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Abstract
1.	 The use of animal-attached data loggers to quantify animal movement has in-

creased in popularity and application in recent years. High-resolution tri-axial 
acceleration and magnetometry measurements have been fundamental in elu-
cidating fine-scale animal movements, providing information on posture, trave-
ling speed, energy expenditure, and associated behavioral patterns. Heading is 
a key variable obtained from the tandem use of magnetometers and accelerom-
eters, although few field investigations have explored fine-scale changes in head-
ing to elucidate differences in animal activity (beyond the notable exceptions of 
dead-reckoning).

2.	 This paper provides an overview of the value and use of animal heading and a 
prime derivative, angular velocity about the yaw axis, as an important element for 
assessing activity extent with potential to allude to behaviors, using “free-ranging” 
Loggerhead turtles (Caretta caretta) as a model species.

3.	 We also demonstrate the value of yaw rotation for assessing activity extent, 
which varies over the time scales considered and show that various scales of body 
rotation, particularly rate of change of yaw, can help resolve differences between 
fine-scale behavior-specific movements. For example, oscillating yaw movements 
about a central point of the body's arc implies bouts of foraging, while unusual 
circling behavior, indicative of conspecific interactions, could be identified from 
complete revolutions of the longitudinal axis.

4.	 We believe this approach should help identification of behaviors and “space-state” 
approaches to enhance our interpretation of behavior-based movements, particu-
larly in scenarios where acceleration metrics have limited value, such as for slow-
moving animals.
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1  | BACKGROUND

Animals can enhance their fitness by responding behaviorally according 
to their physiological state and environmental circumstance (Nathan 
et al., 2008; Shepard et al., 2013; Wilmers et al., 2015). At its inception, 
animal behavior was defined  by direct observation of  body posture 
and limb movement (Brown, Kays, Wikelski, Wilson, & Klimley, 2013; 
Patterson, Thomas, Wilcox, Ovaskainen, & Matthiopoulos,  2008). 
More recently, however, researchers have realized that animal-at-
tached tags can help define behavior using tri-axial acceleration data, 
which resolve both animal posture and the dynamism of movement 
(Shepard, Wilson, Quintana et al., 2008; Wilson, Wikelski, Wilson, & 
Cooke, 2015; Yoda et al., 2001; Zimmer, Ropert-Coudert, Kato, Ancel, 
& Chiaradia, 2011). Indeed, animal-attached accelerometers are now 
widespread and common for both short-term and long-term contin-
uous monitoring of the behavior of wild animals (Brown et al., 2013; 
Wilmers et  al.,  2015). Methods used to identify animal behaviors 
include random forests (e.g., Fehlmann et  al.,  2017), neural net-
works (e.g., Samarasinghe, 2016), and support vector machines (e.g., 
Martiskainen et al., 2009) and generally tease out accelerometer-de-
rived data streams using both raw accelerometer data and derivatives, 
such as VeDBA (e.g., Benoit et al., 2020, Patterson et al. 2019), to find 
some combination of values that characterize specific behaviors.

Not all behaviors can be accurately resolved from accelerometers 
though (Williams et al., 2017) because slow-moving animals, such as 
some reptiles (Walker & Westneat, 2000; Wyneken, 1996), may pro-
duce negligible changes in the recorded dynamic acceleration (for 
definition, see Wilson et al., 2020). Similar issues arise during bouts 
of gliding behavior, as exhibited by many marine and aerial species 
that can maintain relatively constant velocity for long periods of time 
(Eckert, 2002; Williams, Shepard, Duriez, & Lambertucci, 2015). In ad-
dition, external forces acting on the animal, such as current vectors in 
air or water, can decrease the signal-to-noise ratio of measured accel-
eration, confounding the interpretation of data (cf. Halsey, Shepard, & 
Wilson, 2011; Robert-Coudert & Wilson, 2004). Animal posture de-
rived from acceleration also becomes problematic when animals are 
subject to high centripetal acceleration (e.g., when a bird banks sharply 
(Clark,  2009; Williams et  al.,  2015)) or when substrate beneath the 
study animal varies in declination (Wilson, Holton, et al., 2018; Wilson, 
Neate, et al., 2018). Finally, a critical limitation of accelerometers is that 
they cannot resolve rotation about the yaw axis (typically referred to 
as; “heading”) even though movement in this axis is at least as important 
as rotations in the other two axes: pitch and roll (Kano, Walker, Sasaki, 
& Biro, 2018; Noda, Okuyama, Koizumi, Arai, & Kobayashi, 2012).

Both Chakravarty, Maalberg, Cozzi, Ozgul, and Aminian (2019) 
and Williams et al. (2017) have suggested that tri-axial magnetometers 
could be used as behavioral identification sensors in manner analogous 
to tri-axial accelerometers. Certainly, magnetometers have apprecia-
ble advantages over accelerometers because they are unaffected by 
both gravitational and dynamic components of acceleration (López, 
de Soto, Miller, & Johnson,  2016; Noda, Kawabata, Arai, Mitamura, 
& Watanabe,  2014) and, unlike gyroscopes, are not subject to drift 
over larger time intervals (Fong, Ong, & Nee,  2008), also requiring 

less electric current and can be usefully sampled at lower frequencies 
(Caruso, 2000). We note though that gyroscopes have been used in 
a suite of biologging studies to determine angular velocity (cf. Noda 
et  al.,  2012, Noda, Kawabata, Arai, Mitamura, & Watanabe,  2013, 
Gerencsér, Vásárhelyi, Nagy, Vicsek, & Miklósi,  2013, Kawabata 
et al., 2014). Tri-axial magnetometers react to variations in magnetic 
field orientation and intensity in all three spatial dimensions (López 
et al., 2016; Wilson et al., 2007). Orientation about the yaw axis of an 
animal-attached tag is accessed by consideration of the animal's pitch 
and roll (from accelerometers) in relation to the output of the tri-axial 
magnetic field sensors and is described in detail by Bidder et al. (2015). 
This approach normally allows the animal heading to be defined to 
within about 1–2° (Painter et al., 2016).

Importantly, derivation of heading, and associated metrics 
(see later), should provide additional important measurements to 
define activity and with which behaviors may be identified using 
techniques such as machine learning (Wang et al., 2015) and time-
based decision trees (Rutkowski, Jaworski, & Duda, 2020) as well as 
being important in dead-reckoning studies (Laplanche, Marques, & 
Thomas, 2015). Crucially, magnetometers reveal patterns in move-
ment at various scales of rotation along the yaw axis that are not al-
ways evident in acceleration data (López, Miller, de Soto, & Johnson, 
2015; López et al., 2016; Williams et al., 2015, 2017), which should 
prove particularly informative for behaviors that produce no defini-
tive acceleration-based pattern and for animals that generate negli-
gible dynamic acceleration signal.

This paper examines the value and use of animal heading and 
a prime derivative, angular velocity about the yaw axis (hereafter 
termed AVeY), as an element for quantifying activity and ultimately 
aspiring to help differentiate animal behavior using the Loggerhead 
turtle (Caretta caretta) as a model species. Firstly, we propose several 
metrics derived from AVeY and discuss how various temporal scales 
over which AVeY (and derivatives) is calculated, in some cases, can 
be a sensitive indicator of to some types of movement beyond those 
which acceleration alone can detail. Secondly, we outline the wider 
implications of using such AVeY metrics to aid in examining fine-
scale behaviors. Lastly, we assess the relationship between AVeY 
and the commonly used DBA-based proxy for energy expenditure; 
vectorial dynamic body acceleration (VeDBA) (cf. Miwa et al., 2015) 
to see how the two metrics scale. The general aims of this research 
are to examine the potential importance in AVeY for enhancing our 
understanding of animal movement and to provide a framework for 
deriving and utilizing indices of AVeY for researchers investigating 
proximate and ultimate aspects of animal behavior using the tech-
nology outlined above.

2  | MATERIAL S AND METHODS

2.1 | Subjects, study area, and tagging

The attachment of data loggers was carried out between July and 
August 2014 on five mature female loggerhead turtles, intercepted, 
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and tagged immediately post egg-laying on the Southern beaches of 
Boa Vista, Cape Verde Islands (15°58′22″ N, 22°47′56″ W). Daily 
diary (DD) logging units (Wilson, Shepard, & Liebsch,  2008) were 
used in this study. Acceleration measurements were logged as accel-
eration with respect to gravity (1 g = 9.81 m/s) from each of the three 
orthogonally mounted sensor axes (measuring within the range of 
± 16 g). Orthogonal magnetometry measurements were recorded in 
Gauss (G) (magnetic intensity recorded within the range of ±0.88 G 
at 0.73  mG/LSB resolution). Both accelerometery and magnetom-
etry data were logged at 40 Hz. The DDs also recorded tempera-
ture (°C) and pressure (mbar). Data were stored on a 2 GB removable 
micro-SD card. The DDs were enclosed in an oval-cylinder water-
tight nylon casing and powered with one A-cell battery. Tags were 
attached onto the second dorsal scute of the turtle carapace, using 
a two-component epoxy resin glue, to ensure tag housings (and thus 
sensors) were placed as close as possible to the horizontal. Tags were 
positioned so that the x, y, and z axes of both the accelerometer 
and magnetometer sensors were aligned to the anterior-posterior 
(surge), medio-lateral (sway) and dorsal-ventral (heave) axes of the 
animal, respectively. Tags were retrieved after a single internesting 
interval (approximately 2 weeks after initial deployment).

2.2 | Derivation of VeDBA

Vectorial dynamic body acceleration (VeDBA) is a single integrated 
measure of the vector sum of dynamic acceleration from the three 
spatial dimensions during a given inertial frame (Qasem et al., 2012). To 
calculate VeDBA, a 2-s running mean was applied to each of the accel-
eration axes in order to approximate the static acceleration (McClune 
et al., 2014; Shepard, Wilson, Halsey, et al., 2009). The static accelera-
tion from each axis was subtracted from the raw acceleration values 
from each axis to derive the dynamic acceleration (Gleiss, Wilson, & 
Shepard, 2011, Shepard et al., 2013). VeDBA was determined by taking 
the vectorial sum of the dynamic acceleration using:

where x, y, and z are the derived dynamic acceleration values from each 
axis.

2.3 | Derivation of angular velocity

The static component of acceleration (due to gravity, which amounts 
to 1 g) is used in the computation of rotation about the three axes 
and is typically achieved by passing a moving average of a given win-
dow size w (2 s used in this study) through a given sample (Si) of each 
orthogonal channel's acceleration via:

Pitch and roll are computed via:

Pitch (�)=
(

atan2
(

Sx,
√

Sy ∙Sy+Sz ∙Sz

))

∙
180

�
 

where Sx,y,z refer to the static components of acceleration from the x, y, 
and z channels of the accelerometer, respectively (Bidder et al., 2015).

For review of all stages and mathematical components involved in 
the derivation of compass heading (H) (yaw), see Bidder et al.  (2015) 
and Walker et al. (2015). In brief however, the magnetometer is typi-
cally calibrated by rotating the tag so that all orientations of roll, pitch, 
and yaw are covered (Williams et al., 2017). In the absence of distor-
tions to the local magnetic field, the normalized data from each axis (of 
this calibration period) form a sphere when plotted on a tri-axial mag-
netic field intensity scatter-plot (the “m-sphere”; Williams et al., 2017). 
This process essentially provides a reference frame of the vectorial 
sum of magnetometry data across all three spatial dimensions and en-
ables subsequent compensation for “hard” and “soft iron” errors. Soft 
iron deposits distort the magnetic field around the device, causing the 
sphere to take on an ovoid/ellipsoid form (Gebre-Egziabher, Elkaim, 
David Powell, & Parkinson,  2006; Ozyagcilar, 2012). Hard iron de-
posits introduce a constant bias, shifting the position of the magnetic 
field and thus position of the sphere away from its true origin (Gebre-
Egziabher et al., 2006; Ozyagcilar, 2012). An ellipsoid-fitting algorithm 
and correction factor are used to correct such distortions and re-form 
uniform spherical fields about the true origin (Bidder et  al.,  2015; 
Walker et al., 2015). Angular rotations about the pitch and roll axes de-
rived from the static component of acceleration are subsequently used 
in the tilt correction procedure on each orthogonal magnetometer 
channel. Compass data are first normalized, and then, each orthogonal 
channel is rotated according to the pitch and roll. This ensures mag-
netometer outputs are compensated, according to the inclination and 
declination angles caused by postural offsets, with outputs corrected 
to give a horizontal co-ordinate frame (Bidder et  al.,  2015). Finally, 
compass heading (H) with respect to magnetic North is achieved via:

where mx,y refer to the normalized, ellipse fitted and co-ordinate 
frame-adjusted x and y channels of the magnetometer, respectively 
(Bidder et al., 2015) and mod refers to the modulo operator. The head-
ing output uses a scale of 0°–360°, with Magnetic North equating to a 
heading of 0° or 360°, South to 180°, and thus East and West to 90° 
and 270°, respectively.

2.4 | Data analysis

All data analysis was performed in the custom designed soft-
ware; Daily Diary Multi Trace (DDMT) (http://www.wildb​ytete​
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chnol​ogies.com), RStudio (open source statistical programming 
software, http://www.R-proje​ct.org), Origin pro 2016 (OriginLab 
Corporation, http://www.origi​nlab.com), and Microsoft Excel 2016. 
Only flat U-shaped dives (type 1a) greater than or equal to 3 meters 
in depth (cf. Houghton, Broderick, Godley, Metcalfe, & Hays, 2002) 
were used in the analysis to illustrate points being made.

DDMT enables 2D visualizations of infra-second variation per 
sensor axis output (visualized as waveforms over time) and includes 
built-in features for quantifying and exporting channel subsets, cal-
culating channel differentials and derivatives (including VeDBA), 
altering channel smoothing windows, producing multi-dimensional 
plots and an interface for searching for behaviors, and bookmarking 
them using a Boolean time-based approach (Wilson, Holton, et al., 
2018; Wilson, Neate, et al., 2018). DDMT also provides the platform 
to correct for iron distortions and tilt offsets from calibration data, 
before computing compass heading. All three indices of derived 
body rotation (pitch, roll, and yaw) were presmoothed using a roll-
ing window of 2 s in order to reduce small deviations due to noise 
(i.e., small deviations manifest by the flipper beat cycle). Pitch and 
roll values ranged from −90° to +90°. The arithmetic mean of the 
yaw axis is problematic due to the periodic nature of circular data 
(range from 0° to 360°; both of which define the exact same point 
on the circumference of the unit circle—magnetic North (cf. Pewsey, 
Neuhäuser, & Ruxton, 2013). Therefore, units were converted from 
degrees to Cartesian coordinates, before calculating the arithmetic 
mean of the individual angles from sample trigonometric moments 
and finally restoring resultant units back to degrees via:

Each dataset was subsequently subsampled to 1  Hz (selected 
values at i  = 40) to make the data more manageable and because 
turtles are generally slow-moving anyway (as manifest by extremely 
low VeDBA values, typically lower than 0.08 g). Differentials were 
then calculated from the smoothed values of each axis, using a step-
ping range of 1 s (o/s) and termed: AVeP, AVeR, and AVeY (angular 
velocity about the pitch, roll, and yaw axis, respectively). AVeY was 
also calculated over two larger temporal scales: 5 s (AVeY (o/5s)) and 
10 s (AVeY (o/10s)). Since compass heading is circular, with no true 
zero and any designation of low or high values being arbitrary, a log-
ical expression was implemented on the derivative AVeY to ensure 
rate of change never exceeded 180 °/s, whereby 360 was added to 
AVeY values less than −180 and 360 was subtracted from AVeY val-
ues greater than 180. This makes biological sense as long as the time 
interval over which the angular velocity is calculated is restricted 
because it is far more likely that an animal that caused the com-
pass heading to change from 10° to 350°, turned 20° anticlockwise, 
rather than 330° clockwise. Careful consideration of the animal in 
question must be made when choosing the sampling period of AVeY, 

to avoid inaccurate rates of change. Ideally, this should be less than 
the time it takes the animal to rotate through half a revolution.

The maximum angle that could be yielded from any given axis per 
second was therefore 180°. A metric termed absolute angular veloc-
ity (AAV) was derived from the integration of each of the rotational 
axes' absolute instantaneous angular velocity measurement:

Conditional running cumulative sum functions in R were imple-
mented on AVeY (o/s) to document each time a turn (or multitude of 
turns) in either direction, totaled/surpassed; 20°, 45°, 90°, and 180o 
with respect to a particular starting orientation, resetting each time 
the condition (angle of specified yaw rotation to exceed) was met. The 
degree of yaw rotation in either direction with respect to the starting 
orientation and the specified turn angle with which it was equated was 
expressed as a percentage coverage over time (0 to ±100%; “+” repre-
senting clockwise, “−” representing anticlockwise). A final new met-
ric, termed “cumulative heading” (CuHe), also implemented on AVeY 
(o/s), assessed the percentage coverage (0%–100%) about the yaw axis 
from the culmination of angular rotations in both directions, resetting 
each time the animal had (at least once), rotated through all 360°.

A linear mixed model (LMM) was performed utilizing the “lmer” 
function in R, from the “lme4” package (Bates, Mächler, Bolker, & 
Walker, 2014), to determine the relationship between mean values of 
AVeY (o/s) and VeDBA per dive. Turtle ID was included as a random fac-
tor in the model (Kuznetsova, Brockhoff, & Christensen, 2017). Three 
outliers were removed from the model following diagnostic plots of 
residuals. A Random slope model (including random intercepts) was 
also constructed to examine whether there was a significant differ-
ence between the slope coefficients, as given from the interaction 
of AVeY by turtle ID. The model simplification method was employed 
using likelihood ratio tests. Spearman rank correlation coefficients (rs) 
were derived to determine the association of ranks between various 
metrics of body rotation (detailed in Table 1) and VeDBA.

3  | RESULTS

There were strong positive significant correlations between the 
three differentials of body rotation, with higher angular velocities 
of body orientation being apparent across all three axes of rotation 
(pitch, roll, and yaw) (Figure 1). Of the three rotational axes though, 
AVeY had the strongest correlation with AAV, signifying that yaw 
was the predominant axis of rotation during activity (for this study 
species at least).

Model simplification and AIC values detailed the model incorporat-
ing both random slopes and random intercepts best improved good-
ness of fit; AVeY significantly affected VeDBA (LMM: χ2(1) = 15.82, 
p  <  .01), with every 1 unit increase in AVeY increasing VeDBA by 
approximately 0.029 g (est. = 0.0029 ± 0.00027 (SE), t = 4.92, 95% 
CI[0.0022, 0.0035], p < .001) (Figure 2a). Incorporating random effects 
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greatly improved the variance explained (marginal R2 = .33; conditional 
R2 = .84). In addition, the interclass correlation (ICC) was high at 0.79, 
indicating a high account of correlation among observations within 
groups. Typically, mean values of VeDBA were higher (and encom-
passed greater range) during faster turn rates (Figure 2b).

Generally, greater values of AVeY corresponded in a linear fash-
ion with the number of (specified) turn angles. This was particularly 
evident for 45° turns (Figure 3a). However, the relationship became 
weaker as the extent of the turn increased (Figure 3b), indicating that 
as the angle of a turn increased the chances of the animal turning 
back also increased.

We recognized that the bottom phase of turtle dives showed 
appreciable variability in recorded parameters, but that they could 
be broadly divided into apparently “active” and “inactive” (or “qui-
escent”) according to changes in yaw (cf. Figure S1). Both types in-
volved little or no change in depth but in the quiescent dives, there 
were no definitive changes in either the acceleration or geomagne-
tism traces throughout the duration of the bottom phase, with yaw 
and VeDBA values also showing marked consistency (Figure 4a1). In 
such cases, CuHe remained static, showing that no “new” orienta-
tion was adopted following the initial descent (with only three 20° 
turn angles being surpassed during this period for the example in 
Figure 4a1). Frequency distributions were also similar between the 
three scales of AVeY, indicating changes in directionality were mo-
notonous over time (Figure 4b1).

Conversely, “active” dives showed greater fluctuations in the geo-
magnetism traces and associated values of yaw, even though the depth, 
acceleration and VeDBA values showed similar patterns to apparently 
quiescent bottom phases of dives (cf. Figure 4a2). Full rotations about 
the yaw axis as depicted by CuHe were completed at a relatively con-
sistent rate, as detailed by the percentage coverage of 90° and 180° 
turns and were nearly exclusively carried out in the clockwise direc-
tion, depicting a type of “circling” behavior (cf. Figure S2).

There was greater variation between the frequency distributions 
of the various rates of AVeY (Figure 4b2), all of which portrayed a 
greater spread and skewness compared to the quiescent dives 
(Figure 4b1), signifying a greater variability of turn rates, primarily 
carried out in one direction.

Calculating AVeY over different intervals and “postsmoothing” 
at various window lengths highlighted behavior-specific patterns 
in signal minima and maxima of AVeY, such as clear alternating 
fluctuations in heading, even when there seemed no clear pat-
tern observed from acceleration data (e.g., Figure 5a1). In the 
example shown in Figure 5a1, changes in heading resulted in 45° 
turns in both directions, yet 180° turns were never achieved, in-
dicating an activity-specific behavior with an overall directionality 
(Figure 5a2).

Conversely, patterns apparent in the acceleration data could be 
further investigated with respect to AVeY in order to enhance infor-
mation of the behavior-specific movement taking place. For exam-
ple, Figure 5b Shows relatively consistent deviations recorded from 
the surge axis (Acc. X), manifest as in spikes of pitch, a pattern which 
coincided with acute anticlockwise turns although changes in orien-
tation did not necessarily correspond with clear changes to dynamic 
acceleration estimates (Figure 5c).

In the turtle data, the different yaw-based metrics were often 
complementary, showing clear patterns in activity. For example, 
AVeY (and VeDBA) could show similar changes over a 24-hr period 
(Figure  6a) even though higher turn rates did not necessarily cor-
respond with turn extent (Figure 6b), indicating that different pro-
cesses were at work over the sample period.

Accumulating (absolute) values of angular rotation across dura-
tion of 100 random U-dives demonstrated the variability both within 
and between dives (Figure 7). Such a spread of accumulated distri-
butions was less pronounced for acceleration indices. Moreover, 
the frequency distribution of cumulated AAV gradients was less 
obviously monomodal than the equivalent VeDBA gradients. CuHe 
was another diverse yaw-based metric, reflecting the degree and in-
tensity of directionality involved in movement. Behaviors that were 
manifest by restricted, or no change in, direction, resulted in a lower 
accumulation of unique angles attained around the body's circum-
ference, which was reflected in the small step ranges of CuHe and 
fewer resets to zero (when 100% of angles have been covered at 
least once). Conversely, other, ostensibly more active behaviors with 
little overall directionality (i.e., searching) resulted in frequent revo-
lutions. Here, a distinct tri-modal distribution of CuHe frequencies 

TA B L E  1   Description of the metrics derived from accelerometer and magnetometer outputs

Metric Abbreviation Description Smoothing Unit

Angular velocity 
about the yaw axis

AVeY AVeY (°/s−1) = xi + 1 − xi,
AVeY (°/5s−1) = xi + 5 − xi,
AVeY (°/10s−1) = xi + 10 − xi, where x is the ith value of 

heading

Yaw presmoothed by 2 s (circular 
mean) prior to calculating 
differentials

°/s
°/5s
°/10s

Angular velocity 
about the pitch axis

AVeP AVeP = xi + 1 – xi, where x is the ith value of pitch Pitch presmoothed by 2 s prior to 
calculating differential

°/s

Angular velocity 
about the roll axis

AVeR AVeR = xi+1 − xi, where x is the ith value of roll Roll presmoothed by 2 s prior to 
calculating differential

°/s

Absolute angular 
velocity

AAV
AAV=

√

(

AVY2
+AVP2

+AVR2
) N/A °/s

Vectorial dynamic 
body acceleration

VeDBA VeDBA=

√

(

x2+y2+z2
)

, where x, y, and z are the 
derived dynamic acceleration values from each axis

2 s g
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(from same 100 random U-dives mentioned above) was apparent, 
inferring a distinction between activity/behavior types (Figure S3).

4  | DISCUSSION

4.1 | Angular velocity as a metric for animal 
movement

Movement of the body trunk, nearly always involves some degree 
of angular rotation (cf. López et  al.,  2016), which is perhaps why 
rotational indices were suggested as a potential activity index two 
decades ago (c.f. Hochscheid & Wilson, 1999). We were able to show 
a link between activity extent (as manifest by VeDBA) and angular 

velocity about all three dimensions of rotation, indicating that move-
ment, in our example animal at least, was rarely confined to a specific 
axis (Figure 1). However, the rate of change of yaw was much higher 
than the equivalent in pitch and roll (Figure 7). This is not surprising, 
not least because full rotation about the pitch and roll axes necessi-
tates body inversion, whereas in yaw it does not. In addition, turning 
about the yaw axis is an important component of behavior for most 
animals, particularly during navigation, escape, search, foraging, and 
hunting strategies (Ballerini et al., 2008; Wilson et al., 2013). For os-
tensibly technical reasons however, yaw metrics seem to have been 
largely overlooked in animal activity and behavior studies (excepting 
studies using gyroscopes, e.g., Kawabata et al. (2014)).

The extent to which yaw angle changes compared to pitch or 
roll (metrics for angular turn extent are about 4 times higher for 

F I G U R E  1   Association between the various metrics of body rotation (outlined in Table 1) and VeDBA, with strength of correlation 
coefficients (Spearman rank) and significance level detailed (*** = 0.01 significance level). Each data point represents the mean value per flat 
U-dive (bottom phase duration)
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yaw than pitch or roll in our turtles—cf. Figure 1) indicates that yaw 
likely has greater scope and range than pitch or roll as a behavior 
identifier. This will be particularly the case as the extent of any 
angular turns decreases so that recorded changes impinge on the 
resolution capacity of the sensors, as may particularly be the case 
in very slow-moving animals. For these reasons, we have primarily 
focused on the yaw dimension of rotation to demonstrate its utility 
for assessing both general-scale differences in activity extent and 
fine-scale behavior-specific movements. Care should be taken to de-
termine that this is the case for the study species though, since ani-
mals engage in a variety of rotational movement about their principle 
axes (cf. Tinbergen,  1963). Indeed, a more sophisticated approach 
could consider pitch-, roll-, and yaw-specific rotations together as 
signatures of particular behaviors (cf. Figure 5b).

In a similar manner, consideration of multiple metrics for angular 
changes in yaw over time is complimentary. For example, periods of 
high AVeY do not necessarily correspond with high turn extent (cf. 
Figure 3), but indicate rapid, but nonextensive, changes in heading. 
This can be symptomatic of a particular behavior such as searching 
by an animal following environmental cues (cf. Basil & Atema, 1994). 
Indeed, our study turtles often exhibited activities consisting of high 
AVeY, signifying quick transitions between small turn extents, with 
such oscillating yaw movements accompanied by a high degree of 
directionality likely resulting from benthic surveying (Figure 5a1). By 
contrast, great turn extents in a particular directional plane shows 
circling behavior (cf. Figure 4a2, SI2), important for a suite of situa-
tions ranging from birds soaring on thermals (Williams et al., 2018) 
to turtle courtship (Schofield, Katselidis, Pantis, Dimopoulos, & 

F I G U R E  2   Association between yaw rotation and VeDBA, each data point represents the mean value per flat U-dive (bottom phase 
duration). Relationship between AVeY (o/s) and VeDBA with implemented linear regressions and 95% confidence intervals (gray shading 
around each regression) (a). Data points and regression lines colored according to turtle ID. Contour plot showing the kernel density level of 
VeDBA as a function of the time it took to complete 90° turns, with “loess smooth” line (blue dashed) fitted (inset shows the raw x–y data) (b)

F I G U R E  3   Correlation between values of AVeY (o/s) and the corresponding number of 45° turns (a) and 180° turns (b) per minute. Each 
data point represents the mean value per flat U-dive (bottom phase duration)
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Hays, 2007). Importantly though, the lack of any rotation about the 
yaw axis can equally be used (in conjunction with other sensor out-
puts) to define resting behavior more appropriately than can be done 

using accelerometers alone (Figure 4). This is especially the case in 
slow-moving species where yaw metrics are of particular value for 
much longer-term investigations (Figure  6). Thus, aggregation of 

F I G U R E  4   Two flat U-dives similar in duration and differing in activity extent. Stacked line graphs detailing differences between 
acceleration- and magnetism-based metrics plotted against dive duration. From top to bottom; depth profile, dynamic acceleration and 
derived VeDBA, magnetism and derived yaw, percentage coverage of various turn extents and CuHe (a). Frequency distribution of AVeY of 
both dives, calculated at three temporal scales (b)
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F I G U R E  5   Various examples of activity-specific patterns as resolved by examination of body rotations at various temporal scales and 
smoothing windows. Stacked line graphs showing the variation in acceleration, AVeY (o/5s) (smoothing window; 3 s) and percentage coverage 
of 45° and 180° turns over an eight-minute period (a1). Polar theta chart detailing the changes in heading (from a1) over time (a2). Stacked line 
graphs showing the variation in acceleration, AVeP and AVeY (o/s) (smoothing window; 5 s) over a three-minute period (b). Changes in VeDBA 
and AVeY (o/s) (smoothing window; 3 s) during a segment of acute turning behavior (c)

F I G U R E  6   Time series plot of mean 
values of VeDBA and AVeY (o/s) (± SE) 
per hour over a 24-hr period (a) and the 
corresponding number of 45°, 90°, and 
180° turns and complete rotations about 
the yaw axis (CuHe) (b)



     |  7881GUNNER et al.

F I G U R E  7   Cumulative frequency of VeDBA (g) (a) and AAV (o/s) (b) across the duration of 100 random U-dives (bottom phase), including 
their precursor measurements; raw absolute values of acceleration (including both dynamic and static components) from the x- (surge), 
y- (sway), and z- (heave) channels (a) and absolute values of AVeR, AVeP, and AVeY (b). Frequency histogram distribution inlets given for 
cumulative VeDBA and AAV gradients per dive. Note the much larger spread and variability of patterns when cornering indices of angular 
rotation
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mean epochs of, for example, hourly AVeY estimates in relation to 
the accumulation of the number of various turn extents, can high-
light minimal, but important, activity and provide detailed changes of 
activity over days. Such a broad approach is particularly relevant for 
reptiles (cf. Shine, 2005) and many invertebrates (cf. McLeese, 1973) 
where body orientation changes can occur over much longer time 
periods than is normal for mammals or birds and for which accelera-
tion data serve well to define activity.

Tri-axial magnetometers have two main drawbacks though: 
Firstly, being a vector field sensor, only two rotational degrees of 
freedom are measured at any one time and so angular rotation can-
not be resolved should one sensor axis align with respect to the 
Earth's magnetic inclination lines (cf. Martín López et  al.,  2016). 
Secondly, the derivation procedure of pitch and roll (required in the 
computation of heading) breaks down during bouts of fast, erratic 
behavior (i.e., during rapid cornering; cf. McNarry, Wilson, Holton, 
Griffiths, & Mackintosh,  2017), which can cause subsequent inac-
curacies of all three rotational axis derivatives (Noda et al., 2012). 
Choice of study animal, tag attachment method, animal location on 
Earth, and the period over which any differential is calculated are 
key parameters to consider when assessing the likelihood and extent 
of such limitations.

4.2 | Relationship between AVeY and VeDBA

VeDBA been used extensively as an acceleration-based proxy for 
activity-specific energy expenditure (cf. Jeanniard-du-Dot, Guinet, 
Arnould, Speakman, & Trites, 2017; Stothart, Elliott, Wood, Hatch, 
& Speakman, 2016). This is based on the theoretical understanding 
that movement of most vertebrates is the main factor in modulat-
ing energy expenditure (Gleiss et al., 2011). The more vigorous the 
movement, the more energy is expended in muscular contraction, 
with any change in measured body acceleration being proportional 
to the muscular forces that displaced the animal's body (and there-
fore the attached sensor) (according to Newton's first law) (Miwa 
et al., 2015). Consequently, the integrated measure of dynamic ac-
celeration from each of the three spatial dimensions has been pro-
posed to reflect the mechanical equivalent to energy expenditure 
involved in movement.

We documented a clear relationship between VeDBA and AVeY 
across each turtle (Figure 2a), and this is presumably because turn-
ing comprises an appreciable fraction of overall movement costs 
(McNarry et al., 2017). Specifically, a body that moves in a circular 
motion (of radius r) at constant speed (v) is always being acceler-
ated at right angles to the direction of motion (toward the center 
of the circle of magnitude v2/r). Given that Force  =  mass  ×  accel-
eration (F  =  m  ×  (v2/r) and it is typically the animal that supplies 
the force through muscular contraction (Halsey et al., 2011), more 
acute and higher frequency turns are associated with greater energy 
expenditure (McNarry et  al.,  2017) (Figure  2a,b). Taken together 
then, assessing the frequency and extent of turns can be helpful 
for understanding aspects of animal energy expenditure and the 

motivations behind behavior (however identified), since the degree 
and associated cost of angular rotation is modulated by movement 
decisions (Vásquez, Ebensperger, & Bozinovic, 2002). It is worth 
noting however that turn costs increase nonlinearly with speed, and 
thus, it is far more efficient to turn while stationary/slow-moving, 
in order to minimize the perpendicular forces and duration of a turn 
(cf. McNarry et al., 2017). This may partially explain the spread of 
VeDBA values during acute turns (Figure 2b), and why AVeY does 
not necessarily scale nicely with VeDBA over time (Figure 4b2, 5c, 
and 6a).

4.3 | Advantages of AVeY over 
acceleration estimates

Acceleration measured by animal-attached tags is susceptible to the 
specific site of tag placement, so that data from tags that are de-
ployed on, for example, animal carapaces that vary in morphology 
(including some; reptiles, crustaceans and gastropod species), are 
particularly likely to incur this problem, making DBA-type metrics 
difficult to compare between individuals (cf. Wilson et al., 2020). 
The problem is also likely to be manifest to some extent even when 
animals are morphologically similar, simply because the research-
ers do not place the tags identically on all individuals. Yaw metrics 
such as those proposed here (AVeY and angular extent) do not suf-
fer from this problem because they are corrected in their deriva-
tion (see Section 2). In fact, the difference in susceptibility to tag 
orientation between accelerometer- and magnetometer-derived 
metrics appears within our turtle data, which showed markedly dif-
ferent VeDBA versus AVeY relationships for the different individu-
als (Figure 2a). We note though that the derivation of pitch and roll 
becomes problematic when they approach ±90°, when x, y, and z 
values can become inversed. As such, large offsets in position would 
be problematic, since it restricts the range for accurate measure-
ments of pitch and roll to be made (consequently affecting the ac-
curacy of yaw). This assumption, therefore, breaks down for animals 
that change orientations frequently at angles greater than perpen-
dicular from their longitudinal and lateral axes of “normal” posture. 
However, this is less problematic for slow-moving animals (such as 
the turtle).

The broad use of DBA metrics as a measure of movement and 
energy use for many vertebrates to date indicates their utility. 
However, for turtles, the narrower operational range of VeDBA in-
creases the contribution of relative error from discrepancies in tag 
placement, which, in turn, can make separation of energy-specific 
behaviors between individuals more challenging. This was the case 
in our data, with an extremely low range of VeDBA estimates and 
notable offsets between turtles (Figure  2a). Furthermore, various 
scales of AVeY reported here revealed repetitive patterns in rota-
tional movement that were not evident in acceleration data during 
short-term behavioral bouts (Figures 4a2 and 5a1). We suggest that, 
in its simplest form, fine temporal responses of orientation may in-
dicate a change in “state”, presumably from an underlying sensory 
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input or physiological demand and this may not always be reflected 
from the culmination of dynamic movement as manifest by acceler-
ometers (Figure 5c). Crucially, since angular velocity about the three 
axes of rotation is not affected by discrepancies of tag placements 
(though see above), it provides a standardized comparator of move-
ment between individuals.

Changes in the recorded acceleration may not always result from 
movement arising from the limbs. These may, for example, arise from 
external forces acting on the animal, such as current vectors in the 
water (Robert-Coudert & Wilson, 2004), which will tend to trans-
late the body rather than rotate it. We suggest that AVeY and AAV 
should be used as a measure for activity that is complimentary to 
DBA, being particularly valuable when DBA-type metrics are weak 
and when behaviors can be exemplified according to the scale (or 
lack of) and pattern of angular rotation exerted.

Lastly, while this study does not provide specific ground-truth-
ing of the exact “type” of behavior involved, clear patterns emerge 
using this approach that would otherwise be left unresolved if only 
acceleration estimates were considered (Figure 7). The advantages 
of animal-attached logging systems include to pry more deeply 
into the movement ecology of animals independent of direct ob-
servation, especially when observer monitoring is difficult, such 
is the case with free-ranging turtles. However, inference without 
ground-truthing does not determine the finding irrelevant (Collins 
et al., 2015). Previous studies have made subjective behavioral as-
signments using prior knowledge and an objective intuition of what 
acceleration-based measures infer (cf. Laich, Wilson, Quintana, & 
Shepard, 2008, Collins et al., 2015). With regard to turtles, under-
water behavior has mostly been inferred from speculation based on 
“dive profiles” (2D representation of depth vs. time). The fact that 
trends of movement can be resolved more finely using indices of an-
gular velocity, especially during slow scales of movement (pertinent 
in this study), only aids in objectively quantifying behavioral differ-
ences. We suggest that variation of heading in a specified time frame 
is intrinsically linked to the functional behavior motivation exhib-
ited. Estimates that are consistent in the magnitude and pattern of 
change reveal a behavior that is consistent in its vector of imparted 
motion (or rotation) (cf. Figure 5, Figure S3). Crucially however, even 
“noisy” variations in AVeY may indicate more notable differences be-
tween activity-specific behaviors that acceleration estimates do not 
(Figure 7).

5  | SUMMARY

This work assessed the value of animal heading (body orientation) 
and associated metrics for quantifying animal activity and for helping 
define behaviors. Our results show that incorporating the frequency 
and extent of yaw axis rotations at various temporal scales aids in re-
solving patterns of movement beyond that which acceleration-based 
metrics alone can detail. We suggest that yaw-based metrics should 
help identify animal behavior and as indices of general activity over 
both short- and long-term periods, especially (within an energetic 

context) for slow-moving animals. It would be useful to have AVeY 
and AAV metrics compared to oxygen consumption to check their 
validity as a potential proxy of energy expenditure. Further work 
should assess the value of AVeY on a suite of terrestrial, aquatic, 
and volant animals, varying in activity extent and behavior. Judicious 
choice of sampling intervals and smoothing windows will be impor-
tant considerations in this.
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