for SCS impacts, as, for example, trees with their leaves are more 

susceptible to wind damage compared to defoliated trees in winter (Neal et al., 2014). 

Sophisticated impact models including vulnerability functions and exposure data are 

traditionally owned by the insurance industry and are not publicly accessible. The purpose of 

these models is to assess the damage in the aftermath of an event or to estimate the risk for a 

particular insurance portfolio (Schmidberger, 2017).  

 

2.2.3 Severe Convective Storms: Uncertainties and challenges of impact forecasting   
 

Impact forecasting of SCS, based on coupling of NWP and impact models, is hampered by the 

large uncertainty in the prediction of the convective phenomena on the one hand and by the 

need for highly accurate vulnerability functions and exposure data to model very localized 
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damage. In order to address the first point, several NWS have made considerable progress in 

the improvement of SCS predictions mainly by developing convection-resolving NWP models 

(Hagelin, 2017, Giorgetta et al., 2018, James et al., 2018), by developing and implementing 

sophisticated microphysics schemes, by improving the assimilation of observational data, and 

by running ensembles also for short lead times between 1 and 12 hours (Rothfusz et al., 2018). 

For example, within the recently launched project SINFONY (Seamless Integrated Forecasting 

System; Blahak et al., 2018), the German Weather Service develops a new prediction system 

for very short-range forecasting based on a combination of nowcasting, considering data from 

remote-sensing instruments and the life cycle of SCSs, and high-resolution modeling (km-scale 

ensembles with rapid update cycles).  

The inadequate monitoring of SCS can partially be remedied by additionally considering data 

from crowdsourcing or civic science contributions. Thanks to the widespread use of digital 

technologies, such as smartphones or self-regulation techniques implemented in modern 

automobiles, this additional information has a large potential for a significant contribution to 

better estimate damage from SCSs. Crowdsourced observations collected and archived through 

specific platforms such as Weather underground (www.wunderground.com), the European 

Weather Observer App (Groenemeijer et al., 2017) or the MeteoSwiss App have the potential 

to overcome the significant underreporting of SCS events (Trefalt et al., 2018). In Switzerland, 

for example, about 59,000 hail reports have been collected by users between May 2015 and 

October 2018 (Barras et al., 2019). In addition, crowdsourced observations can also be used 

for NWP via data-assimilation into initial fields (Muller et al., 2015). 

Regarding vulnerability functions, institutions like the Insurance Institute for Business & Home 

Safety (IBHS) or the Swiss association of cantonal building insurers (VKG) foster research on 

storm impacts to building structures and offer certification for individual components. 

However, such insights tend to focus on general preventive measures rather than prediction of 

impacts associated to individual storms. Still, such information can be used to relate 

meteorological variables to impacts.  

 

2.2.4 Severe Convective Storms: Maturity and added value of impact forecasting 
 

Impact forecasts of SCS will only be of significant benefit when the predictions regarding 

timing, location, and intensity of expected SCSs become more accurate. In that sense, 

nowcasting tools for lead times of up to 2 hours coupled with impact models have a high 

potential to reliably predict damage from disruptive and life-threatening convective events. 

Besides, near real-time warnings based on observations can be expected to grow in importance 

as instantaneous communication including crowdsourced observations become more and more 

available. Also, observations of specific radar signatures associated with heavy rainfall, hail 

(Puskeiler et al., 2016, Nisi et al., 2018), or tornados in combination with convection-favoring 

environment conditions from NWP can serve as a basis for near-real time impact estimates. 

Such information can help to efficiently guide decisions in emergency management, for 

example, whether and where an evacuation should be carried out in the event of a severe 

tornado (Hammer and Schmidlin, 2002, Simmons and Sutter, 2013).   

 
 

2.3 Droughts and heatwaves 
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Droughts are triggered by persistent negative precipitation anomalies, often coinciding with 

high temperatures leading to high evaporation, that can last for several months or years; various 

other definitions exist for different climates and impacts (UN General Secretariat, 1994, 

Wilwhite et. al., 2007). Heatwaves are associated with periods of anomalously high 

temperature, in terms of maximum, minimum and daily average temperature, or percentiles, 

ranging from days to months (WMO, 2018). Summer heatwaves tend to be co-located with 

atmospheric blocking (Pfahl and Wernli, 2012, Brunner et al., 2018) and can be amplified by 

local processes, e.g. a lack of soil moisture (Seneviratne et al., 2010, Miralles et al., 2014). 

Both hazards can reach continental scales of several 1,000 km. Heat and drought can occur as 

compound events with impacts on agriculture, water and power supply, human and ecosystem 

health (Buttlar et al 2018). 

     

2.3.1 Droughts and heatwaves: Hazard forecasting 
 

Forecasting and early warning systems for droughts and heatwaves are based on indicators 

derived from meteorological and hydrological observational data (Haylock et al., 2008) or 

weather/climate model data (Lavaysse et. al., 2018). Common hydro-meteorological indicators 

for droughts are: (1) Standardized Precipitation Index (SPI), (2) Palmer Drought Severity Index 

(PDSI) based on a soil water balance equation and incorporating prior (between 9 and 12 

months) precipitation moisture supply, runoff, and evaporation, (3) Standardized Precipitation 

Evaporation Index (SPEI) based on precipitation and temperature. The indicators are computed 

for different accumulation periods (short: 1-6 months; medium: 9-12 months; long: up to 24 

months) quantifying deficit/surplus with respect to the multiyear average, so that negative 

(positive) values indicate dryer (wetter) than average conditions (Pappenberger et al., 2015). 

Indicator thresholds are used to define drought severity classes (McKee et. al., 1993, Vicente-

Serrano et. al., 2010; Naumann et. al., 2015).  

For heatwaves, most studies use definitions based on temperatures above given percentile 

values (Fischer and Schär, 2010) or fixed temperature thresholds. Definitions vary depending 

on impacts in specific sectors (Russo et al., 2015, Perkins et al., 2012, Meehl and Tebaldi, 

2004). For human morbidity and mortality, the studies use apparent temperature (Mitchell et. 

al., 2016), humidity and night-time temperatures (WMO, 2018). A range of combined heat-

humidity indices for human morbidity have recently been introduced following projections of 

more frequent heat-humidity extremes (Fischer et al., 2013, Di Napoli et al., 2019, Buzan et 

al., 2020, Li et al., 2020, Raymond et al., 2020). A global database for comparing different 

indicators for heatwaves has recently become available (Raei et al., 2018). It is based on 

reanalysis temperature data that allows for the extraction of heatwave data and the computation 

of heat indices in a toolbox for a range of commonly used heat indices. 

There are two main approaches to drought and heatwave forecasting. The first one is based on 

operational weather forecast models (e.g., ECMWF in Europe, Lavaysse et al., 2015, 2018). 

These models solve prognostic dynamical and thermodynamic equations for atmospheric 

variables like temperature and moisture and can be coupled with hydrological models solving 

for soil water content. Based on the model output, the drought hazard indicators are calculated. 

The second approach relies on establishing statistical relations between predictors, e.g., the 

North Atlantic Oscillation index time series which quantify the main mode of atmospheric 

variability in the Northern Hemisphere, and the regional probability for drought occurrence 

(Bonaccorso et al., 2015). 

There exist a multitude of operational drought forecasting and early warning systems. Pulwarty 

and Sivakumar (2014) identify 21 drought early warning systems established across the globe, 



 

 

©2020 American Geophysical Union. All rights reserved. 

including North and South America, Africa, Asia, Australia and Europe. After the devastating 

impacts from the 2003 European drought and heat wave, forecasts of both hazards have been 

implemented in the pan-European operational weather forecast systems of ECMWF (Lavaysse 

et al., 2015; 2018). Drought forecast is implemented in the European Drought Observatory 

(EDO) of the Copernicus Emergency Management Service (https://emergency.copernicus.eu/). 

Forecast systems are also becoming available for irrigation management (Ceppi et. al., 2014). 

A particular challenge with forecasting heat waves and droughts is that these are slow-onset 

hazards with a duration of several days to weeks for heat waves or months to years for droughts. 

Forecast lead times for droughts can vary widely (1-24 months) depending on the indicator 

considered. For heatwaves, the times for consecutive days of high temperature anomalies are a 

few days up to 2 weeks (Lavaysse et al., 2019, Lass et. al., 2013). 

Drought hazard forecasting can be beneficial with respect to early water allocation in periods 

of water scarcity (Ceppi et al., 2014), it can provide meaningful information for agricultural 

users and particularly to farmers reducing economic losses due to droughts (Shaffieed-Jood et 

al., 2014, Coughlan de Perez et al., 2015, Steinemann, 2006) and it can also allow international 

agencies and donors to adjust their support programs early when a strong signals for a likely 

famine becomes apparent (Pulwarty and Sivakumar, 2014). 

 

2.3.2 Droughts and heatwaves: Impact forecasting   

 

Although drought and heatwaves exhibit similar meteorological drivers, they are associated 

with different impacts: while droughts lead to agricultural yield losses, limitations in water 

supply, water quality and hydropower (Ding et. al., 2011; Stahl et al., 2016), wildfires and loss 

of lives (Turco et. al., 2018), heatwaves impact human mortality or morbidity (typically 

cardiovascular or respiratory, Ekamper et al., 2010; Arbuthnott and Hajat 2017, de’Donato et. 

al., 2015), work productivity (Ciuha et al., 2019) and agriculture (Souri et al., 2020; Parker et 

al. 2020). Droughts often have secondary impacts whereby outputs from one industry/sector 

become inputs into other industries/sectors. For example, farmers with crop losses will reduce 

their supplies to the downstream industries, such as food processors and ethanol plants, and the 

impacts on water supplies may in turn affect tourism and recreation, public utilities, horticulture 

and landscaping services. During the historic drought in the southeast USA in 2007, many 

businesses were forced to close locations, lay off employees, or even file for bankruptcy (Ding 

et. al., 2011). 

A prerequisite for impact forecasting is the availability of sufficient impact data. This is 

particularly challenging in the case of droughts and heatwaves where impact data are scarce 

due to the extended duration of the events, regionally varying vulnerability as well as the 

variety of the affected sectors. Droughts impact data are collected by the European Drought 

Impact Report Inventory (EDII) as text-based reports (Stahl et al., 2016), which state the 

location and time of occurrence and the type of impact. Heatwaves impact data are sourced by 

national databases for mortality and morbidity indicators (respiratory hospital admissions, GP 

visits; Arbuthnott and Hajat, 2017). The database for mortality due to heatwaves in four large 

European cities (London, Stockholm, Rome, Madrid) is hosted by the European Environment 

Agency. Databases of more general scope are Eurostat and EM-DAT (2020), as well as 

reinsurance companies, the latter albeit with restricted access.   

The development of impact models relies on finding relationships between the predictors (e.g., 

SPI for droughts, temperature anomalies for heatwaves) and the impact occurrence and 

severity. These relationships are established by either probabilistic methods (e.g, copula 
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functions, Leng and Hall, 2019) or by functional relationships (damage functions). These 

damage functions are established via logistic and generalized regression, or by fitting a power-

law or exponential dependence; machine learning methods are also emerging (Blauhut et al., 

2015, Naumann et al., 2015, Bachmair et al., 2017, Mitchell et al., 2016, Turco et al., 2018). 

For prognostic models related to human health, the population exposure and vulnerability needs 

to be included, for instance, in form of the spatial variation of the ratio of fatalities to exposed 

population (Forzieri et al., 2017). 

Three approaches for impact forecasting can be distinguished: (1) When the aim is to develop 

systems that are able to forecast a specific impact, which is subject to atmospheric variability,  

droughts and heatwaves are typically included in an implicit way. Often indices for large-scale 

circulation patterns, such as the North Atlantic Oscillation related to temperature and 

precipitation anomalies over Europe, are used instead of drought and heatwave indicators 

(Ceglar et al., 2017, Nobre et al., 2019). (2) When the focus is on sector-specific impact 

forecasts due to a particular hazard (e.g., crop yield loss due to droughts, Leng et al., 2019; 

human mortality due to heatwaves, Lowe et al., 2016; Mitchell et al., 2016; wildfires due to 

low precipitation, Turco et al., 2018), the impact model is often based on output from a climate 

or weather forecast model and/or hydrological models for soil water (Ceppi et al., 2014). (3) 

Further, there are approaches where multiple impacts (e.g., crop yield, energy, water supply 

loss due to droughts) are grouped and represented by one variable (Bachmair et. al., 2016; 

2017, Sutanto et al., 2019).  

The performance of impact forecasts is assessed through various cross-validation techniques 

and Receiver Operating Characteristics (ROC) curves (Figure 5). The lead times of skilled 

impact forecasts are a few days for heat waves and one to several months for droughts and are 

region- and impact-dependent. 

 
Figure 5: Receiver Operating Characteristics (ROC) curves, quantifying the skill of the impact 

forecast models. (a) ROC curve for agricultural drought impact models, with countries shown 

as uniquely coloured curves. Sensitivity, or the fraction of correctly predicted impacts, is 

plotted against the specificity (1 minus the ‘‘false-alarm rate”, i.e., the fraction of correctly 

identified non-impact months (Stagge et al., 2015; fig. 2) (b) Mortality for the 2003-heatwave 

scenario (Lowe et al., 2016; fig. 4), using a probabilistic mortality model driven by forecast 

apparent temperature data at lead times ranging from 1 day to 3 months. The ROC curve for 

the mortality model driven by observed apparent temperature data is shown for reference 

(black curve). The better skill of the latter shows the importance of reliable heat wave forecasts. 

For more information, the reader is referred to the source publications. 
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2.3.3 Droughts and heatwaves: Uncertainties and challenges of impact forecasting  
 

There is a large variability in the lead time of impact forecasting depending on the region and 

its vulnerability, for instance in terms of crop species for droughts and population age 

distribution for heatwaves. For example, agricultural impacts of droughts are best explained by 

2–12 month anomalies, energy and industrial impacts (hydropower and energy cooling water) 

by 6–12 month anomalies, while public water supply and freshwater ecosystem impacts are 

explained by a more complex combination of short (1–3 month) and seasonal (6–12 month) 

anomalies (Stagge et. al., 2015). 

A large part of the uncertainty of drought and heatwave impact forecasting have been attributed 

in the limited skill of prediction models used to forecast the weather conditions responsible for 

heatwaves and droughts (Lowe et al., 2016, Moon et al., 2018), rather than the details of the 

mathematical formulation of impact models applied (Lowe et al., 2016; see also Fig. 5b). This 

points to the importance of a skilled hazard forecast for a skilled impact forecast. Short-term 

deterministic weather predictability is limited to 2-3 weeks (Buizza et al., 2015, Domeisen et 

al., 2018, Zhang et al., 2019), and hence we cannot currently predict the onset, duration, or 

strength of a heatwave several weeks ahead (Quandt et al., 2017), while the time needed to 

prepare for an extreme event is often longer (White et al., 2017). Drought events, on the other 

hand, tend to be predicted on timescales of about one month in advance in more than half of 

all cases (Lavaysse et al., 2018). The lack of a harmonized definition of these hazards and lack 

of accurate data on the hazard onset and duration adds another source of uncertainty (Stahl et. 

al., 2016). Further challenges of impact forecasting are regional variations in vulnerability, 

such as local population health, and in hydrological conditions, and the variety of economic 

sectors with varying response times (Stagge et al., 2015). Finally, there are several confounding 

factors, for example, pollution may be responsible for deaths attributed to heatwaves 

(Arbuthnott and Hajat, 2017). Further, human management and adaptation measures are often 

not included in impact models. For example, the poorer performance of crop models in 

Southwestern versus Eastern European countries used to represent impacts of the 2003 

European heat wave and drought has been attributed to more widespread irrigation in the 

former (Schewe et al., 2019). 

 

2.3.4 Droughts and heatwaves: Maturity and added value of impact forecasting 
 

The drought impact forecasting and early warning systems in Europe can be regarded as 

immature. To our knowledge, there is currently no operational system for seasonal drought 

impact forecasting. There is only one study published for Europe moving from a drought hazard 

forecasting to an impact forecasting approach, to enable authorities anticipating potential 

drought impacts two to four months ahead (Sutanto et al., 2019). The main reason for the lack 

of more mature systems is the scarcity of impact data in Europe. The situation is different in 

the African context where droughts can translate into devastating famines and loss of lives. In 

addition, the reliance on water irrigation systems is much lower in Europe as the crop water 

use comes quite often from precipitation and irrigation is only applied for specific crops, e.g. 

vegetables, or in specific regions, e.g. the Mediterranean region. In Africa, impact-based early 

warning systems with respect to famines have been installed, for instance the Famine Early 

Warning Systems Network (Funk et al. 2019). The further development of drought and 

heatwave early warning systems is motivated by the predicted increase in the frequency and 

severity of these hazards, and hence losses, under climate change (Perkins et al., 2012; Russo 

et al., 2015; Mitchell et al., 2016; Turco et al., 2018; Leng et al., 2019).  
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A range of early warning systems for heatwaves and associated mortality impacts have been 

established for Europe (Lowe et al 2011, Matthies et al., 2008). An early example is the 

EuroHEAT project of the WHO (2005-2007), providing forecasts of heatwave probabilities 

with the goal of improving preparedness and response to heatwaves. Bissolli et al. (2016) cite 

14 advisories, i.e. standardized information products about ongoing, pending or foreseen 

climate anomalies and their potential negative impacts, for heatwaves and droughts in Europe 

since 2012. Heat-health warning systems had been put in place in twelve European countries 

by 2005 (Kovats et al., 2006; Lowe et al., 2011). By 2009, 28 heat-health warning systems 

were operational in Europe (Lass et al., 2013), and by 2014, 16 countries had a clearly defined 

alert system and a health system preparedness component (Lowe et al., 2016, Bittner et al., 

2014). Current heat-health warning systems (Lass et al., 2013) commonly contain 

meteorological forecasts and an impact model linking heat characteristics to health impacts. 

They are often embedded in heat-health action plans (Matthies et al., 2008) that consider a wide 

range of stakeholders and comprehensive mitigation and response plans, including education 

and awareness, guidance on actions and governance, communication, evaluation, health 

surveillance, and advice on longer term strategies (Lass et al., 2013).  

The added value of impact forecasting is still hypothetical, as there are only limited experiences 

and studies of the actual benefits. Substantial benefits are expected regarding food and water 

security by applying so-called forecast-based financing mechanisms (Coughlan et al., 2015). If 

predefined thresholds about a severe drought occurrence are passed, funding is disbursed by 

donors and management procedures are triggered to proactively mitigate the impacts. For the 

effective application of such financing mechanisms, data on potential impacts and strong 

stakeholder cooperation are needed to understand where the most severe consequences are to 

be expected (Bengtson, 2018). First operational methodologies are already available (WFP, 

2019; German Red Cross, 2018). 

 

2.4 Floods  
 

Floods are the outcome of various meteorological conditions and hydrological regimes: short 

duration, high-intensity rainfall, long duration rainfall, rain on saturated soils, snowmelt or a 

combination of snowmelt and rainfall are typical triggers for floods (Merz and Blöschl, 2003). 

Pluvial floods are directly caused by excessive rainfall usually from local-scale convective 

storms. Pluvial floods occur when rainfall pours excessive amounts of water which cannot 

infiltrate in rural areas or which exceeds the capacity of the drainage system in urban areas and 

consequently remains on the surface forming shallow layers of water (Blanc et al. 2012). 

Fluvial floods occur when discharges exceed the conveyance capacity and consequently 

overtop the river banks. While fluvial floods occur at spatial scales of around 102 to 105 km² 

and temporal scales from one day to several weeks, pluvial floods generally occur at smaller 

spatial and temporal scales. Flash floods are defined on the basis of the dynamic of the event. 

Flash floods are characterized by the fast occurrence of floods with water travelling with high 

speed. In watersheds of less than 500 km2, flash floods are generally induced by high intensity 

short duration rainstorms, i.e. more than 100 mm rainfall in less than 24 h (Gaume et al., 2009).  

 

2.4.1 Floods: Hazard forecasting 
 

Warning systems commonly depend on real-time rainfall information, high-resolution 

numerical weather forecasts and the operation of hydrological model systems (Collier, 2007). 

Ensemble approaches, both for rainfall predictions from high-resolution numerical models and 
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for flow forecasts, have proved advantageous together with adaptive approaches using data 

assimilation (Collier, 2007, Zappa et al., 2010). Flood forecasting differs vastly in respect to 

flood types and from global (Global Flood Awareness System GloFAS, Hirpa et al., 2018) to 

local scales (Acosta-Coll et al., 2018). For instance, pluvial and flash floods are caused by local 

rainfall peaks, whose extreme features develop on space-time scales below the resolution of 

most numerical weather predictions. Radar-derived now-casting products and radar-numerical 

weather prediction blending have increased the accuracy and space-time resolution (i.e. 1–4 

km, 5–60 min) at the expense of short forecast horizons of 1-6 hours (Alfieri et al., 2012). 

Generally, flood early warning is based on forecasts of precipitation amounts. However, some 

operational early warning systems for pluvial and flash floods forecast simplified indexes based 

on the concept of extreme conditions. An example is the European Precipitation Index based 

on Climatology (EPIC), which is continuously calculated on the basis of probabilistic weather 

forecasts and is aggregating forecasted rainfall on hydrological units over a certain duration 

(Alfieri et al., 2011, 2012). Warnings for fluvial floods are commonly issued related to certain 

thresholds in terms of river discharge or water level. Warning lead times, which depend on 

forecast horizons, differ between below an hour for flash floods up to weeks for downstream 

areas in large river catchments (Collier, 2007, Kreibich et al., 2017). For fluvial floods, 

thorough model calibration using local data and information as well as skillful forecasters can 

significantly reduce false alarm rates (Blöschl, 2008).  

Official flood warnings have a long history, e.g. a first system was established in Germany in 

1889 (Deutsch and Pörtge, 2001). Commonly, the meteorological service is responsible for 

weather monitoring, forecasting and warning in collaborating with water authorities 

responsible for flood forecasting and warning as well as with civil protection. Forecasting 

systems for fluvial floods are operational in many countries, e.g. basically in all countries in 

Europe (Pappenberger et al., 2015, Alfieri et al., 2012, Werner et al., 2009). In contrast, pluvial 

flood forecasting is restricted to severe weather warnings on district level issued by the weather 

service including information about the expected maximum rainfall intensities for a maximum 

lead time of 12 h in many regions (e.g. DWD, 2016). Pluvial flood early warning systems are 

implemented, for instance, for suburbs of the city of Copenhagen, Denmark, in the cities of 

Nîmes and Marseille, France, or in Barcelona, Spain (Deshons, 2002; Henonin et al., 2013). 

These specific urban systems rely on both thresholds of forecasted rainfall as well as inundation 

depth and area, e.g. based on water level sensors, pre-calculated scenarios or online 1D–2D 

hydraulic models (Henonin et al., 2013). National alert systems for pluvial floods with a rather 

coarse spatial resolution exist in the UK (i.e. warnings issued on county level based on national 

thresholds), where the extreme rainfall alert service was launched in 2009 (Ochoa-Rodríguez 

et al., 2018), and in the USA, termed as flash flood guidance system (Villarini et al., 2010).  

Flood forecasting and early warning systems primarily aim to protect human life, however, 

their potential to also reduce economic damage has been recognized since decades (Lustig et 

al., 1988; Molinari et al., 2013). Pappenberger et al. (2015) calculated that each Euro invested 

in the European Flood Awareness System (EFAS) pays off 400 times (with considerable 

uncertainty). Main aspects determining the effectiveness of early warning systems in reducing 

losses are the lead time, the flood intensity, dissemination and content of the warning and the 

ability of civil protection and affected parties to undertake emergency measures effectively 

(Molinari et al., 2013; Morss et al., 2016; Kreibich et al. 2017). In Europe, the communication 

of warnings was significantly improved in the 1990ies, and recently significant advances in the 

extension of warning lead times have been achieved by using ensemble prediction systems and 

more closely integrating weather and flood forecasts (Parker and Priest, 2012). Flood warning 

response remains to date as the major challenge for flood warning systems (Parker and Priest, 

2012). 
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2.4.2 Floods: Impact forecasting  
 

The forecasting of flood impacts is currently an emerging topic on the flood research agenda. 

It aims to deliver information about the expected consequences of imminent flooding. It uses 

both qualitative and quantitative indicators. One example for qualitative impact forecasting is 

the flood guidance statement for emergency response, which is based on a flood risk matrix 

(Cole et al., 2017). This matrix discerns four categories of flood severity by combining the 

potential impact severity and flood likelihood (similar to Figure 4). Coughlan de Perez et al. 

(2015) and Sai et al. (2018) follow a similar approach by defining color codes representing 

thresholds of flood impacts which are linked to response actions. Quantitative impact forecasts 

include estimates of the number of people affected, economic damage, and infrastructure 

affected. The level of detail varies from the number of buildings affected (Bihan et al., 2017) 

to economic damage for residential buildings, commerce, agriculture, industry as well as 

transport and infrastructure sectors (Dottori et al., 2017, Dale et al., 2014, Ritter et al., 2020) 

and economic damage to individual buildings (Dale et al., 2014; Fuchs et al., 2017).  

The majority of flood impact models focus on direct economic damage mostly to the residential 

and commercial sector, but also impact models for agriculture and the public sector are 

available (Gerl et al., 2016). Approaches to estimate, for instance, damage to critical 

infrastructure or indirect impacts barely exist (Merz et al., 2010, Koks, 2018, Bubeck et al., 

2019). Quantitative flood impact models estimate the consequences of flooding usually using 

information about inundation depth, duration flow velocity or other metrics of flood intensity, 

and taking the resistance characteristics of affected elements into account (Thieken et al., 

2005). 

The literature describes impact forecasting approaches for near real-time applications, i.e. 

providing information at the same time as the event is happening (Kron et al., 2010, Kim et al., 

2011), and for short-term forecasts with lead times of a few hours to one day. Examples are 

found in Bihan et al. (2017) and Ritter et al. (2020) for flash floods, and in Bhola et al. (2018) 

and Fuchs et al. (2017) for pluvial floods in urban areas. River flood impact forecasting systems 

with lead times of several days have been proposed by Dottori et al. (2017), Bachmann et al. 

(2016), or Brown et al. (2016). The spatial scales of these systems range from urban districts 

(about 100 km²; Fuchs et al., 2017; Cole et al., 2016, Coles et al., 2017), small and medium 

sized catchments with areas of several thousand km² (Bihan, Le et al., 2017; Bachmann et al., 

2016; Nguyen et al., 2015, Ritter et al., 2020) to national and continental applications 

(Coughlan de Perez et al., 2015; Dottori et al., 2017).  

To forecast inundations and flood impacts, established flood forecasting systems are extended 

by additional model components, for instance, depth-damage curves or probabilistic multi-

variable vulnerability models (Kim et al., 2011; Dottori et al., 2017; Dale et al. 2014, Fuchs et 

al. 2017; Ritter et al., 2020). Some studies aim to include also effects of dike breaches by 

implementing probabilistic dike failure models (Bachmann et al., 2016; Brown et al., 2016, 

Kron et al., 2010). A key challenge of this approach is to provide timely and accurate 

estimations of water levels and inundation areas to determine flood impacts. This is done either 

by fast hydrodynamic simulation approaches (Kron et al., 2010; Bachmann et al., 2016; Brown 

et al., 2016; Nguyen et al., 2015) or by using pre-calculated inundation maps which are then 

selected to best represent the forecasted flood situation (Bhola et al., 2018; Dottori et al., 2017, 

Ritter et al., 2020). An alternative to this simulation-based approach consists in defining impact 

thresholds. These thresholds represent expected impact severity for given flood intensity levels 

(e.g. inundation depth) and are combined with warning information and recommended 
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mitigation actions (Sai et al., 2018, Coughlan de Perez et al., 2015, Cole et al., 2018). 

Alternatively, for thresholds of forecasted precipitation intensity or flood discharge direct 

relationships to expected impacts are established. For instance, Bihan, Le et al. (2017) derive 

a relationship between flood discharge and the number of affected houses. Similarly, Dale et 

al. (2014) propose the use of monetized impacts for defined river peak discharges or water 

levels as a basis for emergency management. 

 

2.4.3 Floods: Uncertainties and challenges of impact forecasting  
 

The evaluation and reliability assessment of impact forecasting is complicated due to scarcity 

of reported impact data at the local scale (Dottori et al. 2017). Particular challenges arise from 

complex hydraulic situations, such as perched riverbeds, and local effects, such as blockages, 

which are difficult to incorporate in forecasting systems (Bihan, Le et al. 2017). Kim et al. 

(2011) report on limitations that involve physical changes in the river network, such as the 

formation of debris or ice jams on structures or a breach in a levee. Impact forecasting faces 

further challenges related to the definition of relevant impact information because the 

forecasted impacts have to be aligned with the contents and details required by the users of this 

information (Dottori et al., 2017). It requires additional data regarding the exposed elements at 

risk, e.g. population, critical infrastructure, their vulnerability as well as emergency measures 

taken during the event (Bachmann et al., 2016, Brown et al., 2016). This data base must be 

continuously updated as the exposed people may be subject to fluctuations at different time 

scales. Examples are sub-daily variations in terms of commuters or seasonal fluctuations in 

terms of holiday guests (Doocy et al., 2013). Further, changes in vulnerability, for example due 

to the implementation of precautionary measures or improved warning systems (Kreibich et 

al., 2017), as well as changes in flood protection schemes need to be included. Moreover, 

human behavior and risk awareness are important influences of flood fatalities. A surprisingly 

high fraction of fatalities is caused by people walking purposely through the flood waters 

without rescue or evacuation purpose (Ashley and Ashley, 2008), and unnecessary risk-taking 

behavior contributes significantly to flood deaths (Jonkman and Kelman, 2005). Quantitative 

impact estimation has to cope with uncertainties in input information from inundation forecasts 

with weather forecasts in terms of timing, location and amount of precipitation as the main 

source of uncertainty for longer lead times. Impact forecasting is subject to additional 

uncertainty related to incomplete data and simplified methods to estimate consequences. For 

instance, Brown et al. (2016) describe simplified approaches for loss of life calculations which 

do not consider inundation dynamics, location or evacuation of people. 

The impact forecasting approach based on EFAS so far computes flood hazard and impact 

maps using only the median of the ensemble, which ignores less probable but potentially more 

severe scenarios (Dottori et al., 2017). Ensemble based impact forecasting is possible and will 

lead to probabilistic impact predictions that incorporate uncertainties (Brown et al., 2016, Cole 

et al., 2018, Dale et al., 2014). To achieve minimal computation times Brown et al. (2016) 

utilize only a limited number of ensemble members but still preserve statistically sound results. 

The communication of uncertainty of impact forecasting requires special consideration to 

ensure that the information is understandable and beneficial (Brown et al., 2016). 

 

2.4.4 Floods: Maturity and added value of impact forecasting 
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Impact forecasting of floods is a new field with relatively many recent contributions. The 

developed approaches range from proof of concepts via prototypes implemented in case study 

areas to pre-operational systems. In research studies, for instance, new methodologies were 

developed for hydrodynamic-based flood forecasts that work with pre-calculated scenarios and 

database queries to select appropriate flood inundation maps in real-time (Bhola et al. 2018; 

Fuchs et al. 2017). Prototype systems have been implemented in several case study areas, for 

instance in Germany, France, the Netherlands or the USA (Kron et al., 2010; Kim et al., 2011; 

Bachmann et al., 2016; Bihan, Le et al., 2017). Dottori et al. (2017) present a European-wide 

operational procedure for impact forecasting based on warnings of EFAS.  

It might not take much longer until also national and local operational systems will be in place, 

since the expected benefits of impact forecasts are manifold. They can support the planning of 

more demanding measures, such as monitoring of flood defenses or deployment of emergency 

services (Dottori et al., 2017). It is expected that forecasted impact maps, including information 

about affected population, infrastructures and cities, would substantially improve emergency 

response by, for example, prioritizing evacuation planning (Coles et al., 2017; Dottori et al., 

2017, Bhola et al., 2018). Coupling inundation modelling with network analysis enables 

decision makers to identify city districts or single buildings that are most vulnerable to flood 

impacts or delayed response by emergency services. This information can support the 

development of contingency plans (Coles et al., 2017). Additional information on expected 

impacts can effectively support the design and adaptation of emergency measures (e.g. 

location, time, and type) and may enable cost-benefit analyses of response measures 

(Bachmann et al., 2016, Dottori et al., 2017). Other benefits may be that decision-making can 

be better informed and improve emergency measures (Dale et al., 2014). Coughlan de Perez et 

al. (2015) expect that “tailoring of forecast information to the operational contexts of the 

humanitarian sector can dramatically increase the uptake of existing forecast products”. They 

propose a novel forecast-based financing system to automatically trigger action. This system 

matches threshold forecast probabilities with appropriate actions, directly disburses the 

required funding and proposes standard operating procedures that contain the mandate to act. 

An important component is a designated preparedness fund that is available for use before a 

disaster strikes.   

 

2.5 Storm surges 

Storm surges are oscillations of the water level in a coastal or inland water body caused by 

dynamic wind pressure and associated with extratropical or tropical cyclones. The spatial and 

time scales of storm surges vary considerably (Gönnert et al., 2001). Tropical cyclones are 

associated with small and intense surges that have time scales in the order of a few hours and 

spatial scales in the order of about 50 km. In contrast, extra-tropical storm surges typically have 

larger spatial dimensions of up to hundreds of kilometers, and longer time scales in the order 

of up to about one day. They may also propagate away from the storm and proceed, in form of 

long waves, along the coast. In the latter case, they are usually referred to as external surges 

(Weisse and von Storch, 2010). Because of the higher wind speed in tropical cyclones, tropical 

surges are usually much higher than their extra-tropical counterparts. Extra-tropical cyclones 

and the surges caused by them preferably occur in fall and winter, while tropical cyclones are 

tightly coupled to warm water and together with their surges predominantly occur in the late 

summer season. 
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2.5.1 Storm surges: Hazard forecasting 
 

Forecasting approaches range from empirical approaches to complex numerical models (Swail, 

2010; Kohno et al., 2018). Approaches vary by country, region, and lead-time of forecasts. A 

survey conducted by the Expert Team on Wind Waves and Storm Surges (ETWS) of the Joint 

Technical Commission for Oceanography and Marine Meteorology (JCOMM) in 2010 

revealed that approximately 75% of  the reported operational or pre-operational applications 

used two-dimensional tide-surge models (World Meteorological Organization, 2011). To 

complement numerical products quickly and cost-efficiently, empirical approaches are still 

widely used. For very long lead times of several days, empirical relations between NWP and 

expected surge heights may provide first and early indications of the upcoming event. For very 

short lead times of less than 24 hours, lagged empirical relations between observed wind fields 

or water levels from surrounding tide gauges may provide quick refinements of the numerical 

forecasts, in particular in-between subsequent model runs. Such a scheme is implemented, for 

example, in the operational storm surge warning of the federal state of Lower Saxony, Germany 

(Kristandt et al., 2014). 

Hazard characteristics included in the forecasts vary. Typically, information is provided on 

intensity, duration or how fast critical levels are reached. Usually the height of the surge or 

total water levels are forecasted. In two-dimensional models, the latter comprises tides and 

surges and their non-linear interaction. Wave-related processes such as wave set-up may 

substantially add to extreme coastal water levels but are so far often ignored in operational 

procedures (Melet et al., 2018; Kohno et al., 2018). Coupling between waves and surges is an 

area of active research (Staneva et al., 2016) and the results are gradually transferred into 

operation (Kohno et al., 2018). High surges may coincide with high river discharges or high 

precipitation and may pose problems for drainage of low-lying coastal areas (Bormann et al., 

2018). 

The most significant source of uncertainty in storm surge forecasting is related to the 

uncertainty in the driving wind fields (Flowerdew et al., 2009; World Meteorological 

Organization, 2011; Resio et al., 2017). In a forecast environment, limited resources and the 

amount of time available may restrict the production of large ensembles to assess the 

uncertainty. Attempts are being made to include probabilistic elements into the forecast under 

such conditions. For tropical surges, an example is described in Davis et al. (2010). Other 

sources of uncertainties are related to the accuracy of the bathymetry and topography used in 

the surge models, potential effects related to coupling of waves and surges, or model errors 

caused by simplified representations of physical processes within the surge models (e.g. Resio 

et al., 2017). 

Monitoring of storm surges is mainly based on tide gauges. When critical levels are exceeded 

or are expected to be exceeded, warnings or advisories may be issued. The products derived 

from the operational models are diverse depending on the predictability of the natural system 

and also with respect to the requirements of the areas to protect. Among others, they comprise 

warnings for expected exceedances of storm surge or total water level thresholds, expected 

maximum surge heights and timing of peaks, time-varying forecasts of surges or total water 

levels for specific locations, or time dependent maps of surge heights. For extra-tropical surges, 

most of the operational applications are issued with lead times between 36 and 72 hours, 

although a forecast range as long as 120 hours has been reported (World Meteorological 

Organization, 2011). Forecasts of surges generated by tropical cyclones mostly have shorter 

lead times, usually in the order of 12 hours to a few days (World Meteorological Organization, 

2011). Real-time storm surge products typically become available less than 48 hours before 
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landfall of a tropical cyclone. For longer lead times, forecast errors increase rapidly (Davis et 

al., 2010).  

Studies on benefits or cost-benefit ratios of storm surge forecasts or early warning systems are 

rare. There are several reasons. In some countries, such as in Germany, to guarantee safety of 

people and property at risk, the law requires issuing storm surge forecasts as an element of the 

basic services for the public. Some work exists that analyses cost-benefit ratios of existing or 

planned coastal protection measures (Davlasheridze et al., 2019; Flemming, 1997). For the case 

of storm surge barriers or barrages that need to be kept open as much as possible such analyses 

also include costs of storm surge monitoring and forecasts. An example is given in Flemming 

(1997) who estimated the costs of minor floods in the London area to be sufficiently high to 

justify the costs for initial investment, operation and maintenance of the Thames Barrage 

including costs for the operation of the storm tide monitoring and forecasting system. A case 

study on Cyclone Evan in Samoa (2012) quantified cost and benefits of early warning services 

for cyclone hazards and concluded that for every USD invested, there is a return of 6 USD as 

benefit (Fakhruddin and Schick, 2019). Such studies, however, do not distinguish between 

costs and benefits from surge or windstorm forecasting. 

 

2.5.2 Storm surges: Impact forecasting      

 

Traditionally, coastal flooding and inundation are considered the most obvious impacts of a 

storm surge event. However, we use a broader perspective where impact considers the exposure 

and the expected vulnerability of elements at risk (section 1.2). For storm surges, efforts to 

provide such information are in their infancy. Walker et al. (2018) aimed at developing a 

fiscally based scale for tropical cyclone storm surges from which an impact forecast can be 

derived based on information available from existing hazard forecasts. The approach was 

developed for the US Gulf and East coasts and basically uses multiple linear regression 

between loss per capita and surge height and velocity. Similarly, using artificial neural 

networks, Pilkington and Mahmoud (2017) explored the potential to forecast a range of 

economic damage resulting from multiple hazards, including storm surges, associated with 

forecasted tropical cyclone events. When coastlines are massively protected, such as for 

instance in The Netherlands or Germany, such approaches become problematic, as damages 

will be closely linked with the extent and specific characteristics of potential failures. 

Emergency managers and decision makers increasingly request inundation maps (World 

Meteorological Organization, 2011), and there are substantial efforts to extent forecast schemes 

to include information on coastal inundation (Dube et al., 2010). Typically, static inundation 

maps at different surge or total water levels are produced in advance using steady state models 

(Dube et al., 2010). During a storm surge event, these precomputed maps are then extracted 

from libraries depending on forecasted surge or total water level heights. A more dynamic 

approach is followed by the Copernicus Emergency Management Service (EMS; 

https://emergency.copernicus.eu/mapping/), where the boundaries of inundated areas are 

delineated by means of satellite data. The complexity of such maps varies. Typically inundation 

or flood depth is considered but also information on vulnerability may be included (World 

Meteorological Organization, 2011). So far, efforts in regions affected by tropical cyclones are 

most pronounced (Dube et al., 2010). A similar procedure is intended by the EU Floods 

Directive (EU, 2007) which recommends inundation maps of the surge protected areas based 

on probabilities of occurrence or at least extreme events which subsequently may also be used 
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for forecasts. In some areas, consideration of compound or cascading effects of surges, 

precipitation and river floods is needed, but attempts to do so are still embryonic1. 

For areas where sandy barriers provide some protection from surges, including morphological 

processes in the forecast is essential. The Emilia-Romagna early warning system, for example, 

consists of a series of met-ocean and morphological models aiming at forecasting storm surge 

impacts. In this case, two proxies estimating the impact are forecasted: (i) the so-called safe 

corridor width, which measures the distance from the dune foot to the waterline and represents 

the fraction of the beach that can be used for safe passages; and (ii) the so-called building 

waterline distance, that similarly measures the amount of dry beach available between the 

waterline and beachfront properties (Harley et al., 2016). For areas protected by dikes, a 

different approach is taken. In addition to the hazard forecast, sensor-based geotextiles aiming 

at automatic monitoring of the state of the dyke are developed. In combination with the hazard 

forecast, early warning systems for critical situations may be derived.  

Erosion during storm surge events represents another major impact. Impact models such as 

XBeach (Roelvink et al., 2009) exist but heavily depend on high-resolution local data such as 

bathymetry or the wave field during the storm. In the tidal channels and ebb tidal deltas of the 

Wadden Sea in the southeastern part of the North Sea, major morphological changes result 

from strongly increased near bottom outflow during storm surge conditions. This is assumed 

to cause major erosion at groin2 heads and other coastal protection structures. In a 

demonstration project, erosion and morphological impacts of storm surges were forecasted 

(Souza et al., 2014). Time series of wind waves and tide-surges from operational forecasts were 

used to operationally run a two-dimensional model for wave propagation, long waves and mean 

flow, sediment transport and morphological changes on beaches, set up for the Sefton coast in 

Liverpool Bay. The system aimed at forecasting threshold exceedances for storm impacts and 

the expected extent of dune erosion with the intention to provide a coastal vulnerability early 

warning system with 48 hours lead time (Souza et al., 2014).  

 

2.5.3 Storm surges: Uncertainties and challenges of impact forecasting  
 

Key elements of uncertainty are the combined random errors and biases from the numerical 

weather predictions used to drive the storm surge forecasts. In addition, for the numerical tide-

surge models, high-resolution and up to date bathymetric data are needed to provide reliable 

coastal forecasts. Seasonal or longer time scale variability of bathymetry may introduce a 

further level of uncertainty, in particular when impacts such as increased erosion are 

considered. In the case of sandy barriers, modelling of erosion and assumptions inherent in the 

modelling add a further level of uncertainty. Inundation forecasting is often based on steady 

state solutions (Dube et al., 2010), while inundation critically depends on the development of 

surge heights over time. Moreover, topographic data accuracy and exact forecast of the location 

of peak water levels will strongly determine inundation and flood depth. In case of coastal 

protection failure, details of the failure will also significantly affect inundation and impacts.  

 

 
1 https://www.deltares.nl/app/uploads/2018/10/Efficient-Modeling-of-Compound-Flooding.pdf; last accessed 

24 April 2019 
2 Groins are rigid hydraulic structures usually made of wood, concrete or stone and built from an ocean shore. 

Their objective in coastal engineering is to interrupt water flow and to limits the movement of sediments. 

https://www.deltares.nl/app/uploads/2018/10/Efficient-Modeling-of-Compound-Flooding.pdf
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2.5.4 Storm surges: Maturity and added value of impact forecasting 
 

The WMO implemented a coastal inundation forecast demonstration project (CIDFP) aiming 

at developing integrated systems for inundation forecasts, which can be used in operational 

environments (World Meteorological Organization, 2013). As of April 2018, there were 

ongoing or planned national sub-projects in Bangladesh, Fiji, the Caribbean, Indonesia, 

Shanghai and South Africa. 

Early warning systems including both, hydrodynamic hazards and morphological impacts, 

recently emerged in the USA and in Europe (Harley et al. 2016). In Europe, a series of 

prototypes at nine sites was developed in the MICORE project (Ciavola et al., 2011).  

Impact forecasting in a wider sense as defined in section 1.2 is at its infancy and to our 

knowledge limited to general considerations (Pilkington and Mahmoud, 2017; Walker et al., 

2018). 

The added value of the impact forecasting provided by the Emilia-Romagna early warning 

system was assessed in a hindcast study of the 2012 Halloween storm in northern Italy (Harley 

et al., 2016). The extent to which the impact forecasts may have helped to reduce the storm 

impacts was assessed. The analyses showed that due to an underprediction of the extreme water 

levels, only for two of the eight sites in the early warning system high hazard/impact warnings 

would have been issued (Harley et al., 2016). Again, this emphasizes the need for accurate met-

ocean forecasts. 

 
 

2.6 Earthquakes 
 

Tectonic earthquakes (hereinafter earthquakes) originate from the sudden release of elastic 

strain energy in form of a fracture. Part of this energy is released as seismic waves that radiate 

from the earthquake hypocenter, i.e., the point at a given depth under the Earth´s surface, where 

the rupture starts. The ground shaking caused by the seismic waves reaching the surface may 

be very violent, resulting in widespread damage to buildings and infrastructure and consequent 

loss of properties and lives. The unfolding of the phenomenon occurs generally on the scale of 

seconds, with the rupture during the biggest earthquakes lasting up to several minutes and may 

affect an area ranging from tens to thousand km2. The different waves generated during the 

rupture process travel at speeds, typically ranging from 3 to 6 km/s, and are progressively 

attenuated due to geometrical spreading, energy absorption and scattering. Earthquakes 

occurring at convergent tectonic plate boundaries release most seismic energy. Strong 

earthquakes can also occur within tectonic plates (intra-plate). Although these events are 

comparably less frequent (around 5% of the total number of observed events), they can be 

significantly damaging as they often occur onshore. Strong earthquakes are often the cause of 

sub-perils such as tsunamis and landslides and can trigger volcanic unrest. 

 

2.6.1 Earthquakes: Hazard forecasting 
 

Mainshocks are often preceded by foreshocks (although while a seismic sequence is ongoing 

such a distinction might not be possible, see e.g. Gulia and Wiemer, 2019) and often by 

accelerating seismic activity in the months to days before they occur (Bouchon et al., 2013, 

Abercrombie and Mori, 1996). Nevertheless, there is no evidence of systematic precursors, and 
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for the sake of all practical and operational applications earthquakes are modelled as random 

events whose short-term forecasting is characterized by very low probabilities, resulting in 

limited usefulness for decision-making (Kagan and Knopoff, 1977; Geller, 1997). Earthquake 

forecasting therefore does not aim at the prediction of a given event, but rather at the 

probabilistic characterization of the underlying process. This is usually achieved in a statistical 

framework, with a strong hypothesis on the substantial stationarity of the process over time 

windows spanning decades to hundreds of years. On shorter time scales, from days to decades, 

non-stationary models are considered by so called Operational Earthquake Forecasting systems 

(Jordan et al., 2011) that integrate short-term information, such as the evolving seismicity 

during an earthquake sequence. 

Europe has pioneered the efforts towards the realization of Operational Earthquake Forecasting 

(OEF) systems (Zechar et al., 2016). For instance, Iceland and Switzerland have started 

exploring the implementation of OEF systems and in Italy, following the 2009 L´Aquila 

earthquake, a prototypal system has been developed, providing civil protection authorities with 

weekly forecasts in terms of probability of exceedance of given magnitudes (for events) or 

macroseismic intensities at the national scale (Marzocchi et al., 2014). In New Zealand a hybrid 

OEF system integrating short- and long-term models provides both public and governmental 

agencies with time-dependent probabilities during earthquake sequences. In the USA several 

joint earthquake advisories have been issued using ad-hoc OEF processes (U.S. Geological 

Survey Staff, 1990), and in California short-term earthquake probability forecasts have been 

provided for several years but discontinued in 2010 (Field et al., 2016). More recently, the U.S. 

Geological Survey (USGS) has developed and tested a national capability for aftershock 

forecasting after significant earthquakes (Michael et al., 2018). 

The assessment and dissemination of authoritative information about time-dependent 

earthquake probability has multiple benefits. Experimental evidences show that OEF can 

outperform time-independent Poissonian models on short-term forecasting (Jordan et al., 

2014), with a potential for enhancing the earthquake preparedness especially during sequences, 

where the probability for large earthquakes significantly increases with respect to the seismic 

background. Although in most cases large events remain unlikely (rarely exceeding 1% 

probability per day), several protective and mitigation actions are possible, such as conducting 

disaster-response drills, increasing the readiness of emergency personnel or emphasizing 

preparedness in media communication (Field et al., 2016).  

The term Earthquake Early Warning (EEW) refers to the prompt detection of an earthquake 

within few seconds after its actual onset and may provide a viable solution for real-time risk 

mitigation (Wenzel and Zschau, 2014; Wu et al., 2016). A so-called regional EEW approach is 

based on the early detection of the seismic waves generated by the earthquake´s rupture process 

by means of an extended network of seismic sensors located in proximity of the epicenter. The 

rapid detection leads to a first estimation of the location and the size of the event. A suitable 

alert might then be immediately signaled to the target location (i.e., a specific critical structure 

or an inhabited place that could be adversely impacted) some time before the incoming seismic 

waves would strike. The lead time is the time interval between issuing the warning and the 

actual occurrence of the strong shaking at the target location and may range from a few seconds 

to around one minute (Minson et al., 2018). Regional EEW systems have been implemented, 

either operationally or in the testing phase, in Europe (Italy, Romania), the USA, Japan, 

Mexico, Turkey and Taiwan (Espinoza-Aranda et al., 1995; Böse et al., 2007; Hoshiba et al., 

2008; Alcik et al., 2009; Allen et al., 2009; Hsiao et al., 2009; Satriano et al., 2011; Wu et al., 

2013). Recent studies (Pittore et al., 2014; Parolai et al., 2017) have also highlighted the 

potential for EEW systems in economically developing countries. 
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An operational EEW system can reduce the impact on the population. It can support their rapid 

response, taking simple actions that decrease the possibilities to be injured during a seismic 

event. Automatic actions might help in stopping industrial facility production, medical 

operations etc., therefore reducing the impact of the event. 

 

2.6.2 Earthquakes: Impact forecasting  

 

Quantitative estimates can be obtained using engineering approaches, which map the estimated 

distribution of the ground shaking in terms of macroseismic intensity or instrumental 

intensities, such as peak ground acceleration, into an estimated damage distribution employing 

asset-specific fragility and vulnerability models (Calvi et al., 2006). Physical damage is usually 

described in terms of a discrete set of damage states that span the full range of consequences 

(Hill and Rossetto, 2008). Physical damage can be used to estimate the amount of loss, either 

in terms of replacement cost ratio (e.g., the fraction of replacement cost of a building lost due 

to the incurred damage to the structure) or affected people (e.g., fatalities, injuries, displaced 

persons), with the latter of major importance in the immediate aftermath of the event. 

While physical damage indicators refer to single structures, systemic impact indicators describe 

the expected performance loss of interconnected systems, such as lifelines (transport, power, 

or communication networks) and critical infrastructure (hospitals, airports), also considering 

possible cascading effects arising from the functional interdependency among the different 

components of the networks. 

Probabilistic seismic hazard assessment, earthquake operational forecasting as well as early 

warning approaches can all be complemented by suitable loss modeling components. The 

concept of Operational Earthquake Loss Forecast (OELF) has been first proposed in Italy in 

2015 and exemplified with an experimental system which produces real-time risk maps in 

terms of building collapses, displaced residents and fatalities (Iervolino et al., 2015). More 

recently, an OELF system has been implemented for California, based on the UCERF-3 

(Uniform California Earthquake Rupture Forecast version 3), in order to estimate the expected 

loss in case of scenario earthquakes of different magnitudes, also considering the related 

sequences of aftershocks (Field et al., 2017). This information is increasingly used to plan 

medium- and long-term mitigation activities, and to raise awareness of the underlying risk both 

for practitioners and the public. 

In the framework of earthquake early warning, near-real-time impact estimation can be carried 

out for an actual (unfolding) earthquake, in order to complement the alarm with first-order 

estimates of the potential consequences of the incoming ground motion at the target location. 

This loss estimate can be made available before the actual damaging shaking occurs, and used 

to optimize automatic mitigation. Some of these systems are designed to rapidly estimate the 

potential shaking arising from an event at a given location, providing decision makers with 

timely access to information related to the potential losses and its distribution (Pittore et al., 

2014; Parolai et al., 2015; Bindi et al., 2016). 

Different indicators are used to provide an overview of the expected impact of an earthquake. 

Physical impact indicators, which refer to direct consequences on built structures, can be 

assessed employing different, increasingly sophisticated approaches. For instance, the potential 

for damaging consequences of an earthquake at a given location may be inferred as first order 

by the estimated macroseismic intensity (MI). Macroseismic scales, such as the EMS-98 scale 

(Grünthal and European Seismological Commission, 1998), have been derived from empirical 

observations of past events and refer to observable consequences on people, buildings and the 
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natural environment. They can be determined using empirical models, once the magnitude and 

the location of the event is known, estimated from the analysis of real-time ground motion data, 

or inferred from social media and crowd-sourced observations, for instance, volunteered 

reports from citizens in the area affected (Bossu et al., 2011; Atkinson and Wald, 2007).  

Other empirical impact indicators are based on systematic analysis of past earthquakes and 

provide semi-quantitative assessments that are suited for large-scale or global applications. 

Real-time risk scenarios, based on the estimated magnitude and location of the event or simply 

on the measurement of the ground motion parameters at a few stations, can be calculated 

considering the availability of exposure and vulnerability models in the target area providing 

quantitative impact estimates. At the global scale, for instance, the United States Geological 

Survey (USGS) provides rapid post-event impact forecasts in terms of fatalities and economic 

loss through the PAGER3 service. A threshold on the combination of these two factors is used 

to rank the alert (Wald et al., 2011). 

The Global Disaster Alert and Information System (GDACS4), a joint effort of the United 

Nations and the European Commission, provides impact forecasts and alerts based on a 

combination of damage proxies, for instance derived from the estimated macroseismic 

intensity, socioeconomic vulnerability and lack of coping capacity (De Groeve et al., 2006). 

The latter indicator is based on the Index for Risk Management (INFORM5), an inter-agency 

collaboration that proposes several hazard-independent analytical products to support 

international crisis management (Marin-Ferrer et al., 2017). Loss models are available for a 

large set of assets and infrastructure, but they are currently often not included in operational 

impact forecasting applications. 

 

2.6.3 Earthquakes: Uncertainties and challenges of impact forecasting  
 

The uncertainty of earthquake impact estimation is mainly driven by: (a) uncertainty in the 

description of the seismic event, (b) time constraints, particularly in EEW applications, (c) 

quality and reliability of ground motion and site amplification models, and (d) quality and 

reliability of related exposure and vulnerability models.  

The uncertainty in (a) refers to the knowledge of the specific characteristics of the earthquake, 

including, for example, magnitude, epicenter location and hypocentral depth. The models 

mentioned in (c) are used to estimate the ground motion at a given distance from the epicenter 

considering the attenuation of the seismic waves along the path and their possible amplification 

due to local soil conditions. Factors mentioned in (a) and (b) are different for each event and 

for different locations, depending for example on the network density and geometry, while 

factors (c) and (d) depend on the pre-existing knowledge about the affected region. The 

contribution of ground motion models to the impact uncertainty can be significant (Crowley et 

al., 2008; Weatherill et al., 2015), while the uncertainty of exposure and vulnerability models 

has been only partially explored (Bal et al., 2010, Crowley et al., 2005). Since damaging 

earthquakes are infrequent in comparison with other natural hazards, there is a substantial lack 

of empirical observations for the calibration and testing of vulnerability models, and even more 

of the time dependence of physical vulnerability which might result from a progressive damage 

accumulation throughout a seismic sequence. For specific target areas, the availability of cost-

 
3 https://earthquake.usgs.gov/data/pager 
4 http://www.gdacs.org 
5http://www.inform-index.org/ 
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effective instruments allows the dense recording of shaking, therefore reducing the necessary 

spatial interpolation in the estimated scenarios and improving the reliability of the estimates. 

According to the specific operational environment, the uncertainty in the event description 

plays a different role in determining the final uncertainty in the estimates. In EEW applications, 

for instance, as instrumental data are progressively recorded the main characteristics of the 

unfolding earthquake are increasingly constrained. In this case the main limitation is the short 

lead time available to undertake mitigation actions, and a suitable trade-off must be sought 

between the uncertainty of the estimate and its timeliness (Minson, 2019). In the case of rapid 

response, the time constraint is less tight and there is a higher availability of direct 

measurements of ground motion intensity and thus the resulting uncertainty on the forecasted 

impact may be reduced (Stafford, 2012). 

Propagating this uncertainty throughout the impact estimation process is burdensome and often 

results in impact estimation ranges that may even span several orders of magnitude (Wald et 

al., 2011). Further, the overall impact of an earthquake is strongly affected by the social and 

environmental conditions in which the event takes place. For instance, the number of casualties 

may directly depend on the daytime (e.g. day, night), day of the week or season, but also in a 

more complex way on the weather conditions, and (as we all recently discovered) on pandemic 

outbreaks limiting the capacities of the first responders6. It should anyway be considered that 

in the first aftermath of the event only first-order information is necessary to civil protection 

authorities for better planning and prioritizing the immediate actions. Nevertheless, the large 

uncertainty requires effective strategies for communicating the resulting impact estimates to 

end-users in order to optimize the decision-making process.  

 

2.6.4 Earthquakes: Maturity and added value of impact forecasting 
 

Earthquake impact forecasting has found increasing attention in research in the last decades, 

mainly supported by civil engineering applications. However, significant efforts are still 

needed to meet the requirements of the authorities for practical application. A few operational 

systems have been implemented complementing operational earthquake forecasting models, 

for instance in Italy. Impact forecasting is also carried out automatically after large earthquakes 

by several software platforms, mostly operating at global scale. Local or national systems 

directly operated by civil protection authorities are also present, but rarely described in the 

scientific literature.  

Systematic impact forecast, also for hypothetic scenarios, for instance in the case of operational 

forecasting, would increase the risk awareness of decision-makers and the public. This would 

foster the implementation of short- and longer-term prevention measures and the collection of 

pre-event vulnerability and post-event damage information to reduce the epistemic uncertainty 

in the impact estimation. Herrmann et al. (2016) have shown that combining OELF-based 

fatality estimates with cost-benefit analysis can lead to reasonable evacuation strategies during 

a foreshock-aftershock sequence. Although OEF and OELF may provide actionable 

information, the related mitigation actions are constrained by the intrinsic uncertainty of the 

forecasts (Field et al., 2016), since the considered event is always hypothetic, and usually 

associated with a very small probability over the timeframe of interest. The lack of harmonized 

short-term seismic catalogs including small-magnitude events, and the computational burden 

of real-time model updating still hinder large-scale operational implementations (Eberhard, 

2014). Furthermore, while OEF methodologies and applications are subjected to test and 

 
6 https://www.bbc.com/news/world-latin-america-53160460 
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validation (Marzocchi et al., 2017), to the best of the authors´ knowledge, there have not yet 

been significant efforts on the validation of the impact forecasting component. 

 

2.7 Tsunamis 
 

Depending on the source origin and magnitude, tsunami impact can range from local to trans-

oceanic, encompassing thousands of kilometers of shoreline. Correspondingly, tsunami 

hazards span timescales from a few minutes to several hours after its origin. While being 

triggered by various physical phenomena capable to bring the sea level out of its equilibrium 

state (Grezio et al., 2017), most tsunamis are caused by shallow submarine earthquakes 

deforming the sea floor and thus disturbing the water column above (Satake, 2002). This fact 

makes their forecasting similar to that of the earthquake hazard: whereas it is not possible to 

predict the exact location and magnitude of a future event, it is possible to quantify source 

characteristics within a few minutes after the triggering earthquake and use this information to 

evaluate the tsunami impact before it strikes the coast. 

 

2.7.1 Tsunamis: Hazard forecasting 
 

There are presently around 20 Tsunami Early Warning Systems (TEWS) worldwide. They aim 

to forecast the tsunami arrival time as well as its hazard impact, usually given as warning levels. 

For example, the US National Tsunami Warning Center has adopted the following 

classification: “tsunami information” (‘no tsunami threat’), “watch” (‘not yet known but stay 

tuned’), “advisory” (‘strong currents and waves dangerous to those in or very near water’), or 

“warning” (‘dangerous coastal flooding and powerful currents’). In case of physics-based 

simulation forecasting these levels correspond to wave height thresholds at a coastline. Based 

on several decades of tsunami early warning practice, Bernard and Titov (2015) proposed as 

real-time tsunami warning products: (a) tsunami energy, (b) flooding maps and (c) induced 

harbor current maps. Lynett (2016) compared numerical forecasts and showed that high-

confidence prediction of location-specific currents with a deterministic approach should not be 

possible in many cases due to the turbulent nature of eddies. He proposed to develop 

probabilistic approaches for hazard modeling, since tsunami forecasting does currently not 

include uncertainty estimates. 

Devastating tsunamis can affect both local and distant coasts. Depending on the propagation 

distance, operational TEWS can be classified as near- or far-field. Near-field or local TEWS 

(e.g., Japan, Indonesia, Chile, and Mediterranean) operate with hazard lead times as short as 

15-20 minutes. The corresponding time left for forecasting is 5-15 minutes. Far-field TEWS 

(e.g., Pacific Tsunami Warning Center, India, Australia) operate with source zones at much 

greater distances, often trans-oceanic with lead time of several hours. Such TEWS have much 

more possibilities to retrieve detailed source parameters and provide a more accurate forecast 

(see Joseph, 2011 for compilation of modern TEWS). 

TEWS provide forecasts limited to earthquake-triggered tsunamis. These types allow source 

event detection and quantification which is not, generally, the case for submarine landslides 

and tsunamigenic mass movement due to volcanic eruptions. A TEWS follows several steps: 

(a) detect an (earthquake) event, (b) estimate the source parameters, (c) evaluate the 

tsunamigenic potential, (d) evaluate the expected tsunami physical impact, and (e) disseminate 

warnings. New observations are used to update the forecast. The minimum parameter set 

comprises earthquake location and magnitude and can be available within a few minutes. The 
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simplest forecast is based on a decision matrix assigning a warning level to magnitude and 

source-to-coast distance. Such a matrix is used by, for instance, the Mediterranean TEWS 

(NEAM-TWS) and as initial warning by the US National TWS. The decision matrix is based 

on historical experiences. However, due to the infrequent nature of tsunamis and the fact that 

it is not possible to establish a common attenuation relation by source-to-target distance 

(tsunami waves can propagate across large distances without significant loss of energy, and 

their attenuation is controlled by source directivity and individual propagation path), the 

decision matrix is uncertain.  

Modern TEWS derive their forecasts from physics-based simulation. These models usually 

solve the shallow water equations (Satake, 2002) whose parameters are bathymetry and bottom 

friction (in near-coastal areas). TEWS evaluate the initial conditions for tsunami propagation 

from earthquake parameters derived from seismic or GNSS measurements. Tsunami wave 

propagation and coastal physical impact are then simulated in real-time or by retrieving pre-

computed scenarios. Forecasts are constantly updated with incoming observations additionally 

constraining the source model. These include land- (Ohta et al., 2018; Hoechner et al., 2013; 

Melgar et al., 2016) and sea-based observations like tide gauges and deep ocean bottom 

pressure units (Titov et al., 2005 and Tang et al., 2009 for DART buoy technology and 

Tsushima et al., 2009 for cabled systems). In the classical approach, thousands of propagation 

models were precomputed for all representative sources and stored in scenario databases (e.g., 

Kamigaichi, 2011 for Japan, Steinmetz et al. 2010 for Indonesia, Allen and Greenslade, 2016 

for Australia). Local solutions may employ very high resolution models providing detailed 

inundation patterns (Van Veen et al., 2014 for North Sumatra). A hybrid approach developed 

by NOAA (Titov et al., 2005) linearly combines precomputed propagations from unit sources 

according to their weights assessed in real-time by seismic and deep ocean observations. In the 

last decade, the increasing availability of processing power has allowed scenario simulations 

‘on-the-fly’ for arbitrary sources (Wang et al., 2012; https://www.gempa.de/products/toast; 

Musa et al., 2018).  

After Japan had installed a dense network of bottom pressure cabled systems (Kanazawa, 

2013), a new approach became possible, which avoids source quantification as a prerequisite 

for propagation simulation. Instead, wave propagation is modelled in real-time driven by data 

assimilation from offshore cabled bottom pressure units able to measure the tsunami wave on 

its way towards the shore (Tsushima et al., 2009; Maeda et al., 2015; Tanioka and Gusman, 

2018).  

 

2.7.2 Tsunamis: Impact forecasting      

 

In the last two decades significant progress has been made towards tsunami damage 

assessment. Studies are focused on impact to buildings and, to a lesser extent, to humans. 

Despite this progress, real-time tsunami impact forecasting is not yet operationally 

implemented. Most of the studies address the vulnerability component of the impact forecasting 

scheme (see Figure 3) encompassing both methodology and practical tsunami fragility 

functions. The latter could be derived from field studies in aftermath of past catastrophic events 

but also from (numerical) models. For example, Papathoma et al. (2003) and Dall’Osso et al. 

(2009) proposed the multi-parametric PTVA method to assess the tsunami vulnerability for 

buildings. An alternative damage assessment methodology was developed in the course of the 

European FP6 SCHEMA Project (Leone et al., 2011; Valencia et al., 2011; see Pagnoni and 

Tinti 2016 for the comparison of the two approaches). Comprehensive reviews of tsunami 

fragility functions highlighting the current limitations and providing recommendations for 
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model derivation are given by Tarbotton et al. (2015) and Charvet et al. (2017). Studies by 

Koshimura et al. (2006, 2009), Suppasri et al. (2013, 2018), Goda and Abilova (2016), De Risi 

et al. (2017), Aranguiz et al. (2018) illustrate other examples towards fine-scale quantitative 

estimation of tsunami damages. Very recently, Petroni et al. (2020) employed numerical 

structural modeling to investigate building response to a coupled earthquake and tsunami 

loading.  

 

2.7.3 Tsunamis: Uncertainties and challenges of impact forecasting  
 

A main source of uncertainty for modern TEWS is the fast and accurate finite source 

quantification, and in particular the earthquake co-seismic slip distribution. Further, reliable 

impact forecasting requires high-resolution inundation simulations within a few minutes. Until 

very recently, such simulations were not possible in real-time. Precomputed scenarios cannot 

reach the necessary accuracy in case of near-field tsunamis because the tsunami impact is 

highly dependent on the actual source parameters (e.g., slip distribution), which are unique for 

every large earthquake. Another limiting factor is the availability of precise bathymetry and 

topography necessary for accurate inundation modeling. Griffin et al. (2015) demonstrated that 

neither SRTM (90-meters resolution) nor ASTER (30-meters) DEMs possess sufficient 

accuracy and resolution to be used for tsunami inundation models. Due to the infrequent nature 

of damaging tsunamis, damage models can be only calibrated in affected regions (Leone et al., 

2010; Suppasri et al., 2013, 2018; Aranguiz et al., 2018) and then transferred to other locations 

(Valencia et al., 2011). This transfer represents another uncertainty source in operational 

impact forecasting. 

 

2.7.4 Tsunamis: Maturity and added value of impact forecasting 
 

Operational tsunami impact forecasting has not been established yet. To our knowledge, only 

the former Decision Support System of the German-Indonesian Tsunami Early Warning 

System (GITEWS) provided forecasts on the number of people and critical infrastructure 

affected (Strunz et al., 2011). This information, however, was not based on inundation 

modeling but reflected the aggregated numbers of people and objects per warning segment, 

defined typically according to administrative units, under the threat. 

The possibility to replicate the damage situation resulting from tsunami inundation has been 

demonstrated by Arikawa and Tomito (2016) using very detailed simulations. Srivihok et al. 

(2014) reported about an online tool for tsunami inundation simulation and loss estimation. 

However, in both cases real-time applications were not possible.  

Recently, due to the growth of computing power, the possibility of real-time detailed impact 

forecasting could be demonstrated. Oishi et al. (2015) were able to compute a tsunami 

inundation scenario at a 5 meter grid in less than 1.5 minute (75 times faster than real-time) for 

the Sendai region replicating the Tohoku 2011 event. They also estimated damage probabilities 

using simulated inundation depth and the fragility curves by Suppasri et al. (2013). Koshimura 

et al. (2017) and Musa et al. (2018) discussed the “10-10-10 challenge”: tsunami source 

determination in 10 minutes and tsunami inundation modeling and impact mapping in 10 

minutes with 10 meter grid resolution. Given the maximum flow depth distribution, they are 

able to estimate in real-time the affected population using census data and to assess the numbers 

of damaged structures using tsunami fragility curves. An alternative, two-step approach 

proposed by Mulia et al. (2018) does not require high-resolution computations to be conducted 
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in real-time to provide an instant high-resolution inundation model. Here, a precomputed 

tsunami database is created comprising pairs of low- and high-resolution images of maximum 

tsunami elevations and flow depths originating from various hypothetical earthquake scenarios. 

Then, in real-time, a low-resolution propagation simulation for the actual event source 

parameters is conducted and matched to the database to retrieve the best-fitting high-resolution 

scenario. The obvious disadvantage of this approach is that it is still limited to the variety of 

the precomputed sources. Although these approaches are promising, there is still a long way of 

developing and rigorous testing before they become a backbone for operational tsunami impact 

forecasting. 

 
 

2.8 Volcanic eruptions 
 

Volcanoes are spots on the Earth’s surface where molten rock (magma) ascending from depth 

reaches the surface through an existing conduit or a newly formed pathway through the crust. 

Eruptions may occur from established vents, generally corresponding to the volcano edifice 

summit, or create a new set of fissures on the volcano's flanks that develop into cone-shaped 

vents during the course of the eruption. Typically, volcanic eruptions may last from a few hours 

to several weeks, although some eruptions do last several years or even decades. They are 

usually preceded by a preparatory phase involving the recharge of one or more magma 

reservoirs; more rarely magma batches may directly propagate from tens of km depth to the 

Earth’s surface. Some volcanoes erupt continuously (e.g. several explosions per hour at 

Stromboli volcano, Italy) or very frequently (several times a year), while the dormant phases 

between eruptions can be very long at other volcanoes, up to about 10,000 years. There is a 

wide variance in eruption styles, from effusive (gentle flow of lavas down the volcano flanks) 

to highly explosive (e.g. Plinian eruptions involving explosive columns that may reach the 

stratosphere); the resulting threats may last only a few minutes and affect the immediate 

vicinity of the vent, or have global impact lasting years to decades. 

Volcanoes are inherently multi-hazard environments: multiple phenomena such as lava flows, 

pyroclastic flows (avalanches of hot lava fragments and gases due to eruptive column collapse 

or collapse of lava domes), lahars (volcanic mudflows, due e.g. to rain storms mobilizing loose 

eruptive products) or landslides (through the collapse of unstable flanks), tephra (erupted, 

fragmented lava) fallout, ballistic bombs, emission of poisonous volcanic gases, creation of 

new eruptive vents, volcanic earthquakes, wildfires and tsunamis e.g. due to submarine mass 

movements, can happen simultaneously or in sequences during an eruption and lead to multi-

faceted damage. Every volcanic area has its own particular mix of hazards and pre-eruptive 

behaviour. The entrapment of water, ice or snow by lava may increase the likelihood and 

impact of explosive eruptions even at predominantly effusive volcanoes, as demonstrated by 

the Eyjafjallajökull eruption in Iceland in 2010, which caused significant losses for the aviation 

industry (Cioni et al., 2014) 

 

2.8.1 Volcanic eruptions: Hazard forecasting 
 

Continuous geophysical monitoring represents the fundamental tool for eruption forecasting 

and early warning (Sparks and Aspinall, 2004, Marzocchi and Bebbington, 2012). Most active 

volcanoes around the world are now at least sparsely monitored (Loughlin et al., 2015), and 
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technological progress in remote sensing is facilitating a push to global coverage. Volcano 

observatories work with civil protection authorities and local or national governmental 

institutions to issue official warnings, with varying degree of overlap in their respective roles 

depending on the country and culture (Papale, 2017). Most eruptions are preceded by a few 

weeks or months of volcanic unrest, during which the rate of seismicity, crustal deformation 

and/or degassing increases. Based on those signals, observatories issue warnings of possible 

impending eruptions (or, more rarely, the time to eruption) and retrieve information about the 

moving materials, the plumbing system and stress levels. The size and style of an eruption, 

however, remain very challenging to forecast (Poland and Anderson, 2020). After the eruption 

onset, its style, type of product and mass rate become easier to observe and hazard propagation 

models become more reliable, although sudden switches in style are sometimes observed. 

Recent approaches incorporate monitoring anomalies and current environmental conditions, 

e.g. wind or topography changes, into short-term hazard assessments that can be continuously 

updated throughout an eruption (Selva et al., 2014). Short-term forecasts are ideally based on 

a combination of information from monitoring signals, eruptive history and structure of the 

volcano, maps of old deposits, as well as results of numerical and volcano-specific conceptual 

models linking magma ascent rates to expected monitoring signals. Numerical models for the 

propagation of different hazards have become increasingly important in the last decades, since 

they provide the opportunity to simulate a range of possible scenarios including those never 

observed at a volcano. Most of the resulting issued forecasts today are probabilistic, often by 

means of statistical tools such as Bayesian Event Trees (Marzocchi et al., 2008; Rouwet et al., 

2014; Selva et al., 2014; Tonini et al., 2015) or Bayesian Belief Network analysis (Aspinall 

and Woo, 2014), which can involve expert judgment (Christophersen et al., 2018). The 

monitoring of unrest signals is usually performed by volcano observatories. The work of an 

observatory and associated scientists include a variety of assessments and forecasts, such as:  

1) Assigning an activity level to the volcano (i.e. state of rest, unrest, impending eruption, 

erupting), which is publicly declared generally according to colour-coded alert levels (Fearnley 

2013, Papale, 2017). These feed into procedures defined by decision-makers, and further 

warnings of societal relevance.  

2) In the immediate pre-run to an eruption, short-term forecasting of the time of eruption onset 

and, if possible, refining likely location and size of the eruption. Impending eruptions are 

generally identified based on an increase in the rate of earthquakes (as already recognized in 

1855, e.g. Hoernes, 1893) or swelling of the ground (e.g. Sturkell et al., 2006, Surono, 2012).  

3) During an eruption, monitoring and forecasting its likely evolution (e.g. defining a series of 

scenarios) and the propagation of hazards (e.g. lava flow propagation), usually based on a 

combination of expert judgement and numerical models. 

The capabilities of volcano observatories in terms of technical equipment and personnel vary 

depending on the volcano’s destructive history, its activity level and the available funds. 

Especially volcanoes that have been dormant for a long time, or are located in countries with 

limited resources, are not always sufficiently monitored. The systems are, however, usually 

upgraded once activity levels increase and international scientists often come to help during a 

crisis (Annen and Wagner, 2003). Many active volcanoes have a dedicated observatory staffed 

by a multidisciplinary team monitoring the volcano through visual observations and a variety 

of parameters including seismicity, ground deformation and gas emissions. Such observatories 

are responsible for the maintenance of the monitoring system and inform authorities and the 

population about the state of the volcano and likely short-term evolutions. While some 

automated procedures are in place (e.g., an alarm in the observatory room once a parameter 
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reaches a certain threshold), the interpretation and any decisions are made by humans involving 

individual expertise and experience. 

Lead times for volcanic eruptions are highly variable: some eruptive phenomena occur 

essentially without detectable precursors (e.g. the phreatic eruption at Ontake volcano in 2014 

(Ogiso et al., 2015) and Wakaari (White Island) in 2019), while geophysical signals associated 

with magma chamber pressure build-up preceding big eruptions can last for years. In such long 

unrest phases, it is, however, impossible to predict the exact time of eruption onset.More 

widespread and dense volcano monitoring networks, progress in hazard assessments, short-

term forecasts, hazard communication and awareness (Leonard et al., 2014, Solana et al., 2008, 

Lindsay, 2010, Roberts et al., 2011, Marzocchi & Bebbington, 2012, Wadge & Aspinall., 2014) 

have all immensely reduced the number of fatalities related to volcanic eruptions (e.g. Loughlin 

et al., 2017, Poland and Anderson, 2020). Many lives were saved through evacuations before 

or during the early phases of eruptions. For example, the population of Plymouth (Montserrat) 

was successfully evacuated before its complete destruction through the eruption of Soufrière 

Hills Volcano (Annen and Wagner 2003). One recent example of successful early warning is 

the 2018 Kilauea eruption (Hawaii), where numerous eruptive fissures opened on the volcano's 

flank in inhabited areas. Impacts could be mitigated by various measures, including evacuation 

of homes and touristic enterprises and closing the Puna Geothermal Venture, quenching and 

capping geothermal wells and removing inflammable gas stored in the lava pathways. 

 

2.8.2 Volcanic eruptions: Impact forecasting 
 

Impact modelling in volcanology is still in its infancy (Wilson et al., 2017). While state-of-the-

art hazard propagation models are generally very sophisticated, the progress of impact 

modelling is very heterogeneous across the various volcanic hazards. Impacts are rarely 

assessed in a comprehensive manner, and there is large potential for improving vulnerability 

functions (Douglas, 2007). Thus, impact forecasting is widely omitted. However, the number 

of studies on volcanic risk and vulnerability has increased significantly in the last decade. 

A few studies have developed probabilistic approaches for decision making during a volcanic 

crisis, which also include different aspects of impact forecasting, such as estimations of fatality 

outcomes of different eruption scenarios (Baxter al., 2008, for Vesuvius), cost estimations 

(Sobradelo et al., 2015), or a cost-benefit analysis of an evacuation (Marzocchi and Woo, 

2007).  A typical approach for impact forecasting is to select a few scenarios deemed likely 

based on the volcano’s eruptive history (in terms of size and expected hazards), and to evaluate 

the impact considering the infrastructure and population of threatened areas. The evaluation is 

based on vulnerability functions and numerical models for hazard propagation, whereas each 

hazard requires its own vulnerability analysis (examples can be found in Wilson et al., 2017; 

Jenkins et al., 2014; Marti et al., 2008). The investigated impact types range from damage to 

buildings or the agricultural sector, to health issues and fatalities. 

Most studies on volcanic impacts have a risk perspective, while operational methods for event 

forecasting are rare. Methods vary across different hazardous phenomena. Some studies, 

however, work towards and stress the need for multi-hazard models (e.g. Schmidt et al., 2011). 

Yu et al (2016) estimate direct and indirect losses due to different eruption scenarios in South 

Korea, including damage to the industry sector, health damages and cleaning costs for roads. 

Spence et al (2005) develop a multi-hazard impact model, based on volcanological analyses of 

the potential hazard combined with engineering analyses of the vulnerability of four European 

locations threatened by eruptions using population data and building characteristics. Their 
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output includes rates of fatalities, seriously injured casualties and destroyed buildings for a 

given scenario. Zuccaro et al. (2013) present a similar study for Vesuvius, modelling the impact 

of combined volcanic hazards (pyroclastic flows, earthquakes and tephra fall) during different 

eruption scenarios on the built environment in the Naples area, based on stochastic and 

deterministic modelling, historical reports and expert elicitation. Scaini et al. (2014a) develop 

a GIS-based damage tool, based on simulations of different volcanic events, exposure and 

vulnerability analysis for the built environment, transportation and urban infrastructures. Long-

term, indirect impacts of volcanic eruptions can be significant. McDonald et al. (2017) present 

one of the first attempts to quantify the long-term economic impact of volcanic eruptions at 

Mt. Taranaki in New Zealand.  

While these studies generally consider multiple types of hazards and/or eruption scenarios, 

most assessments are limited to individual volcanic hazards. Probably the largest number of 

vulnerability studies focus on tephra fallout, in particular the impact of ash fall on buildings 

and infrastructure but also on the agricultural sector and industry, as well as related clean-up 

costs (Prata, 2009; Scaini et al., 2014b; Biass et al., 2016; Rapicetta and Zanon, 2009; Jenkins 

et al., 2018; Wilson et al., 2012). Since the Eyjafjallajökull eruption in Iceland caused immense 

losses for the aviation industry, the effect of ash on aviation has moved into the research focus 

especially in Europe (e.g. Alexander, 2013). Studies on the impact of tephra fallout usually 

perform some form of vulnerability assessment (e.g. of buildings or flight paths), and both 

probabilistic loss models and empirical data are used to build fragility functions. Several 

studies have examined the vulnerability of buildings with regard to the impact of a pyroclastic 

flow or lahar (Petrazzuoli and Zuccaro, 2004; Jenkins et al., 2015; Thouret et al., 2013; Dagá 

et al., 2018; Alberico et al., 2002, Spence et al., 2004, Mead et al., 2017), mostly based on 

analysis of damage of past eruptions, although some also include casualty information, physical 

and/or probabilistic models. Long-term loss assessments are developed in Spence et al. (2004) 

for pyroclastic flows and Mead et al (2017) for lahars, based on numerical models, exposure 

and vulnerability analyses. Lava flows are easier to address in terms of operational impact 

forecasting as propagation rates are generally slow (lava flow speeds > 4 km/h are rare) and 

vulnerability is roughly binary (0 or 1, i.e. complete destruction if a building is inundated by 

lava), so that hazard maps can be easily convolved with exposure maps into impact forecasts. 

State of the art lava flow inundation forecasts are performed by combining lava flow models 

with satellite-based remote sensing data for rapid model validation and calibration of input 

parameters (Cappello et al., 2019). 

  

2.8.3 Volcanic eruptions: Uncertainties and challenges of impact forecasting  
 

The complexity of volcanic multi-hazard scenarios and a poor understanding of the far-

reaching societal and economic implications of eruptions limit current impact models and 

affect decision-making and communication during crises. An evaluation of success rates of 

eruption warnings has been carried out for the Alaska Volcano Observatory, revealing that 

forecasting of larger eruptions occurring after long repose times at well monitored volcanoes 

have high success rates, while forecasting small eruptions after short repose times is more 

difficult (Cameron et al., 2018). Some particular challenges are:  

 Eruption forecasting is complicated by the fact that volcanic unrest is not a definite 

indicator of an imminent eruption. Many unrest phases, especially those longer than about 

a year, recede without culminating in an eruption. 
 While forecasting the timing of an impending eruption is often successful, the expected 

magnitude of an eruption cannot yet be derived from monitoring parameters (Poland and 
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Anderson, 2020) and is usually based merely on long-term magnitude-frequency 

distributions (Tonini et al., 2015). Since eruption magnitude is naturally a driving factor 

behind hazard styles, intensity and propagation, this significantly limits our capability for 

operational impact forecasting. The development of new continuous, low-cost volcano 

gravimetry sensors (Middlemiss et al., 2016) may open the possibility to estimate the mass 

flow rate of ascending magma and thus to forecast eruption size. 

 Once an eruption has started, forecasting its evolution and involved hazards is challenging. 

Eruptions can change their intensity and style, they interact with weather phenomena and 

a changing topography, and can pause but resume shortly after without warning. 

Forecasting the end of an eruption is equally difficult. Many of these questions are very 

challenging to answer as there is still a divide between physics-based models and 

observations.  
 There are still significant uncertainties related to input parameters for hazard propagation 

models. Models to forecast the vent or fissure location are purely data-driven in spite of 

being data-poor; the available physics-based models are largely untested (Rivalta et al., 

2019). Together with the uncertainty associated with expected mass flow rates, this 

dominates the uncertainty regarding volcanic hazards in many areas (Neri et al., 2015). 

Moreover, some fundamental parameters, such as the topography of the volcano or the vent 

diameter, evolve during eruptions in still poorly understood ways.  

 Volcanic hazards have a strong multi-hazard component and cascading effects are possible. 

These interactions are still poorly understood at the level of physical mechanisms (e.g. 

Manga and Brodsky, 2006), let alone with regards to associated impacts. 

 The economic impact of eruptions is still poorly studied. Aside from the comparatively 

well-studied effect of tephra load on roofs, there is a significant lack of data and impact 

models for different assets with regards to different volcanic hazards and their mutual 

interaction. 

 For the same volcanic event at the same volcano, the resulting impact can still be different. 

For example, only one fatality resulted from the paroxysm of Stromboli volcano (Italy) in 

July 2019. This was simply due to the timing of the eruption: it occurred in the afternoon, 

when the crater area is usually deserted. Just a few hours later, the crater area would have 

been crowded with tourists and fatality numbers would have been much higher. Many other 

factors such as environmental conditions, for instance the current wind direction determines 

the impact of ash fall, the sequence of events and/or the combination of different types of 

hazards influence the impact of an eruption. Thus, eruption impact forecasting is very 

complex and requires the simultaneous analysis of many - in parts interconnected - drivers 

in real time.     

 

2.8.4 Volcanic eruptions: Maturity and added value of impact forecasting 
 

To our knowledge, no operational impact forecasting systems exist to this date. Risk reduction 

is mainly achieved by combining operational hazard forecasting with rapid provision of 

information on how to manage the main hazards. For example, during the 2014-2015 eruption 

at Bardarbunga-Holuhraun in Iceland, the authorities distributed leaflets containing a color-

coded table detailing effects, symptoms and actions to be undertaken to mitigate hazards from 

SO2 exposure. They were used to interpret regularly issued probabilistic maps of SO2 

concentration (Barsotti et al., 2020). 

Developing methods for operational impact forecasting during an ongoing eruption will be a 

significant improvement for crisis management. It can support evacuation measures, decision 
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making, and a more realistic and faster adaptation to new situations for authorities and 

inhabitants. For now, the volcanological community appears however more focused on 

progressing towards producing multi-hazard forecasting and mapping tools (Hayes et al., 2020) 

rather than towards operational impact forecasting, due to the inherently multi-hazard nature 

of volcanic environments. 

 

 

3 Synthesis across hazard types 
 

3.1 Comparative analysis  
 

The large number of hazards included in our review allows for the first time comparing how 

different disciplines have treated the emerging field of impact forecasting. Table 1 summarizes 

selected aspects of impact forecasting for the different hazards. The range of lead time of hazard 

and impact forecasts is highly variable between the hazards, from below 1 min in the case of 

earthquake early warning to many months for drought or volcanic eruption forecasts. 

According to the large variety of the event footprints (Figure 1), there is also a wide variation 

in the area for which forecasts are provided, from the local scale in case of pluvial floods to the 

national and regional scale for droughts and heatwaves. This wide range of lead times and 

spatial scales pose different challenges for different forecasting systems.  

 

Table 1: see end of file 

 

There is a large range of approaches for impact modeling, not only between different hazard 

types but also for a given hazard. The impact of an event depends on a range of factors, such 

as risk awareness, preparedness or organizational emergency management, which may, in 

addition, vary substantially in time (Kreibich et al., 2017). Despite these complexities, impact 

modelling is often carried out in a simplified way when compared to hazard modelling. This is 

partially the consequence of the much larger effort that the natural hazards research community 

has put into understanding and modeling hazards. For instance, wind storms are sufficiently 

monitored by a large number of ground-based observations in combination with satellite 

retrievals, and very sophisticated NWP models are operational; damage and vulnerability 

models, however, are typically derived from sparse data and usually consist of simple 

relationships between a hazard indicator, e.g., wind gust velocity, and a vulnerability estimate, 

e.g., relative building damage. Given this imbalance, more efforts need to be invested in 

developing and testing impact models. 

The important impact types differ between hazards. For instance, crop loss is an important 

consequence of droughts but not of earthquakes. Despite such differences, we suggest that the 

joint development of impact models will harness synergies. For some hazards, certain 

methodological aspects seem to be more advanced from which others could learn. For example, 

the flood and earthquake research communities have developed rather sophisticated 

vulnerability and exposure models including uncertainty bounds for the impact estimates.  

Further, impact models are mostly limited to direct consequences on objects, areas and people. 

Models quantifying systemic impacts, such as the loss of functionality of interconnected 
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networks due to vulnerability interdependency, are rarely addressed – to a large extent due to 

a lack of empirical data.      

The reliability of impact forecasting depends on the quality of the hazard forecast and of the 

impact modeling. In general, we expect that the uncertainties stemming from the impact 

modeling are larger than those of the hazard forecasting. We base this expectation on the 

limited availability of impact data, less experience with impact modeling and the fact that 

impacts are influenced by a multitude of factors. Some of them can be well constrained, but 

others are hard or even impossible to quantify, as human behavior or short-term social and 

economic processes can lead to rapid changes and unpredictable effects. The importance of the 

different uncertainty sources should be carefully evaluated, and the lead time and the spatial 

scales at which the forecast takes place may also play a significant role. For instance, a river 

flood forecasting system, which provides streamflow forecasts, could be complemented by 

inundation and damage models in order to inform local emergency management. In this case 

the consideration of local conditions, such as whether a certain defense fails or withstands, 

would be critical for the successful operational application. When forecasting impacts over 

large areas to obtain a large-scale overview, such local conditions might instead be neglected.  

Although the maturity of impact forecasting varies considerably across hazards (Figure 1), in 

most cases impact forecasting is still in its infancy. For river, flash and pluvial floods, prototype 

systems exist and operational systems are expected. Operational impact forecasting systems 

have been identified for heatwaves, droughts (with a focus on famines and loss of life) and 

earthquakes, i.e. for hazards with very distinct forecasting possibilities and lead times. It is 

interesting to note that impact forecasting, such as potential derailment of high-speed trains, is 

relatively advanced for earthquakes, although it is not possible to predict the location, time and 

magnitude of an event prior to its occurrence. The progress that has been achieved in 

earthquake impact forecasting should motivate other disciplines to invest in a similar way into 

this field, as the possibilities for hazard forecasting seem to be brighter compared to 

earthquakes. 

Across the considered hazards, impact forecasting is generally expected to provide significant 

benefits for emergency management, such as identifying most vulnerable areas, prioritizing 

emergency measures or organizing evacuation. Unfortunately, we still lack enough robust 

empirical evidence to validate this assumption. Beyond the difficulties in quantifying benefits, 

this is likely the result of the early stage of impact forecasts. Post-event evaluations should be 

systematically performed in order to estimate the additional benefits and lessons learned 

compared to hazard forecasting. First studies indicate, for example, that warnings based on 

impact forecasts and containing specific behavioral recommendations are more likely to 

increase the awareness about a potentially hazardous event and foster positive behavioral 

changes (Weyrich et al. 2018). However, more systematic and methodologically rigorous 

research is needed (Zhang, et al. 2019) – and last but not least to collect detailed impact data 

after every event. 

Even though our review paper has not focused on the difference in impact modelling among 

countries and continents, we see that impact forecasting of hydro-meteorological extremes in 

the USA has substantially improved in recent years. This process has reached a higher level of 

maturity and is better connected with decision-makers compared to Europe. The US NWS is 

well on the way of a transition to providing impact-based decision support services to core 

partners in public safety and national security as part of its strategic plan for Building a 

Weather-Ready Nation (NWS, 2018, Uccellini and Ten Hoeve, 2019). For example, Lazo et 

al. (2020) compare the impacts of two similar winter storms in the New York City area before 

and after the implementation of impact-based decision support services and suggest that these 
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services reduce socioeconomic impacts, e.g. improved recovery time in the ground 

transportation sector, and reduced duration and number of customers affected by power 

outages. 

 

3.2 Key challenges and opportunities 
 

3.2.1 Research and development of impact forecasting 
 

Our review identifies several knowledge gaps and opportunities for research and development. 

Across all hazards there is a need for improved impact models including the adequate 

quantification of exposure and vulnerability. This entails: 

 Developing models for all relevant impact types: Impact models are still lacking for 

important impact types. For example, many impact models have been developed for 

buildings, but models for impacts on critical infrastructure are hardly available.  

 Developing models for all relevant hazardous events: For instance, impacts of volcanic 

eruptions are rarely assessed in a comprehensive manner. Many approaches are available 

for quantifying the impacts of ash fall, which is much less the case for other consequences 

of volcanic eruptions.  

 Exploring impact models of different complexity and with different data needs: The 

majority of impact modeling approaches is based on simple relationships between a hazard 

indicator and vulnerability, while more sophisticated approaches (e.g., high-dimensional 

complex models) are uncommon. More elaborate models could better match the level of 

sophistication often available for hazard models. However, the selection of the appropriate 

approach strongly depends on the forecasting context, and complex impact models require 

a much higher amount of empirical data to be calibrated. 

 Developing impact models for compound and cascading hazards: The same object can be 

affected by different hazards during one event. For instance, the vulnerability of buildings 

to ash fall from volcanic eruptions is different from their vulnerability to a lahar. A 

comprehensive approach would consider all hazards during such events.  

 Providing comprehensive uncertainty appraisal for impact estimates: Hazard models and 

forecasts often provide uncertainty estimates, but impact models are often deterministic. 

Impact models are usually derived from post-event damage and loss observations. The rarity 

of such events and the difficulties in transferring impact models across regions often impede 

their development. These empirical approaches could hence be combined with engineering 

approaches, such as deriving fragility curves from experiments with wind tunnels or shaking 

tables, or with models elicited from expert knowledge via what-if scenarios.   

For impact forecasting systems, human behavior in the emergency phase as well as the societal 

context become highly relevant. Considerable advancement has been made in recent years in 

better understanding the factors shaping individual protective behavior, and the high relevance 

of behavioral aspects on impacts is increasingly acknowledged (Kreibich et al., 2017, Aerts et 

al., 2018). We suggest:  

 Scrutinizing human behavior and the vulnerability context more systematically to better 

understand their effects and to realistically represent them in impact forecasts. This requires 

dedicated efforts to understand the time-variation of vulnerability and to develop impact 

models that are able to represent temporal changes.  

 Exploring whether knowledge can be transferred between hazards, as it varies considerably 

with respect to the hazards reviewed. While behavioral aspects have been a focus in social 
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science research on earthquakes (Becker et al. 2012; Paton et al. 2015) and floods (Bubeck, 

et al. 2013), they are less well scrutinized for other hazards.  

Developing impact forecasting systems is challenged by data scarcity on exposure, 

vulnerability and impacts. We recommend: 

 Enhancing and harmonizing the efforts to collect and share impact data of real events. 

Activities are needed like the recently started program GRADE (Global Rapid post-disaster 

Damage Estimation) of the World Bank7, where the impact of disasters is estimated within 

a few days. This should always include the systematic collection and provision of detailed 

event data in open access repositories. Improved data availability would allow to rigorously 

test impact models – a topic which needs more attention in the future. 

 Exploiting recent developments of new data sources. Examples are crowd-sourced data, for 

instance, using Twitter data to enhance data collecting during events, or exploiting high-

resolution, open-access Voluntary Geo-Information (VGI) databases as Open Street Map 

to integrate authoritative exposure models. This also requires developing sophisticated 

quality control algorithm (Barras et al., 2019). The integration of open and free, local yet 

globally consistent datasets would allow the consistent harmonization of exposure and 

vulnerability models across the globe (Eberenz et al., 2019, Melchiorri et al., 2019).  

 Develop collaborative approaches together with end-users and decision-makers: Many 

datasets are sensitive and not freely accessible, but essential for certain categories of 

impact. For instance, forecasting systemic impacts on lifelines or critical infrastructure 

requires data about the interconnections between the individual components. Agreements 

between infrastructure operators and developers and operators of forecasting systems 

should account for data and information sensitivity. 

Hazard forecasting research has typically advanced within different disciplinary boundaries. 

As exposure and vulnerability aspects have similarities between hazard types, there is a large 

potential that developing impact forecasting systems allows tapping into synergies. 

Understanding and quantifying the space-time dynamics of exposure within an area, for 

instance, could be carried out more efficiently within a common framework for a range of 

different hazard types. Another example are fragility curves for residential buildings. Although 

they vary from hazard to hazard, they often rely on similar characteristics, such as object height, 

age and material. There are, for example, attempts to develop impact models that work in a 

consistent way across all hazard types, such as CLIMADA8. The open source OASIS loss 

modeling framework9 provides a standard in terms of prescribed file formats to link hazard, 

exposure and vulnerability information for multi-hazard risk assessment using a state-of-the-

art kernel for probabilistic impact computations. We recommend harmonizing taxonomic 

descriptions of exposure and vulnerability across hazard types (Pittore et al., 2017) and to 

explore whether synergies can be exploited. Possible examples are to share exposure and 

vulnerability databases, to share and compare vulnerability models and to develop common 

procedures for testing impact models. 

 

3.2.2 Integration of impact forecasting systems into decision-making and emergency 
management  
 

 
7 https://www.gfdrr.org/en/publication/methodology-note-global-rapid-post-disaster-damage-estimation-grade-

approach 
8 https://wcr.ethz.ch/research/climada.html 
9 https://www.oasislmf.org 
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Extending hazard forecasting to impact forecasting requires to carefully consider the 

subsequent operational decision-making context, which is typically very different from the 

scientific context where the data are collected or produced. Significant differences in terms of 

roles and responsibilities determine often divergent perspectives and conflicting interests 

(Marzocchi et al., 2012). For instance, the constraints of practical risk management call for 

timely, actionable information, easily transferable into operational protocols. On the contrary, 

the efforts to accommodate uncertainties in the scientific models lead to complex results, 

difficult to be assimilated without domain-specific scientific knowledge. This may shift the 

burden of defining thresholds from decision-makers to scientists, as observed in volcanology 

by Papale (2017), thus further generating potential conflictual situations. To deter this 

tendency, several scholars (e.g. Papale 2017, Jordan et al., 2014) advocated for a clear 

separation of roles between the people involved in hazard and risk assessment, which is mostly 

a scientific and technical task, and the ones tasked with risk analysis and management, which 

entails decision-making and the related responsibilities. Amongst the duties entailed by risk 

management there is also the selection of suitable thresholds, upon which to issue official 

warnings. However, there are neither such thresholds for impacts (i.e. which impact should be 

associated with which alert level?), nor is there robust empirical knowledge about the benefits 

of impact forecasts for different users. Moreover, different emergency contexts require 

different impact forecasts, hence, impact forecasting tends to be more context-specific than 

hazard forecasting. In some cases, first-order estimates providing order of magnitude 

statements might suffice to support rescue operations in the very aftermath of the disaster. In 

other cases, detailed and location-specific information about the expected impacts might be 

required to trigger specific emergency measures, such as evacuating a hospital. In any case, the 

roles of scientists in the operational decision-making context need to be clarified, also 

considering that different hazard communities have different views on the interface between 

science and decision-making. 

An important aspect of impact forecasting is the appropriate level of detail and specificity. 

During the emergency phase, people and emergency managers are required to make rapid 

decisions, and the right amount of information will help them to understand the warnings and 

to make better decisions. (Mu et al., 2018) found that increasing the warning information was 

usually beneficial and increased the trust in the warning system. However, better decisions 

were not always related to more information. Hence, co-development of impact-based early 

warning systems are decisive in order to not just understand the needs and requirements of end-

users but to also test, validate and evaluate new developments in an operational setting 

(Gebhardt et al., 2019).  

One example for the required close cooperation between developers and operators of impact 

forecasts is the use of deterministic or probabilistic forecasts and the communication of 

uncertainty. Probabilistic forecasts are getting widespread in hazard forecasting. Propagating 

this uncertainty throughout impact models might result in an overall uncertainty that may even 

span several orders of magnitude. On the other side, deterministic forecasts might fail capturing 

the actual range of consequences and hence be misleading in a preparedness context. Pros and 

cons of these approaches should therefore be thoroughly examined and discussed to determine 

how such forecasts can be used for decision-making in different operational applications.    

 

4 Conclusions 
 

From our review, covering more than 400 papers, we conclude:   
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1. Impact forecasting is an emerging topic across all hazard types reviewed, which is 

demonstrated by the recent increase in publications and by specific programs of 

international organizations such as the WMO project HIWeather. For most hazard types, 

impact forecasting is in its infancy, while operational impact forecasting systems exist for 

a few hazard types only, for instance heatwaves and earthquakes.  

2. The state of the art in impact forecasting is very different across hazard types. For instance, 

advanced systems have been developed for earthquakes, for which no event prediction is 

possible and the forecasting skill is very low compared with other hazards. For some of the 

perils, impact forecasting seems rather straightforward. For example, several impact 

models are available for windstorms. They could be combined with hazard forecasts, which 

have considerable forecast skill for lead times of several days. 

3. There is a wide range of impact modeling approaches in terms of process representation 

and complexity, but often very simple approaches are used. Hazard modeling is more 

advanced compared to impact modeling. Enhanced and more systematic efforts are 

recommended to move impact modeling to a comparable level.  

4. Impact forecasting needs to consider social systems and the structures that support them. 

Although this environment has been largely created and shaped by human intervention, our 

knowledge of it is surprisingly weak, therefore resulting in highly uncertain impact models. 

Developing impact forecasting should therefore be based on the systematic collection and 

provision of exposure and vulnerability data and models. The collection of spatially 

explicit, comprehensive post-event impact data should be strongly encouraged, following 

standard procedures and data formats. We recommend discussions across discipline 

borders and hazard types on common standards, indicators and modeling approaches for 

impact assessments.  

5. Exposure and vulnerability can be highly dynamic in space and time. Impact forecasting 

may require very detailed knowledge about the societal context, such as local risk reduction 

policies or risk perception of exposed people. A closer collaboration of natural sciences, 

engineering and social sciences is required to understand the role of the human factor and 

its influence on the transformation of a hazard forecast into an impact forecast.  

6. Additional complexities arise when transferring traditional hazard forecasts into hazard 

indicators that are useful for impact forecasting. For example, river flood impact 

forecasting requires to transfer a streamflow forecast for a given river location to inundation 

areas including all the complexities of flood defenses or the urban environment. These 

complexities and those arising from impact modeling can significantly complicate the 

forecasting task. It seems important to weigh in this additional burden against the expected 

benefits of impact forecasts.   

7. Quantifying the uncertainties of forecasts is important as it provides an honest and fuller 

picture for informed decision-making. The state-of-the-art in uncertainty quantification is 

very different between hazard and impact modeling. Whereas uncertainties are often 

provided for hazard modeling, this is hardly the case for impact modeling. We recommend 

employing probabilistic approaches also for impact modeling. 

8. The rapid assessment of impacts immediately after an event and the provision of impact 

estimates prior to an event have many commonalities but tend to be developed in separate 

communities. We recommend a more intensive exchange of knowledge between these two 

forms of impact forecasting, and ultimately to blur the boundary between the two by rather 

advocating for a continuous information flow directed towards decision-makers always 
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considering the most up-to-date data and observations available. It is not so much the 

information flow towards decision-makers, but rather the close – and trans-disciplinary – 

interaction of actors along the chain of impact to co-design systems fit for purpose. 

9. Impact forecasting is expected to offer new possibilities for emergency management and 

disaster risk reduction, as it provides richer information to manage crisis situations. This is 

of great importance as extreme events are expected to increase in the future due to climate 

change and economic and population growth, while simultaneously the complexity of our 

society, e.g. dependence on critical infrastructure, increases. However, the assumption that 

impact forecasting is more effective than hazard forecasting has hardly been tested across 

various hazards. 

10. Impact forecasting is associated with new challenges for communication and decision-

making, as (uncertain) impact information may lead to different responses of warned 

people. Not only are there more studies needed to better understand the effect of impact 

forecasts, but novel approaches to co-develop and to tailor impact forecasts according to 

the operational contests. 

11. Developing impact forecasting systems for a wide range of hazard types does not only 

promise societal benefits, but could also be used as a leverage to foster interdisciplinary 

work between different research communities and collaboration between research and end-

users.  

12. Multi-hazard impact estimation accounting for compounding and cascading hazards should 

be increasingly targeted, acknowledging that extreme events rarely can be ascribed to single 

hazards, and that their consequences have to be considered in such extended framework to 

be descriptive of the potential impacts. From the impact perspective this also translate in 

considering non-linear damage accumulation and cascading effects related to, for instance, 

interdependence of critical infrastructure.  
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Table 1: Comparison of impact forecasting for the different hazards: (1) Lead times of hazard and impact (if available) forecasts. (2) Spatial 

aggregation: The area (and spatial resolution) for which impacts are forecasted. (3) Impact models: Main characteristics of impact models used. 

(4) Main uncertainties: Main sources of uncertainties for impact forecasting, including uncertainty of hazard forecasting. (5) Maturity: 

Advancement of impact forecasting systems. (6) Added value: Benefit of impact forecasting compared to hazard forecasting. 

 
Hazard Lead time Spatial 

aggregation 
Impact models Main uncertainties Maturity Added value 

Windstorms Reliable hazard 
forecast: 2-4 
days. First hints 
of hazard 
beyond 1 week 
based on 
ensemble 
forecasts. 
 

Hazard 
forecasts for 
entire storm 
footprint. 
Warnings issued 
on district level. 

Impact depends on peak 
wind gusts, but may include 
other meteorological factors, 
e.g. duration. Relationships 
between wind characteristics 
and damage typically derived 
from observed data.  
Impacts considered: damage 
to buildings, infrastructure, 
forest etc. 
 

Related to both hazard 
(uncertainty in cyclone 
track, wind intensity) and 
impact models (e.g., 
population density used 
as proxy for assets). 

No operational impact 
forecast system for the 
public available. 
Insurance: operational 
forecasts of direct damage 
for clients provided. 
NWSs provide impact-
oriented forecasts with 
generic statements about 
expected impacts and 
recommended actions. 

High benefits 
expected, but 
quantitative studies 
lacking. 
Clear value to 
insurance clients, e.g. 
buy short-term 
additional windstorm 
damage coverage. 

Severe 
convective 
storms 
 

NWP hazard 
forecast: few 
hours to 7 days. 
Hazard 
nowcasting: 0-2 
hours.   

Hazard 
forecasts for 
SCS footprint. 
Warnings issued 
on different 
levels, from 
municipality to 
federal states. 

Only few impact models 
available. Damage depends 
on event intensity, e.g. wind 
speed, hail size. 
Impacts considered: damage 
to buildings, vehicles, crops, 
infrastructure etc.  

Related to both hazard 
(large uncertainty in 
prediction convective 
phenomena) and impact 
models. 

Quantitative impacts 
forecasts not yet available. 
Impact-based forecasts 
operational in several 
countries, providing 
generic descriptions of 
potential impacts. 

Significant benefits 
only expected when 
hazard forecasts are 
more accurate.  
Benefit demonstrated 
in single cases, e.g. 
for evacuation 
decisions for 
tornados. 

Droughts 1 month to 1 
year. 

National to 
regional extent.  

Relation between hazard 
indicators, e.g. SPI, and 
impact modeled by 
probabilistic methods or 
damage functions. 
Impacts considered:  loss of 
life, famine, crop yield, 
hydropower and energy 
cooling water; public water 
supply; irrigation water etc. 
 

Limited skill in hazard 
forecasting. Lack of 
impact data. Variety of 
sectors with varying 
response, e.g. of different 
crops, to impact 
occurrence. Confounding 
factors for impacts. 

Operational systems in 
certain regions, e.g. Africa, 
established. First efforts 
towards operational 
systems in Europe. 

Substantial benefits, 
e.g. for food and 
water security, 
expected, but limited 
data available. 

Heatwaves 
 

Few days up to 
2 weeks. 

National to 
regional extent. 

Relation between hazard 
indicators, e.g., temperature 
anomaly, and impact 

Limited skill in hazard 
forecasting. Lack of 
impact data. Variety of 

Several systems for 
mortality established for 
Europe. Often embedded 

Substantial benefits 
expected, but limited 
data available. 
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modeled by probabilistic 
methods or damage 
functions. 
Impacts considered: health, 
mortality.  Developments to 
forecast work productivity. 

sectors with varying 
response times to impact 
occurrence. Confounding 
factors, e.g. air pollution 
may be responsible for 
deaths attributed to 
heatwaves. 

in heat-health actions plans 
including mitigation 
actions. 

River floods 
 

Few hours to 
weeks for 
downstream 
areas in large 
river basins. 

River basins to 
national and 
continental 
scale. 

From relationships linking 
impact indicators, e.g. 
buildings affected to hazard 
indicators, e.g. river water 
level, to model chains with 
sophisticated approaches, 
e.g. hydrodynamic 
inundation model, dike 
breach model, multi-variate 
damage model. 
Impacts considered: 
Damage to buildings, 
infrastructure, direct 
economic damage, number 
of people affected etc. 

Complex local situations 
(e.g. blockages, dike 
breaches). Lack of 
impact data to develop 
impact models. 
Lack of knowledge on 
exposure and 
vulnerability, including its 
time variation. 

Mainly prototypes and pre-
operational systems 
developed. European-wide 
operational system for river 
floods available. First 
attempts with ensemble-
based impact forecasting. 

Significant benefits 
expected, e.g. 
prioritizing evacuation 
planning, identifying 
most vulnerable 
objects. May enable 
cost-benefit analyses 
of response 
measures.  

Flash floods 1 to few hours. 
 

Catchments up 
to several 
thousand km². 

Pluvial 
floods 

Up to 12 hours. Urban areas (up 
to 100 km²). 

Storm 
surges 
 

5 days for 
extratropical 
storms. 
12 hours for 
tropical storms. 

Coastlines 
affected. 

Impact models in their 
infancy.  
Impacts considered:  
Often limited to inundation, 
critical situations for defense 
structures or assets, 
geomorphological changes. 
In few cases: economic 
damage. 

Errors from NWP 
predictions used to drive 
storm surge model. Local 
characteristics, e.g. 
bathymetry. 
Characteristics of 
defense failures. 

Several models for 
inundation, erosion related 
to storm surges from extra-
tropical storms and TCs 
are operational. No impact 
forecast system in 
operation. 

Potential benefits 
hardly investigated. 

Earthquakes 
 

3 seconds to 1 
minute early 
warning time for 
EEW. Several 
days to weeks 
for OELF. 

Specific 
structures and 
systems for 
EEW. Regions 
affected for 
OELF.  
Resolution 
varies from 
single structure 
to urban areas. 

Empirical or analytical impact 
models based on forecasted 
ground motion at target sites. 
Models for physical damage 
of objects and for systemic 
impacts, e.g. power 
networks.  
Impacts considered: 
expected damage, loss of 
functionality for EEW. 
Expected damage, 
casualties, injuries, displaced 

Uncertainties in hazard 
forecasting (earthquake 
source, ground motion, 
site amplification effects) 
including time 
constraints, and in 
exposure and 
vulnerability data and 
models.  

Few local and global EEW 
systems implemented for 
specific target objects and 
automatic mitigation 
actions. Few operational 
OELF systems 
implemented. 

Possibility to 
customize emergency 
actions and support 
decision-making 
(OELF). Increasingly 
used to plan medium- 
and long-term 
mitigation activities, 
and raise risk 
awareness for 
practitioners and 
public. 
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persons, economic loss for 
OELF. 

Tsunamis 
 

15-20 minutes 
for near-field. 
Several hours 
for far-field. 

Coastlines 
affected. 

Impact models in their 
infancy. Recently more 
efforts in developing 
vulnerability models in 
context of risk assessments.  
Impacts considered: 
number of affected people, 
buildings and infrastructure. 

Uncertainties in hazard 
quantification (source 
quantification, co-seismic 
slip distribution). Lack of 
precise data (bathymetry, 
topography, damage) 
and impact models.  

Operational systems 
partially include coastal 
inundation; no impact 
forecast system in 
operation. 

No studies available. 

Volcanic 
eruptions 
 

Highly variable. 
From cases 
without 
detectable 
precursors to 
early alerts up to 
months. 

Areas directly 
affected. 

Impact modeling in its 
infancy, but recently rapid 
developments, e.g. models 
for fatalities, health damage, 
damage to buildings, direct 
costs. Also models for long-
term impacts under 
development. 

Uncertainties in hazard 
forecasts (eruption 
forecasting, hazard 
propagation, variety of 
cascading effects) and 
significant lack of impact 
data and models. 

No operation impact 
forecast system available. 

Substantial benefits 
expected, but no 
studies available. 
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Glossary and acronyms 
 

Many terms are not unanimously defined across disciplines. We use the following definitions for important terms in our review.  

Term Definition 

Early Warning System – EWS 
 

The set of capacities needed to generate and disseminate timely and meaningful warning information to enable 
individuals, communities and organizations threatened by a hazard to prepare and to act appropriately and in 
sufficient time to reduce the possibility of harm or loss (UNISDR 2009). 

Earthquake Early Warning – 
EEW 

The issuing of warnings and/or the implementation of automatic mitigation actions following the prompt detection 
and characterization of an earthquake within few seconds after its actual onset, which may provide a viable solution 
for real-time risk mitigation. 

ECMWF  European Center for Medium Range Forecast 

EFI – Extreme Forecast Index Index to summarize the probability of extreme events used by weather services for operational warnings based on 
ensembles. EFI ranks the departure between the statistical distribution of an ensemble forecast and the model 
history. It ranges from -1 to +1, 0 meaning a standard situation and +1 meaning record-breaking high values 
(Lalaurette, 2003). 

Exposure People, property, systems, or other elements present in hazard zones that are thereby subject to potential losses 
(UNISDR 2009). 

Forecasting Provision of timely information to improve the management in the emergency phase, i.e. shortly before, during and 
after a potentially damaging event. 

Forecast horizon The forecast horizon is the length of time into the future for which forecasts can be or are to be prepared. 

Hazard A dangerous phenomenon, substance, human activity or condition that may cause loss of life, injury or other health 
impacts, property damage, loss of livelihoods and services, social and economic disruption, or environmental 
damage (UNISDR 2009). 

Impact Disaster impacts are consequences of extreme events to human lives, buildings, infrastructure and natural 
resources. Direct impacts occur when the element at risk is within the space-time footprint of the event. Indirect 
impacts are consequences that occur outside the event´s geographical footprint or over larger time scales. Examples 
of indirect impacts are declines in revenue owing to supply chain disruption or longer-terms health effects. Tangible 
impacts can be easily quantified in monetary terms, such as evacuation costs, while intangible impacts include, e.g., 
adverse psychological consequences or ecosystem degradation.    

Impact-oriented warning Warnings include general statements on expected impacts, e.g. ‘Mobile homes will be heavily damaged or 
destroyed’, and general advice. 

Impact (or impact-based) 
forecast 

Forecasts include information on affected elements at risk and, if possible, their vulnerability. It extends the traditional 
forecasting model chain by models translating the hazard characteristics into impact statements. 

Lead time The available time to perform emergency actions, i.e. the time interval between the early warning and the actual 
occurrence of the damaging event or its arrival at a given target site. Warning lead time depends on the forecast 
horizon.  

NCEP National Centers for Environmental Prediction 
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Nowcasting Detailed recording of the current weather situation using data from remote sensing instruments (radar, satellite, 
lightning) and interpolation for the next 0 to 2 hours. Modern nowcasting systems include short-term NWP models 
from the rapid update cycle. 

NHMS National Hydro-Meteorological Service 

NWP Numerical Weather Prediction 

NWS National Weather Service 

Operational Earthquake 
Forecasting – OEF 

Forecasts include spatially-explicit information on the probability of occurrence of earthquake events exceeding a 
given magnitude in a given timeframe, based on the assimilation of recorded short-term seismic activity into medium- 
and long-term hazard models. Can be used to estimate the likelihood of strong events from observed earthquake 
swarms, or within a seismic sequence.  

Operational Earthquake Loss 
Forecasting – OELF 

Integrates the OEF with impact estimates. Provides spatially-explicit, time-varying estimates of the probability of 
exceeding a specific amount of losses (e.g. fatalities) in a given timeframe. 

PSPI Palmer Standardized Precipitation Index; common drought indicator.  

SCS Severe Convective Storm 

Skill of prediction The prediction or forecast Skill refers to the relative accuracy of a set of forecasts with respect to some set of 
reference forecasts (e.g., climatological mean fields). The forecast / prediction skill is usually expressed by skill 
scores, which can be interpreted as percentage improvement over the reference forecasts (Wilks,2011).  

SOT – Shift of tails Index to summarize the probability of extreme events used by weather services for operational warnings based on 
ensembles. SOT indicates whether a fraction of the ensemble members forecast an extreme event, even if the rest 
of the members do not (Zsótér, 2006). 

SPEI Standardized Precipitation Evaporation Index; common drought indicator. 

SPI Standardized Precipitation Index; common drought indicator.  

TEWS Tsunami Early Warning System 

Vulnerability The characteristics and circumstances of a community, system or asset that make it susceptible to the damaging 
effects of a hazard (UNISDR 2009). 

 


