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MOOSEGUARD: SECURE FILE SHARING AT SCALE IN UNTRUSTED

ENVIRONMENTS

Joseph C. Baker, M.S.

University of Pittsburgh, 2020

Shared storage systems provide cheap, scalable, and reliable storage, but secure sharing

in these systems requires users to encrypt their data and limit efficient sharing or trust a

service provider to faithfully keep their data private. Current research has explored the use of

trusted execution environments (TEEs) to operate on sensitive data and sharing policies in

isolated execution. That work enables the utilization of untrusted shared resources to store

and share sensitive data while maintaining stronger security guarantees. However, current

research has limitations in scaling these solutions, as it bottlenecks both metadata and data

operations within the same physical TEE, whereas a scaled file system distributes metadata

and data operations to separate devices.

This paper explores the use of two TEEs specialized for metadata and data operations

to provide file sharing at scale with less overhead in addition to strong security guarantees.

This approach achieves scaled metadata and concurrent use by utilizing a server-side TEE

for isolated execution on a master server and provides data privacy and efficient access

revocation through a client-side TEE. MooseGuard is the prototype implementation of this

design, utilizing Intel SGX as a TEE and extending the MooseFS distributed file system.

MooseGuard’s implementation details the modifications needed to provide security and shows

how this approach can be applied to a typical distributed file system. An evaluation of

MooseGuard demonstrates that TEEs specialized for metadata and data operations allow a

secured distributed file system to maintain its scale with only constant overheads. As TEEs

and secure hardware become more widely available in public clouds, enterprise, and personal

devices, MooseGuard presents a way for users to get the best of both worlds in data privacy

and efficient sharing when using scaled, shared storage systems.

Keywords: Security; Distributed File Systems; Intel SGX; MooseFS; Cloud.
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1.0 INTRODUCTION

Shared storage solutions such as cloud storage or distributed file systems in private data

centers allow users to easily store and share large amounts of data. However, using cloud

storage requires users to accept terms of service that do not hold the cloud service provider

accountable for lapses in privacy [4, 8], and private data centers need to enforce segmented

access to systems to achieve security requirements. Unintentionally or otherwise, there are

cases where a cloud service provider or a private data center can leak user data [14, 3, 15].

These terms of service and restricted utilization of resources combined with the likelihood

of a data breach present an ultimatum. Users must sacrifice the privacy of their data or the

efficiency of sharing that these scaled services provide. This leaves existing users’ sensitive

data vulnerable and prohibits users with stricter privacy requirements from deploying cloud-

based storage solutions or utilizing shared infrastructure.

Past efforts to protect sensitive data have required users to either place additional trust in

service providers and their platforms or to use a solution that performs client-side encryption,

but suffers from expensive or complex access revocation [22, 29, 31, 33, 40]. More recent

research has explored the use of trusted execution environments (TEEs) to implement file

sharing mechanisms with stronger security guarantees while requiring less trust in the service

provider [27, 35]. These approaches have shown the feasibility of using TEEs to perform file

sharing, but have limitations in scale due to hardware restrictions or no server-side support.

Typical distributed file systems (DFSes) are organized so that data-bound operations

can be distributed to clients and storage servers and metadata-bound operations can be

distributed to a master server. Recent works to enable secure file sharing utilize a single

TEE on each device to perform sensitive data and metadata operations. NeXUS [27] uses

only client-side enclaves, which limits the scale of metadata and concurrent use with the file

system as clients must synchronize and share metadata updates. Pesos [35] uses server-side

enclaves for policy enforcement but requires specialized hard drives to keep data secure.

This paper considers the use of two types of enclaves, allowing each enclave to specialize in

metadata- and data- bound operations respectively. This approach allows a DFS to maintain
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its typical architecture of separating metadata and data operations, providing greater scaling

of metadata and users and smaller overheads while maintaining the security of users’ data.

This paper presents MooseGuard, an approach to extend a distributed file system de-

ployed in an untrusted environment that can provide secure scalable storage, and efficient

file sharing and access revocation. This paper first abstracts the required behavior for this

goal, then presents an approach for implementing a solution in a way that is compatible

with a broad class of DFSes. The basis for additional security in a DFS stems from the

observation that a DFS may utilize modern approaches to authorize users and encrypt file

data, but this is insufficient if users cannot trust the platform the file system runs on or

if the file system cannot trust users to honestly execute file encryption. A service provider

can arbitrarily abuse a master server to change the file system, network traffic can be ma-

nipulated, and clients can ignore access revocation to file data by directly accessing storage

servers or reusing old file encryption keys. MooseGuard identifies that sensitive operations

must be executed in isolation from an untrusted host, including metadata and user login

operations on a master server and file encryption and access enforcement on a client.

MooseGuard’s generalized approach leverages TEEs to perform isolated execution for

both clients and servers within the file system. This enables the use of a master server in

an untrusted environment for greater scaling of the file system, and a client enclave allows

key sharing between users without requiring re-encryption of data when access is revoked.

To address the required improvements in a DFS, MooseGuard uses common features of

TEEs to strengthen the security of the file system in the face of untrusted client and server

behavior. Specifically, this is accomplished by protecting the confidentiality and integrity of

user data and metadata, ensuring consistent and integrity-protected metadata operations,

and implementing stricter user logins that operate within a TEE and enforce correct file

permissions.

The MooseGuard prototype is implemented using the distributed file system MooseFS

[9] and Intel SGX [39] as a TEE. In addition to generalizing the approach to securing a

DFS, this paper presents the details of this prototype implementation and an evaluation

of the prototype. The findings in the evaluation show that using both client and server

enclaves in a DFS allows for both file sharing and privacy with much greater scale than
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in previous efforts. Previous efforts like NeXUS showed greater than linear overheads in

scaled metadata operations and limited focus of concurrent use to personal-sized workloads.

MooseGuard improves upon these results by enabling scaled sizes of data storage, metadata

structure sizes, and concurrent client usage with constant overheads. With TEEs becoming

increasingly available, especially in cloud environments [11], MooseGuard can enable efficient

and secure file sharing in the cloud for more users and more data.

This paper presents the following contributions:

1. The requirements of a secure DFS on an untrusted platform and a novel approach to

securing a DFS for deployment on an untrusted environment using client- and server-

side TEEs.

2. MooseGuard, a prototype implementation of this approach using Intel SGX enclaves and

MooseFS.

3. An evaluation of the overheads that this approach introduces with focuses on file and

metadata benchmarks and different applied uses of a DFS.

The remainder of this paper is organized as follows: Chapter 2 provides the neces-

sary background including MooseGuard’s goals, deployment and threat models, overviews

of the technologies used, and a summary of related works. Chapter 3 presents MooseGuard,

detailing it’s design considerations and implementation. Chapter 4 analyzes the security

guarantees of MooseGuard given the threat model and the design of MooseGuard. Chapter

5 describes the evaluation of MooseGuard and a discussion of the results of this evaluation.

The paper concludes with a summary and future work in Chapter 6.
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2.0 BACKGROUND

Shared storage services often provide cheaper, more resilient storage while enabling shar-

ing of data with ease. However, current shared storage models on untrusted platforms require

users to choose between efficient file sharing and data privacy. This trade-off stems from

the analysis that key management and access revocation while sharing encrypted data is

often prohibitively expensive [32]. This limitation hinders many common use cases of scaled

storage, such as sensitive government or medical data, from utilizing the cloud. Service

providers and cloud users have even worked around this problem by enumerating special

end-user license agreements or other contracts to ensure that service providers do more than

act in good faith to protect users’ sensitive data [2, 13].

MooseGuard’s use of TEEs proposes an alternate approach to store and share private

data in an insecure environment. MooseGuard’s efforts are guided by two goals. The first goal

is to provide a secure and scalable file system by protecting the confidentiality and integrity

of user data while enabling sharing and efficient access control and preventing unauthorized

modifications of the file system state. The second goal is to provide an approach to protecting

data that can be implemented on a typical distributed file system with minimal operational

overhead. These goals make MooseGuard worthwhile by providing an attainable solution to

the problem at hand.

Private data centers and cloud services frequently virtualize applications so the manage-

ment of services can be abstracted from the maintenance of hardware and software infras-

tructure. Segmented access to hardware has been used to ensure stricter security guarantees,

but requiring this prevents providers from further applying this abstraction and achieving

greater scale. This paper envisions the deployment of a DFS with MooseGuard enhance-

ments in an untrusted environment. By utilizing TEEs instead of segmenting whole systems,

this deployment model allows a DFS to be run as-a-service, restoring the virtualization of

services. Figure 1 illustrates this intended deployment model for MooseGuard.
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Figure 1: MooseGuard Deployment

2.1 THREAT MODEL

MooseGuard assumes an adversary with abilities similar to adversaries discussed in re-

lated TEE-based research [27]. An attacker can manipulate the execution of all software

outside of a TEE and manipulate the operation of all of a platform’s hardware except the

SGX-enabled CPU. This includes access to the service provider’s platform OS and hyper-

visor. The attacker can also observe, modify, drop, and reorder any network transmissions

between clients and the service provider’s platform. MooseGuard trusts that the CPU pack-

age is not physically tampered with. Further, MooseGuard assumes that SGX’s isolated

execution, attestation, and sealing mechanisms operate correctly. Finally, MooseGuard as-

sumes that MooseFS, MooseGuard, and SGX SDK [5] code implemented within the TEE’s

trusted codebase (TCB) is free from bugs and security vulnerabilities.

The master server and storage servers of this DFS are expected to be deployed in a

possibly untrustworthy platform where an adversary can apply all of its abilities listed above.

Though client devices may be partitioned on a separate network, as shown in Figure 1,

MooseGuard assumes that a client device is susceptible to the same attacks as a master

or storage server and is therefore hosted on an untrusted platform. Because clients are

not initially trusted, MooseGuard validates the integrity, authenticity, and authorization of

clients before sharing sensitive information. MooseGuard does not protect plaintext sensitive
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data outside of the client enclave on client systems and assumes that clients will take proper

steps to keep this data private from such an adversary. This assumption considers the

common case where client’s trust in the device that they use to access data is proportional

to the sensitivity of the data being accessed.

Given an adversary with these capabilities, an attacker may attempt to interfere with

the operation of the file system by adding, modifying, or erasing file metadata or data on

the master or storage servers. The attacker may further interfere by attempting to mislead

clients or pose as an additional client to make unauthorized changes to the state of the file

system. On a client system, data is already available in plaintext, so the role of the adversary

is reduced. A client adversary focuses its attack on gaining unauthorized access to data or

obtaining unauthorized access to the master. MooseGuard assumes that operations received

from an authenticated and authorized client are intended, so a compromised client system

may alter the file system state as much as that client’s access allows.

MooseGuard’s security objectve considers several factors in light of such an adversary.

First, MooseGuard seeks to prevent any unauthorized access or manipulation of file data

and metadata. The integrity of this information is also protected by detecting unauthorized

modification both at rest and in transit. MooseGuard aims to further secure the file system

by restricting access to only authenticated and authorized clients and enforce file permissions

for each user. The next objective of MooseGuard is to enforce fork-consistency [37] of file

data so that users cannot view or modify file data more recent than the data available

at the time access was revoked. MooseGuard maintains the integrity of the file system’s

directory structure, but the structure may be visible to the adversary by observing access

patterns. Confidentiality of the directory structure could be provided by implementing an

ORAM [16] technique on directory structure accesses, but this approach is left for future

work. MooseGuard protects the consistency of the file system’s metadata state by ensuring

that the order of operations cannot be altered, but does not consider rollback attacks that

perform a wholesale restoration of file system metadata state to an earlier version. Finally,

MooseGuard assumes the service provider will attempt to provide general availability of the

master and storage service. Denial of service attacks, enclave side-channel attacks [24, 57, 25],

and hardware-based attacks on an SGX-based CPU are not considered.
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2.2 TRUSTED EXECUTION ENVIRONMENTS (TEEs)

Trusted execution environments (TEEs) are secure regions of hardware that provide a

platform to execute code with strengthened confidentiality and integrity. By securing an area

of a CPU to perform isolated execution, TEEs can reduce the attack surface of an application

down to the physical CPU package and reduce the level of trust required to run a sensitive

application on an otherwise insecure platform. TEEs such as Intel SGX [39] and ARM

TrustZone [1] have become increasingly available for both consumer and enterprise markets

[11]. TEEs have several models in which they can be deployed on servers and clients, making

them useful for a wide range of applications. Service providers can provision TEEs on remote

servers or on client devices to accomplish Digital Rights Management. Alternatively, clients

can utilize TEEs present on a service provider’s platform to perform secure computation in

a multitenancy environment. MooseGuard’s design includes both client and server model

deployments of TEEs.

2.2.1 Intel SGX

Intel SGX is a feature in modern Intel CPUs that provides three principal functions of

a TEE: isolated execution, attestation, and sealed storage. Together these features provide

a way to develop applications that are both secure and powerful. The following sections

provide a more detailed background on the functionality of these SGX features.

2.2.1.1 Isolated Execution SGX provides isolated execution through enclaves. En-

claves are shared libraries implemented with fixed entry and exit points, ECALLs and

OCALLs. Enclaves achieve isolated execution by securing the CPU instructions and mem-

ory used while executing the code within an enclave. The Enclave Page Cache (EPC) is a

physical segment of memory claimed by the CPU and dedicated to enclave use. Data bound

for the EPC is encrypted by the CPU’s memory controller. Isolated execution of instructions

is accomplished by a new SGX CPU instruction, which switches the CPU into a secure mode

and jumps to one of the enclave’s well-defined entry points. While in this secure mode, the
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CPU can only execute instructions loaded into the EPC. As a result, the enclave code must

exit the enclave before the application can execute typical system calls. Similarly, interrupts

sent while in the secure mode must save enclave context and exit the enclave before handling

the interrupt.

2.2.1.2 Attestation Attestation allows users to establish trust with enclaves created in

local or remote environments. SGX embeds unique keys in each SGX-enabled CPU and

uses a new SGX instruction, which computes a quote of the enclave. SGX defines a quote

as a secure signature of the enclave’s EPC with this identifying key. Attestation is the

process that users follow to challenge an enclave to prove that it is genuine and that its

integrity is intact. In local attestation, users can confirm the authenticity of a local enclave

and establish a shared key for secure communication to the enclave. Remote attestation

additionally enables a user to confirm the authenticity of an enclave on a remote system by

leveraging the Intel Attestation Service (IAS). The IAS receives enclave quotes and confirms

that the quote was created by a genuine SGX enclave.

2.2.1.3 Sealed Storage Enclaves can only be useful if sensitive data can be passed in

or out. The enclave interface and secure channels established during attestation provide a

mechanism to exchange sensitive data, but these channels are ephemeral. In addition to these

mechanisms, SGX provides the ability to seal and unseal enclave data. Sealing generates

a key that is unique to the enclave implementation and specific CPU where sealing was

invoked. This key allows an enclave to persistently store data on a local untrusted device.

2.2.1.4 Limitations Developing with SGX presents limitations that can impact the de-

sign of an application. Enclaves are limited in the number of system resources they can

use and by how much they can trust the resources they are provided. Specifically, SGX

only offers a non-configurable 128 MB of memory for the EPC shared on all enclaves on a

system. Any additional memory used by an enclave must encrypt pages and evict them into

unprotected memory. Additionally, enclaves are limited to a static number of threads and

must encrypt the enclave’s state during context switches, increasing the cost of transitions
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around ECALLs and OCALLs. It is also up to the application developer to protect their

application from side-channel attacks against SGX applications.

2.3 DISTRIBUTED FILE SYSTEMS

This section provides a brief background on distributed file systems. Specifically, Section

2.3.1 reviews the properties of DFSes that are impacted by the design of MooseGuard.

Section 2.3.2 provides a detailed background on MooseFS, through which MooseGuard’s

prototype is implemented.

2.3.1 Distributed File System Properties

Fundamental properties of a distributed file system include access transparency, location

transparency, and concurrency control [46]. Access transparency in a DFS provides consistent

file data access for a user whether the data is local or remote. Location transparency enables

the decoupling of file metadata and data so that data can be stored remotely at scale.

Concurrency control allows multiple users to operate on data in the file system in parallel

while all clients maintain a consistent view of the file system state. Location transparency

and concurrency control are typically accomplished with a master server (or name server).

Clients will consult the master server to locate and serialize access to files, and provide

access transparency by presenting a uniform interface to clients and resolving remote requests

through that interface.

2.3.2 MooseFS

MooseGuard’s design is intended to be implementable on a DFS that employs a master

server to handle location transparency and concurrency control and where clients access

distributed file data. This paper implements MooseGuard enclaves on top of MooseFS [9], a

general-purpose and open-source DFS. MooseFS is a practical, established, and stable DFS

that supports many use cases and can be deployed on shared infrastructure in cloud or data
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center environments. MooseFS’s design is spread across a master metadata server, chunk

servers for storage, and clients that interact with both server types. This approach is similar

to approaches taken by the Google File System [30], Lustre [7], and Ceph [58]. MooseFS

demonstrates the typical properties of a DFS, so implementations of MooseGuard on other

DFSes should be able to follow patterns established by the prototype.

2.3.2.1 Master Server MooseFS uses a master server to store file metadata, synchronize

client file access, map file names to chunk servers, and manage deployed chunk servers.

The master server is implemented as a single-threaded userspace daemon process. All file

metadata in the file system is stored in memory. This approach allows for a simple master

server implementation while keeping the master fast enough to serve a large number of clients

and chunk servers. The open-source implementation of MooseFS persists file metadata to

local storage on the master server and replicates that persisted file to designated metadata

logger daemons on remote servers for redundant backups. MooseFS offers a paid ”pro”

version of their software, which supports hot-standby backup master servers. Additionally,

Yu et al. implement a distributed metadata server architecture [59]. Our implementation of

MooseFS uses the open-source, single master server implementation of MooseFS.

2.3.2.2 Chunk Servers MooseFS chunk servers store and replicate file data in the file

system. Chunk servers are implemented as a multi-threaded userspace daemon process.

Chunk servers are intended to be deployed on heterogeneous devices for simple and cost-

efficient scaling of the file system’s raw storage capacity. Each chunk server can locally

optimize checksumming and storing chunks of data on local storage. The master server

manages chunk servers and coordinates replication of chunks, while chunk servers perform

the I/O-bound replication operation between each other. On chunk writes, chunk servers are

provided a list of chunk replica locations from the client, and chunk servers handle the I/O-

bound replication of a write before acknowledging the write to clients. MooseFS supports

at least 100 chunk servers and up to 16,384 petabytes of data.
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2.3.2.3 Clients MooseFS uses FUSE [56] to present a uniform POSIX file system inter-

face to clients. Client interactions between the master and chunk servers are implemented by

a multi-threaded userspace daemon process. The MooseFS client leverages several buffers:

the system page buffers, FUSE synchronous and asynchronous buffers, and MooseFS client

caches for directory entries, file attributes, and chunk locations. Clients communicate with

the master server for all metadata operations and chunk lookup operations, and communicate

directly with chunk servers for chunk read and writes.

2.4 RELATED WORK

2.4.1 TEEs

NeXUS [27] achieves practical secure file sharing for users by implementing a file system

within a client-side enclave and uses the cloud to store and share data. NeXUS maintains

efficient access revocation and wide compatibility with distributed storage by only using

client-side enclaves, with limited scaling of file system metadata. Pesos [35] implements a

secure object store with rich policies to control and audit access. Their approach utilizes

server-side enclaves and specialized Kinetic disks for deployment in untrusted environments.

MooseGuard’s approach examines the trade-off between convenience and scale, utilizing both

client and server enclaves. This approach enables greater scale in data and metadata storage

and in concurrent use. Other SGX research in data storage considers stricter privacy by

preventing Iago attacks [51], using ORAM techniques in file access [16], and other forms of

data management such as securing a DBMS in an untrusted environment [44].

TEEs have also been used in a wide range of use cases. Many efforts have explored

providing a secure virtual system to deploy applications on insecure platforms [21, 55, 19,

54, 50]. Applications for secure data processing in the cloud have been built, including

machine learning and analytics [48, 47] and secure messaging [18, 34]. Research has found

vulnerabilities, particularly through side-channel attacks, in the implementation of SGX [24,

57, 25]; there have also been efforts to mitigate these flaws [26, 49, 41]. Several papers have
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proposed ways to optimize or provide enhanced features to SGX, specifically through better

memory management [38, 53] or by avoiding enclave exits [42]. Finally, various techniques

have been examined to enable more secure application development within TEEs with stricter

integrity checking [20, 36, 23, 43].

2.4.2 File Systems

Distributed file systems research has seen growth from original principals of a DFS [45, 10]

into highly scaled and specialized deployments that focus on high throughput, parallelism,

or size in specific applications [30, 58, 7, 52, 28]. MooseGuard considers the fundamental

features of a DFS so that its design applies to many of these systems. Cryptographic file

systems research has previously explored locally encrypting files, which typically aims to

secure the file system against other non-privileged users and assumes trust in the host OS

[22, 29]. Research focused on providing stricter security in DFSes for untrusted environments

has focused on encryption at the client-side [31, 33, 40]. These efforts are limited by expensive

access revocation or complex key management. MooseGuard’s use of TEEs enables both

improved security and efficiency.
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3.0 MOOSEGUARD

MooseGuard is an approach towards securing a distributed file system so that the file

system is capable of being deployed in an untrusted environment. The modifications that

MooseGuard propose leverage SGX enclaves on both clients and on a master server within a

DFS. Enclaves specialized to handle metadata and data operations allow a DFS to operate

at scale while protecting the confidentiality and integrity of a user’s data and metadata.

MooseGuard identifies three general components of a DFS that need to be extended to sup-

port its goal of a secure file system on an untrusted platform. These components are isolated

execution of sensitive metadata operations on a master server, enhanced authentication and

authorization of users, and isolated execution of file encryption and decryption on clients.

The following sections of this chapter describe the design and implementation of Moose-

Guard used to extend MooseFS. Figure 2 depicts the components surrounding MooseGuard

and how they interact. Isolated execution on the master is accomplished by the Server

Enclave and described in Section 3.1. Enhanced authentication and authorization of users

between clients and the master server utilizes SGX’s attestation properties and is detailed in

Section 3.2. Trusted file encryption and access control enforcement is performed on clients

via the Client Encalve and is described in Section 3.3. Table 1 lists all of the keys and other

encryption metadata introduced by MooseGuard, grouped by each component in which they

are used. The utilization of each value is described in the following sections.

3.1 MASTER SERVER

Many distributed file systems employ the use of a master server to centralize and syn-

chronize client operations and to act as a name server to locate chunks of data on other

servers. Deploying a master server on an untrusted platform can threaten the security of

a client’s sensitive information stored on the system. An untrusted or vulnerable service

provider can read, modify, or erase file metadata and present false locations as a way to pass
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Figure 2: MooseGuard Architecture. Greyed boxes represent MooseGuard extensions to

MooseFS, bold boundaries highlight components of MooseFS and MooseGuard, and dashed

lines indicate encrypted data in transit.

Table 1: MooseGuard Encryption Metadata

Symbol Type Description
Key Usage

Master Enclave Client Client Enclave

Kr AES-GCM 128 bit Metadata Cache Sealing Y N N
Kc AES-GCM 128 bit Metadata Changelog Sealing Y N N
Km AES-CTR 128 bit Metadata Backup Sealing Y N N

Kf AES-GCM 128 bit File Encryption Key Y N Y
H i

int SHA-256 File Chunk Hash Versioning
Y N Y

H i
ext N Y Y

T i
j AES-GCM 128 bit File Encryption Autenticated Data N Y Y

Ku ECDSA-256 User Access Permission
Y N N

K−1u N Y Y
Kr AES-GCM 128 bit Client ↔ Master Secure Channel Y N Y
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false file data to clients. However, the use of a master server also provides greater scalability

of both a DFS’s total storage and metadata sizes.

MooseGuard enables a DFS to utilize a master server while addressing the security

concerns of an untrusted platform by performing sensitive operations in a server enclave.

Additionally, MooseGuard supports scaled metadata sizes regardless of a TEE’s memory

limitations by implementing a caching layer for metadata. Finally, the master server can

persistently store metadata backups by utilizing the sealing functionality of a TEE. Together,

these functionalities secure the master server functionalities enabling the deployment of a

DFS for secure use in an untrusted environment.

3.1.1 Master Enclave

MooseFS’s master server coordinates changes to the state of a file system, manages chunk

servers, chunks, and stores all metadata in RAM for quick access. MooseGuard partitions

the work of the master server into trusted and untrusted operations. This approach separates

the secure policy decisions of the file system from the underlying server mechanisms that the

service provider is responsible for maintaining. Partitioning the master server functionality

reduces the TCB of file system policy decisions that must be kept secure. By removing the

untrusted operations from the TCB, the scalability of the file system increases as it allows

the service provider to manage raw storage and networking at large scale.

Trusted operations include attesting and establishing secure communication with clients,

coordinating file system state changes (operations on metadata), and sealing and unsealing

metadata stored in untrusted spaces on the master server. Untrusted operations include

managing chunks and chunk servers, persisting reliably to disk, and all network communica-

tions. The master enclave defines the boundary between trusted and untrusted operations

as SGX ECALLs and OCALLs. Untrusted code may invoke an ECALL to respond to a

user- or system- driven event that needs to change the file system state. Trusted code may

invoke an OCALL to perform a system call in response to an ECALL and trusted processing.

Implementing MooseGuard with a different file system, or creating master server logic from

scratch with SGX enclaves in mind would yield a different number of ECALLs and OCALLs.
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However, any implementation will have similar categories of operations.

Although the interface of the master server’s trusted operations is reduced to well-defined

entry points, an attacker could still modify the integrity of the file system’s state by invoking

ECALLs in an unexpected order, or with unexpected inputs. Unexpected inputs are con-

sidered during ECALL transitions with parameter checking implemented by SGX’s SDK.

MooseGuard protects against the issue of unexpected ECALL ordering by grouping ECALLs

into phases. During each phase, ECALLs from other phases are rejected. The first phase

is an initialization phase where the enclave is created and persisted metadata is unsealed

into the enclave. The second phase allows new users to connect, attest, and issue file system

operations through a secure channel. During this phase, only the ECALLs to receive client

attestation and file operation messages are enabled. The final phase halts the file system,

sealing new versions of metadata and terminating the enclave.

3.1.2 Metadata Cache

DFSes may need to utilize much more memory than a TEE can provide. Specifically,

MooseFS stores all of the file system’s metadata in memory for quick access. This can be

several gigabytes in size, but the SGX EPC is much smaller. The default SGX implemen-

tation provides a workaround where enclave memory can be paged out by encrypting and

evicting pages to untrusted memory, but this can be up to 35x slower than typical random

memory accesses as the eviction process must access a special memory encryption engine

[53]. MooseGuard takes an alternative approach by using untrusted memory as the backing

store of metadata objects and implementing a cache for these objects within the server en-

clave. The cache encrypts all metadata objects before evicting objects to untrusted memory.

This approach allows the master enclave to define when encryption-based paging occurs and

optimize the cache based on access patterns of metadata instead of memory access patterns.

MooseGuard’s implementation leverages the SGX SDK sealing APIs to derive a key to seal

evicted metadata objects, Kr from Table 1. Each object is encrypted using AES-GCM 128-

bit encryption, and encrypted data is authenticated using AEAD. Since Kr is only used

to encrypt non-persistent data, this key is ephemeral and only used for the lifetime of the
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enclave.

A DFS implementing this approach with MooseGuard should cache enough metadata to

prevent the thrashing of metadata objects for a single client operation. The cache imple-

mentation for MooseGuard on MooseFS uses as much free enclave memory as possible to

improve the performance of repeated and predictable file system operations. This enables

MooseGuard’s server enclave to traverse an entire directory path for operations such as the

POSIX extension readdirplus. The implementation of this cache is a simple, 60 MB LRU

write-through cache. This cache is large enough to hold approximately 200,000 MooseFS

metadata objects which may include file names, inodes, and symlink information. This im-

plementation holds a working set large enough to satisfy large workloads, and its performance

is measured in Section 5.2.2; further optimization of this cache is left for future improvement.

3.1.3 Persistent Metadata

Saving metadata to disk is an important requirement for the master server of any DFS.

MooseGuard considers this functionality and utilizes the sealing capability of a TEE to

accomplish this. In MooseFS’s implementation of saving metadata, the master server logs

each file system operation in a changelog on-demand and compacts changelogs into binary

checkpoints of the file system metadata on an interval (by default every hour for MooseFS).

The master server uses SGX sealing capabilities to derive enclave-specific keys, Kc, Km shown

on Table 1, to encrypt data to be written to disk. Each changelog message is encrypted using

Kc and authenticated individually, and each stores the metadata epoch counter inside the

message. Each changelog message is additionally chained to the previous message by using

the associated data from AES-GCM encryption as additional data for the next encryption

call. The binary checkpoint file contains all of the metadata in a single encrypted and

authenticated file along with the metadata epoch. Each changelog message is encrypted

with 128-bit AES-GCM encryption, and the checkpoint file is encrypted with 128-bit AES-

CTR encryption and authenticated with HMAC-256.

With this approach, the file system’s state can be restored into an enclave with the same

signature. Given the same enclave signature and sealed data, the server enclave can derive
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Kc and Km. This allows the service to close down and be restored in the event of a failure.

Because all file and directory metadata is sealed as one checkpoint file, this approach does

not leave the file system vulnerable to rollback attacks at a file or directory granularity,

but only at the epoch counter granularity. A secure hash of file chunks, H i
int, is stored

alongside file metadata in the checkpoint file. An attacker cannot restore the file system

to an older metadata epoch to gain access to a newer version of file data. This is because

checks on an older value H i
int would fail during decryption. The details of this check are

explained in detail in Section 3.3.3. Attempting to rollback a specific change in a changelog

would be detected with integrity checks since each changelog message is chained together

when encrypted. Similarly, modifying the binary, which stores metadata, is detected through

authenticated decryption. Overall, an adversary may leverage rollback attacks to restore the

file system to an older snapshot, but the integrity of the file system and the access set during

that snapshot do not allow a user to access new data with an older metadata epoch.

3.2 SECURE COMMUNICATION

Authorized and authenticated access is common in modern DFSes, however typical DFS

usage assumes that clients and servers faithfully provide correct access control when creden-

tials are provided and protocols are followed. In an untrusted setting, the service provider can

collude to circumvent authorized access to the master server by manipulating network traffic

or altering the system that hosts the master. Additonally, a client’s system can attempt

to use invalid credentials or exploit an authentication process on an untrusted platform to

avoid access control.

MooseGuard fortifies existing authorized and authenticated access by establishing secure

channels of communication between clients and the master server to protect the privacy and

integrity of operations on the file system. Given the stricter threat model, clients and the

master server must verify that the other will perform file system operations securely and as

intended. In addition to ensuring that operations that require permission are evaluated in

a TEE, as discussed in Sections 3.1 and 3.3, MooseGuard leverages the attestation feature
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of Intel SGX between client enclaves and the master enclave to ensure that enclaves will

faithfully execute permission checks. Furthermore, after establishing a connection to the

master server, clients must only be able to access what they are granted permission to, as

opposed to any arbitrary client issuing arbitrary operations on the master. To accomplish

this, MooseGuard requires a public/private key-pair used by a user to authorize an action.

3.2.1 Attestation

The SGX Remote Attestation Protocol [17] establishes a secure communication channel

between master and client enclaves. This process is an extended Sigma protocol to conduct a

Diffie-Hellman Key Exchange. Remote Attestation establishes several key facts: the identity

of the client and master enclaves, the integrity of those enclaves, the authenticity of the

platform each enclave is running on, and finally a shared key that can be used to derive keys

for secure end-to-end encryption between enclaves. Both endpoints for this secure channel

are established within enclaves, which makes this channel suitable for the master and client

to share keys for file encryption and for the master to associate this channel instance with

a set of UNIX file permissions. Thus, establishing a secure channel is a key requirement

for MooseGuard to provide authenticated and authorized access to a DFS in untrusted

environments.

Both client enclaves and the master enclave must prove their authenticity to each other.

As a result, MooseGuard performs the attestation process twice. The process begins with

a typical ECDH key exchange which establishes the shared key, Kr (Table 1), between the

master and client enclaves. From this step onward, all communication between enclaves is

encrypted with Kr using AES-GCM 128-bit encryption. Next, the master enclave challenges

the client enclave to provide a quote. This quote is received by the master enclave and sent

to the Intel Attestation Service (IAS). After the quote is validated, the master server has

established the identity and integrity of the client enclave and its SGX-enabled CPU. The

client has now established a trustworthy place to perform isolated execution, but must still

prove to the master that it is authorized to share file encryption keys (FEKs) and accept

file operation requests. Finally, the client enclave issues the same challenge and the master
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replies with a quote. The quote is validated, and the client enclave can trust the identity

and authenticity of the master server it is connected to.

3.2.2 User Authentication and Permissions

After the attestation process, both enclaves have established a trusted platform to operate

on, but have not established that the client who initiated the connection has permissions to

operate on the file system. In a typical DFS, after a client connection has been established,

the client will provide credentials to authorize itself on the file system. MooseGuard extends

this step by requiring clients to provide a credential that can be verified within the master

enclave. This process restricts access to only client enclaves that are granted permission to

use the file system, restricts each client connection to act as only a single user, and allows

the master server to identify what permissions each connected client has within its isolated

execution environment.

MooseGuard ensures that only authorized users access the file system by requiring each

user to authenticate their access with a public/private key pair, Ku|K−1u from Table 1. The

master server has a whitelist of all authorized users’ public keys, and a mapping of UNIX

user IDs to public keys f : u → Ku. These keys ensure that only authorized users can

access the file system, and allows the master server to validate the authorization of a user

within its enclave. Each client knows their private key K−1u , and the ID of the user they

wish to authenticate as. The client enclave signs the user ID with their private key and

sends this signature to the master enclave. The master enclave validates the signature and

associates the validated UNIX ID with the current secure channel. The master enclave maps

all file system operations on this secure channel to the established UNIX ID. This process

further restricts each client’s connection to operate as a single, authenticated user. If a client

attempts to authenticate as a different user with their private key by signing a different UNIX

ID, the master will detect this violation during the verification of the signature.

The public/private key pair is the mechanism that allows the master enclave to authen-

ticate users. Associating each key pair with a UNIX ID provides convenience for clients

to interact natively with the FUSE mount. Further, it allows the MooseFS master server’s
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implementation of access control, performed in the master enclave, to remain unmodified.

Finally, after the client and client enclave authorize themselves with the master server, the

secure channel can be used to issue file system operations, and the client enclave can be used

to access encrypted file data from chunk servers.

3.3 CLIENTS

DFSes implement functionality on clients to combine the task of locating data with the

master and accessing data on chunk servers into a coherent client-side interface for users of

the file system. Whether the implementation of the client runs in privileged or unprivileged

modes on the CPU, a client can evade access control for file data by directly accessing

chunk servers instead of using the client interface. A DFS can address this vulnerability by

encrypting chunks and only sharing keys with clients after an access check on the master

server. However, even with a master server running in a TEE this incurs expensive re-

encryption costs when access is revoked. The DFS could instead perform all encryption

directly on the master and send decrypted file data to clients through a secure channel, but

this approach would severely bottleneck the scalability of read and write throughput at the

master server. Finally, a DFS could enforce access control on chunk servers or through a

third party, but the management of keys and other metadata would limit the scalability and

expand the attack surface for the DFS.

MooseGuard’s solution to this issue utilizes a TEE on each client, where file encryption

keys can be shared, utilized, and revoked in a trusted, isolated environment on the client.

This approach enables the master to distribute work to the client for both enforcing access

to files and encrypting files for I/O. Distributing the work of encryption and decryption

to the client allows users to operate on data in parallel and simplifies the chunk server

requirements. This allows the service provider to easily scale-out storage with no major

changes to the chunk server implementation. This section describes the organization of

the client enclave, additional file encryption metadata MooseGuard introduces, and the

distributed access control procedure that MooseGuard proposes.
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3.3.1 Client Enclave

The client functionality of a DFS can combine intricate caching and optimization, but at

its core, it must communicate with the master to retrieve chunk metadata and communicate

with chunk servers for file I/O. MooseGuard proposes a simple client enclave inserted in

between client functionality and network interactions with remote servers in the DFS. This

allows the client enclave to intercept master messages to send and receive additional encryp-

tion metadata, and intercept file I/O and perform encryption in-line between the client and

chunk servers.

With its limited responsibilities, MooseGuard’s implementation of a client enclave on

MooseFS is much simpler than the master enclave. The client enclave interface includes

ECALLs to connect and attest to the master, send messages to the master over the secure

channel, and encrypt and decrypt blocks of data from a chunk server. Like the master

enclave, the client enclave utilizes the SGX SDK’s generated boundary checks but does not

implement any further prevention of Iago attacks.

3.3.2 File Encryption Scheme

Data servers in DFSes distribute files or chunks over multiple storage servers for redun-

dancy, concurrency, and heterogeneous support. Specificially, MooseFS divides file data into

64 MB chunks as a unit of replication between chunk servers, and further divides each chunk

into a collection of 64 KB blocks as a common unit for accessing data and computing check-

sums for data integrity. Clients can obtain read and write locks at a chunk granularity for

each file. MooseGuard’s implementation on MooseFS chooses to encrypt data and compute

secure checksums on the same block-alignments to balance the trade-off of storing additional

associated encryption data with block-aligned data access that MooseFS generally optimizes

for. MooseGuard’s general approach of assigning a file encryption key (FEK) to each file and

storing a hashed version of the file generalizes its approach, making it adaptable to different

divisions of data for each DFS implementation.

MooseGuard implemented on MooseFS extends the file inode structure on the master to

store Kf (Table 1), a 128-bit FEK, and H i
int, an array of 256-bit chunk hashes for each chunk
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Figure 3: MooseGuard File Extensions

i, stored alongside the chunk map for each file. Each block within a chunk is encrypted with

Kf and a random IV using AES-GCM 128-bit encryption producing authenticated data AD.

For each block j in chunk i, the pair of associated encryption data IV and AD is stored

together as the value T i
j := IV |AD in the extended header for a 64 MB chunk. On updates,

the chunk header is hashed using SHA-256 hashing to determine the new version of chunk i.

Formally, H i := SHA256(T i
1|...|T i

1024). During access control, as described in Section 3.3.3,

the external and internal versions of the H i are compared. Figure 3 depicts how encryption

metadata is organized in the inodes and chunk metadata.

3.3.2.1 Chunk Server Modifications The chunk server does not require an enclave;

however, the implementation of MooseGuard on MooseFS required slight modifications to

the MooseFS chunk server daemon to support the storage of additional encryption metadata

for each chunk. The first change was to store encryption metadata alongside other chunk
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metadata. The second change was to modify the messages between clients and chunk servers

to read and write encryption metadata, and between chunk servers to replicate the encryption

metadata. The messages were extended so clients could store each chunk’s T i
j values on

the chunk server. These changes were trivial for MooseFS and should not affect a service

provider’s ability to deploy the chunk server daemon.

3.3.3 File Access Control and Revocation

MooseGuard clients access file data in two phases. The first phase is a common behavior

for both read and write access. The client first requests access to chunk i on file f from

the master. After the master validates the client’s access, it returns all necessary metadata

required to access the chunk. This metadata includes Kf , H i
int, and the location of the

chunk. The client enclave strips Kf and H i
int and caches them inside the enclave for the

pending chunk server access, while the location is returned to the client.

Figure 4 depicts how a client reads a chunk in both phases. During phase two of a chunk

read, the client requests block j and all block headers T i
1, ..., T

i
1024 from the chunk server.

Then the client enclave computes H i
ext := SHA256(T i

1|...|T i
1024) and checks that H i

ext = H i
int

to confirm that the version of the chunk the client is decrypting matches the version of the

chunk they have access to decrypt. Finally, block j is decrypted with Kf from phase one

and T i
j and returned to the client.

Similarly, Figure 5 depicts how a client writes a chunk in both phases. Write access checks

and encryption use the same concept as reads of checking the internal and external hash

versions, but need to commit a new hash to finalize the write. During phase two of a chunk

write, the client requests all block headers T i
1, ..., T

i
1024 from the chunk server (this step is

optimized through caching). Then the client enclave computes H i
ext := SHA256(T i

1|...|T i
1024)

and checks that H i
ext = H i

int to confirm that the version of the chunk the client is about

to encrypt matches the version of the chunk they have access to encrypt. Next, the client

enclave encrypts block j using Kf from phase one and T i
j and updates the internal hash

H i
int := SHA256(T i

1|...|T i
j |...|T i

1024). The client enclave writes the new encrypted block and

header to the chunk server and finally commits the newly written version of the chunk to
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Figure 4: MooseGuard Read Access Control

the master enclave by returning the new value of H i
int. When the master commits the new

version of the chunk, the write access is confirmed in the master enclave one more time.

In the most basic implementation, the overhead MooseGuard imposes over MooseFS is

reading the entire chunk header, validating H i through a SHA-256 hash, and encrypting or

decrypting with AES-GCM 128-bit. The IVs and ADs for each chunk require 28 KB of space

and each block is 64 KB. Thus, the worst case overhead for any read or write is the cost

an additional 28 KB read from the chunk server, combined with the costs of hashing 28 KB

and encrypting 64 KB. This cost can be mitigated by combining encryption or decryption

of multiple blocks in one block access. Additionally, the MooseGuard implementation on

MooseFS utilizes extra enclave memory to cache as many encryption headers T i
1, ..., T

i
1024

as possible, preventing multiple 28 KB header reads from the chunk server on each chunk

operation. When a client frequently works on the latest version of this file, the cost of

reading the whole header is heavily mitigated. The impact of this overhead and the benefits

of caching are shown in the file I/O access pattern benchmark in the evaluation at Section

5.1.2.

MooseGuard can revoke access to file metadata immediately as the master server handles

a request. However, when access to a file’s data is changed through UNIX file permissions,

access to file data from each client is revoked lazily as the client enclave detects a change in
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Figure 5: MooseGuard Write Access Control

the chunk hash H i
int! = H i

ext. This approach could allow a service provider to collude with

a client that had access revoked, allowing the client to continue accessing an older version

of a file. MooseGuard views this as an acceptable vulnerability as users typically anticipate

that data shared with another user can be copied to a separate location.
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4.0 SECURITY ANALYSIS

MooseGuard’s goal is to enable a secure distributed file system that can be deployed

in untrusted environments. MooseGuard considers a powerful adversary amongst a server

architecture deployed on an untrusted platform with client devices that attempt to gain

unauthorized access to data. In the context of the deployment and threat models defined in

Chapter 2, this chapter discusses MooseGuard’s design and how it accomplishes its security

goals. This chapter considers the confidentiality and integrity guarantees on user data, how

MooseGuard prevents unauthorized access, and finally how the state of the file system is

kept consistent in the presence of a strong adversary.

4.1 CONFIDENTIALITY AND INTEGRITY

MooseGuard identifies several categories of information in a DFS that are sensitive and

must be protected. The sensitive information that MooseGuard protects is file data, file

metadata, and messages between the master and client enclaves. Table 1 summarizes the

three categories of data that MooseGuard protects, and the keys and encryption methods

used for each data type. All information that MooseGuard protects is encrypted using

AEAD encryption algorithms to ensure confidentiality and integrity. Except for a user’s key

(Ku), all keys originate from isolated execution within a TEE. All encryption operations are

executed only within a validated enclave, and key sharing between enclaves (Kf and H i
int)

is done between authenticated and authorized enclaves over a secure channel.

4.2 AUTHORIZED ACCESS

MooseGuard ensures that only authorized users of the file system can read or change

the state of the file system. MooseGuard identifies three areas where authorization must
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be confirmed before operating on the file system. The remainder of this section details the

steps MooseGuard takes to ensure unauthorized access to the file system is prevented.

4.2.1 Authorizing User Access

Users of MooseGuard must follow several steps to gain authorized access to the file

system. Client enclaves first use a Diffie-Hellman key exchange to establish Kr and a secure

communication channel. The master and client enclaves then prove the authenticity and

integrity of the other’s enclave using remote attestation with the IAS. The client enclave

then binds it’s UNIX ID and groups to the secure channel by signing its ID with K−1u ,

provided by the user, and sends this to the master. The master enclave verifies this access

with Ku, which is hardcoded into the enclave. At this point, the user has established a

secure channel to communicate, proven the authenticity and integrity of its enclave, and

proven they are authorized to access the system.

4.2.2 Securing the Enclave Boundary

The master server enclave mitigates unauthorized manipulation of the file system by only

making ECALLs available during phases of operation. Because the master enclave executes in

a single-threaded environment, incorrect ordering of OCALLs can simply be checked with the

SGX SDKs generated boundary code. During the initialization phase, ECALLs are expected

to be called in an exact sequence that initializes the enclave, restores the sealed metadata

snapshot (with Km), and replays changelogs after the metadata snapshot version (with Kc).

During the main phase of operation, the only entrances to the enclave are through ECALLs

for new or existing client communication. New clients follow an exact sequence of attestation

ECALLs, and all existing client messages are sent through the same ECALL. These well-

defined steps allow the enclave to decrypt the message in each ECALL and verify that the

ECALL was called in the correct sequence. OCALLs to commit changelog entries, access

the metadata cache, and make chunk changes are all executed serially through OCALLs

during the initial ECALL. Finally, the shutdown phase is restricted to the single ECALL

to initiate sealing metadata. All other operations to store metadata are completed through
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serial OCALLs until the process completes. Additional hardening of enclave boundaries to

prevent further attacks, such as Iago attacks, could be pursued by implementing a solution

similar to the work by Shinde et al. [50, 51]; this is left for future work.

4.2.3 File Access and Revocation

The client enclave interface is considerably simpler. The client enclave interface contains

sequenced ECALLs to attest and authorize with the master and contains ECALLs used to

send metadata operations or encrypt or decrypt file data. ECALLs for metadata messages

and file access may be called in any order, but MooseGuard will only return decrypted data or

commit newly encrypted data when the client enclave follows the protocol detailed in Section

3.3.3 to gain authorized access to files. Access revocation is checked at the master enclave

when a user requests access to a file and is enforced at the client enclave by checking that

the version of the chunk requested matches the version they have access to (H i
int = H i

ext).

4.3 CONSISTENCY

A DFS provides basic consistency guarantees by ensuring that state changes in the file

system are committed to disk and that concurrent client operations are properly serialized.

In light of the threat model in Section 2.1, MooseGuard further protects the consistency of

the file system from an adversary that may attempt to create an inconsistent state in the file

system. Specifically, MooseGuard ensures fork consistency on access revocation. Formally,

when a user’s access of a file is revoked at version vf , the user may be able to read copies of

the file at versions v for all versions v < vf , but the user will not be able to read copies of

the file at versions v′ for all versions v′ ≥ vf .

Another area of MooseGuard that is vulnerable to attacks on consistency is metadata

stored outside of the master enclave. Confidentiality and integrity for metadata is addressed

in Section 4.1. However, attackers may try to reorder or remove pieces of persistent metadata.

An attacker may try to swap encrypted objects in the metadata cache. MooseGuard detects
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such an attack by embedding the ID of the cache entry in the metadata object before sealing

it. When unsealing the entry, MooseGuard asserts that the expected ID matches the un-

sealed ID. MooseGuard also considers attacks on the ordering of persistent metadata. When

MooseGuard unseals and replays the changelog to initialize the file system, an attacker may

reorder encrypted lines in the changelog. MooseGuard detects this attack during unsealing,

as each changelog entry is chained together. As an example, given changelog entry Ci and as-

sociated data ADi−1, MooseGuard will perform the encryption ENC(Ci|ADi−1)→ Ei, ADi,

which produces encrypted data Ei and associated data ADi. During unsealing, swapped

changelogs will break this chaining and authenticated decryption will detect the violation.

Finally, an attacker could choose to omit changelog entries at the end of the chain

or perform a wholesale swap of a compacted metadata backup. These rollback attacks

put MooseGuard into an old state, but not an inconsistent state. Work to detect rollback

attacks on the persistent metadata files could be accomplished by embedding counters using

a hardware counter with the SGX SDK or by using an approach similar to ROTE [36]; this

is currently unexplored in this paper and left for future improvement.
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5.0 EVALUATION

MooseGuard’s evaluation considers the performance impact that it imposes on a dis-

tributed file system. The performance impact is measured by comparing the latency over-

head of file system operations on a stock MooseFS file system versus a MooseGuard file

system. The costs of encryption, additional verification in chunk access, and master perfor-

mance in a TEE are examined in the context of file I/O benchmarks, metadata benchmarks,

and various applications.

The prototype implementation of MooseGuard was built with Intel’s SGX SDK v2.7.1,

SGX driver v2.6 and MooseFS v3.0.99. The TCB of the compiled server enclave was 2.9

MB, and the client enclave was 1.4 MB. Using SLOCCount [12] to count lines of code,

MooseGuard’s implementation added 20,907 new lines, of which 10,002 were lines generated

by the SGX SDK enclave interfaces.

MooseGuard was evaluated on a private gigabit network on machines running Ubuntu

18.04. MooseGuard was configured with one master server (Intel Core i7-8700 CPU @

3.20GHz, 16GB RAM), 1-4 clients, and 4 chunk servers with approximately 1 TB of storage

on each server. Chunk replication was set to a factor of 2 and 4 chunk servers were used in

each test. All results shown were averaged over 10 samples.

5.1 FILE I/O BENCHMARKS

The intent of the file I/O benchmarks are to analyze MooseGuard’s impact on file I/O

throughput. MooseGuard implements file encryption on a 64 KB block size and accesses

the master to check file permissions and manage keys on every chunk access. Because of

these requirements of MooseGuard, the evaluation of file I/O considers several elements.

The evaluation looks at performance over varying file sizes, access patterns, and the effect

of multiple clients concurrently operating on files. File I/O performance was measured by

using IOR [6]. IOR uses POSIX C APIs to access files and uses MPI to coordinate reading

and writing to files via clients hosted on multiple remote computers.
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Figure 6: File I/O Overheads over Varying File Sizes

5.1.1 File Sizes

MooseGuard’s client enclave must encrypt all file data and synchronize encryption meta-

data with the master enclave. The file size evaluation isolates the cost of encrypting file data

in MooseGuard. This test is run through a single client that reads and writes files sizes of

varying orders of magnitude. All files were read and written sequentially. The Linux page

cache was cleared at the beginning of each read iteration to force all reads through MooseFS

to ensure all data is read and written through our file system. MooseFS was configured to

never cache file data locally on clients. IOR was configured to read and write blocks of data

1 KB at a time, flushing writes before closing each file.

Figure 6 shows that as file size varies, the overhead that MooseGuard introduces remains

constant. Over all file sizes, the overhead for both read and write operations is constant.

MooseFS optimizes for block accesses of 64 KB, so small file accesses can be completed in

one operation for MooseFS. Operating on larger file sizes took more operations and reflected

an average latency with less variance than smaller file operations. These results indicate

that MooseGuard’s client-side encryption introduces a constant overhead per read or write.
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Figure 7: File I/O Performance over Access Patterns

5.1.2 Access Patterns

MooseGuard’s implementation chooses to encrypt data in 64 KB blocks. By encrypting

blocks of data at this size, MooseGuard can balance between performance in accessing smaller

units of data and the storage overhead of encryption metadata per-block. The access pattern

evaluation compares the file I/O performance overhead of MooseGuard in workloads that

vary in how much data is accessed and in the order that data is accessed. This test accesses

a 128 MB file through a single client, flushing writes after every block access and clearing

the Linux page cache before each read.

Figure 7 shows the runtime of each operation in each access mode. Both file systems

improve in performance with 64 KB block size, the default unit of storage for MooseFS. In

sequential reads, both file systems on both block sizes can leverage MooseFS’s read-ahead

and write-coalescing capabilities, and the overheads are minimal as a result. All other access

patterns show that MooseGuard incurs nearly a 2x overhead in 32 KB operations. Each

32 KB operation requires MooseGuard to fetch 64 KB of data for encryption, while stock

MooseFS can access smaller block slices. In 64 KB blocks, this is not a factor, so the overhead
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Figure 8: File I/O Performance over Client Scale

is reduced substantially to approximately the cost of encryption alone. Overall, the results

of this test show that this approach suits most access patterns with reasonable overhead,

and the performance for specific access patterns can be enhanced by properly adjusting the

block size for encryption.

5.1.3 Client Scaling

The client scaling benchmark evaluates the impact of MooseGuard on file I/O operations

during concurrent use of the file system by many clients. MooseGuard’s approach of man-

aging FEKs with the master enclave but distributing keys to client enclaves for encryption

aims to enable concurrent use of the file system by limiting where the master enclave can

be a bottleneck. This test distributes the work of writing and reading 1 GB of data over

multiple clients. The work is split into 1024 tasks of reads and writes of 1 MB of data each.

IOR was configured to ensure that each client never read data that it also wrote. Writes

were flushed at the close of each file, and the Linux page cache was flushed before reads in

the one node case.
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Figure 8 shows the overall latency of the operation decreases as the number of clients

increases for both file systems. Reads are faster than writes in both cases because writes

require replication of data while reads can access any chunk server. The performance does

not decrease linearly, which may be a result of our chunk servers becoming overwhelmed.

MooseFS typically uses up to 250 threads on clients and on chunk servers to handle file

I/O. During testing, we found that 2 clients can saturate 4 chunk servers with our hardware

setup. To analyze the impact of client scale, the number of worker threads for clients was

reduced to 125 threads for this test.

5.2 METADATA BENCHMARKS

This section of the evaluation focuses on the overhead of metadata operations, which

are impacted by MooseGuard’s enclaves differently than file I/O. All metadata operations

occur only between clients and the master; the client enclave’s file encryption methods are

not used. While there are many types of metadata operations, this section of the evaluation

focuses on three core metadata operations at scale: creating, querying, and deleting a node.

Other typical metadata operations are evaluated in Section 5.3.

This section of the evaluation uses mdtest [6], another HPC file system benchmarking tool

from the LLNL. Like IOR, mdtest uses POSIX C APIs to perform file system operations and

utilizes MPI to coordinate running these operations across many clients on remote computers.

Unlike the file I/O, metadata operations for MooseFS are not as heavily parallelized on

individual clients. To operate on large directory structures, the metadata benchmarks always

distribute the work across four clients unless otherwise noted. Additionally, MooseGuard

caches recently used directories and attributes for up to 1 second. For these tests, those

caches were disabled.

5.2.1 Directory Tree Sizes

MooseGuard’s master enclave protects the integrity of metadata operations but aims

to keep the implementation of metadata management the same where possible. The first
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Figure 9: Metadata Performance over Directory Tree Sizes

metadata benchmark examines the overhead in latency that MooseGuard introduces while

operating on directory structures of various sizes. This test creates a deep directory structure,

then creates, stats, and deletes an equal number of files and directories at each level of the

structure. The total number of files and directories in an iteration of the test ranges from 200

to 20,000 files and directories. All operations were run sequentially using mdtest’s default

behavior.

Figure 9 shows that the overhead of performing these operations ranges between 1x to

1.5x, varying between directory tree sizes. Though the runtime required to perform metadata

operations increases for larger directory trees, all operations on deep trees are performed in-

memory on the master, which prevents linear growth in runtime of deep tree accesses. As

a result, the overhead does not show an increase with various directory tree sizes. Stat

operations generally had less overhead than create or remove operations, suggesting that

the extra memory allocation operations required by the MooseGuard enclave can impact

performance. Overall, this benchmark suggests that MooseGuard does not prohibit large

directory trees in a secure file system.
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Figure 10: Metadata Cache Impact on Performance

5.2.2 Master Metadata Cache

MooseGuard’s implementation of the client enclave has limited memory, so it uses a

cache to store elements of the directory tree in enclave memory. This imposes encryption

costs for nodes evicted from the cache and has an extra cost in general to manage memory

for the cached items. This benchmark compares the overhead of a stat operation from delays

caused by the cache. The test also shows delays caused by entering and leaving enclaves,

which is required for any operation but occurs more frequently with uncached data. This

test creates 5000 files and directories in one flat root directory, then runs the stat operation

on all entries. In the MooseGuard variants of the test, the size of the cache is modified to

hold all entries (MG Seq., Cached), no entries (MG Seq., No Cache), or half of the entries

(MG Random).

Figure 10 shows the runtime of the stat operations in each environment. The cost of

calling stat on a directory node or a file node is approximately the same in any environment.

The overhead of sequentially calling stat for MooseGuard with all cached entries versus stock

MooseFS is 1.034, which is the approximate overhead for encryption costs in the client to

37



master secure channel and the cost to enter and exit the client and master enclaves. The

overhead of always missing cached data vs. always hitting cached data in MooseGuard is

1.078, which is the approximate overhead the cache itself imposes. The worst-case overhead

between always missing the cache in MooseGuard and stock is an overhead of 1.115, roughly

the combination of both previous overheads. Randomly hitting the cache shows an overhead

between both scenarios. These results suggest that a TEE with limited memory can support a

secure file system with MooseGuard’s approach by leveraging caching cold metadata outside

the enclave.

5.2.3 Client Scaling

MooseGuard avoids bottlenecks in file I/O by distributing work to clients, but metadata

operations are coordinated by a master server. The client scale benchmark for metadata

examines the impact of MooseGuard on the file system’s ability to scale concurrent metadata

operations to multiple clients. This test distributes the work of creating, stating, and deleting

20,000 files and directories over 1 to 4 clients. All 20,000 nodes are organized in one flat root

directory.

Figure 11 shows the trend of latency to run the operations as the number of concur-

rent clients increases. In general, the latency to perform all operations decreases in both

file systems as more clients work together. The performance starts to flatten between 3

and 4 clients when the single-threaded master server starts to near its capacity to handle

concurrent requests. The overhead of MooseGuard decreases slightly in all types of oper-

ations as the number of clients scales up since the amount of overhead in enclave context

switches and secure channel encryption cost becomes parallelized over multiple clients. Over-

all, MooseGuard imposes only a constant overhead per-client and does not impact the scaling

of concurrent metadata operations by client.
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Figure 11: Metadata Performance over Client Scale

5.3 APPLICATION BENCHMARKS

Analyzing the performance of applications utilizing a distributed file system shows the

holistic cost that MooseGuard incurs. This section of the evaluation considers two common

use cases for a DFS: typical UNIX operations on a shared file system and Spark [60], a

distributed scientific application. These applications utilize file I/O-bound operations such

as sequential, random, and parallel access. They also incorporate metadata-bound operations

during the same runtime, showing how MooseGuard comprehensively affects performance for

end-users.

5.3.1 UNIX Applications

To analyze UNIX application performance, we use the same benchmark used by NeXUS

[27], another paper that utilizes TEEs in a secure file system. This benchmark considers

common UNIX applications that end-users of a shared file system may run. The applications

used are:
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Table 2: UNIX Directory Trees

Workload Files Total Size

large-file-small-dir 32 3.2 GB

medium-file-medium-dir 256 2.5 GB

small-file-large-dir 1024 10 MB

• tar x - Extract a gzip-compressed tar file

• grep - Recursively search for a word in all files

• tar c - Create a tar file

• cp - Recursively copy a directory

• ls - Recursively list and stat a directory

• rm - Recursively remove a directory

Each iteration of the test runs all applications in the order shown against 3 different

directory trees described in Table 2. Between each application, the Linux page cache is

flushed. To observe MooseGuard’s impact on metadata performance, both client metadata

caches for MooseFS are also disabled.

Figure 12 shows the results of this benchmark for stock MooseFS and MooseGuard. These

results show that the holistic overhead of MooseGuard is smaller than the overhead found for

similar microbenchmarks in Sections 5.1 and 5.2. In the small-file-large- dir workload, the

file I/O-bound applications saw a higher overhead than other workloads. In this workload,

the size of each file was 10 KB, where file I/O operations for MooseGuard were performed on

64 KB of encrypted data. These results are consistent with the results of Section 5.1.2 and

could be improved by optimizing the block size of the file system for the use case. Overall,

as the overheads for file I/O and metadata operations mix with applications using the data,

MooseGuard’s performance overhead decreases and suggests that MooseGuard is well suited

for these applications.
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Figure 12: UNIX Application Performance

5.3.2 Spark

Scientific distributed computing is another common use case for distributed file systems.

HDFS, a distributed file system commonly used in conjunction with Spark, and shares a

similar architecture to MooseFS as they both have a name server (master server) and data

servers. To analyze the performance impact of MooseGuard for this use case, we ran a

distributed application with the Spark framework and MooseGuard as the storage service.

Spark and MooseFS were deployed on the same systems, with the MooseFS master and Spark

Cluster Manager on the master server and an instance of a MooseFS client, a MooseFS chunk

server, and Spark Worker on each of the four other servers. The application for Spark was

the KMeans data generator and clustering applications. The amount of data generated was

10,000,000 rows and 24 columns for a total of 2 GB of overall data. The data was divided

into 4 RDD partitions, approximately 458 MB per file, so the work could be parallelized to

all worker nodes.

Table 3 summarizes the results of running KMeans data generation and clustering with

stock MooseFS or MooseGuard as the backing file system. During data generation, the Spark

workload is I/O bound. The file I/O operations during this phase are mainly sequential writes

of large chunks of data, for which MooseGuard performs optimally with a 1.022 overhead. For

the data generation task as a whole, MooseGuard’s overhead is minimal. In the clustering
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Table 3: Spark Performance

Operation Stock (sec) MooseGuard (sec) Overhead

Generate I/O 16.567 16.933 1.022

Generate Total 19.668 19.989 1.016

Clustering I/O 0.626 0.873 1.396

Clustering Total 31.328 33.036 1.055

phase, the Spark workload is CPU-bound and can work around the delays of file I/O to

retrieve data. Despite spending less overall time reading data during the clustering phase,

MooseGuard’s impact is seen with a higher overhead of 1.396 during I/O operations. The

performance in this case is similar to the random read overheads in Section 5.1.2 and suggests

that the overhead here may be attributable to Spark accessing RDD files in a non-sequential

manner. The overhead for the clustering phase in total is smaller at 1.055, as the CPU-bound

portion of this phase dominates the file I/O overhead. Overall, MooseGuard shows that it

is capable of protecting a distributed file system in distributed computing applications with

minimal overheads to the application.

5.4 EVALUATION TAKEAWAYS

MooseGuard showed that it only imposes a constant overhead for file I/O and metadata

options when scaling upward with size or outward with clients. Though performance can vary

on specific block sizes, that attribute can be tuned for specific uses. MooseGuard improves

performance in scaled metadata and concurrent use cases compared to NeXUS by reducing

the overhead from a greater than a linear factor to a constant factor. In applications with

the presence of caching and CPU-bound operations, MooseGuard’s impact can be further

minimized. Overall, the results of this evaluation show that the trade-off of using separate

TEEs to secure metadata and data can greatly reduce typical overheads seen in secure file

systems, allowing a DFS to return to its normal scaled performance.
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6.0 CONCLUSION

Shared storage services provide great utility, but have traditionally required users to

sacrifice the privacy of their data to share it effectively. By employing the use of TEEs,

research has taken steps forward in empowering users so they can keep their data private

and share it without concern that a service provider may leak or abuse their data.

MooseGuard provides another step in this direction. The design of MooseGuard is adapt-

able to many DFSes and uses functionality that is common in TEEs that are becoming more

widely available and adding enhanced features. MooseGuard’s approach provides a blueprint

for securing a distributed file system for shared infrastructure deployments by isolating file

system policy decisions on the master server, performing stricter verification of users, and

encrypting user data. The prototype for MooseGuard demonstrates the feasibility of build-

ing such a system and the results of the evaluation show that with only a constant overhead,

MooseGuard can further enable users to use shared infrastructure to share their data at scale

with confidence in the privacy of their data.

This paper additionally identifies areas of work for future exploration. Within Moose-

Guard, enhancements can be made to further protect the integrity of persistent metadata by

detecting rollback attacks. MooseGuard also currently only supports fork-consistency of re-

voked access to files. This level of consistency can be made stricter by adapting MooseGuard

to consult the master server on finished reads or to optimize the client enclave to complete

reads within a single ECALL. Finally, MooseGuard’s encryption process can be optimized

to reduce the overhead of random access on smaller blocks by leveraging client- side caching

or tuning the block and chunk sizes.

Broadly, MooseGuard’s approach leverages client- and server- side TEEs to perform both

DRM-style key sharing and access revocation, and secured remote computation within the

same application. Distributed applications which require a centralized service for synchro-

nization, while delegating work to client devices can follow this approach to achieve stronger

security. These improvements to MooseGuard and broader concepts are left for future work

to provide even stronger scaling and sharing and future enhancements in secure computation.

43



Bibliography

[1] ARM TrustZone.
https://developer.arm.com/ip-products/security-ip/trustzone. Accessed:
06/28/2020.

[2] AWS HIPPA Usage. https://d1.awsstatic.com/whitepapers/compliance/AWS_
HIPAA_Compliance_Whitepaper.pdf. Accessed: 06/25/2020.

[3] Equifax data breach. https://www.csoonline.com/article/3444488/
equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.

html. Accessed: 06/29/2020.

[4] Google terms of service. https://policies.google.com/terms. Accessed:
06/29/2020.

[5] Intel sgx sdk. https://software.intel.com/content/www/us/en/develop/
topics/software-guard-extensions/sdk.html. Accessed: 06/28/2020.

[6] LANL HPC IO Benchmark. https://github.com/hpc/ior. Accessed: 06/16/2020.

[7] Lustre. http://lustre.org/. Accessed: 06/28/2020.

[8] Microsoft terms of service.
https://www.microsoft.com/en-us/servicesagreement. Accessed: 06/29/2020.

[9] MooseFS. https://moosefs.com/. Accessed: 06/27/2020.

[10] Openafs. http://www.openafs.org/. Accessed: 06/28/20.

[11] SGX on Microsoft Azure.
https://azure.microsoft.com/en-us/solutions/confidential-compute/.
Accessed: 06/28/2020.

[12] Sloccount. https://dwheeler.com/sloccount/. Accessed: 06/28/2020.

44

https://developer.arm.com/ip-products/security-ip/trustzone
https://d1.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf
https://d1.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
https://policies.google.com/terms
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/sdk.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/sdk.html
https://github.com/hpc/ior
http://lustre.org/
https://www.microsoft.com/en-us/servicesagreement
https://moosefs.com/
http://www.openafs.org/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://dwheeler.com/sloccount/


[13] US Government JEDI Contract. https://www.geekwire.com/2019/
jedi-explaining-10b-military-cloud-contract-microsoft-just-won-amazon/.
Accessed: 06/25/2020.

[14] Verizon’s data breach report. https://enterprise.verizon.com/resources/
executivebriefs/2019-dbir-executive-brief.pdf. Accessed: 06/29/2020.

[15] Voter cloud data exposed.
https://www.wired.com/story/voter-records-exposed-database/. Accessed:
06/29/2020.

[16] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung
Lee. OBLIVIATE: A data oblivious filesystem for intel SGX. In 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018. The Internet Society, 2018.

[17] Ittai Anati, Shay Gueron, Simon Paul Johnson, and Vincent Scarlata. Innovative
technology for cpu based attestation and sealing. 2013.

[18] Sergei Arnautov, Andrey Brito, Pascal Felber, Christof Fetzer, Franz Gregor, Robert
Krahn, Wojciech Ozga, André Martin, Valerio Schiavoni, Fábio Silva, Marcus
Tenorio, and Nikolaus Thummel. Pubsub-sgx: Exploiting trusted execution
environments for privacy-preserving publish/subscribe systems. CoRR,
abs/1902.09848, 2019.

[19] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, André Martin,
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